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Abstract 
Serverless Computing, generally analogous to Function-as-a-Service (FaaS) 

offering of Cloud Computing, typically focuses on implementing business logics in the 
form of ephemeral and bounded time functions with a pay-per-use pricing model. 
Serverless computing model shifts the responsibility of infrastructure and resource related 
tasks like provisioning and management. to the cloud service provider (CSP) and allows 
the user to focus on the business logic. This shift of responsibility from the user and an 
abstraction of the underlying the resources, validates the serverless characteristic of the 
platform. 

The serverless functions are executed as lightweight Virtual Machines (VMs) or 
containers that are created on-demand as per the requests. The inherent property of FaaS 
is to provide highly scalable and available function containers, serving the incoming 
request load. As the requests are generated, on-demand function containers are spawned 
that involves necessary bootstrapping, before the function could actually respond. The 
spawning incorporates downloading of function code, execution of an initialisation 
procedure that allocates required resources, creating code dependencies and setting up the 
runtime environment, etc. The bootstrapping holds back the invocation of request handler 
and introduces a delay in the response time of the application. This is known as the ‘cold 
start’ of the function container. Alternatively, cold start is the preparation time of function 
container before serving the incoming requests.  

FaaS emerges as an advantageous platform for a variety of real-life applications such 
as Internet-of-Things (IoT) sensor input processing, stream and batch processing, APIs 
and mobile backends, etc. and even few machine learning inference tasks. These 
applications, by attributes, expect a quick and fault tolerant response to operate reliably. 
But the underlying function ‘cold starts’ poses as a hinderance in the reliable operation 
of the application, as an end user solely focuses on the application response time. To 
address this preparation delay, a handful of techniques like container pooling, continuous 
function pinging and leveraging application content to reduce cold start, etc. have been 
presented. These solutions fall short of analysing the invocation patterns of the respective 
application and availing an intelligent solution that take an informed decision to reduce 
the ‘frequency of cold starts’ that occur during an observed period of time. Therefore, we 
propose a Reinforcement Learning (Q-Learning) agent to inspect the function CPU-
utilisation and application invocation patterns to intelligently reduce the frequency of 
application cold starts by ascertaining and preparing the optimal number of functions 
required, in advance. An evidence of Q-Learning agent’s successful learning capability 
is presented that realises concerned metrics and application invocation patterns to predict 
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the optimal number of function instances over a learning period to reduce cold starts. This 
thesis makes the following key contributions: 

1. A Reinforcement Learning Agent implementing model free Q-Learning in a 
serverless environment setting to reduce the cold start frequencies of a function.  

 
2. Implementing an agent to dynamically learn the function invocation patterns to 

ascertain optimal number of function instances, reducing cold start occurrences.  
 

3. Evaluation of our proposed agent against the baseline auto-scale policy of the 
serverless platform for a synthetic function workload pattern. 
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Chapter 1 -  Introduction 
 
Cloud Computing has seen an explosive growth over the decades and has revamped the 
use of existing resources. With the rapid growth of data and need for IT resources at hand, 
Cloud Computing has evolved from an on-premise infrastructure to offering utility-based 
edge services. In this era of accelerated technological advancements, Cloud Computing 
presents Serverless Computing as its emerging execution model. According to Cloud 
Native Computing Foundation (CNCF) [1], Serverless Computing introduces a new cloud 
native architecture that eliminates the requirement of server management for building and 
executing the applications. It describes an execution model where applications can be 
bundled as one or more functions, deployed on the platform and the tasks of execution, 
scalability and availability are handled on demand. The notion of application packaging 
in the form of functions without server management establishes Function-as-a-Service 
(FaaS), as serverless computing’s most versatile offering. FaaS is an event-driven Cloud 
Computing (CC) paradigm that puts forward an architectural style to design applications 
in the form of function(s), without focusing on the prior resource planning. However, the 
entire responsibility of resource provisioning, management, patching, scaling and 
capacity planning lies with the Cloud Service Provider (CSP) [20].  

FaaS applications are prepared as a set of time bound, loosely coupled, stateless and 
ephemeral function(s) (piece of code) and are deployed as light-weight virtual machines 
(VMs) or containers, offering a fine-grained billing model that corresponds to the costs 
incurred by the exact demand of resources. The idea of Serverless in no way implies the 
absence of severs for running the applications [1], instead allows the consumers to spend 
time on the business-critical tasks rather than focus on resource planning. Therefore, 
servers are still required to offer a serverless platform, but the service provider abstracts 
all the resource activities from the application developer or the consumer. This function-
based abstraction increases application development agility, while lowering the costs of 
ownership and overheads.  

The ease of application code deployment, highly available and on-demand scalable 
functions of FaaS platforms have attracted a wide variety of applications ranging from 
multiple domains such as REST APIs, stream processing, edge-computing, Internet-of-
Things (IoT) services, etc. [1,50,54]. These applications have stringent response-time 
requirements and therefore expects a near real-time or instant feedback from the function. 
[20] Ideally, the FaaS platform was conceptualised to spin-up function instances 
proportional to on-demand requests and terminate the instances after serving the request. 
But, practically, commercial platforms like AWS Lambda, Azure Functions or Google 
Cloud Functions, may choose to re-use the function instance or keep the instances queued 
for a while to anticipate the future requests [19,30]. Some open-source serverless 
frameworks such as Fission, Kubeless or Knative, that are built over container-
orchestration system, Kubernetes, are also known to exhibit similar properties to retain 
and re-use function instances to handle the subsequent requests [10,13]. 

As the workload is generated for the application, new function instances are requested 
from the serverless platform and a process of container initialisation precedes the serving 
of requests. The container initialisation process involves downloading of the code image 
from repository, set-up the code dependencies and runtime environment, set-up 
networking requirements of container and eventually executing the function handler to 
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serve the incoming requests. This process brings in an accompanying delay in the 
response time of the application, known as ‘cold start’, of the function container. This 
introduced cold start is typically of the order of few milliseconds to few seconds. From 
the consumer’s perspective, quick application response is the most important concern, to 
which ‘cold start’ poses as ongoing challenge for the serverless platforms [21,23,31]. 
Therefore, in other words cold start can be understood as the time taken by the platform 
to start executing an incoming request. Function cold starts are affected by a number of 
application related factors as well as the function requirements itself. Recent studies 
[23,41] have presented that factors like programming language, code packaging and 
deployment size, CPU or memory requirement limits, etc. have an effect over the function 
cold starts.     

To deal with the resource requirements and serve the future workload, serverless 
platforms and frameworks make use of the underlying resource metrics to set threshold 
values for resources. Kubeless, an open-source Kubernetes native serverless framework, 
makes use of the native metric server and supports resource based autoscaling, for serving 
the incoming workload [13,24,44,53]. The default offering of Horizontal Pod AutoScaler 
(HPA), by Kubernetes, derives the new desired function instances based upon the average 
per-instance CPU-utilisation of the function. HPA starts requesting for new function 
instances when the function containers run out of requested memory or average the per-
instance CPU-utilisation spikes above the specified threshold value [10,14]. This, in turn, 
leads to function cold starts, while serving the incoming workload and might eventually 
result in failed responses, if the function cold start time is greater than the request’s time-
to-live. Therefore, the cold starts make it difficult to anticipate the future workloads as 
well as introduces a considerable amount of delay in the application response time, that 
has a negative impact on the application performance. 

To address the challenge of function cold start in a serverless environment, several 
solutions have been explored by academia and employed by the commercial platforms 
[48,51,54]. Techniques such as resource pooling – keep idle functions in queue for a set 
period of time to reduce cold starts (AWS Lambda, Azure Functions) or keep empty 
container(s) with or without function dependencies to reduce the cold start time and 
pinging – continuously interact with the functions to keep them alive and in-memory to 
serve future requests, etc. address the challenge of cold start at the cost of resources. These 
solutions are solely dependent on resource threshold values and does not account for the 
application workload and therefore, presents an opportunity to explore the process of 
function cold start. Hence, this thesis focuses on the challenge of function cold start of 
serverless function containers by proposing a model-free reinforcement learning agent to 
analyse the application workload pattern for reducing the function cold start frequency. 
The agent generates a suitable reward system over the learning period to optimally predict 
the required number of function instances to reduce the subsequent function cold starts, 
while accounting for the application workload patterns. 
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1.1 Motivation  
 

Serverless computing with its on-demand scalability, affordable pricing model and light-
weight function containers, comes with inherent challenges and problems. [21,23] These 
challenges can be broadly listed as security and privacy, container isolation, caching, 
modes of execution, etc. Among them, the challenge of function cold start still persists 
and have been a focus of a number of studies to realise the possible solutions. As a recent 
study [30] discusses the ongoing trends of handling the function cold starts in commercial 
as well as open-source frameworks, it broadly categorises the approach to deal with cold 
start problem in two classes. (1) Optimising the environments i.e. an approach to reduce 
the cold start or the container preparation time itself, and (2) Pinging i.e. ways to minimise 
the frequency of function cold start occurrences.  

FaaS or Serverless platforms were theoretically designed to spin-up a new function 
container for every incoming request, accounting for its high scalability and availability 
[20]. But practically, almost all the commercial as well as open source serverless offerings 
re-use the function containers in order to increase the resource utilisation and indirectly 
account for the lower number of container cold starts. This re-use of function container 
perhaps addresses the problem of cold start indirectly but suffers from increased failed 
responses, that can be accounted to the bounded time nature of the functions.  Industry 
leading commercial platforms such as AWS Lambda, Azure Functions or Google Cloud 
Functions deal with the challenge of cold starts by keeping a queue of ready function 
containers in the memory for a default period of time, after which the resources are 
released [54]. Although this technique has shown to be successful in dealing with the 
frequent function cold starts on the platform but does suffer during a burst of incoming 
workload.  

Consider a few academically explored solutions, such as keeping a warm queue of empty 
function containers, queue of containers with dependency mapping created, a container 
warmup technique for non-first functions in a chain of functions to reduce cold start 
latency or exploiting the application data similarity to live-migrate containers over peer-
to-peer networks. They communicate a feasible solution with considerable performance 
improvements over the default setting, at the cost of resources, but fail to address the 
workload pattern of the respective applications that directly affects the frequency of the 
function cold starts. Since every application has its own customised resource 
requirements and workload pattern, it is of utmost importance to realise the request bursts 
for the optimal platform performance for the concerned application. Thus, these function 
container assignments are non-intelligent solutions that reduce the re-usability of the 
resources and increase the CPU and memory utilisation, while being unaware of the 
application workload. Recent studies have successfully identified factors like runtime 
environment, workload concurrency, CPU and memory setting and networking 
requirements, etc. that affect the function cold starts on the serverless platform. However, 
most works [9,48,51,54] focus on commercial serverless platforms such as AWS Lambda 
and fall short to evaluate open source [44] serverless frameworks such as Fission or 
Kubeless.  

Therefore, this thesis leverages an opportunity to explore an open source platform, 
Kubeless – a Kubernetes native, easy to use serverless framework and address the 
challenge of function cold start. The primary focus of the solution is to present a smart, 
reinforcement learning agent that learns an optimal number of function instances required 
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to serve the incoming requests based on the application workload pattern. The proposed 
solution evaluates the feasibility of the Q-Learning algorithm in conjunction with the 
underlying resource metrics to develop an understanding of workload pattern to reduce 
the function cold start occurrences, by preparing the optimal function containers in 
advance. Our agent takes advantage of a CPU–intensive workload to train for learning 
ideal number of function containers and is benchmarked against the default Horizontal 
Pod AutoScaler (HPA) setting offered by the Kubeless platform. 

 

1.2 Methodology 
 

The objective of this thesis is to develop a model free Q-Learning agent that can learn to 
prepare the appropriate number of function instances in advance, via rewards, to reduce 
the function cold start frequency on a Serverless platform. To demonstrate the agent 
learning process and evaluate the results against the default setting on the serverless 
platform, the following methodology were used –  

• Problem Formulation: To address the challenge of serverless function cold 
starts, we formulate the problem by focusing on the synthetic application 
invocation patterns and other relevant metrics like CPU utilisation, failed 
responses, etc., to focus on reducing the frequency of cold starts on the platform. 
 

• System and Workload Models: We define the system model of our experimental 
setup and present an architectural view of the model. Also, we present the 
formulated synthetic application workload including the respective function 
model used for the study. 
 

• Model Building: The Reinforcement Learning model is written in Python 
programming language and makes use of the standard libraries to implement the 
Q-Learning behaviour. The model is trained with the help of inputs from the 
serverless platform as well as the workload response data. The agent is deployed 
on the Master node of Kubernetes cluster to collect the required metrics of the 
platform to realise the rewards for the learning process. 
 

• Algorithm: In this study we train a Q – Learning agent for the task of learning 
the appropriate number of function instances required to successfully serve the 
incoming application workload, focusing on reducing the number of function cold 
starts. A heuristic based variation of the Q – Learning algorithm is designed to 
assist the agent in learning process and support the actions in unpredicted 
situations during the testing phase. These heuristics speed up the learning process 
as well as compensate for the lack of state exploration by agent during training 
process. 
 

• Evaluation: We evaluate our model against the default autoscaling policy 
provided by the serverless platform i.e. Horizontal Pod AutoScaler. The default 
setting is also tested against the similar workload model and stress tested over the 
same serverless cluster.  
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Our methodology including the discussed steps has produced an evidence of successful 
applicability of a reinforcement learning algorithm to the problem of function cold start 
in the serverless compute setting. 

 

1.3 Research Problem and Objectives 
 

As more and more enterprises start shifting to Cloud services, Serverless or Function-as-
a-Service platform is emerging as the future of cloud computing. With its exciting pay-
per-use pricing model, ease of application development and deployment and most 
importantly, by reducing the burden of server management, FaaS adds value to the 
businesses and therefore being adopted rapidly [2]. FaaS platform while providing the 
abstraction of unlimited scalability suffers from the problem of Function Cold Start and 
thus affects the deployed application performance. This thesis investigates the problem 
of cold start from user perspective as well as service provider perspective by focusing on 
the application invocation pattern analyses, while simultaneously highlighting the 
limitations of default autoscaling policies in successfully serving the application 
workload. To achieve this objective, our work addresses the following research questions 
–  

• Can Reinforcement Learning (RL) algorithms be configured to address the 
challenge of serverless function Cold Start? 
 
With technology becoming more complex, designing systems that are able to 
solve the intricate challenges is becoming difficult. The potential of machine 
learning models like LSTM to utilise historical time-series data to address 
problems like cold start have been successfully explored. This sets forth a 
potential of machine learning models in problem states like serverless computing. 
Therefore, it emerges as an opportunity to explore popular Reinforcement 
Learning algorithms, that has previously been effective in solving complex 
problems [42], for a Function-as-a-Service platform challenge like function cold 
start with minimal human interference or human defined rules. However, 
configuring the challenge of cold start as a RL optimisation problem has its own 
limitations such as modelling a continuous state space problem to a discrete 
model, lack of generality and issue of large state spaces. Thus, it is required to 
conduct the applicability study of RL algorithm applied to a serverless setting 
while taking advantage of the process in cold start optimisation. 
   
 

• Can a smart, RL-based agent analyse the application workload pattern and help 
reduce the function cold start frequency on the platform? 
 
For an application consumer, fast and desired response is expected. With 
Serverless applications designed in a way to support quick and fault tolerant 
feedback, successful response is the key contributor to the application 
performance. When the platform requests more function instances to cope with 
the incoming workload, a cold start delay is introduced in the response. The cold 
start or the instance preparation time, if larger than the time-to-live of the request, 
could also lead to unexpected responses indicating either a failed request or 
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unavailable resource. These challenges oppose the underlying principle of 
unlimited scalability or high availability of serverless applications. Therefore, it 
is necessary to design an agent that learns to analyse the application workload 
pattern to prepare the ideal number of function instances in advance for the next 
set of requests. Thus, the agent works in congruence with the FaaS principles to 
serve maximum workload while reducing the number of function cold starts. 

 

1.4 Thesis Contributions 
 

Based on the discussed problem of function cold start in Serverless computing, this thesis 
makes the following key contributions –  

• An application of Reinforcement Learning algorithm to the FaaS platform for 
reducing the function Cold Start frequency. 
 

• Implementing a smart agent to dynamically analyse and learn the application 
invocation patterns and other relevant metrics, to ascertain the appropriate number 
of function instances to reduce the occurrence of cold start. 
 

• An evaluation of our agent against the baseline Horizontal Pod AutoScaler, a 
default autoscaling policy of serverless framework, for a synthetic application 
workload in a controlled environment.      

 

1.5 Thesis Organisation  
 

The thesis structure is shown in Figure 1. The remaining chapters of the thesis are 
organised as follows –  
 

• Chapter 2 presents the background on Serverless computing and Function-as-a-
Service platform, discusses function cold start challenge and introduces Kubeless, 
the serverless framework used. This chapter introduces Q-Learning, a 
Reinforcement Learning algorithm and its environment model.  
 

• Chapter 3 presents a literature review on serverless computing and existing 
function cold start solutions, identifying a gap between the existing works and the 
proposed solution.  
 

• Chapter 4 proposes a variation of model free Q-Learning framework that utilises 
application workload pattern to deal with the function cold start frequency on the 
serverless platform. This chapter is derived from – 
 

- Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya, A 
Reinforcement Learning Approach to Reduce Serverless Function Cold 
Start Frequency, In Proceedings of the 21th IEEE/ACM International 
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Symposium on Cluster, Cloud, and Internet Computing (CCGrid 2021, 
IEEE CS Press, USA), Melbourne, Australia, May 10-13, 2021. 
 

• Chapter 5 concludes the thesis, summarises the key findings and identifies the 
future research directions. 

 

 

Figure 1. Thesis Organisation. 
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Chapter 2 -  A Background on Serverless 
Computing, Function Cold Start and 

Reinforcement Learning 
 

This chapter reviews the concept of Serverless Computing, specifically put to Function-
as-a-Service model, focusing on function cold start challenge. The chapter highlights the 
benefits, limitations and challenges of serverless computing and introduces Kubeless – 
the choice of serverless framework for the project. A preface is established for the 
Reinforcement Learning algorithm and introduces model free Q-Learning algorithm used 
to model the problem of reducing function cold start frequency. 

 

 

2.1 Background 
 

2.1.1 Characterising Function-as-a-Service Execution 
Model  
 

Over the years, Cloud Computing has enabled its consumers to shift from traditional ways 
of thinking about the IT resources to newer paradigm of on-demand, elastic, reliable and 
cost-efficient ways of using distributed resources. The cloud deployment model was 
broadly introduced under three categories – Infrastructure-as-a-Service, Platform-as-a-
Service and Software-as-a-Service, all with different levels of abstraction and flexibility. 
But, with the emergence of microservices architecture and huge demand for on-demand 
elasticity of resources, newer cloud execution model – Serverless Computing came into 
existence [21,23]. The idea behind the Serverless execution model is to relieve the 
consumers i.e. the application developers, enterprises, etc., from the complexities of 
resource management tasks and shift these responsibilities to cloud service provider. 
Therefore, this model abstracts the underlying servers and other resources from the users 
(Figure 2) and provides an illusion of unlimited scalability at a very fine-grained price 
subscription, encouraging developers to focus on tasks that adds value to business. 

Contrary to the name ‘serverless’, servers are still required to run the application code, 
but the service provider needs to manage the resources and provide the abstraction over 
them. The service provider may incur some costs even for idle resources, but the 
consumers only pay for the consumed resources, in-line with the ‘pay-as-you-go’ 
characteristic of Serverless [1]. A serverless computing platform is, in general, analogous 
with Function-as-a-Service (FaaS) execution model. Function-as-a-Service presents the 
characteristics of serverless computing by providing an event-driven computing that 
triggers the associated actions. FaaS allows the developers to build the applications on 
the principle of distributed micro-services (Figure 3) and deploy them as a piece of code 
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in the form of ‘function’, a container or a lightweight Virtual Machine (VM) that are 
executed, billed and scaled in response to associated events [50].  

 

 
Figure 2. IaaS vs PaaS vs FaaS vs SaaS Cloud Execution Models. 

 
Figure 3. Difference between Traditional applications and Event-based Serverless Applications. 
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FaaS processing model was first introduced, commercially in 2014, by Amazon as AWS 
Lambda service and since then, there are a numerous commercial serverless offerings as 
well as opensource frameworks such as IBM Cloud Functions, Azure Functions, Google 
Cloud Functions, Knative and Fission. Serverless with its quick and simple offerings, are 
suitable for certain classes of applications that requires less amount of resources and run 
for a relatively lower amount of time. A common use case of serverless is HTTP API and 
highly parallel and sporadic tasks. Tasks like multimedia processing, stream processing 
or executing business logic in response to a database changes benefit from on-demand 
elasticity and efficient cost modelling of serverless [21,23].  

 

Table 1. Resource Limits imposed by major Service Providers. 

 AWS 
Lambda 

Azure 
Functions 

(Consumpt
ion Plan) 

Google 
Cloud 

Functions 

IBM Cloud 
Functions 

Memory Allocation 
Limits (MBs) 

128 MB to 
10,240 MB 1500 MB 4096 MB 256 MB 

Function Timeout 900 seconds 600 seconds 540 seconds 600 seconds 

Function Burst 
concurrency 500 - 3000 600 3000 5000 

Deployment 
size(zipped) 50 MB N/A 100 MB 48 MB 

Invocation 
Payload(synchronous) 6 MB 100 MB 10 MB 5 MB 

 

 

Although Serverless or Function-as-a-Service model seems to offer a lot of advantages 
over the other traditional execution models, it does limit its users or consumer of services 
in various scenarios. One of the shortcomings of FaaS execution model is the restricted 
configuration of resources that are allowed for a function container such as limited 
amount of CPU or memory for the container or the maximum execution time of a function 
container and the concurrency policies of a function. The different resource limits 
imposed by various commercial platforms [3,4,5,6] are listed in Table 1. As FaaS model 
replaces the developer’s need to worry about the underlying servers and availability, some 
developers overlook the application run-time requirements and run into resource limits 
over time. These limits not only affect the performance of the application but also, 
negatively impact the developer experience on the platform. Apart from the resource 
allocation, there is a limited native support for multiple programming language runtimes 
by different service providers. As the developers prefer to work in a specific programming 
environment, support for specific runtimes on various serverless platforms emerges as a 
hurdle and hence a trade-off between the overall offerings of the platforms, in the process 
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of application development and deployment. The different language runtimes supported 
by major commercial platforms [3,4,5,6,7] are listed in Table 2. 

 

Table 2. Language Runtime Support for Serverless Providers. 

 
 
 

AWS 
Lambda 

Azure 
Functions 

Google Cloud 
Functions 

IBM Cloud 
Functions 

JS     
Go     

Python     
Ruby     
Java     

C#     
PHP     
C++     

  - Not supported;   - Supported;   - Experimental Support 

 

When the enterprises move to serverless execution of the applications, pricing plays an 
important role in the shift from traditional approaches. With many Function-as-a-Service 
providers in the market, each provider has its unique pricing model based upon the levels 
of abstraction provided. These abstractions may include offering fully managed services 
like load-balancers, access to local development tools or providing a CI/CD pipeline 
integration, unique management of function containers or Virtual Machines (VMs), etc. 
Hence, different pricing model of industry wide serverless providers suit different 
application use case. A list of pricing models of major FaaS providers [3,4,5,6] are 
presented in Table 3.  
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Table 3. Pricing Model of Function-as-a-Service Providers. 

 AWS Lambda Azure 
Functions 

Google Cloud 
Functions 

IBM Cloud 
Functions 

Requests ($ 
per 1M 

requests) 
$ 0.20 $ 0.20 $ 0.40 N/A 

$ per GB-
second 

$ 0.0000166667 
 

$ 0.000016 
 

$ 0.0000025 
 

$ 0.000017 
 

Free Tier 
Requests 1 M/month 1 M/month 2 M/month 5 M/month 

Free Tier 
Compute time 
(GB-second) 

400,000/month 400,000/month 400,000/month 400,000/month 

 

 

2.1.2 Utility of Function-as-a-Service Model 
 

Function-as-a-Service model abstracts the details of the underlying servers and takes 
away the responsibilities of tasks related to server management from the developer or 
consumer of services, shifting it towards the cloud service provider. This encourages 
enterprises to focus more on the application building rather than wasting resources in 
application capacity planning that incurs operational overheads. Therefore, there are two 
primary personas [1] involved for serverless computing: (i) developer or consumer and 
(ii) service provider. With the emergence of new technologies like Internet of Things 
(IoT) and edge computing, there is a need of a distributed application architectural style 
that leverages the resources to the maximum, with minimum effort to worry about the 
underlying resources. These applications have a characteristic requirement to be highly 
available and scale on-demand to compensate for the unpredictable workloads [19]. 
Hence from a consumer perspective, the serverless architecture of applications provide a 
microservices-style model that allows designing of applications in the form of individual 
function(s) or a set of related functions to execute business logics. These functions are 
event driven and are triggered to execute the deployed business logics which are billed 
on finer-grained pay-per-use pricing model, wherein the consumers only pay for the 
actual execution time of the function and not for idle times. 

On the other hand, cloud service provider is accountable for providing the abstraction of 
high availability and unlimited scalability of these application functions. The business 
logic wrapped up as light weight function containers, run for a specified purpose and 
therefore have limited access to resources. This helps the service providers to efficiently 
utilise their resources by using multi-tenancy model. This model also helps the service 
providers to use these resources for other purpose and cover the costs of management, 
since the service providers still need to pay for maintaining the abstractions during idle 
times. Every enterprise aims to add value for their customers and deliver a consumer-
focused experience. In this process, enterprises usually need a business model that 
decrease their product’s time-to-market while facing uncertainty and pressure from 
competition. [2] Microsoft estimates that there will be near 500 million new applications 
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in the next 5 years and it would be difficult for the current development models to support 
such large expansions. Serverless computing’s Function-as-a-Service offering is designed 
to address these challenges by increasing development agility and decrease costs of 
ownership and overheads related to servers and other cloud resource. With cloud-based 
application development, FaaS also makes it possible for the enterprises to use individual 
mature services and enhance the product’s integration capabilities by reducing overheads 
spent on middleware process. 

 

2.1.3 Challenge of Function Cold Start 
 

Serverless function model, assures high availability and on-demand scalability of the 
function containers. To service the incoming application requests, platform spawns new 
function containers, on-demand and a process of initialisation precedes the serving of 
requests. The initial bootstrapping process of new function container downloads the code, 
set up the code dependencies and runtime environment, set up networking requirements 
and once the container is ready, initiates the function handler code to service the request. 
This process introduces a non-negligible time-delay in the application response, known 
as ‘function cold start’. These function cold starts are typically between 0.2 seconds to 
few seconds [8]. Function Cold Start can also be understood as the preparation time of 
the function container before executing the request, when it is spawned by the serverless 
platform on demand of the incoming request [23].   

According to [8], a study conducted on Azure Functions, the application workload times 
are highly variable and approximately 18% of the applications that are accessed more 
than once per minute, account for 99.6% of the total request arrivals or accesses. 
Conceptually, the Function-as-a-Service platforms were designed to execute new 
function containers for each incoming request, but to increase the resource utilisation 
modern implementations of serverless keep a queue of idle function instances for a limited 
period of time [30]. Function idle times of major FaaS providers are listed in Table 4. 
Hence, to service the incoming request with on-demand scaling, the serverless platform 
initially checks for the available function containers in the idle queue and if none 
available, will request a new function container and undergoes a typical delay of cold 
start. Typically, serverless functions execute lightweight business logic for a limited time 
period of few seconds and as the container cold starts are in the order of function 
execution time, it affect the application performance, portraying an illusion of occupied 
or unavailable server in cases of considerably larger cold start than request’s time-to-live.  

 

Table 4. Instance Reuse Strategy for Leading Cloud Vendors. 

Service Idle Instance Time 
AWS Lambda 5 – 7 Minutes 

Azure Functions 20 – 30 Minutes 
Google Cloud Functions 15 Minutes 
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There are multiple factors like runtime environment, size of the deployment, 
programming language used, resource limits (CPU and memory), workload concurrency, 
etc. that are known to be responsible for the varying cold starts in the Function-as-a-
Service model [51,52]. A recent study [9] compared the typical cold starts on the leading 
serverless platforms for the most common language runtimes used for a simple ‘Hello 
World’ program. It concluded that cold starts on different platforms, for multiple 
language runtimes, can range from anywhere between 0.2 seconds to 5 seconds in the 
worst case (Figure 4). The study also targeted the size of function deployment and shows 
a further increase in cold starts when a number of dependencies are configured for it. 
They compared a ‘HelloWorld’ JavaScript function with various number of NPM 
package references and shows that larger packages introduce a significant increase in the 
cold start (Figure 5). Therefore, the challenge of function cold start is an inherent 
characteristic of Serverless platforms that needs to be addressed to improve the 
application as well as platform performance [34]. 

 

Figure 4. Typical Cold Start for Different Runtimes taken from [9]. 
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Figure 5. Comparison of Cold Starts for Different Package Sizes (Zipped) taken from [9]. 

 

 

 

2.1.4 Kubeless – a Kubernetes-native Serverless 
Framework 
 
With the emergence of Serverless Computing, that promotes the elimination of concerns 
for server management, provisioning and other resource management tasks, there is an 
increased dependency on containers or lightweight Virtual Machines (VMs). A container 
is an application layer abstraction that stitches together the code and its dependencies, in 
an isolated user space environment. The development of containers and containerized 
applications have familiarized a need for orchestration tools to efficiently manage the 
tasks such as container creation, configuration, monitoring and observability, etc. 
According to the CNCF’s Serverless Working Group [1], most of the open-source 
serverless products such as Kubeless, Fission or Knative are based on Kubernetes – a 
CNCF container orchestration project [10].  

Kubernetes is an open – source, container management platform that facilitates efficient 
administration, configuration and automation of containerised workloads and services 
[10][11]. With the container development era providing OS-level virtualisation, 
Kubernetes a.k.a. K8s puts forward a framework to run applications in a distributed and 
robust fashion. A variety of services are provided by K8s such as –  

• Service discovery and application load balancing. 
• Application rollout and rollback automation. 
• Container configuration management. 
• Deployment fail – over management i.e. Self – Healing. 
• Deployment scaling. 

Kubernetes’ primary function is to deploy and manage a large number of container-based 
workloads on a fleet of machines, known as Cluster. A cluster is a set of worker machines 
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called Nodes, that execute the application containers. This allows Kubernetes to 
coordinate a highly available cluster of component worker nodes, connected as a single 
unit and abstract the deployment of application containers without tying them to an 
individual host machine or worker node. Therefore, containerisation of modern 
applications on Kubernetes allow decoupling from the worker machines, providing 
deployment flexibility and availability, while efficiently distributing and scheduling the 
containers over the cluster of nodes. In Kubernetes, containers are generally wrapped up 
as a Pod, a fundamental unit of computation that is created and managed within a cluster. 
A Pod is a group of one or more co-located containers that share the pod resources and 
run in a shared context [12]. To deal with the lifetime activities of pods, Kubernetes 
further provides a layer of abstraction called Deployment that is responsible for the 
maintenance of desired state of pods (Figure 6) and therefore a set of pods are executed 
under this abstraction. With the notion of automating the management of application 
container, its lifecycle and maintaining its desired state, while providing an isolated 
runtime environment, Kubernetes emerges as a perfect platform to expand its services 
with serverless execution model.   

 
Figure 6. High-level view of Kubernetes Deployment. 
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Kubeless is a Kubernetes – native serverless framework that lets us execute our pieces of 
code or application logic as functions, without the hassle of underlying resource planning 
and management [13,24]. Kubeless is designed to leverage the underlying resource 
definitions and primitives of Kubernetes and is deployed over the Kubernetes cluster. In 
the serverless execution model, Kubeless provides services such as create, delete, list 
functions, autoscaling properties, API routing, monitoring and troubleshooting, etc. 
Kubeless is implemented as a Kubernetes controller that continuously watches for the 
changes in the function objects to react accordingly. It is written in Go programming 
language and uses Kubernetes client-go to connect with Kubernetes API-server for its 
functioning [13]. The serverless framework is built around three core entities – Functions, 
Triggers and Runtime.  

Runtime refers to the language specific runtime environment in which the functions will 
be executed. By default, [7, 13] Kubeless supports different runtimes (Figure 7) and every 
runtime is encapsulated as a container image whose references are configured in the 
Kubeless configuration files.   

 

 

Figure 7. Kubeless Supported Runtime Environments. 
 

Being a Function-as-a-Service model, a Kubeless function is a basic unit of deployment 
that represents the piece of code to be executed, wrapped as a container inside a 
Kubernetes pod. A function consists of business logic or code, metadata about the runtime 
and dependencies and follows an independent lifecycle as per Pod principles. Kubeless 
supports a range of function methods like deploy, execute, list, get, delete and logs. 
Functions can be implemented in any supported programming language and follows a 
generic interface that receives the details of event and its related context i.e. information 
about the function. In Kubeless, functions are designed to return a string value which will 
be used as a HTTP response to the source and following the serverless principle of 
bounded-time execution, it executes a function for a limited period of time (default 180 
seconds) that can be programmatically configured [24,53]. A sample function is presented 
in Algorithm 1, with the Kubeless Command Line instruction to configure and deploy the 
function in Equation 1. 
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$	𝑘𝑢𝑏𝑒𝑙𝑒𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑑𝑒𝑝𝑙𝑜𝑦	ℎ𝑒𝑙𝑙𝑜𝑊𝑜𝑟𝑙𝑑 − −𝑟𝑢𝑛𝑡𝑖𝑚𝑒	𝑝𝑦𝑡ℎ𝑜𝑛3.6	 − −𝑓𝑟𝑜𝑚 − 𝑓𝑖𝑙𝑒	𝑡𝑒𝑠𝑡. 𝑝𝑦	\ 
                                  −− ℎ𝑎𝑛𝑑𝑙𝑒𝑟	ℎ𝑒𝑙𝑙𝑜𝑊𝑜𝑟𝑙𝑑 − −𝑐𝑝𝑢	  (1) 

 
 

 
Once a function is configured and deployed, a trigger is associated to it. A Trigger 
represents an event source which when occurs, initiates the associated function. Kubeless 
ensures that the associated function is executed at most once, upon receiving the trigger 
event. A trigger is handled separately from the lifecycle of a function and supports 
methods such as create, update, delete and list, independently. Kubeless’ architecture has 
many to many relationships between function(s) and trigger(s) and supports three types 
of triggers – HTTP trigger, CronJob trigger and Pub/Sub trigger. Since Kubeless inherits 
Kubernetes properties, a function is usually accessible within the cluster and to provide 
external routing a Kubernetes supported Ingress controller is required, in case of HTTP 
trigger. An example of HTTP trigger creation [13] is presented in Equation 2. 

 

$	𝑘𝑢𝑏𝑒𝑙𝑒𝑠𝑠	𝑡𝑟𝑖𝑔𝑔𝑒𝑟	ℎ𝑡𝑡𝑝	𝑐𝑟𝑒𝑎𝑡𝑒	ℎ𝑒𝑙𝑙𝑜𝑊𝑜𝑟𝑙𝑑	 − −𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 − 𝑛𝑎𝑚𝑒	ℎ𝑒𝑙𝑙𝑜𝑊𝑜𝑟𝑙𝑑             (2) 

 

Kubernetes has introduced Horizontal Pod Autoscaler (HPA) as its default control 
mechanism to scale up or scale down the deployments within the cluster [10, 14]. It is 
implemented as a control loop within Kubernetes API resource and checks periodically 
for the specified target metrics such as CPU or memory utilisation, to adjust the replicas 
of the pods in a deployment. HPA has a default query period of 15 seconds to check and 
control the deployment and queries the Kubernetes resource metrics API for the specified 
metrics. For the per-pod-metrics such as CPU utilisation, the controller fetches the metrics 
and calculates the average value i.e. currentMetricValue, for the ready pods available 
under the deployment and if a target value i.e. desiredMetricValue is set, it produces a 
ratio (Equation 3) to adjust the number of desired pods [10].   

 

𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠 = 𝑐𝑒𝑖𝑙 :𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠 ∗ <!"##$%&'$&#(!)*+"$
,$-(#$,'$&#(!)*+"$

=>               (3) 

 

Just before the controller scales to the desired replica set, the scale recommendation is 
recorded and a maximum recommendation within the period is chosen. To prevent the 
resources from thrashing i.e. fluctuating number of pods based on current metric value, 
Kubernetes keeps a default downscale period of 5 minutes, to gradually scale down the 
deployment. 

Algorithm 1: helloWorld
INPUT: Event, Context
OUTPUT: Response
Data � Event[0Data0]
Print(Event)
return Data

1
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As discussed, in Kubeless functions are executed under the abstraction of a deployment, 
it benefits from the underlying offering of Horizontal Pod Autoscaler to automate the 
function scaling, based on a specified metric threshold. The HPA controls the replication 
of function pods once the scaling rule is set and the default metric supported by Kubeless 
is CPU utilisation referred to as ‘cpu’. To support the metrics based autoscaling, Kubeless 
requires the function to be deployed with resource limits and refer to ‘cpu’ metric as the 
percentage of average CPU milli-core used out of requested, across all available function 
pods. The command line instruction in Equation 4 is used to deploy the autoscaling rule 
with ‘cpu’ metric threshold for a sample function deployment [13].  

 

$	𝑘𝑢𝑏𝑒𝑙𝑒𝑠𝑠	𝑎𝑢𝑡𝑜𝑠𝑐𝑎𝑙𝑒	𝑐𝑟𝑒𝑎𝑡𝑒	ℎ𝑒𝑙𝑙𝑜𝑊𝑜𝑟𝑙𝑑 − −min1	 − −max10	 − −𝑚𝑒𝑡𝑟𝑖𝑐	𝑐𝑝𝑢	 − −𝑣𝑎𝑙𝑢𝑒	50 

                (4) 

 

The above command will maintain a minimum of 1 function pod and scale to a maximum 
of 10 pods, while trying to maintain an average CPU utilisation of 1000 milli-core (50% 
of requested using Equation 1) across all the available function pods. 

 
2.1.5 Reinforcement Learning: Q-Learning Technique 
 
Reinforcement learning (RL) is an area of machine learning that involves training of 
machine models to make a sequence of decisions without direct supervision. It is the 
science of decision making and analogous to thinking in an optimal way or the idea of 
maximising the related cumulative reward. In a RL world, the environment is modelled 
as a Markov Decision Process (MDP), where it is expected to produce a stochastic reward 
and observe a stochastic change of state [17,28]. Markov Decision Processes can be 
understood as the environment model where all the states follow Markov property which 
states that ‘the future is independent of the past given the present’ [15]. In simple terms, 
it generalises that the current state holds all the relevant information about the past, to 
help the agent make the next decision and usually associates a transition probability with 
the states. We model the environment state space as a set of states 𝑆 = {	𝑠! 	|	𝑖 = 1,2, … . 𝑛} 
that the agent transitions between, by performing actions. Actions are part of the available 
action space 𝐴 = {𝑎! 	|	𝑖 = 1,2, … .𝑚} that help the agent to move to a new state 𝑠"#$ at 
time t+1. The associated probability of transition from state 𝑠" to state 𝑠"#$ can be 
correlated as 𝑃(𝑠"#$	|	𝑠"	, 𝑎"	) and this transition at a discrete time step yields a stochastic 
immediate reward that can be described as 𝑅(𝑠" , 𝑠"#$).  

The agent in the RL world directly interacts with its environment at discrete time steps 
by determining its current state 𝑠" and choses an available action 𝑎". The environment 
responds to the performed action and transitions to a new state 𝑠"#$ at next discrete time 
step and the agent observes an immediate reward 𝑟"#$associated with the transition. 
Therefore, the agent with its state-action map and rewards aim to learn a correlated policy 
𝜋(𝑎, 𝑠) = Pr(𝑎	| 𝑠). The main objective of reinforcement learning agent is to learn this 
optimal action policy to maximise cumulative reward function [15,17,18]. Value 
functions are one such useful methods that attempts to find the optimal policy to maximise 
expected rewards [16]. 
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Q-Learning is a model-free, iterative Reinforcement Learning algorithm that makes use 
of Q-values to continuously learn and improve the efficacy of the actions.  It is classified 
as a model-free learning algorithm because it does not require the transition probabilities 
associated with states to learn the optimal policy [18,29]. During the training period, the 
Q-Learning agent acts in the environment using possible actions and transitions between 
different states, observing rewards for the purpose of gaining information about the 
environment and learning optimal actions. The Q-value is a function that determines the 
quality of the action performed and is defined for each state-action tuple i.e. (s, a) pair. 
These values are stored in the form of a Q-Table mapping i.e. 𝜋: 𝑄 → 𝑆 × 𝐴 and serves 
as a look-up table to decide a good action. Once the agent observes the immediate or the 
transition reward, the Q-values are updated according to the Bellman Equation as a value-
iteration rule that uses the weighted average of old and the newly observed information 
(Equation 5). 

 

𝑄!"#(𝑠$ , 𝑎$) ← 𝑄%&'(𝑠$ , 𝑎$	) + 	𝛼	 ∗ (𝑟$ + 	𝛾 ∗ 𝑄(𝑠$)*, 𝑎) −	𝑄%&'	(𝑠$ , 𝑎$)+		
,+- )    (5) 

 

where –  
• 𝛼 is the learning rate (0 < 𝛼 < 1), that determines the useful proportion of newly 

obtained information. 
• 𝛾 is the discount factor (0 < 𝛾 < 1), that determines the importance of the future 

expected rewards. 
• rt is the immediate reward for the transition from state st to st+1 and is weighted by 

the learning rate i.e. α𝑟" to account for new information. 
• 𝑄%&'(𝑠" , 𝑎"	) is the old information for the current state and it is eventually 

weighted by the learning rate i.e. (1 − 𝛼	)𝑄%&'(𝑠" , 𝑎"	) to determine the current 
value. 

• 𝛼 ∗ 	𝛾 ∗	 𝑄(𝑠𝑡+1, 𝑎)𝑎		
𝑚𝑎𝑥  is the maximum future reward that the agent can expect to 

observe as per the Bellman Equation (temporal-difference learning). This helps 
the agent to capture the information that is expected to be observed from the next 
state and guides the agent to select highest return action at any given step. 

 

In the process of learning, the agent makes a trade-off between exploration and 
exploitation, instead of taking random actions at each time step. This helps the agent in 
improved utilisation of obtained state-action information. One such policy is ℰ - Greedy, 
where 0 < ℰ	< 1 is a controlling parameter for regulating the extent of exploration and 
exploitation for the agent [16,18]. The agent greedily decides to choose an already 
explored and believed best action, by choosing the maximum Q-value action against the 
state with a probability of 1 - ℰ and thus exploits the acquired knowledge of the 
environment. On the other hand, with a probability of ℰ, the agent chooses to explore 
other available actions for a state, reflecting the ability of the agent to decide an optimal 
action policy.   

 



 32 

 

Figure 8. Simple Interaction Diagram of Q-Learning Agent. 
  
To illustrate, Q-Learning can be visualised as a robot [28] that interacts with the totally 
unknown environment by performing some allowed actions being in a particular state i.e. 
a situation in the environment. While doing that, the agent may receive immediate 
rewards for the actions or delayed rewards which it might expect to observe in future, and 
transition to a new environment state. These rewards assist the robot in determining the 
correctness of an action from a particular state and with trail-error method it gradually 
learns to figure out the best possible actions to perform its tasks or an optimal way to act 
in an environment. A simple Q-Learning agent interaction loop is represented in Figure 
8 and highlights the continuous process of acting in and observing the environment. 
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Chapter 3 -  Literature Survey 
 

This chapter presents an extensive overview on some of the existing research work related 
to Serverless Computing and function cold start. It lists various cold start optimisation 
approaches based on different factors and helps in highlighting the gap between the 
current studies and the proposed Reinforcement Learning based approach.   

 

3.1 Literature Review of Existing Works 
 

The evolution of Cloud Computing services has been made possible over the years 
because of the vital technologies like distributed systems, virtualisation, service-oriented 
architectures and utility computing [41]. Cloud computing introduces itself with a set of 
advantages such as elimination of upfront costs for resources, ability to scale on-demand 
or ability to pay for the use of resources for short term periods, etc. Even with the 
establishment of virtual machines that offer an opportunity for enterprises to switch to 
cloud computing, the users of services are still burdened with the complex activities of 
managing the resources themselves. The complexity of the responsibilities such as fault 
tolerance, consistent replication of services, efficient scaling of resources or system 
updates and migration in the cloud services demanded a simpler and newer model of 
execution. [20] discusses the potential of a newer model of Serverless Computing that 
was introduced by Amazon and catered to the requirements of less complex model. The 
study briefly introduces a serverless, function-based, commercial offering of AWS 
Lambda and discusses the primary differences between the traditional serverful cloud 
computing and serverless computing. The researchers identify the critically different 
characteristics between the two execution models and appreciates the simplification of 
application development and ease of resource use in the serverless computing model. 
According to the study, there are three critical distinctions between the traditional 
computing and serverless architecture – (i) decoupled computation and storage i.e. the 
independence of computing and storage services in terms of provisioning as well as 
pricing, (ii) code execution without resource management i.e. the user primarily focuses 
on the code and the cloud platform takes care of resource related tasks, and (iii) paying 
according to the resource usage instead of allocation. The researchers posit that the 
serverless computing model promotes business growth, making the use of cloud easier 
while attracting new users for a variety of popular application use cases such as Web API, 
data processing, integration of services, etc. The study continues to explore different 
application models to address the limitations of serverless computing and lists various 
observations of performance bottlenecks on commercial serverless offerings. They 
identify potential drawbacks in the serverless model and describe the possible future 
research directions to address security challenges, system challenges like start-up times 
or affordability, networking challenges and architecture challenges. The researchers 
conclude the study with their prediction of serverless services with an expectation to 
address the drawbacks. 
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A study [21] conducted at IBM Research, USA, investigates the current trends and 
potential challenges in the serverless computing architecture. The authors introduce the 
emerging paradigm of serverless computing as an application development architecture 
and programming model that allow pieces of code to be executed in cloud without the 
control over underlying resources. They postulate that the emergence of microservices 
architecture and use of containers has led to a gain in popularity of serverless. They 
further define serverless as a ‘stripped down’ programming model that executes stateless 
functions as its deployment unit in Function-as-a-Service (FaaS) offering. Among the 
traditional cloud execution models, the study puts Serverless on top of Platform-as-a-
Service (PaaS), where the developer has no knowledge and control of the resources and 
in between Infrastructure-as-a-Service (IaaS) and Software-as-a-Service (SaaS). The 
study makes progress by surveying various serverless platforms and determines distinct 
characteristics to distinguish between them. It recognises factors such as cost, 
performance and limits, programming language, security and monitoring that a developer 
should consider while making an informed decision of selecting a serverless platform. In 
the similar context, the researchers highlight the benefits of serverless computing over 
traditional models, such as abstraction of underlying resources from a consumer 
perspective – allowing developers to focus on business logic or a stateless execution that 
empowers the service providers to distinctly manage the software stack. However, the 
serverless platforms are known to inherently put forward a trade-off between the ease of 
services and the constraints of serverless programming model that limits the developer 
capabilities and raises a challenge of vendor lock-in. The authors discuss various 
challenges of serverless under two categories – (i) system-level challenges where they 
identify costs of services, cold starts while scaling, security and resource limits, etc., and 
(ii) programming model and devops challenges that focuses on tools and IDEs, 
deployment, statelessness and code granularity in serverless model.  They finish their 
discussion by posing a number of open problems in serverless computing and frame them 
as research questions for further investigations.     

Since the inception of serverless computing, there has been many commercial and open -
source offerings such as AWS Lambda, Microsoft Azure Functions, Google Cloud 
Functions, Fission and OpenWhisk, etc. They generally identify serverless computing as 
an emerging technology but [22] put together gaps that furnish serverless as a bad fit for 
cloud innovations. The authors criticise the current developments the domain of cloud 
computing by stating that we are yet to harness the potential of cloud resources. They 
assess serverless computing in terms of the services offered by different vendors and lay 
out their reasons of serverless being a disappointment towards cloud’s actual potential. 
The analysis leverages services from AWS Lambda and draw their conclusions for three 
types of function interaction patterns – embarrassingly parallel functions, orchestration 
functions and function composition. It identifies serverless constraints such as limited 
lifetime that encourages cold starts, statelessness, no specialised hardware use and inter-
function communication through slow storage since the functions can’t communicate 
directly. The authors form different case studies to highlight shortcomings of the 
serverless platforms and present the objections raised by their subjects, in reference to the 
developments of serverless, with an aim to spark real innovation in data-rich cloud 
systems.  

On the contrary, [23] emphasises that serverless offerings are economical and affordable 
as they remove the responsibility of resource management and complexity of 
deployments from the consumers. The study visits the various drawbacks and limitations 
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of serverless in a positive way to improve its utilisation and proposes possible future 
directions. The researchers define the serverless as an intersection of Function-as-a-
Service (FaaS) and Backend-as-a-Service (BaaS) that follows a set of serverless 
characteristics. They discuss the opportunities offered by multiple serverless offerings 
and attempt to categorise a set of applications, with varying workloads, to leverage 
serverless services. Among various investigated serverless challenges, the study sheds 
light on the scheduling problem from a perspective of short-lived function instances. It 
states that service providers stop the execution of resources after a period of inactivity 
and upon waking up or restoring the resources, there is some service latency that reduces 
user’s quality of service. These periods of activity are a characteristic of application 
invocation and configuring a same sleep timer for different applications is naïve. 
Therefore, the researchers suggest approaches like warm queue of a minimum functions 
or data probing, where execution of one function instantiates the other through data 
manipulation actions, or prediction and forecasting of requests. In relation to prediction, 
they propose the use of machine learning models with relevant variables to extract the 
patterns of activity and allow appropriate resources to be consumed during the activity 
period. They expand their research with an overview of other existing challenges and 
conclude by indicating potential approaches for future work.       

Serverless computing - featuring affordability, on-demand scalability and light-weight 
containerization, comes with its inherent challenges and problems. These challenges can 
broadly be listed as security, privacy, caching, modes of execution, etc. Among them, the 
problem of cold start is still prevalent and has attracted academia for realising possible 
solutions. A current study [30] discusses the ongoing trends of handling the cold starts in 
commercial as well as open source serverless platforms and present their results by 
evaluating AWS Lambda offerings. The study presents a brief distinction between the 
virtual machine and container-based application models and connects Function-as-a-
Service to the concept of serverless computing. They describe the problem of function 
cold start as the time taken to execute the function that involves following steps – (i) 
assign a container to function, (ii) access the function package and copy the function 
image on container, (iii) load the image into memory and unpack it and (iv) execute the 
function handler. They broadly categorise the approaches to deal with cold starts in two 
classes: (i) Optimising environments i.e. minimise the cold start delay itself and (ii) 
Pinging i.e. minimising the frequency of cold start occurrences. They address the 
approach of optimising environments either by reducing container preparation delay or 
reducing the delay in loading function libraries and review the offerings of OpenFaaS, 
OpenWhisk and AWS Lambda to discuss the solutions like cold and warm queues, 
application sandboxing or preloading function libraries. To adopt the pinging technique, 
the study investigates third-party tools such as CloudWatch or Lambda Warmer to 
continuously monitor the functions and schedule a job to periodically ping the functions 
to keep them alive. They further create a case study with I/O intensive and CPU intensive 
benchmarks for evaluating the AWS Lambda’s warm queueing technique and perform a 
set of tests with different configurations. From the experimental evaluations, the authors 
conclude an inconsistency between the number of cold starts experienced and number of 
requests, with the absence of any correlation between the warm containers prepared by 
the platform and time interval of incoming requests. 

In [31], adaptive function container warm up techniques are introduced to reduce the cold 
start latency. The study states that the cold starts affect the application responsiveness 
severely and investigates the existing optimisation techniques like container pool-based 
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strategy, function runtime optimisation and isolation of different functions, etc. These 
techniques are found to be useful at the expense of the resources and hence the researchers 
suggest a time series-based prediction model to reduce cold start latency. They propose 
two strategies – (i) Adaptive Warm-Up (AWU) technique and (ii) Adaptive Container 
Pool Scaling (ACPS) technique. AWU strategy utilises a function chain model, i.e., a 
sequence of functions to predict the function invocation time using LSTM networks, and 
non-first functions to keep the warmed function containers ready in queue. They leverage 
function chain model to improve the prediction accuracy of the model. The researchers 
also propose a container pool strategy, ACPS that seeks to dynamically adjust the number 
of empty containers in the container pool to reduce the waste of resources. Both 
approaches work in synchronisation as the failure of adaptive warmup strategy will 
automatically launch adaptive container pool strategy, by providing a pre-warmed empty 
container, thus reducing the overall cold start latency. It is highlighted in the study that 
even though the strategy learns the invocation time of the function chain, the first function 
in the sequence suffers cold start latency. They test their approaches by comparing the 
resource utilisation, idle time and overall cluster utilisation with other existing techniques.  
Researchers in [32] explain the phenomenon of cold starts with respect to the Knative 
serverless platform and suggest a pod migration technique to reduce the cold start of the 
function containers. They posit that the cold start overhead is dependent on the underlying 
implementation of the function and since Knative leverages the concept of containers, 
they categorise overheads as platform dependent and application dependent overheads. 
The platform overheads such as network bootstrapping, pod provisioning, etc., are 
responsible for introducing a uniform delay across all function containers while 
application dependent overheads vary according to application implementation. To deal 
with the cold starts, a pool of pre-warmed containers, marked with selector ‘app-label’, 
are kept ready. When the requests arrive, first the pool is checked for existing pre-warmed 
containers and allocated to the application, otherwise new containers are spawned as per 
the request workload. The authors compare their proposed solution with existing pool-
based techniques and comment on their limited effectiveness in reducing cold starts. They 
further attempt to structure the problem of function cold starts similar to other scientific 
models like relating pre-warmed containers to prefetching involved in caching, a 
similarity with knapsack problem where different function with values are used to 
optimise total function resources or a stochastic inventory model similar to a multi-
product model with costs. The study concludes with an improvement in the cold start 
latencies of the containers for a single instance of pool and proposes subsequent 
improvements in the current technique.  

Another research [33], studies and exploits the data similarity for reducing the cold starts 
and proposes a deployment system over a peer-to-peer network, virtual file system and 
content addressable storage to increase the computing capabilities, storage requirements 
and prevent network bottlenecks of system. They criticise the current container 
deployment technique of pulling each new container image from the storage bucket and 
introduces a live container migration technique over a peer-to-peer network. They analyse 
three different ways of application deployment i.e. scaling, versioning and live-migration, 
and propose to transfer blocks of files containing frequently used libraries and packages, 
over the network when required. With the proposed technique, researchers found a 37.9% 
reduction in the boot-time of containers. Similarly, [34] aims to reduce the number of 
cold start occurrences by utilising the function composition knowledge. It presents an 
application side solution based on a light-weight middleware that aims to enable the 
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developers to control the frequency of cold starts by treating the FaaS platform as a 
Blackbox. It establishes that applications are generally deployed as a set of functions and 
proposes three strategies; naïve approach, extended approach and global approach where 
a dedicated orchestration component invokes all the steps and follow a process of 
‘hinting’ the next batch of functions involved. These techniques can be co-deployed 
alongside the serverless functions through a designated middleware and are shown to 
reduce cold start occurrences by 30%-40% by incorporating a low monetary cost.  
Research in [35] explores network creation and network initialisation as the prime 
contributor to the cold start latency. It states that cold starts are caused due to work and 
wait-times involved in various setup processes like initialising networking elements. 
Based upon the investigations, the researchers posit that the function cold starts are 
independent of function and are affected by container start-up process. The study explains 
four stages of container lifecycle: (1) service invocation, (2) start-up, (3) run time and (4) 
clean-up. The analysis shows that the time taken in creating the network namespaces and 
initialising them, worsens with the increase in concurrency and contributes immensely to 
the start-up stage. The clean-up stage includes stopping the container, disconnecting its 
network and destroying it and this process demands cycles form the underlying 
containerisation daemon, hindering with the other three processes. Thus, a pause 
container pool manager is proposed to pre-create a network for function containers and 
whenever required, attach the new function container to configured IP and network. Their 
evaluation on OpenWhisk platform demonstrates a reduction of up to 80% in the cold 
start times with a negligible memory footprint.  

Work in [40] introduces the paradigm of Reinforcement Learning (RL) to the serverless 
platforms. It is focused towards provisioning VMs or containers on request-based 
autoscaling in the serverless offerings. The study is conducted using Knative serverless 
platform that supports parallel processing of requests per-instance, utilising the 
Horizontal Pod Autoscaler of Kubernetes. After performing extensive analysis of 
different workload profiles, the researchers demonstrate an association of latency and 
throughput on concurrency levels and suggest an improvement using adaptive scaling 
policies. The researchers also show that depending upon the workload, different 
concurrency levels of the container can influence performance and thus, propose a RL 
based model, specifically model free Q-Learning, to determine the optimal concurrency 
levels for individual workloads. It evaluates the performance of Q-Learning model, based 
on latency and throughput of the function containers and demonstrate the capability of 
applying Q-Learning algorithm to the task of auto-scaling in serverless platforms. The 
study concludes by highlighting the limitations of the research and comment on its 
generality and suggests further appreciation of the proposed approach to help in the 
performance analysis of individual resource usage, for the task of auto-scaling.   
Research [22,23,36] has identified various factors like runtime environment, CPU and 
memory settings, dependency setting, the effect of concurrency, networking 
requirements, etc. that affect the cold start of a function. Most works [9,19,46,48,54] 
focus on commercial serverless platforms like AWS Lambda, Azure Functions, Google 
Cloud Functions and fall short to evaluate open source serverless platforms like 
OpenLambda, Fission, Kubeless, etc. Very few studies [37,38,39] have successfully 
performed analysis on open source serverless platforms and provided possible solutions 
by targeting the container level finer-grained control of the platform. As a novel approach, 
we explore the applicability and capability of RL strategies to reduce the function cold 
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start in a serverless environment. Contrasting to the existing works, we apply the model 
free Q-Learning algorithm for reducing the cold start occurrences, by identifying the 
invocation patterns of the specific workloads that are the primary source for requesting 
functions and focus towards learning the appropriate number of function instances. We 
plan to explore an open-source serverless framework and evaluate it against the non-
intelligent, default auto-scaler strategy responsible for cold starts on the serverless 
platforms. A summary of few discussed researches and our methodology is presented in 
Table 5, highlighting the distinguishing parameters of individual studies.  

 

Table 5. Summary of few relevant works. 

Parameter Related Work Our work [31] [32] [33] [34] [35] [40] 
Open Source 

Platform        
Commercial 

Platform        
Function 

Invocation Pattern        
Reinforcement 

Learning 
Technique        

Pre-Warmed 
Containers        

Other Techniques 
(Network creation, 

Migration, etc.)        
Cold Start 

Frequencies        
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Chapter 4 -  A Reinforcement Learning 
Approach to Reduce Serverless Function 

Cold Start Frequency 
 

Serverless functions are requested by the platform, on-demand, as the number of 
incoming requests exceed the available function resources to serve the workload. This 
process initialises set-up of new function containers and introduce a non-negligible start 
up time or response delay, that is known as cold start. Various non-intelligent, resource 
binding solutions have been explored and employed for inherent cold start problem. 
However, Reinforcement Learning (RL) has shown potential and advancements in 
optimisation problems for different domains. This chapter proposes a RL-based approach 
to address the problem of cold start and is focused towards reducing the number of cold 
starts on the platform by realising the application invocation patterns. We model the 
problem of cold start according to RL framework and introduce an Epsilon-greedy policy 
assisted by heuristics, to aid the learning process. Experiments conducted on open source 
serverless framework and synthetic workload patterns show acceptable results compared 
to default setting of Horizontal Pod AutoScaler, offered by the serverless framework used. 

 

4.1 System Model 
 

The overall deployed system architecture is depicted in Figure 9 and the system model is 
presented in Figure 10. To realise the problem setup of function cold start on the 
Serverless or Function-as-a-Service platform and perform the relevant experiments, a 
Kubernetes service cluster is setup using Melbourne Research Cloud (MRC) in 
collaboration with NeCTAR services at The University of Melbourne, Australia. The 
main components of the experimental setup are –  

• Kubernetes – Kubeless service cluster: Kubernetes [10] is an open-source 
container orchestration and management tool that builds upon the automated 
services such as deployment, updating, scaling, self-healing, etc. Kubeless is a 
Kubernetes native, open source serverless framework that helps in building 
applications in Serverless fashion on top of the services and primitives provided 
by the underlying orchestration platform [13]. For the purpose of experiments, 
Kubernetes, version v1.18.6, is configured and a service cluster of 4 nodes with 
NeCTAR Ubuntu 18.04 LTS (Bionic) amd64 [v30] OS image, 4 vCPUs and 16 
GB RAM and 30 GB disk storage, is set up to accommodate all the assets of the 
deployment. The service cluster is installed with Kubeless, version v1.0.6, to 
provide serverless services with an implementation to support minimum scaling 
to 1 function pod or instance. To support the automation in the Kubernetes cluster 
setup over the cloud services, Ansible scripts (Infrastructure-as-a-Code) 
automation tool is used. 
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Figure 9. Deployed System Stack Architecture. 

 
• NGINX Ingress Controller: By default, there is an isolation between the 

deployed function instances and the external network. Therefore, a 
communication channel is required to communicate with the services running in 
the function, known as Ingress. To setup this ingress and provide the ingress load 
balancing services i.e. incoming request load balancing on the configured service 
cluster, NGINX Ingress Controller [25], version v1.10.0, is installed as a 
Kubernetes deployment. Ingress controller, in turn, is responsible for Kubernetes 
Ingress resources for respective function deployments and providing the 
abstraction of a function endpoint and avoid any performance issues related to 
request load balancing. 
 

• Apache JMeter Non – GUI Agent:  In this work we are focused towards 
analysing the application workload pattern for the purpose of reducing function 
cold starts and thus to mimic and generate a synthetic workload, Apache JMeter 
[26] is used. It is a JAVA based tool designed to load test the functional behaviour 
of the web applications and allows to mimic the desired load for a serverless use 
case application. The Apache JMeter Non-GUI toolkit [27], version 5.3, is 
installed on a separate worker node outside the Kubernetes service cluster to avoid 
any interference with the learning process of the proposed Reinforcement 
Learning agent. All the workload is directed towards the endpoint provided by the 
Kubernetes Ingress resource for the respective function deployment.  
 

• Reinforcement Learning Agent: The proposed Q-Learning agent is configured 
on the Master node of the Kubernetes service cluster. The agent directly interacts 
with the Serverless or Function-as-a-Service environment through different 
available actions. The actions are determined based on the maximum allowed 
function instances and the agent accordingly chooses to increase or decrease the 
number of running function instances. The Q-Learning agent transitions between 
various environment states that are a combination of relevant metrics like CPU 
utilisation and observes some reward for the associated action. These rewards are 
useful in determining the appropriateness of the performed action from a 
particular state and thus helps the agent in exploring or exploiting new and useful 
information. The agent uses a Q-Table to store and update the rewards that are 
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used for the learning process [29]. But to assist the agent and speed up its learning 
process, agent uses a heuristic based previous reward comparison to negatively or 
positively reward the actions. The agent scrapes the relevant metrics with the help 
of Kubernetes Command Line tools and directly integrates this information to 
ascertain the dependent rewards and regulate environment states. Therefore, the 
Reinforcement Learning agent, along with the proposed heuristics, ascertains the 
appropriate number of function instances to provision for successfully reducing 
the cold starts as well as reducing the failed number of responses.   

 

 

  

Figure 10. System Model. 

 

 

4.1.1 Workload Model 
 

FaaS platforms with their features such as ease of deployment, a fine-grained pricing 
model, focus on business logic and on-demand scaling, appears as an appropriate choice 
for a variety of applications. Applications that require higher levels of concurrency, 
account for infrequent request load or are highly dynamic in their demand, etc., are the 
ideal use cases for serverless model. Therefore, REST APIs, multimedia processing, 
batch jobs, CI/CD pipelines, etc., benefit from the underlying characteristics of serverless 
execution model. Therefore, to investigate the problem of function cold start and account 
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for the characteristic infrequent workload pattern of serverless model, we generate a 
stable infrequent workload from a defined quota of requests. The infrequent yet set quota 
of fabricated requests allow us to control the level of workload concurrency, based on the 
available resources for the experiment, uniformly distributing the pressure on the 
underlying resources to avoid any bottlenecks in learning. The request simulation uses 
the thread ‘sleep’ method that enables the service cluster to serve quota of requests for a 
set time span and provide the RL agent with a delayed feedback/reward.  

 

The abstraction of unlimited scaling for serverless applications suffer from container 
start-up time or cold starts. Some of the serverless applications are compute intensive and 
demand a considerable amount of resources such as CPU, memory or time-to-execute. 
These factors add to the problem of frequency of cold starts on the platform by keeping 
the available function instances or resources busy, while requesting new function 
containers for the infrequently arriving workload. Therefore, we put together a compute 
intensive process of Fibonacci sum calculation up to number 30 [36,45] in order to keep 
the underlying resources busy and realise the desired real-time behaviour of the serverless 
application. We implement the recursive model of Fibonacci sum calculation (Algorithm 
2) in the function handler, responsible for serving the requests, with appropriate resource 
requirements to fit the serverless platform constraints. As Kubeless does not cite its 
concurrency policies [13], we specify the resource requirements in Table 6, such as CPU, 
memory requirements and time-to-execute, to be allocated for the purpose of evaluating 
resource metrics. The CPU intensive nature of the function workload also aids the 
evaluation of default autoscaling policy, by accounting for considerable number of 
function cold starts and analyse its performance against the proposed solution. Also, the 
experiment with CPU intensive function handler enables the RL agent to extensively 
capture the state of the serverless environment for learning the necessary function 
instances to lower the cold starts.  

 

Table 6. Function Handler Configuration. 

Function 
Handler 

N Runtime 
Requirement 

Execution 
Timeout 

CPU 
Request 

Memory 
Request 

Service 
on Port 

Fibonacci 
Sum(N) 

30 Python 3.7 120 
seconds 

250 
milli-
cores 

64 MB 8080 

 

 

Algorithm 2: FibonacciSum
INPUT: Integer N
OUTPUT: Integer SUM
BEGIN

if N == 1 or N == 2 then

return 1;
else

return FibonacciSum(N � 1) + FibonacciSum(N � 2);
end

1
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Therefore, following the adapted workload model, the request generator is used to 
simulate a quota of parallel HTTP user requests against the specified Fibonacci function. 
We use Apache JMeter in the non-GUI mode [27], to concurrently send a number of 
requests at a variable rate over a period of time. JMeter features a configurable thread 
‘ramp-up’ period that tells JMeter how long to take for creating the desired number of 
request threads [26]. In our study, a set of requests are sent from the quota of 1500 
requests with a ramp-up period of 250 seconds, engaging sufficient amount of resources 
from the function instances. This guarantees the demand for newer instances from the 
default auto-scaler, providing sufficient time for scaling or acknowledging the RL-based 
agent to analyse the workload pattern, observe the environment states and generate the 
rewards which complement the function cold start evidence. The generated infrequent 
workload pattern is presented in Figure 11. 

 

 

Figure 11. Fabricated Workload Pattern. 

 

 

 

4.2 Reinforcement Learning Approach 
 

When modelling an optimisation problem as an application of Reinforcement Learning, 
the primary goal is to prototype the problem environment. The environment in 
Reinforcement Learning is composed as a Markov Decision Process [15,28] i.e. the future 
environment state observed by the agent is independent of the past states, given the 
present state information. Therefore, we describe the structure of our Reinforcement 
Learning world that is leveraged by the Q-Learning agent to reduce the frequency of 
function cold starts on FaaS platform. 
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• Environment 

In this thesis we are targeting the problem of cold starts on the serverless platforms 
dealing with infrequent workloads. For the purpose of our study we set up a simulated 
environment to mimic the real-time actions of the FaaS platforms [43]. The Kubeless – 
Kubernetes service cluster along with its components and resources, forms the 
environment for our RL agent, that provides serverless services. The simulated 
environment also includes host nodes, Python function deployment and JMeter workload 
generator, that serves as the foundation of learning process. To provide RL agent with 
observability of relevant resource metrics and interact with the environment setup, we 
also incorporate Kubernetes Command Line Interface that allows direct communication 
with the underlying Kubernetes API resource server.      

  

• State Space 

Through this study we attempt to deal with the challenge of frequent cold starts on the 
FaaS platform and observe the effect of characteristic sporadic demand to reduce them. 
Therefore, following the Markovian property of the environment states, we recognise the 
suitable factors that are significant in such analysis. The factors include the number of 
function instances available i.e. 𝑃 = {1,2,3, … .𝑁}, to serve the incoming workload, the 
average CPU utilisation of the instances i.e. pressure on function pods during service into 
discrete categories i.e. %𝐶𝑃𝑈	𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛	(𝐶) = {	𝑛 ∗ 20	|	𝑛	 ∈ [1, 5]	} and a discretised 
response factor of failed number of requests during the analysis period i.e. %	𝐹𝑎𝑖𝑙𝑒𝑑	(𝐹) =
{	𝑚 ∗ 2	|	𝑚	 ∈ [0, 50]	}. In an iterative learning method like Q-Learning, we observe the 
agent for a specific period of time called iteration period (It) while examining its 
performance for equally distributed critical time periods called timeframes of T duration 
i.e. 𝑇 = C/!

0
	D 	𝑘	 ∈ [1,2,3… . . 𝑛]}; where k is the number of timeframes. Hence, we extend 

the learning of the agent over the iteration in multiple timeframes and use these critical 
time periods in the state formation to capture the exact state of the environment. Since we 
are administering Q-Learning algorithm with respect to Serverless environment, we 
discretise the environment states to avert the State Space Explosion problem and therefore 
the state space 𝑆 is a vector with all the discussed factors i.e. with dimensions 
𝑃 × 𝐶 × 𝐹 × 𝑇 with N maximum pods and n timeframes allowed in the process. Hence, 
an RL environment state in the FaaS setting can be described as a combination of the 
above factors, represented as a tuple (𝑝! , 𝑐! , 𝑓! , 𝑡!) ∈ 𝑆.   

 

• Action 

The RL agent is structured to learn the appropriate number of function instances for 
critical time periods and provision them in advance to reduce the frequency of cold starts. 
In the process of learning required number of function pods for a specific timeframe, the 
agent explores different set of function instances over the iterations. Therefore, in a given 
state the agent should decide to increase or decrease the number of function instances for 
the upcoming timeframe, in order to compensate for the expected cold starts by the 
workload. The possible actions for an environment state can be formulated in terms of 
function instances that needs to be added or removed from the current set of instances. 
Hence, the set of possible actions range from 𝐴 = 	 {−(𝑁 − 1),… 0,… . (𝑁 − 1);	∈ 𝐼}; 
where N is the maximum allowed function instances for the experiment. As the number 
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of available pods are always greater than 1 (Kubernetes maintains a minimum of 1 pod 
in a deployment [10,12,14]) and less than the maximum allowed pod limit, not every 
action is appropriate for each state. Hence, to prevent the agent from performing invalid 
actions and elongate the learning process, we create a Python dictionary to store the 
allowed actions for every possible environment state. Thus, the allowed actions for a state 
𝑠, with 𝑛 current function pods and 𝑁 maximum allowed pods, can be obtained as 𝑛123" =
{𝑘	|	𝑘 ∈ (0 < 𝑛 + 𝑎 < 𝑁); 𝑎 ∈ 𝐴	}. 

 

• Reward 

The motive of RL agent is to learn an optimal policy for reducing the density of cold starts 
on the platform. It interacts with the environment and makes a judgement of the goodness 
of performed action according to the observed reward and tries to maximise the 
cumulative reward. Therefore, reward is an important characteristic of the RL world that 
guides the agent throughout the decision-making process. In this context, we design the 
reward in a manner to appropriately capture the influential variables for cold starts. 
Hence, the reward R, incorporates the effect of average CPU utilisation C, number of 
function instances P and the failed responses F to the incoming workload i.e. 𝑅 ∝ 𝐶, 𝑅 ∝
𝐹	&	𝑅 ∝ 𝑃4$. Since all the observed metrics are important for the agent to ascertain the 
effect of action, we model the reward function for a state-action pair as –  

𝑅 = 𝑎 ∗ 𝐶𝑟 + 𝑏 ∗ 𝐹𝑟 + 𝑐 ∗ (	1 𝑃Y )                   (6) 

where –  

• ‘a’ is the proportionality constant for average CPU utilisation across all available 
function instances and is set to 0.3.  

• ‘b’ is the proportionality constant for failed responses during the timeframe and 
is set to 0.3. 

• ‘c’ is the proportionality constant for available function instances and is set to 4. 
• ‘Cr’ represents the award against division of percentage CPU utilisation according 

to the state discretised model and assigns a score 𝐶𝑟 = 𝑛 ∗ 20; {𝑛	 ∈ [1,5] 	∪
(𝑛 − 1) ∗ 20 < 𝐶 < 𝑛 ∗ 20}. corresponding to  

• ‘Fr’ signifies the division of failed responses and assigns a failure class score 
𝐹𝑟 = 	25; {𝑚	 ∈ [0,4] 	∪ 	𝑚 ∗ 20 < 𝐹 < (𝑚 + 1) ∗ 20}. 
 

The reward is structured in the described manner to utilise minimum number of function 
instances even while keeping the other variables constant, thus learning to approach 
towards an optimal number of function instances. This step also encourages the agent to 
move in a positive direction i.e. reduce the failed response over the training iteration, 
while trying to keep the number of function instances low. 

 

• Q-Learning Agent Workflow 

Q-Learning technique conventionally leverages the method of dynamic programming for 
the process of learning [16,42]. Hence, the use of a Q-table to store the Q-values that 
assess the quality of an action against a specific environment state is justified. The agent 
leverages the information of Q-values to perform further moves and gain additional 
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rewards for its decision. Therefore, Q-table is a mapping 𝑄$ → (𝑆 × 𝐴) for each state-
action pair [18] [29]. During the RL environment initialisation, all the invalid actions 𝑎! ∈
𝐴, for state 𝑠! ∈ 𝑆 are marked as negative ∞, to abide by the design of action space and 
the valid actions are initialised with a zero value for uniform chances. Since the agent’s 
objective is to maximise the cumulative reward at each step, setting the Q-value of invalid 
actions for a specific state inhibits the exploration of particular insignificant action.  

Reinforcement learning tasks are known to be time consuming and therefore different 
implementations incorporate approximation techniques or heuristics to expedite the 
learning process. In the similar context, we integrate a previous reward heuristic that 
assists our agent to determine the quality of the action performed from a state. A previous 
reward mapping 𝑅./"0 → (𝑆 × 𝐴), corresponding to each state-action pair is configured to 
operates as a repository for the obtained immediate rewards. The values in the previous 
reward repository works as a benchmark to evaluate the reward obtained by performing 
an action from a specific state in the current iteration i.e. the immediate reward. It assists 
the agent’s judgment of the performed action by comparing the current reward with the 
previous reward for state-action pair. If the previous reward is greater than the current 
reward, then the agent is penalised, for it has performed a low value action and hence 
updates the obtained immediate reward as negative feedback (Equation 7) and vice-versa. 
This, in turn, is leveraged by Bellman Equation to update the Q-values and helps the agent 
to maximise the cumulative reward. 

 

𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒	𝑅𝑒𝑤𝑎𝑟𝑑 = V
−𝑅(𝑠𝑖, 𝑎𝑖), 𝑅(𝑠𝑖, 𝑎𝑖) < 𝑅𝑝𝑟𝑒𝑣(𝑠𝑖, 𝑎𝑖)
𝑅(𝑠𝑖, 𝑎𝑖), 𝑅(𝑠𝑖, 𝑎𝑖) ≥ 	𝑅𝑝𝑟𝑒𝑣(𝑠𝑖, 𝑎𝑖)

  (7) 

 

An overview of agent training is presented in Figure 12. In the learning process, the agent 
takes the maximum number of allowed function instances, iteration period and the 
number of timesteps as input. It performs the initial setup of modelling the state space, 
action space and Q-table that aids our agent’s learning process and guide towards the 
reward maximisation. The agent determines the current environment state with the help 
of required metrics and performs an action according to the defined policy. As the agent 
is modelled to follow 𝜀 – Greedy policy to explore and exploit the information gained 
during the learning, it decides to choose a random action with a probability 𝜀 or 
alternatively, choose the action with highest Q-value (initially all valid actions equal to 
zero value) [18]. The 𝜀-value is configured to 2.5% to maximise the use of acquired 
information and allow the agent to learn about actions as per the rewards.  

The action chosen by the agent is, in fact, the number of function instances to be added 
or removed from the deployment and the resultant set of instances are used to serve the 
fabricated request workload, for a specified timeframe. Therefore, the agent leverages the 
utility function to interact with underlying Kubernetes API-server to scale the function 
instances to a desired number. Once the action is performed, the agent uses sleep method 
for a period of timeframe and allow the workload to be handled by the new set of functions 
to observe a delayed reward for the current state-action tuple. In the context of cold start 
problem, we replace the notion of immediate rewards with delayed rewards. As the state 
transitions are modelled to capture the variables such as CPU utilisation and failed 
responses, states are observed after each timeframe. The computed delayed reward is 
assessed against the previous reward heuristic and this information is appended to the 
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current Q-value using the Bellman Equation. The parameters of the equation are 
configured as follows, for this study. The learning rate 𝛼 is set to 0.75 and discount factor 
𝛾 is configured to 0.9, inferring that 75% of the newly obtained information is taken into 
account while giving a high weightage to the expected future rewards in the following 
environment states. The process of determining the current state, choosing an action, 
observing the reward and interpreting the obtained information is carried out in multiple 
iterations, for a superior learning of the agent and explore the environment.  

 

 

Figure 12. High-level view of Proposed RL-based Agent Learning Process. 
 

 

4.3 Reinforcement Learning-Agent Setup 
 

The discussed RL-based approach is implemented as a Python agent using standard 
libraries such as numpy, pandas and pickle. The Python-based implementation of RL 
approach is composed of two different modules – MetricsCollector and RLAgent. As the 
concerned function cold start is structured as a Reinforcement Learning problem, the Q-
Learning environment leverages the resource metrics along with the response metrics of 
the FaaS instances. We have designed our Python-based MetricsCollector to directly 
interact with the Kubernetes and Kubeless Command Line interfaces and fetch the 
required resource metrics. It queries the specific deployments under the Kubeless cluster 
and feeds the bifurcated and processed information to the agent. We also incorporate 
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Python’s built-in logging module to log the details about the resource metrics, response 
metrics of the functions and the information of agent’s learning, to track and query the 
progress.  

The RLAgent module is the primary implementation of the Q-Learning logic for the 
purpose of workload model analyses and reduce the cold start frequency. The different 
component methods of the RLAgent are as follows – (i) EnvironmentSetup, (ii) 
GenerateActions, (iii) ActionPolicy, (iv) CalculateReward and (v) TrainAgent. As 
discussed, the principal task of the Q-learning agent is to formulate the RL environment 
in terms of Serverless resources to commence the learning process. The agent receives 
the maximum number of function instances (N) used for servicing the synthetic workload, 
number of timeframes (k) and the iteration period (It), as input parameters and are used 
in the initialisation procedure. In order to conduct the analyses on FaaS platform for the 
applicability of RL-based agent to reduce cold start frequency, we provision 10 function 
instances as the maximum allowed limit i.e. N = 10. We constrain the scaling of function 
up to only 10 instances to uniformly distribute the load on the underlying infrastructure 
resources and avoid any performance bottlenecks, while abstaining from the problem of 
state space explosion. We ascertain the performance of the agent over the iteration period 
of It = 60 minutes and observe the state transitions for k = 12 timeframes of T = 5 minutes 
each, over the multiple iterations. 

The EnvironmentSetup method is pivotal in providing the building blocks for the learning 
policy. It configures the state space, action space, the Q-table and the proposed previous 
reward heuristic mapping, according to the schema discussed in the previous section. The 
agent takes advantage of input variables and the default settings to implement a state 
space mapping 𝜋:		𝑆	 → 𝑃 × 𝐶 × 𝐹 × 𝑇 i.e. a state space of size 𝜋: 𝑆	 → (10 × 5 × 51 × 12) 
and represent the state as tuple with following constraints –  

 

𝑆1 	= 	 (𝑝1 , 𝑐1 , 𝑓1 , 𝑡1) 	∈ 𝑆 ,   where  

⎩
⎨

⎧
			

𝑝1	 ∈ {1, 2, 3, … , 10}
𝑐1 	 ∈ {20, 40, 60, 80, 100}
𝑓1 	 ∈ {0, 2, 4, 6, … , 100}
𝑡𝑖 	 ∈ {0, 1, 2, 3, … , 11}

            (7) 

 

The action space for the RL environment is described as the number of function instances 
added or removed from current replicas and hence mapped as 𝐴 = {−9,−8,…0, 1, 2…8, 9} 
according to the defined schema (section 4.2). The Q-table and the heuristic previous 
reward table are mapped for each state-action pair and therefore are represented as matrix 
of dimension 𝜋:	𝑄" → (𝑆 × 𝐴) and 𝜋:	𝑅6728 → (𝑆 × 𝐴) where 𝑆 = 30600, 𝐴 = 19. The 
tables are initialised with default zero values as per the defined model in Equation 8. 

(8) 
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To reduce the computational complexity and expedite the setup process, we allow the 
agent to only perform valid actions. When an agent observes its current state, the 
GenerateActions method creates a list of all the possible actions from the current state 
and updates the invalid actions in the Q-table as negative infinity, corresponding to the 
current state. This strategy is known as the lazy evaluation in Python. Therefore, the 
assessment of the quality of an action will be conducted only for valid actions, thus 
reducing the exploration complexity of the agent’s learning process. Once the valid 
actions are determined for a state, method ActionPolicy is responsible for following the 
𝜀-Greedy policy to balance the exploration and exploitation of the acquired knowledge of 
the environment. The method selects an action randomly from the list of valid actions 
with 𝜀 probability and chooses to select an action with maximum Q-value with a higher 
probability of 1-	𝜀.  

TrainAgent is a nested method that leverages the services of other component methods. 
After the environment setup is complete, the training executes for a period of 60 minutes 
over multiple iterations. During the respective timeframe of 5 minutes, the agent selects 
an action to perform and directly interacts with the platform through command line 
interface to increase or decrease the number of function instances. The agent waits for the 
aggregated metrics over the period and scrapes the relevant resource metrics and response 
metric through MetricsCollector module. It queries the NGINX Ingress of the associated 
function deployment, gathers the details of the incoming requests and filters them to 
compute the response metrics i.e. failed number of requests during the queried timeframe. 
These metrics serve as the input to CalculateReward method that returns the delayed 
reward for the action performed, according to the reward structure. This reward facilitates 
the heuristic-based comparison to assess the quality of action and update the Q-Table via 
Bellman Equation. This process helps the proposed agent to acquire knowledge about the 
environment states and its related actions, determining the appropriate number of function 
instances to service the fabricated workload during the iteration period. The RL-based 
agent learning is performed for 64 hours i.e. 64 iterations of 60 minutes each, to obtain a 
satisfactory result over the default setting offered by the platform.  

 

4.4 Performance Evaluation 
 

The performance of our proposed RL-agent is evaluated against the default autoscaling 
policy i.e. Horizontal Pod Autoscaler (HPA) supported by the Kubeless platform [14]. 
The objective of the proposed agent is to ascertain an appropriate amount of function 
instances for a specific application workload, to reduce the number of cold starts on the 
platform. We observe that infrequent workloads have irregular demands for function 
instances that lead to cold starts on the serverless platforms. Therefore, we hypothesise 
that if the right amount of function instance is provisioned for a timeframe, then there will 
be reduced number of cold starts as well as decreased failures of response. Thus, the 
performance of the agent and the default autoscaling policy is measured in terms of 
successfully serviced requests or number of failed requests by a set of function instances. 

The RL-agent is trained for 64 iterations of 60 minutes, under the influence of fabricated 
and sporadic application workload. We use a CPU intensive workload function i.e. 
Fibonacci sum calculator up to number 30, to keep ample amount of resources busy for 
observing the effect of cold starts [36,45]. The infrequent incoming pattern of requests 
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are generated from a pool of 1500 requests during a specific timeframe of 5 minutes and 
therefore a limit of 10 function instances to comfortably balance the load and prevent 
state explosion problem. These constraints allow us to put a considerable load or pressure 
over the competing approaches and effectively evaluate them against each other. 
Kubeless leverages the default autoscaling policy of HPA that is implemented to support 
the resource scaling based on the average CPU utilization threshold. In the context of 
HPA, we make a significant decision to configure the timeframe of 5 minutes for the RL-
agent. The HPA is configured as a control loop to query the underlying aggregated 
resource metrics every 15 seconds and perform a required scaling action. But to prevent 
the resources from thrashing i.e. frequent acquisition and release of resources like 
containers, CPU or memory, Kubernetes has a default downscaling time of 5 minutes [10, 
14]. In other words, HPA tends to keep the resources occupied for up to a period of 5 
minutes in order to account for irregularity and releases them after the reduced load. 
Therefore, it is worthwhile to analyse the performance of RL-agent where the default 
policy has a strict downsizing scheme, keeping the ample amount of resources bound to 
itself for a period of 5 minutes. 

 

4.4.1 Analysis of Results 
 

As discussed, we train the RL-agent for a period of 60 minutes over 64 iterations to 
analyse a specific application workload pattern and learn the ideal number of function 
instances to reduce cold starts. The agent is structured according to the experiment 
strategy with RL environment designed around the experimental constraints. To promote 
the Q-Learning process, the agent meticulously follows the described learning schema, 
aided by the established heuristics of previous reward comparison. We leverage the 
Python’s logging module to log information during the agent learning and continuously 
monitor the progress in terms of proportion of successfully serviced request out the total 
workload.     

The training is performed in 7 batches of iterations and Figure 13 illustrates the learning 
curve of the agent over the batch training. From the illustration, we observe that 
eventually RL-based agent successfully attempts to service 90% of incoming workload 
and is shown to increase the proportion of successfully served requests over iterations. 
This learning analysis supports our hypothesis that as the agent learns to provision ideal 
number of function instances, that signifies reduced number of cold starts, it begins to 
service a greater number of requests. In the context of learning, since we are focused 
towards analysing an application workload pattern, a similar fabricated request pattern is 
used among various iterations to strengthen the learning capability of the agent.  
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Figure 13. Proportion of Success vs Training Iteration (Batch). 
 

In the Q-Learning process, agent continuously perform prescribed steps of determining 
the current state, choosing an action according to the greedy policy and observe some 
reward associated to the transition, to update the corresponding Q-values. As per the 
greedy policy, the agent tends to select an action that maximises the overall cumulative 
reward from a state and adds a positive feedback in the form of additional information to 
the respective Q-value. Another factor to elevate the Q-value, corresponding to a state-
action pair, is the expected future reward, that is eventually determined based on the 
experience of our agent. Therefore, in Figure 14, we can observe that the expected future 
reward or the probability of choosing a suitable step from the observed state is 
consistently increasing. Hence, the observations are in correlation with the fact that the 
agent is learning to adapt to the workload pattern and attempting to select an ideal action 
over the multiple iterations of learning. 
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Figure 14. Expected Future Rewards during Iterations. 
   

We assess the effectiveness of RL-based agent against the baseline Horizontal Pod 
Autoscaler which is accountable for requesting new function instances on the Kubeless 
platform, based upon the sporadic workloads. As discussed in earlier section, HPA is a 
Kubernetes controller that watches for changes in the specified metrics associated with 
the function deployment and acts accordingly. By default, it is configured to monitor the 
CPU metrics or the average CPU utilisation across the available function instances to be 
below a threshold and has a query period of 15 seconds [12,14,15]. To assess its 
capability, we set the threshold for CPU metrics to be 80% with scaling of the function 
up to 10 instances. Therefore, whenever the average CPU utilisation of the function 
deployment violates the threshold, new function instances are provisioned in real-time, 
representing a potential cold start in the system.  

We conduct the assessment on baseline autoscaling policy for a period of 4 hours to avoid 
any bias and observe that the Kubeless HPA achieved a mean success rate of 558 requests 
per timeframe, accounting for an overall failure rate of 15.16% (with a mean of 100 failed 
requests, Figure 15) over the period of assessment. The assessment was conducted for the 
CPU intensive function of Fibonacci sum calculation of number 30, over an irregular 
application request pattern, described in the workload model, with a total of 
approximately 29000 requests over the 4 iterations. The observed results can be attributed 
to following considerations – 

• A configuration of 15 second control loop in HPA that collects resource metrics 
from metrics-server, which in turn queries aggregated resource metrics from 
individual resources after every 30 seconds. Therefore, HPA does not seem to 
consider the resource threshold failure events in real-time and hence, fails to scale 
the function deployment at the appropriate moments of requirement. Also, since 
the HPA is collecting aggregate resource metrics over a period of time, it neglects 
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short spikes during the 15 seconds query time and fall short to account for the 
failed requests.  
 

• In the context of the previously highlighted point, we make use of a CPU intensive 
function handler that executes or keeps the resource bound for a slightly longer 
period of time, in the order of few seconds. Therefore, the HPA fails to capture 
the resource pressure as well as the incoming workload in real time and generates 
considerably large proportions of failed responses. 
 

• The observed result can also be attributed to the limited amount of scaling that is 
allowed to be performed during the assessment. Although, the HPA has a default 
downsizing policy of 5 minutes, it keeps the resources bound with itself but fall 
short to account for the irregular workload occurrences while performing the 
downsizing action during the 15 second control loop period.  
 
 

 

       Figure 15. HPA vs RL Agent – Mean Failed-Response Comparison. 
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Similar to baseline HPA policy, we assess the quality of RL-based agent by computing 
the failed responses and success rate during a 4-hour evaluation. We conduct three 
different tests, under the similar conditions to avoid any bias and performance 
bottlenecks. As we deal with the problem of frequent cold starts on a serverless platform 
using a RL-based model, the agent must account for the unprecedented or the unvisited 
states and should be able to react in a typical manner. But, with a limited iteration of 
training, there is a high probability that the agent does not visit all the environment states 
or explore all the available state-action pairs. Hence, to compensate for the unseen 
situation or environment states, where usually an RL agent acts in a random fashion, we 
introduce a heuristic-based approximation method (Algorithm 3) to provision a sufficient 
amount of resources to anticipate the demand.  The proposed solution favours to select an 
average number of function instances i.e. average number of function instances between 
the current and maximum limit. This way the agent is able to provision a favourable set 
of function instances to compensate for a fraction of cold starts and hence serve a higher 
fraction of incoming requests successfully.  

 

 
 

The performed RL-agent tests are compared against the HPA and the important findings 
are listed in the following table. The agent tests are performed using the described 
workload pattern with a total number of requests between 30,000 to 31,000 for the entire 
duration of tests. Hence, all the outcomes are reported in terms of proportion to effectively 
perform the comparative study.   

 
Table 7. Summary of Results. 

 HPA Test1 Test2 Test3 
Mean Success 

Rate (# of 
requests) 

559 644 654 646 

% Mean 
Difference 0 15.29 16.95 15.65 

% Successful 
Requests 84.84 90.23 90.30 89.86 

% Failed 
Requests 15.16 9.77 9.70 10.14 

  

Algorithm 3: TestAgent
BEGIN
InitialState � ScrapeResourceMetrics
ActionList � Choose MaxQvalueAction(InitialState) from Q� Table
if length (ActionList) > 1 then

nextAction �MaxPods – Mean (Current + MaxPods)
return nextAction

else
nextAction � ActionList
return ActionList

end

1
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After 64 hours of training iterations, the RL-agent along with the heuristic assistance is 
shown to perform better than the baseline policy of HPA. We observe that during three 
separate tests, under the similar controlled conditions of workload model, the RL-based 
agent is consistently above par with the HPA and is able to successfully service 90% of 
the incoming workloads and reduce the failed proportion of requests by approximately 
5.3%. This is presented in the Figure 15, where the RL-based agent is able to reduce the 
failed number of requests over multiple iterations with an average failure of 
approximately 71 requests that is an improvement over 100 failed requests by HPA. In 
Table 7, ‘mean success rate’ represents the average number of successful requests during 
a unit timeframe of 5 minutes. The proposed agent, through workload pattern analysis 
and training to provision suitable number of function instances, is able to continuously 
outperform HPA with higher number of successful requests by maintaining a 
considerable mean difference of proportions of 15.9%.  

The performance of RL-based agent can also be evaluated by analysing the pattern of 
provisioned number of function instances to deal with the serverless workload. Figure 16 
shows the variance in the provisioned number of function instances between the HPA and 
the RL-based agent. It is evident that under controlled simulated environment, the RL-
based agent provisioned the functions in a similar pattern for separate tests that diverge 
from the default policy. The agent performs the actions based solely on the trained model 
and Figure 17 clearly represents and support the agent’s better performance with a 
reduced number of failures over the testing iteration.  

The difference between the two approaches can be attributed to the following 
characteristics of the proposed RL-based agent –  

• The process of elimination of invalid states during the RL environment setup and 
lazy loading of Python, helps the agent to productively use the acquired 
information about the environment.  
 

• The use of a heuristics-based approach, both for training as well as testing 
processes, expedites the learning process by awarding the agent’s actions 
carefully and compensates for the un-explored states by provisioning average 
number of instances while testing the agent. 
 

• Although the RL-based agent outperforms the baseline HPA, the lack of function 
container concurrency-policy adds to the failed number of requests. The CPU 
intensive function workload is configured with an execution time of 120 seconds 
and thus affected by the concurrency control of the instance.  
 

• The composition of state space and reward function incorporates the effect of 
failures during the training and therefore, the agent tries to compensate for the 
failures in consequent steps of learning by exploiting the acquired knowledge.  

On the account of listed evidence of the performance and comparison of RL-based agent 
against the baseline HPA, we can adequately conclude that the proposed agent 
successfully outperforms the default policy of HPA. We strengthen this claim by 
analysing the training and testing outcomes of the RL-based agent that is focused towards 
examining the workload pattern to reduce the failure of requests which is a direct 
consequence of an appropriate strength of function instances representing reduced 
function cold starts. 
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Figure 16. Comparison of Provisioned Instances. 

 

 

Figure 17. HPA vs RLAgent Performance Comparison. 
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4.4.2 Practical Implications 
 

Function cold start is an inherent shortcoming of the Serverless execution model. Usually, 
the commercial platforms such as AWS Lambda, Google Cloud Functions, etc. try to 
optimise their runtime environments and code packaging policies to reduce the 
initialisation period. They address the frequency of cold starts on the platform by keeping 
a queue of idle function containers for a specific time, in memory, to provide successful 
outputs without significant delays [8]. In connection with cold starts, we have proposed 
a Reinforcement Learning technique to investigate the demand pattern of the application 
that attempts to reduce the frequency of function cold starts on the serverless platform. 
The proposed Q-Learning based agent is found to perform better than the baseline 
approach of Horizontal Pod Autoscaler of the Kubeless framework, under a simulated 
and controlled experimental environment. But there are certain points to recollect that are 
associated to real-time appropriateness of the proposed solution.      

• We leverage the Reinforcement Learning environment modelling, specifically Q-
Learning constraints [15,16] to devise a smart agent that learns to analyse demand 
pattern and increase the performance in terms of successful outcomes. The 
successful outcomes are the direct consequence of reduced function cold starts by 
appropriate resource provisioning. The RL-based solutions, in general, are 
expensive in terms of data as well as time. The agent interacts with the modelled 
environment, exploring and acquiring relevant information over multiple 
iterations that require a higher degree of exploration. Hence, as evidenced in this 
work, for an RL-based agent to outperform a baseline technique of HPA, a training 
period of 64-hours is exploited for satisfactorily analysing the invocation demand 
of an hour. Therefore, RL-based approaches are considerably expensive in 
practical applications with stringent optimisation requirements. 
 

• A classical Q-Learning approach is applicable for discretised environment 
variables [18]. To constrain the serverless environment within the requirements 
of Q-learning algorithm, we categorize or discretise the different variables of cold 
start and model the problem of function cold starts around it. The size of Q-table 
is a variable of state space and the action space and under the presented controlled 
experimental settings, the size is large. But, as the state space or the action space 
increases, the size of the Q-table grows exponentially [15,16]. For instance, if the 
state space extends by a factor of 100 and action space increases by a factor of 10, 
the Q-table enlarges by a factor of 1000. Therefore, Q-Learning experiences a 
state explosion, making it infeasible to perform updates on Q-values and an 
increased space and time complexity. 
 

• The RL-based agent is setup to analyse the demand pattern of a particular 
application and modelled to provision suitable number of function instances to 
deliver successful response. Therefore, the learning of the agent can’t be 
generalised for other demand patterns and thus requires a respective learning to 
be commissioned.  
 

• For the purpose of this thesis, we train the proposed agent for 64 hours and 
evaluate it for the iteration period of an hour. As discussed in the result analysis, 
there are 30600 state-action pairs to be explored within 768 separate timeframes 
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and the probability that the agent explores every option is very bleak. Therefore, 
with limited amount of training the agent is advised to be guided by certain action 
approximations, such as average number of instances used in this thesis, to avoid 
acting in a random manner.  
 

• As the agent positions its learning on the resource metrics that affect the cold starts 
in a serverless environment, the availability of suitable tools and techniques to 
scrape these required metrics is essential. Also, the availability of certain platform 
constraints such as frequency of querying resource metrics, the concurrency 
policy of the function instances or the request queuing policy would further extend 
support to the analyses. 
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Chapter 5 -  Conclusions and Future 
Directions 

 

This chapter concludes the thesis and presents a summary of the proposed work. It also 
highlights the future directions of the current work as well as other possible perspectives 
to target the problem of Function Cold Start.  

 

 

5.1 Conclusions   
 

In the Cloud computing era where enterprises are looking towards faster time to market 
and compete within the industry, Serverless Computing framework emerges as a 
fascinating choice. With its Function-as-a-Service (FaaS) execution model and micro-
services inspired application development architecture, FaaS offers the best of both, 
Cloud Computing and Service Oriented Architectures. FaaS leverages the concept of 
containers to provide an abstraction of underlying servers and furnish the services at a 
consumption-based pricing model. To expedite the process of application development 
and allow the enterprises to add business value, rather than focusing on the time-
consuming tasks of resource management during application development, FaaS takes off 
the resource management responsibilities from developers by offering them a platform 
with an abstraction of highly available and scalable resources.  

FaaS model executes the piece of code inside a container, known as a function and 
prepares new function containers on demand. The serverless execution model is suitable 
for cases with highly irregular demands to economise the resources and profit from the 
pay-per-use pricing.  To service the incoming demand, new function containers undergo 
an initialisation process that puts together all the essential components like runtime 
environment, code image, code dependency etc., before executing the function handler. 
This bootstrapping process consume time in the order of few seconds, known as function 
cold start and introduces a delay in the response of the function container. Apart from 
affecting response time, cold starts may give an impression of unavailable resources in 
cases of large delays, acting against the characteristic of serverless model. Therefore, with 
infrequent demand patterns, there is an abundance of cold starts on the platform and hence 
can be thought of as an optimisation problem.  

To deal with the challenge of function cold start, multiple solutions have been proposed 
that can be classified under two categories - (i) reducing the duration of cold start or (ii) 
reducing the frequency of cold starts that happen on the platform. Various solutions like 
pool-based approach that keeps a queue of prepared containers idle for a period of time 
and pinging technique that occasionally interacts with the FaaS platform to keep the 
function containers alive, have been proposed. These solutions target the cold start 
variables like resource thresholds, runtime environment, etc. and ignore the primary cause 
of infrequent demand that requests function container initialisation from the platform. 
Since these application demand patterns can’t be hard coded into the function 
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initialisation rules, a Reinforcement Learning based agent presents as a judicious choice 
to reform the cold start issue. Machine Learning techniques, specifically Reinforcement 
Learning models have been historically found useful in optimisation problems such as 
resource management and are highly adaptive to the complexities of the problem [42].  

In this thesis, we visited the problem of function cold start by addressing the frequency 
of cold starts on the platform and analyse the application demands through Reinforcement 
Learning technique. To generate the necessary application workload, we leverage 
services of Apache JMeter to produce infrequent request patterns and a CPU intensive 
function handler to complement the invocation pattern and observe relevant cold starts. 
We setup the serverless platform using Kubeless framework and model the RL 
environment for the agent to examine the necessary metrics or environment observations, 
to make guided decisions in provisioning appropriate number of function instances. The 
prior provisioning of functions results in lesser number of cold starts on the platform for 
the irregular application demands. Therefore, in this thesis we present an evidence of Q-
Learning based agent that reduces the number of function cold starts that utilises a direct 
consequence metrics of decreased failure rate during the iterations. To expedite the 
learning procedure and guide the agent effectively, we make use of heuristics to better 
assess the quality of actions and to behave in a non-random fashion for the unvisited 
states. We evaluate the performance of our proposed agent against the default autoscaling 
policy of Kubeless i.e. Horizontal Pod AutoScaler and successfully observe that after a 
training of 64 hours the Q-Learning agent was able to outperform HPA and verified our 
hypothesis of strong association between success rate and reduced number of cold starts 
on the platform. After the test analyses, the Q-Learning agent is found to successfully 
serve an average of 15.9% proportion of the incoming requests in a single timeframe 
while reducing the overall failure rate by approximately 5.3%.  

 

5.2 Thesis Summary 
 

The study investigated the applicability of Reinforcement Learning technique to a 
Serverless environment for the problem of function cold start. We structure the RL 
environment in terms of serverless platform resources and other relevant metrics to 
inspect the application invocation patterns and propose a Q-Learning agent to leverage 
these settings. With the help of appropriate heuristics and training model, we presented 
an evidence of effective learning and assessed the performance of agent against baseline 
autoscaling policy. The agent was found to be performing superior to the baseline and the 
analysis of the results were presented. 

Chapter 1 introduced the concept of Serverless Computing in the Cloud Computing 
domain and briefly describe the Function-as-a-Service platforms and their challenge of 
cold start. It also presents the motivation for this thesis, outlining the research questions 
addressed by the study and list the adopted research methodology.   

Chapter 2 extensively presents the background of Serverless Computing, Function-as-a-
Service execution model, its utility and existing challenge of function cold start. It 
investigates an open-source serverless framework – Kubeless and highlights the 
necessary information about Reinforcement Learning and Q-Learning technique. 
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Chapter 3 examines few scholarly works on Serverless computing and highlight existing 
techniques to address the cold start challenge and discusses their respective approach 
towards function cold starts, presenting a variation from the proposed technique. 

Chapter 4 presents the proposed RL-based agent that analyses the application workload 
pattern to reduce the frequency of function cold start. It presents the details about the 
agent modelling, workload structure and evaluate the performance of the proposed 
solution against the baseline autoscaling policy, HPA. Finally, the report concludes by 
highlighting the important results and practical implications of the adopted RL-based 
model. 

 

5.3 Future Research Directions 
 

This thesis addressed the challenge of frequent function cold starts on the Function-as-a-
Service platform due to the infrequent application demands. We proposed a Q-Learning 
model in combination with heuristics to reduce the frequency of cold starts. We evaluate 
the feasibility of model under controlled settings of state-action structure and reward 
calculation. As part of the future research directions, other important variables such as 
memory utilisation and function package size can also be identified and leveraged to 
assess the quality of learning and benefit from a broader perspective, to reduce the cold 
start frequency [47]. Similar to Q-Learning, application of other policy-based techniques 
such as SARSA, that is known converge quickly than Q-Learning, can also be 
experimented within the domain of cold start problem.  

As an adaptation of classical Q-Learning technique, the proposed solution includes 
discretisation of continuous values for state representation. In this context, to avoid the 
problem of state space explosion, techniques such as Deep Q-Networks i.e. function 
approximators can be leveraged [16]. These models abstain from storing the Q-values in 
the form of large tables and instead utilise a deep neural network or artificial neural 
network to efficiently estimate the Q-values. Another Deep Reinforcement Learning 
(DRL) technique known as Policy Gradient [49] can also be explored that typically works 
towards optimising the action policy of the agent by maximising the parametrised reward 
function, rather than finding optimal action rewards for the agent. 

As described in the thesis, the proposed solution looks into the problem of frequent cold 
starts that are primarily affected by the sporadic demands. An application of 
Reinforcement Learning technique can also be explored to optimise the duration of cold 
starts that is further affected by underlying modelling principles of different serverless 
platforms.  A number of approaches have been explored in context of reducing the cold 
start duration, but there is need to investigate the feasibility of RL techniques to optimise 
the cold start duration and the presented research outcome paves a path for future 
investigations and evolutions in the domain of Serverless computing. 
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