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Abstract

A critical system in real-time generally manages any environment by receiving

the input, processing it, and producing output data while meeting specific time

constraints. In such systems, deadlines must always be satisfied irrespective of

the load of the system. As the number of real-time applications that need smart

connections among each other increases, the Internet of Thing (IoT) challenges

will also increase. The new evolving technology that may help in time-critical real-

time IoT-based systems is the use of Edge/Fog. To make use of the advantages of

edge/fog computing for real-time critical applications, we propose an integrated

system of edge, fog, and cloud computing environments for the healthcare sector.

By eliminating irrelevant data at the Edge/Fog nodes, the proposed architecture

saves time as well as minimizes the amount of data that must be transferred to

the cloud.

Resource management is one of the primary challenges in a real-time environ-

ment since the demand for resources grows dynamically and needs rapid provision-

ing and processing. Resource management techniques in edge/fog are challenging

because the modules of analytic applications are moved to each edge device to

minimize the delay and avoid congestion. This research focuses on developing

efficient Edge-Fog-Cloud-based resource management for medical applications to

avoid delay and improve the efficiency of smart healthcare systems. To maximize

the utilization of these resources and improve the efficiency of applications, efficient

scheduling and resource allocation are required. To avoid over-provisioning and

under-provisioning, dynamic resource provisioning, an effective method of prepar-

ing resources based on changes in the workload of IoT applications, is required.

Due to the vast solution space, scheduling in fog/edge computing is classified as

an NP-hard problem, which means it takes a long time to discover an optimal

solution. No algorithms can handle these issues in polynomial time and yield

optimal results. Finding a sub-optimal solution in a short period is preferred in

such scenarios. To address such issues, meta-heuristic-based strategies have been

experimented in our proposed approach to generate near-optimal solutions in a

reasonable amount of time. By reducing the time to diagnose the critical state of

patients, the proposed model guarantees prompt medical assistance.
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Massive data collection in modern systems has paved the way for data-driven

machine learning, a promising technique for creating reliable and robust statistical

models. Combining the data into centralized storage to develop a reliable learning

model involve few concerns related to privacy, ownership, and strict rules. Due to

the heterogeneous and dynamic nature of critical medical IoT applications in such

Edge/Fog scenarios, the privacy of patients has become a crucial problem. The

main challenges that exist in the current smart healthcare applications are secu-

rity and privacy. Security and privacy challenges can be rectified using federated

learning and blockchain technologies. It is self-evident that the samples in the

typical machine learning centralized server paradigm have vastly different proba-

bility distributions of data supplied by each user. As a result, the standard model

fails to personalize. Federated Learning is model training on diverse, dispersed

networks while maintaining privacy. There has been an increase in attention to

federated learning since its introduction in 2016, with a broad range of applica-

tions, challenges, and concerns associated with this unique paradigm, motivating

us to perform the research. We propose the integration of Federated Learning

for distributed Edge-Fog-Cloud architecture in the IoT smart healthcare sector.

It deploys the Federated Learning model at the Edge, Fog, and Cloud layers for

performance comparison. The parameters considered for performance evaluation

are energy consumption, network usage, cost, execution time, and latency.

Blockchain technology is triggering a very sensation and prompting across var-

ious industries. Given the massive progress in blockchain technology, assessing the

feasibility of existing blockchain technologies for use in various new and unsolved

fields is necessary. Although several studies have focused on various applications

of blockchain technology and federated learning, a framework for IoT resource

management using these technologies in integrated edge, fog, and cloud comput-

ing environments is yet to be explored. The research goal is to develop a general

resource provisioning framework that provide efficient resource management for

heterogeneous, unpredictable dynamic resource demands in computing paradigms

like Edge, Fog, Cloud, Mobile Cloud, and Mobile Edge computing environments

using blockchain-based federated learning technologies.
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Chapter 1

Introduction

1.1 Overview

The United Nations analysis indicates a continued growth in the Indian population

for the next few decades. According to the UN’s World Population Prospects,

India is projected to reach a substantial population of 1.66 billion people by the

year 2050 [1]. This forecast highlights the persistent demographic expansion in the

country and emphasizes the importance of addressing the associated challenges

and opportunities, particularly in areas such as infrastructure, healthcare, and

education, to ensure sustainable development in the coming years. India has one

of the largest population globally, surpassed only by China. As of the latest

available data, India’s population is over 1.3 billion and is expected to grow more

as can be seen in Figure 1.1 [2]. Managing and catering to the needs of such a

vast population is a complex task that requires strategic planning and effective

policies.

The demographic makeup of India’s population reveals a distinctive distribu-

tion, with 31% representing individuals aged 0-14 years, 62% falling within the

crucial working age between 15-60 years, and 7% constituting the elderly pop-

ulation aged 60 years and above as presented in Figure 1.2. This breakdown

underscores the significant presence of children and adolescents, emphasizing the

critical need for substantial investments in healthcare, education, and social in-

frastructure to support their development. The majority in the 15-60 age group

highlights a robust workforce, crucial for economic productivity, while the 7%

aged 60 and above signals the presence of an aging population, necessitating a

heightened focus on healthcare and robust support systems. This demographic

snapshot provides indispensable insights for policymakers, guiding them to prior-

itize healthcare strategies to address the unique needs of each age group, thereby

fostering the overall well-being of society [2].
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Source: www.affairscloud.com
Figure 1.1: Indian Population

Upon analyzing the health reports of India, it is evident that a substantial por-

tion of the population faces various health challenges. Specifically, 26 percent of

individuals suffer from cardiovascular conditions, 2 percent from diabetes, 13 per-

cent from respiratory issues, 7 percent from cancer, 28 percent from communicable

and external diseases, 12 percent from Non-Communicable Diseases (NCDs), and

another 12 percent from injuries as depicted in Figure 1.3. These findings under-

score the diverse health concerns within the population and emphasize the need

for targeted healthcare interventions and public health strategies to address the

prevalent health conditions effectively [3].

India has made significant progress in the healthcare industry over the last

few decades, resulting in increased life expectancy and reduced infant mortality.

These achievements signify substantial improvements in the overall health and

well-being of the population [5]. The advancements in healthcare services, inter-

ventions, and awareness have contributed to longer life spans and a decrease in

infant mortality rates, showcasing the positive impact of healthcare initiatives in

the country. Continued efforts in this sector remain crucial for sustaining and

further enhancing these positive health outcomes for the people of India.

However, when it comes to emergency medical care, India faces challenges.

The availability and accessibility of urgent medical services may not be as robust

as desired. This gap in emergency healthcare infrastructure points to an area that

needs attention and improvement. Strengthening emergency medical care systems
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Source: https://en.wikipedia.org/wiki/Demographics of India
Figure 1.2: Distinctive Distribution of Indian Population

Figure 1.3: Health report of Indian population [4]
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Source: www.phfi.org/india-health-of-the-nations-states
Figure 1.4: Leading causes of death in India

can play a vital role in ensuring timely and effective response to critical health

situations, contributing to an overall enhancement of the healthcare landscape in

India [6].

Indeed, the limitations in emergency medical care were notably evident during

the challenging times of the COVID-19 pandemic. The surge in cases exposed

gaps in the healthcare system, particularly in terms of emergency response and

critical care infrastructure. The overwhelming demand for medical services, in-

cluding oxygen support and ICU facilities, highlighted the need for reinforcing and

expanding emergency healthcare capabilities. The pandemic experience empha-

sizes the importance of proactive measures and investments in emergency medical

care to enhance the country’s readiness in responding effectively to unforeseen

health crises. Addressing these challenges will be crucial for building a resilient

healthcare system in India.

The lack of a robust emergency response system has proven to be a critical

factor that has cost millions of lives in India. During times of crisis, the absence of

a well-coordinated and timely emergency response infrastructure has contributed

to challenges in delivering life-saving medical care. This gap in the system has

resulted in tragic consequences, underscoring the urgent need for significant im-

provements in India’s emergency medical services. Strengthening and expanding

emergency response systems can play a vital role in preventing unnecessary loss

of life during health emergencies and ensuring a more resilient healthcare setup

for the future.

It is a widely acknowledged fact that Emergency Medical Services (EMS) often

face challenges in providing care during the critical “golden hour” of emergencies.
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The golden hour is the crucial first 60 minutes after a traumatic injury or a medi-

cal emergency when swift and effective medical intervention significantly improves

the chances of a positive outcome. In many cases, limitations in infrastructure, ac-

cessibility, and response times may hinder EMS from delivering timely care during

this critical period. Recognizing and addressing these challenges is essential for

enhancing emergency medical services and ensuring that life-saving interventions

can be administered promptly, especially during the crucial initial moments of an

emergency [7].

Among the EMS, Heart and cardiovascular diseases stand as the foremost

global causes of death, taking the lives of approximately 17.9 million people each

year, as reported by the World Health Organization (WHO) [8]. A survey con-

ducted an analysis of the factors contributing to mortality in India, the results

of which are illustrated in Figure 1.4. This staggering statistic underscores the

significant impact of cardiovascular diseases on public health. According to the In-

dian Heart Healthcare Association, a noteworthy statistic reveals that 50 percent

of heart attacks in India occur in individuals below the age of 50. This alarming

trend indicates a concerning prevalence of heart-related issues among a relatively

younger demographic. Understanding and addressing the factors contributing to

heart attacks in this age group are imperative for devising effective preventive

measures and healthcare strategies. Lifestyle factors, stress, and genetic predis-

positions may play significant roles in this trend, highlighting the importance of

promoting heart-healthy habits and early screenings to mitigate the risk of heart

attacks among the younger population in India.

Indeed, the Electrocardiogram (ECG) is a crucial diagnostic tool used to detect

various heart problems. It records the electrical activity of the heart over a period

of time, producing a visual representation of the heart’s rhythm and function.

Abnormalities in the ECG waveform can indicate conditions such as arrhythmia,

heart attack, and other cardiac related issues. ECGs are commonly employed in

clinical settings for both routine check-ups and emergency situations, providing

valuable information that aids healthcare professionals in assessing and diagnos-

ing heart-related problems. This non-invasive and widely used technique plays a

pivotal role in the early detection and monitoring of heart conditions, contributing

to effective medical interventions and improved patient outcomes.

ECG is a standardized and widely accepted medical test, ensuring consistency

and reliability in its application across healthcare settings. Additionally, with

advancements in technology, ECG sensors can now be seamlessly integrated into

wearable devices, facilitating unobtrusive and convenient health monitoring in

real-world settings. This integration aligns with the growing trend towards per-

sonalized and remote healthcare, providing individuals with continuous cardiac
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Figure 1.5: IoT healthcare [11]

monitoring for improved overall well-being [9, 10].

These wearable devices are integral components of the Internet of Things (IoT)

healthcare landscape, contributing to the collection and transmission of real-time

health data as depicted in Figure 1.5. By seamlessly integrating with IoT plat-

forms, wearable devices enable continuous monitoring of various health param-

eters, including ECG, and facilitate the transmission of this data to healthcare

providers or centralized systems. This interconnected approach allows for remote

patient monitoring, timely intervention, and personalized healthcare strategies.

Wearable devices in IoT healthcare empower individuals to actively engage in their

well-being by providing real-time insights into their health conditions, promoting

preventive measures, and facilitating more efficient and patient-centric healthcare

delivery.

The integration of the IoT in healthcare brings forth numerous advantages,

revolutionizing the traditional healthcare paradigm. By enabling remote patient

monitoring, IoT facilitates real-time tracking of vital signs, medication adher-

ence, and health metrics, beneficial for managing chronic conditions. The data-

driven nature of IoT enhances diagnostic accuracy and healthcare decision-making,

while automated workflows and smart devices contribute to improved efficiency

in healthcare processes [12]. Wearable devices and IoT applications empower pa-

tients to actively engage in their well-being, promoting informed decision-making

and adherence to treatment plans. Additionally, IoT supports preventive health-

care by identifying potential issues, contributing to cost savings through reduced

hospital readmissions and efficient resource utilization. Interoperability among dif-

ferent healthcare systems, along with the facilitation of telehealth services, ensure
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Figure 1.6: Wearable device market growth [13]

seamless connectivity and accessibility to healthcare. Ultimately, IoT in health-

care provides personalized treatment plans, quick responses to emergencies, and

a transformative approach to healthcare delivery. Addressing challenges related

to data security and privacy is crucial to fully unlock the vast potential of IoT in

healthcare.

As can be seen in Figure 1.6, the global wearable device market has been

experiencing significant growth, driven by increasing consumer interest in health

and fitness tracking, smartwatches, and other wearable technologies. The adoption

of wearables has become widespread, with various companies offering a range of

devices with advanced features. In India, the wearable device market has also seen

substantial growth, propelled by factors such as rising health awareness, increasing

disposable income, and the popularity of fitness tracking. Major players in the

global wearable market, including companies like Apple, Samsung, Fitbit, and

others, have a presence in the Indian market. The market encompasses a variety of

devices, including smartwatches, fitness trackers, and health monitoring wearables.

In recent instances, smart wearable devices have demonstrated their potential

to save lives through early detection and rapid response capabilities. Wearables

equipped with heart rate monitoring features have alerted users to irregular heart-

beats, prompting timely medical intervention and potentially preventing serious

cardiac events. Additionally, fall detection features beneficial for the elderly, have

enabled swift alerts to emergency contacts or services in the event of a fall. These

real-time monitoring capabilities extend to chronic health conditions such as di-

abetes and epilepsy, where wearables offer continuous tracking and immediate

alerts, empowering individuals to manage their health effectively. As the adoption
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Source: www.indiatoday.in/technology/news
Figure 1.7: News Articles Highlighting How Wearable Devices Have Contributed

to Saving Lives in Recent Years [16]

of smart wearables continue to grow, their role in facilitating early detection, pro-

viding timely alerts, and aiding in the management of various health conditions

highlight their potential to contribute significantly to healthcare and potentially

save lives [14]. The news articles in Figures 1.7 and 1.8 depicts the above facts. The

study conducted by doctors from AIIMS Delhi highlights a concerning trend where

a small proportion of patients experiencing cardiac and stroke emergencies have

been provided with timely support as they manage to reach healthcare facilities

early. Such early access to medical intervention is crucial in cases of cardiac and

stroke emergencies, as prompt treatment significantly improves outcomes. The

findings underscore the need for increased awareness, education, and improved

emergency response systems to ensure that individuals recognize the symptoms of

such emergencies and seek timely medical assistance. This study emphasizes the

importance of public health initiatives to enhance community awareness about

the signs of cardiac and stroke events, ultimately leading to more effective and

timely interventions to save lives, which can be achieved with the help of smart

decision-making applications [15].

The preceding paragraphs highlight the essential need for an intelligent decision-

making module in the detection of heart abnormalities. Presently, these decisions

are happening in the cloud as the IoT devices store the data in the cloud data

centers. The decision making in the cloud has many challenges, among which la-

tency plays a major role [18]. Integrating fog and edge computing in conjunction

with cloud services presents a formidable solution to mitigate delays encountered
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Source: www.timesofindia.indiatimes.com
Figure 1.8: News Articles Highlighting How Wearable Devices Have Contributed

to Saving Lives in Recent Years [17]

by smart decision-making modules. By distributing computational tasks across

the network layers, these paradigms capitalize on proximity to data sources, lo-

cal processing capabilities, and bandwidth optimization. Edge devices, positioned

in close proximity to data sources, engage in a preliminary analysis, reducing

the need for transmitting vast amounts of data to the cloud. Meanwhile, fog

computing, situated between edge devices and the cloud, facilitates decentralized

processing, alleviating the computational burden on the cloud. This optimized

architecture enhances response times and allows for real-time decision-making at

the source [19]. The synergy of edge, fog and cloud computing thus creates a more

responsive and efficient infrastructure, crucial for applications such as healthcare

automation where minimizing latency is paramount.

The wearables and IoT devices generate a large amount of data continuously,

and securing that is a big challenge. In the context of handling medical data, a

thorough examination of issues associated with the security and privacy of health-

care information has been conducted. Medical data breaches worldwide pose sig-

nificant risks to patient confidentiality as sensitive health information becomes

vulnerable to unauthorized access. The impact extends beyond individual privacy

concerns, potentially compromising healthcare systems’ integrity and eroding trust

in the safeguarding of critical medical data on a global scale. The impact of health-

care data breaches in India is a critical concern with far-reaching implications for

patient privacy and the overall integrity of medical information systems [20]. A

notable instance is the ransomware attack on AIIMS Delhi, exemplifying the vul-
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Source: www.hindustantimes.com/cities/delhi-news
Figure 1.9: AIIMS Data Breach: Examining the Latest News Articles on

Security Incidents [21]

nerability of healthcare institutions to cyber threats. The news article pertaining

to this can be seen in Figure 1.9. Such breaches not only compromise sensitive

patient data but also pose severe risks to public health. Figures 1.10 and 1.11

presents the growth of such data breaches in the recent past, which motivates us

to develop a mechanism to secure the data that is stored in the cloud.

The global challenges of medical data breaches can be effectively addressed

through the integration of blockchain-based federated learning [23]. This innova-

tive approach ensures enhanced security by leveraging the decentralized and cryp-

tographic features of blockchain, creating an immutable and transparent ledger

for medical data. Federated learning (FL) complements this by enabling collabo-

Source: www.hipaajournal.com/healthcare-data-breach-statistics
Figure 1.10: Healthcare Data Breaches Over the Last Years
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Source: www.hipaajournal.com/healthcare-data-breach-statistics
Figure 1.11: Healthcare Data Breaches and Their Human Impact Over the Last

Years [22]

rative model training without exposing raw data, preserving patient privacy [24].

The combination of these technologies establishes a robust framework with fea-

tures such as an immutable audit trail, patient empowerment, and decentralized

validation, fostering trust and resilience in healthcare data management systems

worldwide. This paradigm shift not only mitigates the risk of unauthorized access

but also paves the way for a more secure and privacy-centric healthcare ecosys-

tem on a global scale. Figure 1.12 serves to visually depict the earlier discussed

information.

Based on the foregoing survey, we have formulated our research problem as

follows: Efficient Resource Management Framework for Critical Healthcare Ap-

plications in Integrated Edge-Fog-Cloud Environments using Blockchain based

Federated Learning Methods

In connection with the formulated research problem the subsequent paragraphs

discuss the technical details associated with it, along with the background needed

to the solution.

The concept of virtualization constitutes a fundamental step in the realm of

cloud computing, playing a critical role in resource optimization and manage-

ment. Virtualization involves the abstraction of physical hardware resources, such

as computing power, storage, and networking components, to create virtual in-

stances that can be dynamically provisioned and allocated to users as needed.

Users can access these virtualized resources through a pay-as-you-go model, gain-

ing the ability to scale their computing needs based on demand without the con-

straints of physical hardware limitations. Beyond virtualization, the cloud model

offer benefits such as ease of access, availability of resources on demand, efficiency,

substantial storage capacity, and processing capabilities [25, 26]. Nonetheless, de-

spite these advantages, the cloud model remains vulnerable to attacks, partly
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Figure 1.12: Basic Architecture diagram - Blockchain based Federated learning

due to the delays arising from the geographical gap between end devices and

computational resources. Additionally, the impracticality of streaming massive

volumes of data between nodes and the cloud presents significant challenges [27].

These drawbacks result in cloud computing being less effective for real-time criti-

cal applications. To address this challenge, the emergence of edge/fog computing

becomes a pertinent consideration. Edge/Fog computing extends the cloud com-

puting paradigm to encompass every layer of the networking infrastructure, from

end devices to the cloud. This approach involves redistributing resources, includ-

ing computation and storage, across the network layers, thereby utilizing cloud

services to support interconnected embedded devices [28].

The global edge/fog computing market size was valued at USD 11.99 billion in

2022 and is projected to reach USD 139.58 billion by 2030 [29]. With the integra-

tion of IoT, 5G networks, and advanced networking technologies, the trajectory of

edge/fog computing’s growth becomes evident [6]. By 2025, the number of IoT-

connected devices worldwide is expected to reach 30.9 billion, necessitates for ro-

bust computing capabilities for effective data processing and storage [30,31]. This

surge in computational demand underscores the need for a proficient edge/fog

architecture to ensure swift data processing. The edge/fog architecture involves

configuring both hardware and software components to establish a functional IoT

network. This process entails identifying crucial application requirements suitable

for computing, followed by mapping these specifications onto a partitioned net-

work of well-designed edge/fog nodes. Structurally, edge/fog networks exhibit a

hierarchical topology, creating a distributed computing system [32]. IoT, char-
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acterized by interconnected smart embedded devices, particularly aligns with the

principles of edge/fog computing [4]. Given that IoT devices generate substantial

data volumes at high frequencies, efficient data processing is pivotal for time-

critical applications. Edge/Fog computing serves as an intermediary connecting

IoT and the cloud, offering specialized processing capabilities tailored to specific

needs. The benefits include latency reduction, reduced data traffic, optimized

bandwidth usage, efficient utilization of networking devices, and geographic dis-

tribution of devices [33]. The integration of IoT and edge/fog computing enhances

the overall efficiency of systems while enhancing the performance of critical IoT

applications [25].

Edge/Fog computing finds applications in diverse domains, including health-

care, military domain, atomic reactors, and augmented reality. To enable such

applications, efficient resource management becomes imperative. Resource man-

agement is a pivotal function in both cloud and edge/fog systems, as suboptimal

management can negatively impact performance, costs, and overall system func-

tionality. Real-time environments pose unique challenges due to dynamic resource

demands that necessitate rapid provisioning and processing [34]. Factors like het-

erogeneity, on-demand access, pay-as-you-use models, and quality of service (QoS)

considerations contribute to the complexity of resource management. It encom-

passes various components, such as resource provisioning, which involves selecting,

deploying, and managing runtime software and hardware resources to optimize

application performance based on service level agreements [35]. Despite its impor-

tance, resource provisioning faces challenges like task fragmentation, which might

not align with user expectations [13]. Another crucial aspect of resource manage-

ment is resource allocation, which facilitates on-demand allocation of resources by

end devices, occupying a central position in the middle layer of the computing

architecture. Resource management within edge/fog computing is intricate due

to the movement of analytic application modules to edge devices for minimizing

delays and congestion. Resource provisioning entails the allocation and distribu-

tion of resources, including computational power, storage, network bandwidth, and

others, to meet the requirements of various applications or services. In contrast, re-

source scheduling involves determining when and how to allocate resources to tasks

or jobs based on their priority and demands. Combining resource provisioning

methods with resource scheduling policies facilitates efficient resource allocation

to applications, especially in distributed scenarios, thus enhancing resource uti-

lization and application efficiency. Dynamic resource provisioning, which involves

adjusting resources based on changes in IoT application workloads, is particularly

essential to avoid over-provisioning or under-provisioning of resources [36].

In the realm of IoT critical healthcare applications, the significance of key
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parameters such as energy consumption, cost, latency, network usage, and exe-

cution time is paramount. These parameters collectively dictate the operational

efficiency, economic viability, and patient-centric efficacy of healthcare systems.

Energy consumption directly impacts the longevity of battery-powered medical

devices, ensuring uninterrupted monitoring and treatment. Cost considerations

are crucial for resource allocation and scalability, enabling cost-effective health-

care delivery. Low latency is essential for real-time data transmission and swift

decision-making, particularly in critical situations. Efficient network usage mini-

mizes data congestion and ensures seamless communication, essential for reliable

patient data exchange. Lastly, optimized execution time guarantees the timely

processing of medical information, influencing diagnosis accuracy and treatment

outcomes. Therefore, a holistic approach that balances these parameters is indis-

pensable for creating IoT-based healthcare solutions that are dependable, cost-

efficient, and patient-focused [37].

Initially, the proposed research problem uses multi objective optimization to

effectively provision the resources. This methodology addresses the intricate in-

terplay of key parameters, including energy consumption, cost, latency, network

usage, and execution time, which collectively define the performance landscape of

such systems. By integrating these diverse objectives, multiobjective optimization

techniques provide a systematic framework to attain resource provisioning strate-

gies that effectively balance the trade-offs among these parameters. Through the

adept utilization of advanced algorithms and computational intelligence, these

methods empower decision-makers to derive optimal solutions that ensure mini-

mal energy usage, cost-effectiveness, low latency, efficient network utilization, and

swift execution times. This not only enhances the overall quality of edge/fog com-

puting but also contributes to shaping a sustainable and well-performing technical

ecosystem. The proposed weighted sum method for edge/fog applications provide

a practical and flexible approach for optimizing energy, cost, network use, execu-

tion time, and latency. Its simplicity allows for straightforward implementation

and trade-off analysis between objectives, making it valuable for decision-makers.

Adjusting the weights assigned to each objective offer flexibility and allow for

real-time adaptation, which is crucial in dynamic edge/fog environments. Ad-

ditionally, the method’s efficiency and ease of integration make it suitable for

resource-constrained settings, while its interpretability aids in understanding the

implications of changing optimization criteria. Overall, the weighted sum method

is an effective tool for achieving a balanced solution that meets the diverse re-

quirements of edge/fog computing [38,39].

Given the extensive solution space, scheduling in edge/fog/cloud computing is

classified as an NP-hard problem, implying that finding an optimal solution takes
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considerable time. Although algorithms cannot provide optimal results within

polynomial time, finding a suboptimal solution swiftly is preferred in such scenar-

ios. To address these challenges, metaheuristic-based strategies have been explored

to generate near-optimal solutions within a reasonable timeframe [40]. Meta-

heuristic scheduling algorithms, such as the flower pollination algorithm (FPA)

and genetic algorithm (GA), draw inspiration from natural processes to enhance

scheduling efficiency. The genetic algorithm, a prominent population-based al-

gorithm known for its ease of use and effectiveness across diverse problems, em-

ploy chromosomes consisting of genes representing potential solutions. The initial

population, selected at random, serves as the algorithm’s starting point. A fit-

ness function evaluates the suitability of a chromosome within its environment.

Single-point crossover and mutation methods create a new population iteratively,

continuing until a sufficient number of offspring is generated. While heuristic al-

gorithms use the objective function to select the best solution, genetic algorithms

rely on the fitness function to determine the optimal solution [41]. The flower pol-

lination algorithm, designed to mimic the pollination process of flowering plants,

addresses multiobjective optimization problems through global and local pollina-

tion processes. By considering the flower and its pollen gametes, this algorithm

provides a robust approach to optimization. The benefits of the flower pollination

algorithm include a simpler flower analogy and lightweight computing reliant on

a single control factor [42]. Our research advocates for the effective provision-

ing of resources in edge/fog and cloud computing by employing modified genetic

algorithm (MGA) and the modified flower pollination algorithm (MFPA).

IoT applications use various technologies to connect, manage, and operate IoT

smart devices. Microservices, a service-oriented architecture, have attracted much

interest nowadays. It is an emerging technology based on the microservices con-

cept to enable services with the smallest granularities that perfectly complement

the distributed nature of IoT devices [43]. Each microservice is responsible for a

single sub-task or service, requiring fewer compute resources and lowering commu-

nication overhead. Based on the resource availability and workload of fog nodes,

microservices can scale up and down dynamically due to loosely coupled modules.

Compared to an existing monolithic design, integrating distributed microservices

into the application process provide advantages such as independent deployment,

scalability, and fault isolation [44].

As a user relocates from one place to another, the proximity to a fog or edge ser-

vice may change; hence, user mobility restricts such benefits in practice [45]. IoT

device mobility can impact fog computing systems when they repeatedly change

access points. The mobility of end IoT devices causes migration of the requested

application services from one computing node to another to maintain the desired
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QoS. The deployment of local, small-scale data processing and storage at the net-

work’s edge using edge computing makes computations closer to the source data,

thus ensuring the QoS requirements. In addition to meeting the demands of la-

tency and bandwidth on the network, it offers intelligent services at the edge to

fulfill the vital needs of IoT applications in real time [46,47].

As described, resource augmentation plays a pivotal role in enhancing applica-

tions that rely on finite fog resources, with a specific emphasis on bolstering storage

and computing capabilities. This augmentation becomes particularly critical for

applications demanding efficient data processing and analysis. Notably, adherence

to stringent Quality of Service benchmark necessitates innovative approaches, lead-

ing to the delegation of operational tasks from IoT nodes to neighboring nodes as

proposed by Zhou et al. [48]. This strategy ensures optimal QoS while highlight-

ing the need for a clustering methodology that supports resource augmentation

within fog environments. Its distributed architecture not only adapts to changing

resource demands but also promotes efficient resource utilization. The integration

of clustering policies empowers individual nodes to strategically probe and subse-

quently register suitable cluster members, effectively aligning nodes with appro-

priate clusters. This meticulous process not only optimizes cluster formation but

also enhances overall resource distribution, reflecting the significance of resource

augmentation and dynamic collaboration in advancing the efficiency of fog-based

IoT applications.

The integration of microservices, mobility, and clustering benefits in intelligent

IoT edge healthcare applications stems from the need to develop agile, scalable,

and responsive healthcare solutions that cater to the challenges posed by IoT and

edge computing. The microservices architecture enables modular service devel-

opment, ensuring efficient resource utilization and seamless updates. Mobility

facilitates real-time data collection, remote patient monitoring, and telemedicine

through mobile devices, expanding healthcare accessibility and improving remote

diagnostics. Clustering enhances reliability, scalability, and workload distribution

in edge environments, ensuring uninterrupted services and swift responses. This

integrated approach addresses concerns related to latency, bandwidth, and pri-

vacy, culminating in dynamic, patient-centric healthcare services that harness the

potential of IoT to offer personalized, real-time care directly at the edge.

This research primarily focuses on the implementation of edge/fog computing

in time-critical applications, notably healthcare. The healthcare sector demands

special attention due to its requirement for quality service delivery. For instance,

emergency services like ambulances necessitate swift and secure data communi-

cation to maximize their efficacy. Even a minor communication delay can lead

to substantial setbacks. While traditional healthcare relies on cloud computing
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for cost reduction, enhanced efficiency, and effective management of extensive

data, it grapples with latency issues stemming from centralized processing. In

contrast, edge/fog computing permits computations and minimal decisions to oc-

cur at edge/fog nodes, thereby optimizing efficiency. The integration of IoT and

healthcare through edge/fog computing alleviates the burden on healthcare sys-

tems, offering individuals greater control over their well-being [14]. Consequently,

IoT-integrated edge/fog computing, with its ability to incorporate processing into

the network infrastructure, emerges as a viable solution to address healthcare

requirements. In summary, processing vast volumes of IoT data using cloud com-

puting seems to be time-consuming and inefficient due to factors like data variety,

velocity, and latency; edge/fog computing excels in swiftly provisioning and pro-

cessing data for real time applications due to its proximity to end devices [15].

In recent years, the convergence of the IoT and medical applications has brought

about transformative changes in the healthcare landscape. This convergence al-

lows for the seamless integration of connected medical devices and real-time patient

monitoring.

Smart decision making holds exceptional significance within critical healthcare

applications, particularly in the context of anomaly detection. In the intricate

domain of healthcare, where timely and accurate responses are imperative, the

ability to make intelligent decisions play a pivotal role in ensuring patient safety

and well-being. Anomaly detection, which involves identifying unusual or poten-

tially harmful patterns in medical data, necessitates swift and precise actions to

mitigate risks. By employing advanced algorithms and data analytics, smart de-

cision making systems can promptly recognize deviations from expected norms,

enabling healthcare providers to respond proactively. This proactive approach not

only aids in preventing adverse events but also enhances diagnostic accuracy and

treatment efficacy. Moreover, the integration of smart decision making frameworks

in anomaly detection minimizes false positives, thereby reducing unnecessary in-

terventions and healthcare costs. Consequently, the adoption of intelligent decision

making mechanisms in critical healthcare applications not only safeguards patient

health but also optimizes resource utilization, augments clinical outcomes, and

reinforces the overall reliability of healthcare systems.

Among various medical IoT applications, the detection of anomalies in ECG

holds paramount significance in identifying and diagnosing cardiovascular irregu-

larities, potentially preventing life-threatening conditions. However, the success

of ECG anomaly detection hinges on efficient processing and analysis of extensive

and sensitive medical data generated by distributed IoT devices. Traditional ap-

proaches to ECG anomaly detection typically involve centralizing data in cloud

infrastructures for processing and analysis. While this centralized approach offers
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convenience, it raises considerable concerns about data privacy, security, and la-

tency, especially in time critical medical applications. Moreover, adhering to strin-

gent data regulations like the Health Insurance Portability and Accountability Act

(HIPAA) presents significant challenges for healthcare providers and institutions.

The integration of IoT devices, such as wearable ECG sensors, has enabled real

time data collection and monitoring of patients’ vital signs. However, the efficient

processing and analysis of vast and sensitive medical data generated by these dis-

tributed IoT devices pose considerable challenges. These challenges include data

privacy and security concerns, network bandwidth limitations, data heterogene-

ity, latency issues, and regulatory compliance. Given these complexities, federated

learning has emerged as a promising solution to address these challenges by allow-

ing multiple IoT devices to collaboratively train a global machine learning model

while preserving the privacy and security of raw data in a decentralized manner.

Federated learning operates under the principle of decentralization, which is

crucial in the context of medical IoT applications. Rather than sending sensitive

medical data to a central server for analysis, federated learning enables training

machine learning models directly on the devices where the data is generated. This

approach offer enhanced data privacy and security since the raw data remains

localized and is not exposed to a central entity. This aspect is particularly relevant

in the medical field, where patient data confidentiality is of utmost importance.

Federated learning thus mitigates concerns about data breaches and unauthorized

access while enabling the development of accurate and valuable models [49].

However, federated learning is not without its challenges. One notable limita-

tion is the communication overhead involved in coordinating the training process

across multiple devices. This overhead can lead to increased latency and network

congestion, potentially impacting the efficiency of the learning process. Addi-

tionally, federated learning faces vulnerabilities, such as Byzantine attacks, in

situations where a trusted central authority is absent. These attacks involve mali-

cious devices providing false or manipulated data to disrupt the learning process.

Mitigating such attacks while maintaining the collaborative nature of federated

learning is a complex task that requires careful consideration.

In conclusion, federated learning presents a promising approach to address

the challenges posed by the integration of IoT devices in the medical field. Its

ability to enable collaborative model training while preserving data privacy and

security holds great potential. However, challenges related to communication over-

head and security vulnerabilities must be carefully managed. The integration of

blockchain technology further enhances the privacy, security, and efficiency of

federated learning, paving the way for a robust and reliable framework for med-

ical IoT applications. Blockchain offers a decentralized and tamper-proof ledger,
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ensuring transparent and immutable records of data transactions and model up-

dates. By integrating blockchain with federated learning, a secure and auditable

environment can be established for the collaborative training of machine learning

models. Blockchain’s decentralized nature and cryptographic principles provide

additional protection against unauthorized access and tampering. This combina-

tion enhances the overall security and trustworthiness of the federated learning

process, making it even more suitable for medical IoT applications.

Blockchain technology has emerged as a transformative force, revolutionizing

data management by providing a decentralized and tamper-proof ledger. This

innovative approach ensures that data records are transparent and auditable, al-

lowing for secure and trustworthy transactions. When integrated with federated

learning, blockchain’s attributes synergize to create a powerful platform for train-

ing machine learning models in medical IoT applications. The immutability in-

herent to blockchain guarantees the integrity of data, preventing unauthorized

alterations and ensuring a reliable historical record of transactions. This quality

is especially critical in the context of medical data, where accuracy and account-

ability are paramount. The transparency offered by blockchain fosters a level

of openness that enhances trust among stakeholders, assuring them that data has

not been tampered or compromised. By incorporating these attributes, blockchain

bolsters the security and reliability of federated learning, enabling the development

of accurate and robust machine learning models [50].

The fusion of blockchain and federated learning creates a distributed and trust-

less environment that aligns seamlessly with the goals of medical IoT applications.

With blockchain as the underlying foundation, the collaborative training of ma-

chine learning models become more secure and resilient. The decentralized nature

of blockchain eliminates the need for a single central authority, distributing control

and responsibility across a network of participants. This characteristic resonates

well with the distributed nature of IoT devices, ensuring that no single point of

failure exists. The environment’s trustless nature arises from the blockchain’s cryp-

tographic principles, where transactions are validated through consensus mecha-

nisms rather than relying on a central entity. This enhances security and reduces

the risks associated with potential data breaches or unauthorized access. As a

result, blockchain’s integration empowers federated learning in medical IoT ap-

plications to operate in a highly secure, collaborative, and accountable manner,

ultimately contributing to improved patient care and healthcare outcomes [51].

The convergence of blockchain technology and federated learning yields a syn-

ergistic approach that creates a distributed and trustless ecosystem exceptionally

well-suited for the objectives of medical IoT applications. The foundational layer

of blockchain introduces a paradigm shift in how collaborative machine learning
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model training is orchestrated, infusing heightened security and resilience into the

process. By design, blockchain’s decentralized architecture obviates the require-

ment for a centralized authority, effectively dispersing control and accountability

among a network of participants. This inherent decentralization aligns harmo-

niously with the intricate web of interconnected IoT devices, effectively nullifying

the vulnerabilities associated with a singular point of failure.

Transactions within this framework are validated through consensus mecha-

nisms, eradicating the dependence on a central entity for verification. This crypto-

graphic validation augments security and mitigates the possibility of data breaches

and unauthorized access. As a result, bringing together the features of blockchain

enhances the working environment of federated learning in medical IoT situations.

This combination provides strong security, exceptional collaboration, and unques-

tionable accountability. This combined approach takes on a transformative role,

with the potential to significantly change patient care and healthcare results. It

does so by guaranteeing the confidentiality, integrity, and effective collaboration

of medical data and insights.

1.2 Motivation of Research

Developing IoT smart healthcare applications for ECG anomaly detection through

edge/fog and cloud computing while incorporating the mobility of end nodes is

driven by several compelling factors. The need for timely and accurate ECG

anomaly detection is critical for early diagnosis and intervention in cardiac condi-

tions [52]. By harnessing IoT, the application can continuously monitor patients’

ECG data remotely, enabling rapid detection of abnormalities and reducing the

risk of life-threatening events. Integrating edge/fog and cloud computing further

enhances real time processing at the network’s edge, minimizing latency and en-

suring immediate responses, which is crucial for time-sensitive medical scenarios.

The incorporation of mobility in end nodes amplify the potential impact of the

application [53]. Patients can be equipped with wearable devices that collect ECG

data as they go about their daily lives, allowing continuous monitoring without

confining them to a specific location. This freedom of movement facilitates more

accurate assessments of cardiac abnormalities under various real world conditions

and activities. Additionally, mobile devices enable seamless transmission of data

to edge nodes for analysis, ensuring that healthcare providers receive up-to-date

information regardless of the patient’s physical location.

The convergence of edge/fog computing offers distinct advantages for ECG

anomaly detection. Edge/Fog computing distributes computing tasks between

edge devices and centralized servers, optimizing data processing and reducing the
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load on the central infrastructure [54]. This approach not only enhances real time

processing but also minimizes data transmission to the cloud, addressing band-

width constraints and privacy concerns. By fusing mobility with this architecture,

patients can experience continuous cardiac monitoring while benefiting from local-

ized, rapid analytics, ultimately leading to improved patient outcomes, enhanced

diagnostic accuracy, and a more accessible and flexible healthcare solution.

The integration of blockchain based federated learning addresses data privacy

concerns and empowers collaborative healthcare. In the context of ECG data,

privacy is paramount. Blockchain’s decentralized and secure nature ensures that

patient data remains encrypted and is accessible only to authorized entities. The

federated learning approach enables model training across distributed edge devices

without the need to centralize sensitive data. This collaborative learning benefits

from a diverse range of data while maintaining privacy, which is particularly crucial

for healthcare applications involving personal medical data [55].

The mobility of end nodes add a dimension of versatility and patient-centric

care. Incorporating wearable devices or mobile sensors allow individuals to carry

on with their routines while under continuous ECG monitoring [56]. Mobility cap-

tures a broader spectrum of cardiac activities, facilitating more accurate diagnosis

and personalized treatment plans. These mobile devices can also contribute to the

federated learning process, enhancing the model’s accuracy with real world data

from diverse locations and contexts.

Furthermore, the synergy of edge/fog computing amplifies efficiency and re-

sponsiveness. Edge/Fog computing’s proximity to data sources reduces latency

and enhances real time analysis, while edge computing optimizes resource usage.

This combination ensures that critical ECG data is processed swiftly, allowing for

instant feedback and potentially life-saving interventions. The federated learning

methodology enriches this ecosystem by enabling iterative model updates across

distributed nodes, ensuring continuous improvement without compromising data

security.

In conclusion, the motivation behind this advanced IoT smart healthcare appli-

cation is the need to revolutionize cardiac care through a comprehensive approach.

By leveraging edge/fog computing, blockchain based federated learning, and the

mobility of end nodes, this application addresses the intricacies of cardiac health

monitoring, privacy concerns, collaborative learning, and real time responsiveness.

Ultimately, the fusion of these technologies stand to enhance patient outcomes,

empower healthcare providers, and pave the way for a new era of patient-centric,

data-secure, and technologically-driven healthcare solutions.
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1.3 Scope of Research

The scope for developing an IoT smart healthcare application for ECG anomaly

detection using edge/fog and cloud computing, along with blockchain based fed-

erated learning methods and incorporating mobility of end nodes, is substantial

and offer transformative possibilities in the field of healthcare. Such an applica-

tion holds the potential to revolutionize remote patient monitoring. By enabling

continuous ECG monitoring through wearable devices or mobile sensors, patients

can experience personalized and proactive cardiac care, leading to early anomaly

detection and intervention. This real time monitoring not only improves patient

outcomes but also reduces the burden on healthcare facilities by mitigating the

need for frequent in-person visits.

The integration of edge/fog computing ensures data processing at the network’s

edge, minimizing latency and facilitating immediate responses. This is crucial for

cardiac care, where time-sensitive anomalies demand quick reactions. The combi-

nation of mobility and edge computing enables seamless data collection, analysis,

and transmission, allowing healthcare providers to make informed decisions in

real time. Additionally, the decentralized and secure nature of blockchain based

federated learning ensures patient data privacy while harnessing the collective

intelligence of distributed edge devices for model improvement.

The application’s scope extends to enhancing medical research and innovation.

The federated learning approach fosters collaboration among institutions, enabling

the aggregation of diverse ECG datasets without compromising individual data

privacy. This accumulated knowledge can lead to the development of more accu-

rate and robust anomaly detection models. Moreover, the mobility of end nodes

contribute to real world simulations to the models, making them adaptable to

different patient lifestyles and environmental factors.

Furthermore, the scope encompasses addressing healthcare disparities and ac-

cessibility challenges. The application’s architecture empowers remote and under-

served populations with the ability to access high-quality cardiac care regardless

of geographical location. This inclusivity can lead to earlier detection and man-

agement of cardiac conditions, ultimately reducing healthcare inequalities.

In conclusion, the scope for developing an IoT smart healthcare application

for ECG anomaly detection is expansive and multidimensional. By combining

edge/fog computing, blockchain based federated learning, and mobility of end

nodes, this application has the potential to redefine patient monitoring, enhance

medical research, and bridge healthcare gaps. It represents a powerful convergence

of technological advancements and healthcare needs, ushering in a new era of

personalized, responsive, and privacy-centric cardiac care.
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1.4 Research objectives and contributions

1.4.1 Thesis Goals

• Propose an advanced resource provisioning solution utilizing IoT microser-

vices combined with mobility management for healthcare applications.

• Implement a multiobjective optimization framework using the weighted sum

method to fine-tune critical parameters of the application.

• Employ modified metaheuristic scheduling techniques to enhance resource

provisioning efficiency in fog and edge devices.

• Design an early warning system for ECG anomalies leveraging a Smart Deci-

sion Making module utilizing blockchain-based federated learning methods.

• Create a robust and efficient healthcare application framework that can ef-

fectively manage resources while ensuring high performance and reliability.

1.4.2 Contributions

• Introduces an innovative resource provisioning solution that integrates IoT

microservices with mobility management, addressing the dynamic needs of

healthcare applications.

• Develops a multiobjective optimization approach, utilizing the weighted sum

method to optimize key application parameters, thus enhancing overall sys-

tem performance.

• Employs modified metaheuristic scheduling techniques, which improve the

efficiency of resource allocation in fog and edge computing environments.

• Designs and implements an early warning system for ECG anomalies, which

enhances patient monitoring and timely intervention with enhanced privacy

and security.

1.4.3 Innovative Aspects

• The use of Blockchain-based Federated Learning introduces a privacy-preserving

method that safeguards end-user data, a critical aspect in healthcare.

• Identification and analysis of the most suitable placement policy for deploy-

ing the Blockchain-based Federated Learning module within edge, fog, and

cloud layers demonstrate a pioneering approach to enhancing data security

and processing efficiency.
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• The effectiveness of the proposed solution is validated through extensive

simulations under real workloads, measuring parameters such as energy con-

sumption, network usage, cost, execution time, and latency.

• Demonstrates the practical utility and advantages through simulations exe-

cuted within a controlled experimental framework.

1.4.4 Research questions addressed in the Thesis

• How can IoT microservices be effectively utilized for resource provisioning

and mobility management in healthcare applications?

• What are the key parameters to be optimized in healthcare applications,

and how can multiobjective optimization using the weighted sum method

improve these parameters?

• How can modified metaheuristic scheduling techniques enhance resource pro-

visioning efficiency in fog and edge devices for healthcare applications?

• What design considerations are essential for developing an early warning

system for ECG anomalies using a Smart Decision Making module?

• How can Blockchain-based Federated learning be integrated into critical

healthcare applications to ensure privacy-preserving methods for end-user

data protection?

• What is the most suitable placement policy for deploying the Blockchain-

based Federated learning module within the Edge, Fog, and Cloud layers of

the architecture?

• How does the proposed resource provisioning solution perform under real

workloads in terms of energy consumption, network use, cost, execution

time, and latency?

• What challenges arise when implementing IoT microservices with mobility

management in healthcare applications, and how can they be mitigated?

• How can the effectiveness of the proposed resource provisioning solution be

validated through simulation experiments, and what metrics should be used?

• What impact does the integration of Blockchain-based Federated learning

have on the overall performance and security of healthcare applications in a

distributed environment?
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1.5 Organization of the Thesis

This thesis is organized into seven chapters.

Chapter 1 discusses the introduction and the motivation of the research. In

Chapter 2 of this thesis, a comprehensive examination of the literature on edge

and fog computing for IoT applications is presented. The survey is organized

into six distinct sections, covering a wide spectrum of topics. The initial sections

deeply examine the expansion of IoT applications beyond conventional domains

and their transformative role in healthcare. The subsequent sections critically

evaluate resource management strategies in edge and fog environments, explore

the integration of microservices and mobility support in IoT scenarios, and analyze

the simulation tools tailored for assessing the behavior and scalability of IoT edge

and fog setups. The summarized literature survey is presented, which fostered

identifying research gaps and helped define the objectives of this research work.

In Chapter 3, a method called Multiobjective Optimization for IoT applications

is introduced. The chapter explains how the proposed system works with its

different parts. It also talks about the datasets used in the experiments. The

results of the experiments are carefully studied, and important observations are

shared. This exploration helps us understand the newMultiobjective Optimization

concept and how it can be useful in real world situations, using actual results and

important insights. It also discusses the drawbacks and the need for metaheuristic

methods for resource management.

Chapter 4 of the document introduces the concept of Metaheuristic methods

applied to IoT applications. The chapter provides an explanation of the function-

ing of the proposed system, including its various components. It also addresses

the datasets employed in the experimental phase, and the results derived from

these experiments are subjected to detailed analysis, with significant findings be-

ing shared. This exploration aids in comprehending the Metaheuristic Optimiza-

tion concept and its practical relevance, drawing on tangible outcomes and crucial

insights. Additionally, the chapter discusses the requirement for federated learning

techniques in resource management for intelligent healthcare applications.

Chapter 5 of this technical document sheds light on the critical significance of

incorporating federated learning within the realm of IoT applications. The chapter

intricately unveils the operational mechanics of their proposed system, employing

autoencoders as a key component, and provides a comprehensive overview of its

constituent elements. In a diligent manner, the chapter scrutinizes the data em-

ployed in their empirical assessments, meticulously examining the outcomes de-

rived from these trials, unearthing pivotal insights. Through this rigorous investi-

gation, a coherent comprehension of the functioning of federated learning emerges,
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accentuating its practical relevance through outcomes and concepts. Additionally,

the discussion extends to the imperative role of blockchain methodologies in ad-

dressing resource management necessities for intelligent healthcare applications.

Chapter 6 of this report focuses on how vital it is to use blockchain in IoT

applications. The chapter explains in detail how their proposed system works,

using Ethereum blockchain as an important part. They also carefully study the

information they used in their tests, looking closely at the results from these tests

to find important conclusions. This deep investigation helps us understand how

federated learning works better, showing its importance through clear results and

important ideas. Chapter 7 concludes the findings and gives insight into the future

work.
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Chapter 2

Literature Survey

2.1 Introduction

According to the National Institute of Standards and Technology (NIST), cloud

computing as a model facilitates ubiquitous, useful, and on-demand network ac-

cess to a larger pool of fully programmable, distributed computing resources which

are rapidly provisioned and de-provisioned with minimal interaction and lesser im-

plementable complexity [57]. The cloud is the only technology that can analyze,

store, and access the IoT, depending on the deployment model. In recent years,

IoT technology has gained significant interest for embedded applications [58]. IoT

is a technological innovation capable of changing applications in various fields and

achieving effective results [59]. IoT devices have limited memory and processing

capacities that lead to problems with performance, reliability, and security. Thus,

integrating IoT with the cloud with huge storage and processing capacity will lead

to better performance of real-time systems [60]. The emergence of IoT has trans-

formed many applications that include applications in manufacturing, gas and oil

plantation, utilities, transportation, public safety, local governance, and health

care [61]. IoT technology has gained significant interest in healthcare applications

because of its capability to handle the issues in healthcare systems due to the

increase in the aging population and chronic diseases. Considering the extensive

use of cloud computing, certain IoT applications and healthcare services seem

unable to benefit from this popular computing technique due to inherent cloud

computing challenges such as latency, location awareness, and flexibility. As a

result, edge/fog computing has emerged as a promising technology at the edge of

the network to provide elastic services [25]. Edge and fog computing collectively

enhance distributed computing by bringing processing closer to data sources, im-

proving latency and real-time capabilities, while the key distinction lies in their

scope—edge computing typically involves local devices, while fog computing ex-
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tends its reach to cover a broader, intermediate layer of the network infrastructure.

Edge/Fog computing techniques include connecting things to analyze and respond

to big data they produce in a fraction of a few seconds and sending only the re-

quired data alone to the cloud for big-data analytics and storage [61]. Latency

reduction is the main advantage of edge/fog computing, and hence, it can be used

in IoT healthcare applications as they expect the system to be latency-sensitive.

Such applications may be provisioned with the help of the edge/fog computing

paradigm along with cloud technology [62]. The subsequent paragraphs elaborate

on the current status of resource management for IoT applications across var-

ious domains, including healthcare, mobility, and microservice implementations

within the same domain. It also addresses the existing simulation tools, provides

a summary of the literature review, and outlines the research objectives.

In the forthcoming sections, Section 2.2 will explore the landscape of IoT ap-

plications within edge, fog, and cloud computing. Following this, Section 2.3 will

delve into the forefront of research regarding the transformative impact of IoT on

healthcare within these computing environments. Subsequently, in Section 2.4,

the focus will shift to investigating efficient resource management within edge,

fog, and cloud systems. Section 2.5 will introduce an overview of prevailing meta-

heuristic methodologies for resource management in IoT applications. Section 2.6

will survey the realm of federated learning, a collaborative learning approach, and

its integration within these computing paradigms. In Section 2.7, the examination

will extend to the utilization of blockchain technology alongside federated learning

for enhanced data security. Additionally, Section 2.8 will analyze the current dis-

course on the implications of mobility on IoT deployments in edge, fog, and cloud

environments. Section 2.9 will spotlight the exploration of microservices’ role

in enhancing the flexibility and scalability of IoT systems. Finally, Section 2.10

will review simulation tools as indispensable aids for modeling and understanding

intricate IoT systems.

2.2 IoT applications in Edge/Fog/Cloud com-

puting

Research in the fog computing paradigm is a growing field for critical real-time

applications, with many unresolved problems. Deepika et al. suggests Exigency

Alert Mobile Cloud (EAMC), a smartphone-based service that provides an easy

way to alert the various emergency services like accidents, fire, building collapse,

murder, robbery, terrorism, and health using fog technology for preprocessing and

Reliable Routing Protocol for workload offloading. The EAMC-installed smart-
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phone has been used as an end node, and private cloud XenServer is used for fog

communication. The implementation has been tested for fog and non-fog scenar-

ios and proves that the delay suffered by non-fog scenario is up by nine times

compared to the fog scenario [63].

Harshit et al. carries out a case study on iFogSim simulation, a latency-

sensitive online game and intelligent surveillance distributed camera networks [64].

An EEG sensor provides EEG signals to the online game application that is sen-

sitive to latency and a DISPLAY actuator shows the user the current game scene.

Application Model of EEG Game is depicted in Figure 2.1. The cloud-only place-

ment (cloud computing only) and edgeward placement (fog computing and cloud

computing) efficiencies were assessed by taking into account parameters such as

latency, network use, and energy consumption.

Figure 2.1: Application Model of EEG Game [64]

Moumita et al. suggests an intelligent K* heuristic search algorithm to detect

anomalies in the data (also called emergency situation) and to determine the short-

est path to the victim area for a mission-critical application [65]. The simulation

results show that, relative to the cloud-based network, the suggested fog scenario

lowers power consumption, average jitter, and average latency by 12–15%, 10–14%

and 9–11%, respectively. The simulation findings suggest that saving about 20

percent of resources increase the performance of the system. A real-time cloud-

fog-edge IoT collaboration platform, Mobi-IoST, proposed by Shreya et al. [66],

uses a smart decision-making approach to predict and deliver the processed data

to the user interface. But the proposed model suffer from computation offloading

issues due to seamless connectivity. The Roadside units (RSU) forward the result

to the cloud if the user changes position or gets disconnected. But during data and

computation offloading in the wireless network, one of the main challenge faced is

seamless connectivity. The preceding studies are summarized in Table 2.1.
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Table 2.1: IoT Applications in Edge/Fog/Cloud Computing

Reference Application Parameters

Deepika et al. [63] Emergency Alerts Delay

Gupta et al. [64] Latency-Sensitive Apps Latency, Energy

Mishra et al. [65] Anomaly Detection Power, Jitter, Latency

Ghosh et al. [66] Real-time IoT Collaboration Computation Offloading

The use of fog computing finds its place in the above-said time-critical applica-

tions by improving the QoS and reducing the latency. Among many applications,

the healthcare sector deserves to be given priority in terms of the quality of ser-

vices compared to other industries. The following paragraph discusses the existing

technology in the medical sector.

2.3 Healthcare IoT in Edge/Fog/Cloud IoT ap-

plications

Among various applications, the healthcare sector stands out as a priority for

delivering superior service quality compared to other sectors. IoT-based applica-

tions enable essential functions like simultaneous reporting and monitoring, track-

ing, alerts, and remote medical assistance. According to research conducted by

the Center for Connected Health Policy, remote health monitoring systems have

shown a reduction in the re-admission rates of heart failure patients by 50 per-

cent [67, 68]. The following paragraph discusses the use of edge/fog/cloud tech-

nology in the medical sector.

Heba Nashatt et al. introduce an E-health and wellness monitoring application

designed to promote a healthier lifestyle. This research gathers and analyzes user

behaviors to make predictions and offer personalized recommendations [69]. How-

ever, there is an issue with data processing delay, particularly in critical emergency

situations. The comparison between multidimensional QoE (MD-QoE) and the

QoE aware policy is illustrated in Table 2.2. Adesh Kumar et al. propose a real-

world cloud-based smart medical system that utilizes communication networking,

allowing doctors to provide online treatment to their patients. This application

employs mobile devices and wireless body area networks, potentially extending

to fog technology. The proposal asserts that this framework is more efficient in

computation and communication costs compared to existing protocols in smart

healthcare [70].
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Table 2.2: Performance Comparison of MD-QoE and QoE-Aware Policy [69]

Metric MD-QoE
Application Placement Time 13.24% more Than QoE

Application Delay 13.28% less than QoE
Network Usage 13.09% less than QoE

End-User Power Consumption (Online Gaming) 21% less than QoE
End-User Power Consumption (E-Healthcare) 24% less than QoE

Control Node Power Consumption 8.04% more Than QoE

Fatema et al. [71] has been conducting experiments on brain strokes as time-

sensitive data and illustrated the advantages of fog compared to cloud by compar-

ing the parameters like execution time, energy consumption, costs, and network

use. The findings of simulation studies show that fog computing performs better

than cloud computing when it comes to time-sensitive tasks.

Redowan et al. [33] suggest an IoT healthcare application with the integration

of cloud-fog services as IoT healthcare time-critical data can be efficiently pro-

cessed and managed effectively by fog resources. The proposed application model

supports modular development and leverages inter-module data dependencies for

distributed deployment in constrained fog settings, enabling the customization

of cloud-based IoT-Healthcare applications for fog environments. The resources

are virtualized and shared in fog nodes as microcomputing instances (MCI). The

possibilities are analyzed using the iFogSim simulator, and the performance has

been evaluated. The parameters considered are latency, power, data communica-

tion and distributed computing factors. The findings show a nominal reduction in

cost, energy consumption and network latency. Though it satisfies the single MCI

requirement for small-scale healthcare applications, the proposed model cannot

accommodate additional MCIs in a single node for large-scale applications. Addi-

tionally, the simulation demonstrates service distribution in cloud-fog integration,

accounting for varying numbers of sensors and CPU utilization under limited com-

putational resources in the fog environment. Figure 2.2 illustrates the proposed

model for the aforementioned paper.

Hindia et al. introduce a comprehensive two-stage approach for the deploy-

ment of IoT sensor networks, capitalizing on the expanding global acceptance of

IoT technologies. The first stage involves sensors efficiently collecting particle mea-

surements through an android application. Subsequently, in the second stage, the

gathered data is transmitted over a Femto-Long-Term Evolution (LTE) network,

employing a novel scheduling technique. This scheduling strategy, tailored to the

application’s priorities, distinguishes the proposed approach. The authors vali-

date the efficiency of their technique by comparing it with established algorithms,
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namely proportional fairness and exponential proportional fairness (PF/EXP),

showcasing its efficacy in the realm of healthcare monitoring systems [72]. The

performance evaluation is illustrated in Table 2.3 as outlined in the paper.

Figure 2.2: Architecture of Cloud-Fog Integration for Interoperable
IoT-Healthcare Solutions [33]

Table 2.3: Summary of Performance Metrics [72]

Metric Proposed Approach EXP/PF Approach

Throughput High Moderate

Delay Robust Exponential Growth

Packet Loss Ratio (PLR) Low Moderate

George et al. [73] recommends various techniques for three categories of pa-

tients, namely critically injured, hospitalized, and monitoring patients. The pro-

posed model has been analyzed for its sensitivity to the parameters like latency

and real-time interaction but fails to consider the privacy, bandwidth optimiza-

tion, energy, and scalability. Gill et al. [32] proposes an information model which

is fog assisted IoT health care cloud service. Simulation is done in iFogSim using

heart patients’ data. Results claim 22.61-26.78% reduction in network use time,

19.56-29.45% reduction in latency, 23.56% reduction in energy consumption when

using fog compared to the cloud. But this model only considers latency, network

usage and energy consumption for comparison and fails to compare parameters

like cost, bandwidth etc. A comprehensive survey on enabling technologies for fog

computing in healthcare IoT systems has been conducted by Ammar et al. [74].

The survey identifies the unexplored research domains like computation offloading,

load balancing/distribution, and interoperability of IoT healthcare applications.

The preceding studies are summarized in Table 2.4.

32



Table 2.4: Literature Survey on IoT-based Healthcare Applications

Reference Objective Parameters Considered Key Findings

Brahmbhatt et al. [67] Remote health mon-
itoring

Re-admission rates reduc-
tion for heart failure pa-
tients

50% reduction in re-
admission rates

Nashaat et al. [69] E-health and well-
ness monitoring

User behavior analysis,
predictions, personalized
recommendations

Data processing delay
in critical emergency
situations

Porkodi et al. [70] Cloud-based smart
medical system

Computation and commu-
nication costs, online treat-
ment

More efficient than ex-
isting protocols in smart
healthcare

Zohora et al. [71] Brain strokes moni-
toring

Execution time, energy
consumption, costs, net-
work use

Fog computing outper-
forms cloud computing
for time-sensitive tasks

Mahmud et al. [33] IoT healthcare appli-
cation

Latency, power, data com-
munication, distributed
computing

Nominal reduction in
cost, energy consump-
tion, network latency

George et al. [73] Various techniques
for patient categories

Sensitivity to latency, real-
time interaction

Lack of consideration
for privacy, bandwidth
optimization, energy,
scalability

Gill et al. [32] Fog-assisted IoT
healthcare cloud
service

Network use time, latency,
energy consumption

Significant reduction in
network use time, la-
tency, and energy con-
sumption

Mutlag et al. [74] Survey on enabling
technologies

Computation offload-
ing, load balanc-
ing/distribution, inter-
operability

Identifies unexplored re-
search domains

2.4 Resource allocation in Edge/Fog/Cloud IoT

applications

The allocation of processing power, network, and storage resources for IoT ap-

plications is referred to as provisioning. In fog or edge computing, it is essential

for these nodes to supply resources to accommodate IoT requests efficiently. Re-

source provisioning has been a subject of study for a considerable time and has

garnered increased attention in recent literature [75]. This section examines the

issues related to resource management in fog and edge computing.

Guneeth et al. discuss the challenges arising from the proliferation of IoT

sensors and smart devices across diverse domains, necessitating increased compu-

tational capabilities from cloud to the edge. The paper comprehensively reviews

the complexities of resource management in fog/edge computing, addressing issues

such as heterogeneous resources, transactional workloads, edge node discovery, and

Quality of Service parameters. The authors emphasize the adoption of AI-based

techniques to tackle these challenges and shed light on promising research di-

rections, advocating for the integration of cutting-edge technologies to enhance

business intelligence in IoT-based applications [76]. Hong et al. investigate the
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shift from centralized cloud data centers to the decentralized paradigm of fog/edge

computing, emphasizing the utilization of resources closer to user devices. Their

extensive review, spanning publications from 1991 to 2018, categorizes architec-

tures and algorithms to tackle the resource management challenges inherent in the

dynamic and heterogeneous nature of fog/edge resources [77].

Ismael et al. underscore the paramount importance of resource management

in fog computing, emphasizing its pivotal role in mitigating network congestion

and ensuring low-latency services at the network edge. The survey systematically

addresses the phases of fog computing implementation, accentuating the critical

need for efficient resource provisioning, allocation, and management to support

large-scale IoT applications and enhance overall system reliability [78]. Dynamic

resource provisioning for workflow scheduling under uncertainty in edge computing

environment framework incorporates a dynamic resource provisioning approach,

leveraging the benefits of SDN and employs the nondominated sorting genetic

algorithm-III to optimize energy consumption and completion time, thereby at-

taining well-balanced scheduling strategies [79].

The article introduces a unique resource representation scheme where Edge

Devices (EDs) communicate their resource data to an edge node supervisor using

standardized mobile Edge Computing (EC) APIs. Resource allocation involves

sharing ED resource information with the supervisor, aided by a dynamic resource

allocation framework. The scheme’s efficacy is confirmed through theoretical and

experimental simulations, showcasing its superiority over benchmark approaches

across diverse system parameters [80].

Hu et al. introduce CEC, a containerized edge computing framework designed

for dynamic resource provisioning, particularly in smart connected communities

with multiple intelligent applications; CEC incorporates workload prediction and

resource pre-provisioning to ensure minimal latency for user service requests and

optimal utilization of edge resources [81].

In the context of a cloud-assisted mobile edge framework, Ma et al. cast re-

source provisioning as an optimization challenge and leverage the problem’s piece-

wise convex nature to introduce diverse instances of the Optimal Resource Pro-

visioning (ORP) algorithms. These algorithms aim to enhance edge host compu-

tation capacity optimization while dynamically adapting the cloud tenancy strat-

egy [82]. Table 2.5 consolidates the summary of resource management studied in

edge/fog computing.
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Table 2.5: Summary of Resource Management Studies in Edge/Fog Computing

Reference Application Area Findings

Mahmud et al. [75]
IoT Resource Provi-
sioning

Resource provisioning for efficient
IoT

Walia et al. [76]
IoT-based Applica-
tions

Addressing resource management
challenges and proposing AI-
based solutions

Hong et al. [77]
IoT Resource Manage-
ment

Categorization of resource man-
agement complexities

Martinez et al. [78] Fog Computing
Resource management in mitigat-
ing network congestion

Xu et al. [79]
Workflow Scheduling
in Edge Computing

Dynamic resource provisioning to
optimize energy consumption and
completion time

Amine et al. [80] Edge Computing
Efficient edge device communica-
tion and allocation

Hu et al. [81]
Containerized Edge
Computing

Containerized framework for op-
timal resource provisioning

Ma et al. [82]
Cloud-assisted Mobile
Edge

Optimal resource provisioning

2.5 Metaheuristic methods in Edge/Fog/Cloud

IoT applications

Metaheuristic methods have emerged as indispensable tools for optimizing re-

source management, task scheduling, and data processing in the realm of edge,

fog, and cloud IoT applications. With the proliferation of IoT devices generating

vast amounts of data at the network edge and the need for efficient utilization of

computational resources in fog and cloud environments, traditional optimization

techniques often fall short in addressing the dynamic and complex nature of these

systems. Metaheuristic methods offer a promising approach by leveraging iterative

search algorithms inspired by natural phenomena or computational paradigms to

efficiently explore large solution spaces and find near-optimal solutions [83]. In

this literature survey, the application of metaheuristic methods in edge, fog, and

cloud IoT scenarios is clarifying their role in enhancing resource allocation, task

scheduling, energy optimization, fault tolerance, security, and privacy. Through

an examination of recent research and developments, insights into state-of-the-art

techniques and emerging trends in this rapidly evolving field are provided.

Shakarami et al. propose an overview of resource provisioning methods in fog

computing environments and discuss the open challenges in this area. Machine

learning-based, heuristic/meta-heuristic-based, framework-based, game theoretic-

based, and model-based are the five primary classifications presented [84]. Ma-
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soumeh et al. provide a resource provisioning technique that uses a Bayesian

learning-based autonomic computing model for decision-making and control loop

planning. This work has been carried out using time series prediction models [85].

The work proposed in [86] also uses Bayesian learning along with linear regression

and autonomic computing to efficiently allocate the cloud resources. Dinesh et al.

suggest an improved resource provisioning method based on the JAYA (a sanskrit

word meaning victory) approach for placing virtual machines in a data center

which aims to reduce energy consumption by effectively organizing the migrated

VMs [87]. Literature also presents many heuristic-based and evolutionary-based

techniques for task scheduling. Heuristic algorithms are faster than evolutionary

algorithms but unsuitable for finding an optimal solution in NP-complete situ-

ations. Recently, metaheuristics have also been employed to generate optimal

solutions [88].

Mishra et al. use metaheuristic service allocation algorithms for a hetero-

geneous fog computing system that processes heterogeneous jobs, formulate the

linear programming problem for time and energy optimization and uses particle

swarm optimization (PSO), binary PSO, and bat algorithm [89]. Hosseinioun et

al. propose a strategy based on the dynamic voltage and frequency scaling (DVFS)

technique that is energy aware and saves it using hybrid invasive weed optimiza-

tion [90]. Ashkan et al. recommend FOGPLAN, a QoS-aware dynamic fog service

provisioning framework, by defining it as an optimization problem and evaluating

it using a simulation based on real-world traffic traces [91]. Naranjo et al. propose

a penalty-aware bin packing heuristic algorithm for resource management hosted

by each fog node, allowing resource consolidation and admission control by scaling

up or scaling down computation frequencies [92]. To reduce the average peak age

of information, Fang et al. designed the associated time slot allocation problems

and, using an exact linear search strategy, found the best solutions to the resulting

non-convex problems [93].

FCM-FPA, a new fuzzy clustering with flower pollination method as a re-

source provisioning model for fog computing proposed in the literature, includes

resource normalization and fuzzy clustering and has been evaluated using the Iris

and Wine datasets [42]. Abdel et al. introduce an energy-aware meta-heuristic

approach for task scheduling based on Harris hawk optimization to enhance QoS,

which also assesses energy consumption, cost, makespan, flowtime, and carbon

dioxide emission [83]. To more effectively address numerous research difficulties,

such as resource placement and scheduling, mobility, communication and edge

control, many nature-inspired metaheuristic (NIMH) methods have been applied

in edge computing. Fuzzy logic, edge network systems, and various research issues

are all included in the survey conducted by Adhikari et al., which divides the cur-
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rent NIMH into three categories based on the nature of their work [94]. To reduce

Service Level Agreement (SLA) violations caused by the limitations of edge com-

puting resources and to handle the computational complexity of edge computing

problems, Adyson et al. propose a random and heuristic approach to initialize

the population for multi-objective genetic algorithm. The solution thus developed

is found to be close to optimal and is employed to examine the placement and

load distribution of IoT applications. It performs better than existing benchmark

algorithms in response to deadline violation, cost, and service accessibility [95].

Fang et al. provide a heuristic PSO approach built on a Lyapunov framework to

balance system queue backlog and energy efficiency for trajectory scheduling and

allocation of computational resources for Internet of Underwater Things [96].

Mishra et al. use metaheuristic service allocation algorithms for a hetero-

geneous fog computing system that processes heterogeneous jobs, formulate the

linear programming problem for time and energy optimization and uses particle

swarm optimization, binary PSO, and bat algorithm [89]. Hosseinioun et al. pro-

pose a strategy based on the dynamic voltage and frequency scaling technique

that is energy aware and saves it using hybrid invasive weed optimization [90].

Ashkan et al. recommend FOGPLAN, a QoS-aware dynamic fog service provi-

sioning framework, by defining it as an optimization problem and evaluating it

using a simulation based on real-world traffic traces [91]. Naranjo et al. propose

a penalty-aware bin packing heuristic algorithm for resource management hosted

by each fog node, allowing resource consolidation and admission control by scaling

up or scaling down computation frequencies [92]. To reduce the average peak age

of information, Fang et al. designed the associated time slot allocation problems

and, using an exact linear search strategy, found the best solutions to the resulting

non-convex problems [93].

FCM-FPA, a new fuzzy clustering with flower pollination method as a re-

source provisioning model for fog computing proposed in the literature, include

resource normalization and fuzzy clustering and has been evaluated using the Iris

and Wine datasets [42]. Abdel et al. introduce an energy-aware meta-heuristic

approach for task scheduling based on Harris hawk optimization to enhance QoS,

which also assesses energy consumption, cost, makespan, flowtime, and carbon

dioxide emission [83]. To more effectively address numerous research difficulties,

such as resource placement and scheduling, mobility, communication and edge

control, many nature inspired metaheuristic methods have been applied in edge

computing. Fuzzy logic, edge network systems, and various research issues are

all included in the survey conducted by Adhikari et al., which divides the current

NIMH into three categories based on the nature of their work [94]. To reduce SLA

violations caused by the limitations of edge computing resources and to handle the
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computational complexity of edge computing problems, Adyson et al. propose a

random and heuristic approach to initialize the population for multiobjective ge-

netic algorithm. The solution thus developed is found to be close to optimal and

is employed to examine the placement and load distribution of IoT applications.

It performs better than existing benchmark algorithms in response to deadline vi-

olation, cost, and service accessibility [95]. Fang et al. provide a heuristic particle

swarm optimization approach built on a Lyapunov framework to balance system

queue backlog with energy efficiency for trajectory scheduling and allocation of

computational resources for Internet of Underwater Things [96]. Table 2.6 provides

a summary of the aforementioned related works in heuristic/metaheuristic meth-

ods, outlining their objectives and the employed techniques. Table 2.7 presents

an overview of the aforementioned studies focusing on heuristic and metaheuristic

methodologies, specifying the parameters they discussed.

Table 2.6: Summary of related works in heuristic/metaheuristic methods

Reference Purpose Technique

Mishra et al. [89] Service allocation PSO, BPSO, BAT

Hosseinioun et al. [90] Task scheduling IWO-CA

Ashkan et al. [91] Resource provisioning Greedy algorithm

Naranjo et al. [92] Resource management Bin packing based

Porkodi et al. [42] Resource provisioning Optimal FPA

Table 2.7: Overview of Heuristic/Metaheuristic Studies: Discussed Parameters
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Mishra et al. [89] Ë Ë

Hosseinioun et al. [90] Ë

Ashkan et al. [91] Ë Ë

Naranjo et al. [92] Ë Ë

Porkodi et al. [42] Ë

Proposed Ë Ë Ë Ë Ë

As discussed in the previous chapter, among many applications, the healthcare
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sector deserves to be prioritized in terms of service quality compared to other do-

mains. Critical functions such as simultaneous reporting and monitoring, tracking

and alerts, and remote medical aid are all possible with IoT-based apps. The

center for connected health policy conducted a study that observed that remote

health monitoring systems lower the re-admission rates of heart failure patients

by 50 percent [67,68]. The following paragraph discusses fog and edge technology

in the medical sector.

Nashatt et al. propose an E-health and wellness monitor application to encour-

age a healthier lifestyle. This work gathers the user behaviors, analyzes them, and

later predicts certain events with personalized recommendations [97]. However,

the latency in data processing affects critical emergencies. Adesh et al. suggest

a real-life cloud-based smart medical system using a communication networking

where-in a doctor treats his patients via internet. This proposed application uses

mobile, wireless body area networks, and so on, intending to be extended to fog

technology. The proposal claims that the suggested framework is more effective

in computation and communication expenditure than the existing protocols in

smart healthcare [98]. Tuli et al. propose a lightweight healthcare fog service

that manages cardiac patients’ IoT data. The FogBus framework allows efficient

edge/fog/cloud integration for reliable and fast results [99]. A comprehensive

overview of fog-based technologies in healthcare IoT systems has been conducted

by Ammar et al. [74]. To identify the challenges and requirements of edge devices

for diverse use cases, Morghan et al. explore current and developing edge com-

puting architectures and approaches for health care applications [100]. To evenly

distribute the load amongst fog nodes when the health monitoring system is in-

stalled on a big scale, Asghar et al. offer a new load balancing scheme (LBS). It

presents the comparison of the parameters, network use, and latency for different

placements namely cloud-only implementation, load balancing scheme, and fog

node placement [101].

Jayasena et al. use a whale optimization based meta-heuristic algorithm for

optimal task scheduling in a smart healthcare application model and found that it

outperforms PSO, shortest job first and round robin in terms of energy usage and

cost [102]. Qiu et al. analyze the minimization optimization in fog computing-

based Internet of Medical Things, which is considered a non-convex and non-linear

problem [103]. The work considers the quality of service, power limit, and wire-

less constraint as optimization parameters. Abdel et al. propose a fog-based IoT

platform for real-time diabetic patient tracking, using a hybrid strategy based on

type-2 neutrosophic with the help of VIKOR method [104]. Hasse et al. present

an e-health system that collects general and physiological health indicators from

older people using My signals HW V2 technology with the help of a fog computing
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mobile application for monitoring health [105]. The recommended strategies have

the advantage of handover latency. However, they are unsuitable for IoT fog sys-

tems since the message notifications, and distributed storage cannot be refreshed

when moving [106].

The proposed research identifies genetic algorithm due to the fact that they

use several sets in a search space where a search space is a collection of all pos-

sible solutions to the problem. It requires one objective function to calculate

an individual’s fitness and can work in parallel. Genetic algorithms operate on

potential solutions’ representations, known as chromosomes, rather than the ac-

tual solutions. Genetic algorithms are not guaranteed to produce global optimal

solutions as well but genetic operators like crossover and mutation increase the

likelihood of producing global optimal solutions. Genetic algorithms are stochastic

and probabilistic in nature. With the right parameter setting, due to their large

solution space, genetic algorithms are highly effective at handling multi-modal

problems [107].

Because of the following characteristics, the work also uses the flower pol-

lination method as the other meta-heuristic approach. Swarm intelligence (SI)

optimization algorithms, which are modeled after numerous forms of biological

behavior found in nature, have the advantages of being easy to use, performing

well in optimization, and having strong robustness. The flower pollination al-

gorithm is a meta-heuristic inspired by flowering plants for artificial intelligence.

Flower pollination is the process of transferring pollen from one flower to another.

Animals, such as birds, bats, insects, and so forth, are the principal actors in

such transfers. Flowers and insects will form a flower-pollinator alliance. These

blooms can attract birds which are part of the pollination, and these insects are

the primary pollinators of the flowers. A flower and its pollen gametes provide a

reliable answer to the optimization problem. With only one control parameter,

FPA gives a simplified flower analogy with lightweight computing and provides

a balanced intensification and diversity of solutions by implementing the Lévy

flight and switch condition, which may be used to switch between local and global

search. The pollinator transports pollen over greater distances to high-fitting flow-

ers in case of global pollination; however, in other circumstances, local pollination

is carried out inside a small area of an exclusive bloom. Local pollination can be

used to replace phased elimination. Switch probability is a possibility for global

pollination. The flower optimization algorithm, which was developed to address

global optimization based on simulating the pollination process of flowers, has

successfully addressed several optimization problems. FPA is distinguished by its

formulation’s simplicity, adaptability, and great computational performance effi-

ciency. According to numerous studies, it can also outperform other well-known
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meta-heuristic optimization methods. As a result, FPA has been incorporated into

several optimization studies and successfully used to solve numerous optimization

issues in a variety of scientific domains.

To summarize, current research on edge/fog resource allocation does not suf-

ficiently address resource allocation issues in mobility-aware microservice-based

IoT applications using metaheuristic methods. Edge/Fog computing allows real-

time processing of data generated by medical devices and wearable sensors, thus

enabling remote patient monitoring, faster diagnosis, and more personalized treat-

ment. Efficient resource provisioning is crucial for healthcare applications in

edge/fog computing because of the reasons such as low-latency requirements, lim-

ited network bandwidth, and resource constraints. Therefore, we conducted a

review of existing literature on resource allocation methods employed in health-

care applications, which led us to consider utilizing metaheuristic techniques for

resource provisioning. We chose GA and FPA because similar applications of this

category of heuristics, such as resource management on cloud infrastructure, have

produced promising results.

We aim to develop a framework based on a meta-heuristic approach for mobile-

aware IoT microservices that could be implemented on edge/fog computing scenar-

ios for medical IoT applications. Our proposed approach involves modifying and

integrating the mobility module within iFogSim2. Along with latency addressed

in the existing works, other parameters like energy consumption, network use,

cost, and execution time are also to be considered while developing a healthcare

IoT system. The focus of this part of the work is to develop a resource provi-

sioning solution using IoT microservices with mobility management by deploying

metaheuristic methods for healthcare applications. The implementation details

are discussed in Section 4.2.

2.6 Federated Learning in Edge/Fog/Cloud IoT

applications

Federated Learning is appropriate for edge/fog/cloud computing applications and

can use the computation power of servers and data gathered from widely scattered

devices. Effective aggregation of client models is essential to create a generalized

global model. The fundamental approach aggregates models from the distributed

clients and obtains a new general global average model. The resultant model is

then distributed to clients again for further training. Federated Learning makes

use of different aggregation strategies for global model update. The following

paragraphs discuss state of the art in aggregation methods in federated Learning,
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FL in edge/fog/cloud IoT applications, anomaly detection and Smart Decision

Making module implementations in FL, and smart healthcare applications using

FL.

2.6.1 FL aggregation methods

The literature proposes FedAvg as a privacy, security-preserving, and efficient

communication aggregation algorithm for FL over-edge/fog devices. FedAvg as-

sumes uniform involvement from all participants and excludes clients responding

slowly [108]. The FedMA aggregation approach’s foundation is a layer-wise learn-

ing strategy that matches and merges nodes with comparable weights. Here,the

independently trained layers interact with the server [109]. FedProx addresses

the heterogeneity issue in federated networks by allowing each participant device

to execute a different amount of work. It incorporates partial information from

stragglers and adds a proximal term to account for heterogeneity, which promises

a steady and precise convergence behavior [49]. The principle of the FedPer ap-

proach is that the model is divided into personalized and base layers. While the

personalized layers are not communicating with the server, the base layers are

aggregated using transfer learning methodologies by the federated server [110].

FedDist is a Federated Learning aggregation algorithm based on the Euclidean

distance dissimilarity measurement. This algorithm includes a few advantages of

FedAvg, and FedMA [111]. Separating the local update process from the global

aggregation results in a decrease in mobile devices’ overall communication and

computation costs. Also, in varying bandwidth conditions, empirical testing shows

that the suggested EdgeFed is comparatively more efficient than state-of-the-art

algorithms, with a decrease in the computational cost and the cost of intercon-

nection for mobile devices. This is achieved by offloading a few calculations from

mobile clients to the edge server [112].

A comparison of the above-discussed aggregation algorithms is presented in

Table 2.8. Our proposed model uses FedAvg due to its easy deployment and

less complicated implementation on Edge/Fog devices, thus resulting in reduced

communication overhead.
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Table 2.8: Comparison of Aggregation Algorithms in Federated Learning

Algorithm Complexity Accuracy Convergence Cost Speed

FedAvg [108] Low High Slow Low High

FedMA [109] Moderate Moderate Moderate Moderate Moderate

FedProx [49] Moderate Moderate Moderate Low Moderate

FedPer [110] Low High Moderate Low High

FedDist [111] High Moderate Moderate Moderate Moderate

EdgeFed [112] High High High High High

2.6.2 Federated Learning in Edge/Fog/Cloud IoT applica-

tions

Xia et al. give new insight into federated learning’s edge applications, devel-

opment tools, communication effectiveness, privacy & security, scheduling, and

migration [113]. Imteaj et al. examine the difficulties and problems of imple-

menting FL in an IoT scenario [114]. Yu et al. offer a neural-structure-aware

resource management approach with module-based federated learning, in which

mobile clients are allocated with various sub-networks of the global model based

on the condition of their local resources using both white box and black box ap-

proaches. Experiments show the effectiveness and flexibility of the strategy in

utilizing resources [115]. Nguyen et al. evaluate the potential of FL for enabling a

vast range of IoT services, including caching and data offloading for IoT devices,

attack detection, location, crowd-sensing on mobile devices, and IoT privacy and

safety. Additionally, a thorough analysis of the usage of FL in various critical

IoT applications such as smart healthcare, unmanned aerial vehicles, smart trans-

portation, smart cities, and smart industry is discussed [116].

A greedy heuristic method proposed in literature help in choosing the best fog

node to act as a global aggregator. This helps in communication between the edge

and the cloud and can lower the reliance on server-based execution. This FogFL

architecture uses fog nodes to decrease energy consumption and communication

latency of resource-constrained edge devices without influencing the rate of con-

vergence of the global model, hence enhancing system dependability. Extensive

deployment and testing claim that, in addition to fewer global aggregation rounds,

FogFL holds 85% less energy and 92% less communication delay than state-of-the-

art [117]. Zhou et al. utilize the combination of Paillier homomorphic encryption

and blinding against model attacks to achieve the security aggregation of model

parameters and enable IoT device data to fulfill differential privacy in resisting

data attacks. Additionally, the proposal validates the scheme’s ability to with-
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stand collision attempts performed by numerous malevolent actors, guaranteeing

both model and data security. The study implemented on the Fashion-MNIST

dataset claims that the proposed technique is effective for real-world applica-

tions as well [118]. EdgeFed, draws inspiration from edge computing and aims

to enhance the learning efficiency and reduce global communication frequency. It

achieves this by separating the process of updating the local model, which is done

independently by mobile devices. The edge server aggregates the outputs of these

devices [112].

In order to reduce the model training loss and the overall time consump-

tion, Zaw et al. develop an energy-aware resource management for mobile edge

computing-enabled FL that takes into account the energy constraint of mobile

devices and performs solution’s convergence analysis and compare its effectiveness

to the conventional FL technique [119]. To deliver FL as a Service (FLaaS) to

industrial customers deployed on edge devices, Hiessl et al. suggest a FL system

made up of a process description and software architecture. By grouping cus-

tomers into cohorts with comparable data distributions, this method addresses

skewed data [120].

2.6.3 Anomaly detection in IoT applications

Hasan et al. compares the effectiveness of various machine learning models to

accurately predict attacks and anomalies in IoT systems. The machine learning

algorithms evaluated include Logistic Regression (LR), Support Vector Machine

(SVM), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network

(ANN) [121]. Abusitta et al. present an anomaly detection method for IoT, which

utilizes deep learning to capture and learn resilient and beneficial features that

remain unaffected by unstable environments. The extracted features are then

used by the classifier to enhance the accuracy of malicious IoT data detection.

The proposed deep learning model is based on a denoising autoencoder, which is

utilized to derive features that can withstand the heterogeneous environment of

IoT [122]. Chatterjee et al. provide an overview of the techniques used to identify

abnormalities in IoT systems. It also discusses the algorithms that could be used

for anomaly detection [123].

ECG Anomaly detection

Andrysiak et al. proposes a technique that combines the benefits and features

of sparse representation of the analyzed ECG signal with the classification char-

acteristics of the modeled neural network, in order to create a method that is

both uncomplicated and efficient [124]. To overcome the limitations of current
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wearable devices used in ECG detection, Gu et al. suggest a heart rhythm ab-

normality classification model that is both lightweight and highly accurate based

on traditional convolutional neural networks and the hardware acceleration tech-

niques [125]. Nawaz et al. introduce an intelligent system that can automatically

evaluate cardiovascular activity by detecting and classifying anomalies in raw one-

dimensional (1D) ECG signals from end to end. The raw ECG data is carefully

pre-processed before being stored in the cloud, and then analyzed in detail to

identify any anomalies. For anomaly detection in the 1D ECG time-series signals,

a deep learning-based auto-encoder (AE) algorithm is employed [126]. Ji et al.

introduce a technique for detecting anomalies in univariate time series data using

a long short-term memory (LSTM) algorithm. This method learns the structural

characteristics of non-anomalous training data, and then applies a statistical ap-

proach to detect anomalies based on prediction error in the observed data [127].

2.6.4 Smart Decision Making in IoT applications

Cambra et al. showcase the benefits of using a tool that utilizes data in real time

decision-making. The data includes variable rate irrigation and specific parameters

derived from field and weather conditions. The decision making system processes

data obtained from periodic sampling of field parameters, vegetation indices esti-

mated through aerial images, and irrigation events like flow level, pressure level,

and wind speed. The data is analyzed using a learning prediction system com-

bined with the Drools rule engine in making decisions [128]. Kaur et al. propose a

model that employs embedded sensors within a smart industrial system to gather

data and identify the different industrial activities of employees. The identified

activities are classified as positive, negative, or neutral. This information is then

used to make cognitive decisions for employees based on game theory. The model

aims to automate the cognitive employee evaluation system and decision-making

process in smart industries, and it does so effectively and efficiently [129]. Bokhari

et al. aim to explore the direct and indirect connections between Artificial Intelli-

gence, Social Innovation, and Smart Decision Making. The results thus obtained

help local governments to establish smart cities, where social innovation is incor-

porated into the decision making process. The study also emphasizes that smart

decision making should involve social innovations and share collected data with

entrepreneurs, businesses, industries, and social innovators to benefit the society

and all the relevant stakeholders [130].
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SDM in smart healthcare applications

Decision support systems (DSS) aim to provide experts with timely and rele-

vant information. They offer tools for data processing, models, and knowledge

to assist experts in making more informed decisions in various scenarios [131].

Zhou et al. suggest an approach for utilizing healthcare big data and involves

a framework that enables smart and proactive data processing without requiring

user interventions with an aim to maximize the utilization of data in decision

making. The framework comprises of five stages: intelligent data cleaning, cus-

tomized data fusion, analysis mapping, exploratory visualization analysis, and

generation of decision-making reports [132]. Quasim et al. suggest a method

for evaluating the technological integration efficiency of healthcare management

using a Smart Healthcare Management Evaluation and Fuzzy Decision Making

approach [133]. In this proposed study, the suggested strategy for SDM anomaly

detection includes the utilization of an autoencoder, which is a type of unsuper-

vised learning technique within the realm of AI. This neural network architecture

is capable of compressing input data into a lower-dimensional representation and

then reconstructing the input from this representation. This AI-based SDM can

be implemented across various layers, including edge, fog, or cloud.

2.6.5 Federated Learning in healthcare

Among many applications, the healthcare sector deserves to be prioritized in terms

of service quality compared to other domains. Critical functions such as simul-

taneous reporting and monitoring, tracking and alerts, and remote medical aid

are all possible with IoT-based apps. The center for connected health policy con-

ducted a study that observed that remote health monitoring systems lower the

re-admission rates of heart failure patients by 50 percent [67]. Machine learning

will not be able to realize its full potential or, eventually, make the leap from aca-

demic study to the clinical application without access to enough data. Rieke et al.

examine the major contributing causes to this problem, evaluates the challenges

faced in the field of digital health and discuss how Federated Learning can provide

a solution [134]. Chen et al. propose FedHealth, a system that uses federated and

transfer learning to aggregate and create reasonably personalized models. The

model uses homomorphic encryption to ensure that no user data is leaked [135].

The design of a new aggregation protocol uses a secure hardware component and

an Ethereum-native encryption toolkit to prevent the user data from leakage [136].

Kumar et al. present a framework that collects a modest amount of data from

multiple hospital sources and uses blockchain-based Federated Learning to train

a global deep learning model [137].
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In order to train deep neural networks, Yuan et al. suggest an enhanced

Federated Learning framework that helps the IoT device and the associated cen-

tralized server to overlook the training computation. The communication over-

head is found to be decreased by the sparsification of activations and gradients.

According to empirical research, the proposed system only necessitates less syn-

chronization traffic than plain-vanilla Federated Learning while guaranteeing a low

accuracy loss [138]. Analysis of the various Federated Learning systems, highlight

the implications and potentials in healthcare and also summarises the general dif-

ficulties in using Federated Learning in the bio-medical domain [139]. Nguyen et

al. present a state-of-the-art overview of the use of FL in healthcare domains,

including smart health data management, remote medical monitoring, medical

imaging, and COVID-19 detection. The major takeaways from the study are also

emphasized, along with an analysis of several recent smart healthcare projects in

Florida [140].

Chen et al. present a communication-efficient federated learning framework

to address the critical challenge of communication delays in resource-limited IoT

environments. Their approach introduces a probabilistic device selection scheme,

prioritizing devices that significantly enhance FL convergence speed and training

loss. Through novel quantization methods and efficient wireless resource alloca-

tion, the proposed framework demonstrates a notable improvement of up to 3.6%

in identification accuracy and an 87% reduction in FL convergence time compared

to standard FL methodologies [141]. In addressing the substantial privacy risks

and communication challenges associated with executing machine learning tasks

on human-generated data in the IoT, Briggs et al. emphasize the significance of

FL as a privacy-preserving approach. The review underscores the critical need

to mitigate communication costs linked to data transmission, adapt to hetero-

geneous conditions in IoT environments, and implement additional privacy safe-

guards within the FL framework. By evaluating various methods applied to FL,

the authors offer valuable insights into its strengths and weaknesses, while also

outlining future research directions, particularly emphasizing privacy-preserving

FL applications in the context of IoT [142].

In the quest for large-scale and efficient deployment of AI through Edge Intel-

ligence, Lim et al. advocate for the integration of FL as a privacy-preserving ma-

chine learning paradigm. Recognizing the communication inefficiency as a signifi-

cant bottleneck in the envisioned FL network with thousands of heterogeneous dis-

tributed devices, the authors propose the Hierarchical Federated Learning (HFL)

framework. Addressing the critical issues of resource allocation and incentive

design within HFL, the article introduces a two-level mechanism employing evo-

lutionary game theory for cluster selection at the lower level and a deep learning-
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based auction mechanism for model owner and cluster head interaction at the up-

per level, showcasing unique stability and revenue-maximizing properties through

performance evaluation [143]. Beltrán et al. assert the growing importance of FL

as a means to collaboratively train models without compromising sensitive data.

Recognizing the limitations of Centralized FL (CFL) in terms of latency, vulnera-

bility to failures, and trust concerns, the authors advocate for Decentralized Fed-

erated Learning (DFL) as a solution. Their comprehensive analysis addresses the

gaps in the literature by examining the distinguishing aspects between DFL and

CFL, evaluating DFL frameworks, reviewing application scenarios, and exploring

mechanisms to optimize critical DFL fundamentals, thereby providing valuable

insights for advancing decentralized approaches in FL [144]. Saha et al. propose

a fog-enabled federated Learning framework, FogFL, to address challenges in dis-

tributed learning for delay-sensitive applications within resource-constrained IoT

environments. Recognizing the communication overheads and security vulnerabil-

ities associated with traditional FL, the authors introduce geospatially placed fog

nodes as local aggregators to enhance the efficiency of the training process. Their

approach employs a greedy heuristic for optimal fog node selection, mitigating the

dependence on a centralized server and reducing communication latency and en-

ergy consumption by 85% and 92%, respectively, while maintaining the reliability

of the global model’s convergence rate [117]. Wu et al. highlight the challenges

posed by device, statistical, and model heterogeneities in IoT environments for

traditional FL. They propose a personalized federated learning framework in a

cloud-edge architecture to address these issues and enable the deployment of intel-

ligent IoT applications. The authors investigate emerging personalized federated

learning methods that effectively mitigate the negative effects of heterogeneities,

and through a case study on IoT-based human activity recognition, they demon-

strate the efficacy of their proposed framework in achieving the requirements of

fast-processing capacity and low latency for intelligent IoT applications [145].

Federated learning in the edge layer for medical anomaly detection is a promis-

ing approach to enable the development of accurate and efficient anomaly detection

models while preserving the privacy and security of sensitive medical data. How-

ever, there are several research gaps that need to be addressed to fully realize the

potential of FL in this domain. One of the research gaps is the incorporation of

SDM modules across multiple layers of computing. To the best of our knowledge,

no publications have addressed ECG anomaly detection using IoT microservice

applications using SDM. This proposal aims to implement a microservice based

Federated Learning model for one of the critical medical applications, ECG mon-

itoring, which has improved data privacy, increased data diversity, more efficient

use of resources and real-time updates. The proposed FedSDM model predicts the
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ECG data anomalies by applying Federated Learning in edge, fog, and cloud lay-

ers and brings out a policy of usage at the appropriate level. The implementation

details for the proposed approach are presented in Section 5.2.

2.7 Blockchain based Federated Learning in

Edge/Fog/Cloud IoT applications

Recent research in the domain of Blockchain-based Federated Learning for edge,

fog, and cloud IoT applications has seen a surge in interest. In their innovative

work titled “Blockchain-Enhanced Federated Learning with Reputation Mecha-

nism for Smart Home Systems,” Zhao et al. introduce a FL system with a repu-

tation mechanism to aid home appliance manufacturers in developing smart home

systems. The system employs a two-stage workflow, where customers train an

initial model using mobile phones and mobile-edge computing servers, and sub-

sequently, models are signed, sent to the blockchain, and used for decentralized

aggregation. The authors address privacy concerns through differential privacy

(DP) on extracted features, demonstrating the superiority of their normalization

technique over batch normalization under DP protection, while also incorporating

an incentive mechanism to attract customer participation in the crowdsourcing

FL task [146].

In response to the challenges posed by privacy concerns and communication

costs in the context of the widespread utilization of IoT data, the work of Xuan

et al. underscores the adoption of blockchain and federated learning technologies

to address security issues related to collusion and privacy leakage. However, the

study recognizes the emergence of “free-rider attacks” and “model poisoning at-

tacks” in federated learning, necessitating the auditing of training models, which,

in turn, amplifies communication costs. To mitigate this problem, the authors

propose a communication cost optimization method based on security evaluation,

introducing a double-layer aggregation model that combines competing voting

verification methods and aggregation algorithms to effectively reduce the commu-

nication cost associated with node security verification in the blockchain-based

federated learning process [147].

In their work, Zhao et al. address the limitations of traditional surveys in

capturing comprehensive customer behaviors for IoT companies. Their intelligent

system leverages FL technology to enable IoT device manufacturers to harness

customer data and build accurate machine learning models predicting user require-

ments and consumption behaviors. The FL framework, consisting of collaborative

training between customers and the edge computing server, employs differential
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privacy for feature extraction and utilizes blockchain to replace the centralized

aggregator, offering enhanced privacy and security. Additionally, Zhao et al. in-

troduce a novel incentive mechanism, awarding participants with coins to foster

greater customer engagement in the crowdsourcing FL process, as suggested by

their research [148].

Lu et al. propose a secure data-sharing architecture that leverages blockchain

technology to enable distributed data sharing among multiple parties by incorpo-

rating privacy-preserving federated learning. In their design, federated learning

is integrated into the consensus process of a permissioned blockchain which al-

lows the computing work required for consensus in the blockchain to be used for

federated training as well [149]. Pokhrel et al. use an autonomous design for

federated learning in vehicular communication networking, utilizing a blockchain-

based approach. This design aims to ensure privacy and efficiency in the system

by exchanging and verifying local on-vehicle machine-learning model updates in a

distributed manner [150].

Aich et al. suggests a system where its work flow involves two stages: cus-

tomers train an initial model using their mobile phones and the mobile edge com-

puting (MEC) server, then send the signed models to the blockchain for protection

against malicious activities. In the second stage, manufacturers choose customers

as miners to calculate the averaged model using the received models, employing

differential privacy and a novel normalization technique to safeguard customer pri-

vacy and enhance test accuracy [151]. Lu et al. suggest an asynchronous federated

learning method to train models using edge data, optimizing efficiency by care-

fully selecting participating nodes to reduce total costs. Additionally, boost model

reliability by incorporating learned parameters into the blockchain and ensuring

their quality through a two-stage verification process [152]. Lu et al. introduce a

blockchain-based federated learning model that replaces the central authority with

a specially designed blockchain featuring decentralized privacy protocols where lo-

cal updates from end devices are uploaded to fog servers, generating and storing

global updates. The blockchain efficiently maintains only the pointer to global

updates, while data is saved using a distributed hash table (DHT), ensuring ro-

bustness, privacy, and protection against poisoning attacks on fog servers [153].

In practice, hospitals and relevant organizations are hesitant to share patients’

data to safeguard patient privacy, making it challenging to access critical informa-

tion for cognitive disease detection. Nevertheless, wearable devices and advance-

ments in computing technology enable the collection of valuable health informa-

tion, and smart healthcare leverages machine learning models trained on abundant

user data while preserving privacy through blockchain integration [154].

The following paragraphs present the current state of the art in blockchain-
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based federated learning methods used in medical applications. FedHealth em-

ploys federated learning and homomorphic encryption to aggregate data from

multiple organizations, creating personalized models through transfer learning

while strictly preserving user privacy without any data leakage during the pa-

rameter sharing process [135]. A novel Secure Aggregation protocol is proposed

by Passerat et al., combining a secure hardware component and an encryption

toolkit native to Ethereum [136]. Kumar et al. introduces a framework that

gathers a small amount of data from multiple sources, such as various hospitals

and employs blockchain-based federated learning to train a global deep learning

model [137].

Passerat et al. introduce the aggregation actor as a trusted third-party or a

central entity with secure hardware like Intel SGX, acts as the primary source of

centralization by collecting updates from participants to create a new model ver-

sion. However, this centralization comes with risks, such as training interruption

if the server fails or potential malicious actions affecting the training process. To

address these issues, it uses blockchain as a decentralized alternative to coordi-

nate the process [155]. The presence of incorrect masked gradients and unmasked

shares uploaded by dishonest local trainers to the parameter server, undermines

the integrity of FL and hinders its ability to attract sufficient distributed training

data and computation power. To address this, Bao et al. proposes FLChain, a

decentralized, public auditable, and incentivized FL ecosystem that ensures trust

and incentive where FLChain nodes collect and combine locally documented gra-

dients, then submit the aggregated results back to FLChain [156].

Various methods exist for determining the mining process participants and

the type of data being updated on the blockchain, as well as the specific location

where the aggregation of local models into a global model occurs. These methods

depend on the architecture and design of the blockchain-based federated learning

IoT application. The selection of devices participating in the mining process can be

based on factors such as computational power, network connectivity, or pre-defined

roles. The data being updated on the blockchain can include local model updates,

training progress, or consensus-related information. The specific use case and the

desired level of transparency and security, influence the decision on what data to

store on the blockchain. The aggregation of local models can happen either at a

central server or through a distributed consensus algorithm. In the central server

approach, all participating devices send their local model updates to a centralized

entity responsible for aggregating the models into a global model. On the other

hand, in a distributed consensus algorithm, devices collaborate directly with each

other to collectively update the global model. The choice between these methods

depends on factors like the scale of the IoT network, communication latency,
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privacy requirements, and the desired level of decentralization. Each approach has

its advantages and trade-offs, and the final design should align with the specific

needs and goals of the blockchain-based federated learning IoT application [157,

158].

Several methods have been proposed in the state-of-the-art literature for de-

veloping a global model in a blockchain-based federated learning IoT application

using fog/edge devices. One method involves fog/edge devices actively partic-

ipating in the mining process and collaboratively developing the global model

with the assistance of consensus algorithms. The updated global model is then

broadcast to end devices, ensuring all participants have the latest version. In

another method, fog/edge devices also participate in the mining process, but in-

stead of directly developing the global model, they send their local model updates

to the network. End devices receive these updates and collectively generate the

global model through aggregation. Lastly, a combination of fog/edge devices and

end nodes collaboratively participate in the mining process to develop the global

model collectively. Each method offer unique advantages and challenges, and the

choice depends on factors like network scale, privacy concerns, and the desired

level of decentralization [159–163]. A summary of the related work on blockchain

can be seen in Table 2.9.

The utilization of blockchain based federated learning in the edge/fog/cloud

layer for medical anomaly detection holds great promise for developing accurate

and efficient anomaly detection models while ensuring the privacy and security of

sensitive medical data. However, several research gaps remain that require atten-

tion to fully harness the potential of blockchain and FL in this field. One such

gap pertains to incorporating SDM modules across multiple layers of computing.

As of now, no published works have addressed ECG anomaly detection in IoT

microservice applications using SDM. In the current literature, there is a lack of

research on actively involving both participating edge/fog devices and end devices

in the mining process to collectively enhance the quality of the global model in

blockchain-based federated learning IoT applications. This work aims to propose a

blockchain-based federated learning model for a critical medical application, ECG

monitoring, which offer improved data privacy, increased data diversity, more ef-

ficient resource utilization, and real-time updates by enabling active participation

from both edge/fog devices and end devices in the mining process to improve

the global model’s quality collaboratively. The proposed FedSDM model predicts

ECG data anomalies by implementing federated learning in edge, fog, and cloud

layers while also providing guidelines for usage at the appropriate level. The im-

plementation details for the proposed approach are detailed in Section 6.2.
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Table 2.9: Summary of related works on Blockchain

Reference Application
Area

Advantages Disadvantages

Lu et al. [149] Industrial
IoT

Privacy preserving FL
with secure data shar-
ing

Consensus on permis-
sioned Blockchain

Pokhrel et al. [150] Vehicular
Commu-
nication
Networking

distributed exchange
and verification of on-
vehicle model updates

On-vehicle update
complexities.

Aich et al. [151] MEC Two-stage privacy-
protecting workflow

Blockchain overhead
potential.

Lu et al. [152] Edge Data
Processing

asynchronous fed-
erated learning and
blockchain-based pa-
rameter integration

Asynchronous up-
dates integration
complexity.

Quet al. [153] Decentralized
Privacy

Decentralizing author-
ity against poisoning
attacks

Decentralized privacy
protocol challenges.

Chen et al. [135] Medical Ap-
plications

Homomorphic encryp-
tion and data confi-
dentiality in federated
learning

Homomorphic encryp-
tion implementation
complexity.

Passeratet al. [136] General
Blockchain

Enhanced security
through a secure
aggregation protocol

Ethereum ecosystem
reliance for encryption
toolkit.

Kumar et al. [137] Medical Ap-
plications

Blockchain-based
federated learning for
global deep learning
model

Multi-source coopera-
tion requirement.

Passerat et al. [155] Various Ap-
plications

Risk-mitigating de-
centralization

Third-party trust re-
liance possibility.

Bao et al. [156] Various Ap-
plications

Incentivized partici-
pation in decentral-
ized and auditable FL
ecosystem

FLChain implementa-
tion complexity.
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2.8 Mobility in Edge/Fog/Cloud IoT applications

In the realm of IoT applications, incorporating mobility is paramount to unlock

the full potential of connected devices and ensure the effectiveness of the de-

ployed solutions. Mobility introduces dynamic and ever-changing environments

where devices, sensors, and users are not static but constantly on the move. By

accounting for mobility, IoT applications can seamlessly adapt to changing con-

texts, enabling real-time data acquisition and analysis irrespective of the location

of devices. This is particularly crucial in scenarios such as smart cities, health-

care, and industrial settings, where the movement of people, assets, or equipment

is inherent. A mobile-aware IoT application enhances scalability, responsiveness,

and the system’s overall efficiency, ensuring that it remains resilient and continues

to deliver meaningful insights and services even in dynamic and diverse opera-

tional landscapes. Consequently, by acknowledging and accommodating mobility

in the design and implementation phases, IoT applications can provide more agile

and robust solutions that better align with the dynamic nature of the connected

world. The upcoming section provides an overview of the literature survey fo-

cusing on mobility within applications spanning edge, fog, and cloud computing

environments.

Jayasena et al. utilize a whale optimization meta-heuristic algorithm for op-

timizing task scheduling in a smart healthcare application model, demonstrating

superior performance over PSO, shortest job first, and round robin in terms of

energy usage and cost [102]. Qiu et al. analyze minimization optimization in fog

computing-based Internet of Medical Things, addressing a non-convex and non-

linear problem, taking into account factors like quality of service, power limits,

and wireless constraints as optimization parameters [103]. Abdel et al. propose a

fog-based IoT platform for real-time diabetic patient tracking, employing a hybrid

strategy based on type-2 neutrosophic logic with the assistance of the VIKOR

method [104]. Hasse et al. present an e-health system that collects general and

physiological health indicators from older individuals using MySignals HW V2

technology, employing a fog computing mobile application for health monitoring.

This approach offers an advantage in terms of handover latency [105]. However,

these strategies are not suitable for IoT fog systems since message notifications

and distributed storage cannot be refreshed while in motion [106].
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Table 2.10: Literature Survey on Microservices in IoT Applications

Reference Objectives/Findings

Benayache et al. [164] Microservices architecture offers high-service
decoupling and is suitable for IoT applica-
tions

Yu et al. [165] Microservices architecture demonstrates ex-
ceptional performance in IoT applications

Zhao et al. [166] Proposed microservice architecture for low-
latency fog computing applications

Abdullah et al. [167] Introduced predictive autoscaling for mi-
croservice applications in fog computing, re-
ducing rejected requests and SLA violations

Samodha et al. [168] Analyzed microservice integration for IoT
applications in fog computing, focusing on
application modeling, placement composi-
tion, and performance evaluation

Thanh et al. [169] Introduction of broker-less architecture in
the Internet of Healthcare Things platform
for healthcare applications

2.9 Microservices in Edge/Fog/Cloud IoT appli-

cations

Microservices play a significant role in edge/fog/cloud IoT applications by en-

abling a modular and scalable architecture that allows for efficient resource uti-

lization and rapid deployment of services across these distributed environments,

ultimately improving responsiveness and flexibility in managing IoT workloads.

This approach also enhances fault tolerance and enables better management of

resources, making it well-suited for handling the dynamic and diverse nature of

IoT data processing and analytics.

The microservice architecture is geared towards breaking down the system into

small, self-contained components that are interconnected by shared services. This

architecture offers a higher degree of service decoupling compared to traditional

service-oriented and monolithic architectures, as noted by Benayache et al. [164].

Microservices architecture is gaining prominence due to its intrinsic characteris-

tics, including small granularity and low coupling, making it a preferred design

approach for deploying and updating IoT applications. Yu et al. [165] highlights

its exceptional performance and suitability in the context of IoT applications. In

this architecture, each microservice is responsible for a specific sub-task or ser-

vice, which translates to reduced computational resource requirements and lower
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communication overhead.

Zhao et al. propose an architecture based on microservice containers in the fog

system, specifically designed for executing mobility applications that demand low

latency and cost-effectiveness. Their cost calculation method includes both com-

putation and communication expenses [166]. Abdullah et al., on the other hand,

introduce a novel approach involving predictive autoscaling of microservice ap-

plications within containerized fog computing infrastructure, demonstrating fewer

rejected requests and SLA violations compared to existing systems [167]. Samodha

et al. delve into the unique aspects of scheduling microservices-based applications

in fog computing, distinct from other application models. Their work involves

the analysis of microservice integration for IoT applications, encompassing appli-

cation modeling, placement composition, and performance evaluation [168]. This

microservices architecture is recommended for its simplicity in updating and de-

ploying fog-based IoT applications, underpinned by its fundamental attributes

such as small granularity and low coupling.

Finally, the introduction of the Internet of Healthcare Things (IoHT) platform

in the healthcare domain employs a broker-less architecture for various purposes,

including data collection, user management, device management, and remote de-

vice control [169]. The preceding studies are summarized in Table 2.10.

2.10 Simulation Tools

In the dynamic landscape of edge, fog, and cloud computing, simulation tools serve

as indispensable aids for researchers and practitioners in comprehending and op-

timizing complex architectures and applications. Specifically, tailored simulation

tools for edge and fog environments play a crucial role in evaluating diverse sce-

narios, resource allocation strategies, and application deployments. A literature

survey on simulation tools for edge and fog environments is essential to provide

a comprehensive understanding of existing tools, methodologies, and frameworks.

Such a survey facilitates the identification of key features, capabilities, and limita-

tions of various simulation tools, aiding in informed decision-making and staying

abreast of the rapidly evolving landscape.

Puliafito et al. introduce MobFogSim, an extension to the iFogSim simulator

designed to account for user mobility, wireless connectivity, and the virtual ma-

chine/container migration process [45]. Isaac et al. propose YAFS, Yet Another

Fog Simulator tailored for fog computing environments, which models network

failures and enables the evaluation of service placement solutions under failure

scenarios by dynamically creating/deleting cloudlets and network links, along with

runtime event implementation [170]. FogNetSim++ is a framework for construct-
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ing network simulators that extends OMNeT++14 to replicate all aspects of en-

ergy consumption, pricing, mobility, and handoff mechanisms [171]. The preceding

studies are summarized in Table 2.11.

The market is highly competitive in terms of simulators designed for edge, fog,

and cloud device simulations. The choice for modeling and simulating edge/fog/

cloud computing infrastructures and services for the proposed system is iFogSim2,

an extension of Cloudsim. This framework allows for the development and execu-

tion of experiments involving edge/fog/cloud devices, covering aspects like com-

pute, memory, I/O, VM allocation, and VM power models. iFogSim2, building

upon the iFogSim simulator, possesses features such as service migration, dis-

tributed cluster establishment across fog nodes, and microservice orchestration,

crucial for validating the proposed approach’s performance in fog computing en-

vironments. Its components, including mobility, clustering, and microservices, are

modular and can be adapted for various simulation scenarios. Notably, iFogSim2

sets itself apart by incorporating real datasets to evaluate different service man-

agement strategies in fog computing contexts, a feature lacking in most existing

solutions. It offers methodologies for node clustering, mobility management, and

microservice orchestration, serving as valuable benchmarks for performance com-

parison [44].

Table 2.11: Literature Survey Summary of Simulation Tools

Reference Tool Realtime or Simulation M
o
b
il
it
y

M
ig
ra

ti
o
n

C
lu
st
e
ri
n
g

Puliafito et al. [45] MobFogSim Simulation ✓ ✓

Lera et al. [170] YAFS Simulation ✓

Qayyum et al. [171] FogNetSim++ Simulation ✓

Proposed iFogSim2 Simulation ✓ ✓ ✓

2.11 Summary of Literature Survey and Research

gaps

2.11.1 Multiobjective Optimization

The literature review could be summarized as follows: various papers evaluated

performance for healthcare systems, taking into account parameters such as la-

tency, real-time processing, response time, decision-making, scalability, mobility

deployment, dynamic configuration, network traffic, battery, energy consumption,
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and bandwidth. The primary shortcoming of the existing works is that many of

the works concentrate on single-use cases and therefore only discuss infrastructure

and services that are adequately specialized. The current solutions are either single

objective optimization of a single parameter or a combination of single parameter

optimizations. Considering all parameters of simulation such as latency, real-time

computation, response time, decision making, scalability, mobility implementa-

tion, dynamic configuration, network traffic, power, energy consumption, cost and

bandwidth into a single problem in fog computing is still an open research. The

current implementations have not addressed the provision of resources to meet ex-

pected service response times for efficient service in case of emergency applications.

The consolidated literature survey on the parameter used for comparison is pre-

sented in Tables 2.12 and 2.13 summarizes the paper along with their application

domain and the parameter used. It also highlights if the model is experimental or

real time or simulation.

To address a few of the above issues, the proposed approach explores smart

resource provisioning and decision-making in fog computing where objective func-

tion maximizes application efficiency by considering multiple parameter optimiza-

tions. The parameters considered are energy, network use, execution time, cost

and delay. The problem description of the proposed model is explained in the next

section.

2.11.2 Metaheuristic methods

The literature explores meta-heuristic algorithms for resource provisioning in edge

and fog computing, notably in healthcare-focused IoT microservices. However, a

research gap exists in addressing challenges posed by mobility-aware microservice-

based IoT applications in healthcare. Current studies lack specialized investiga-

tion into healthcare IoT microservices’ unique requirements and integrating effec-

tive mobility management techniques within metaheuristic resource provisioning

models. Bridging these gaps is crucial for developing effective meta-heuristic ap-

proaches to address critical healthcare application needs, such as real-time patient

monitoring and diagnostics in dynamic healthcare environments.

2.11.3 Federated learning

Federated Learning in the edge layer for medical anomaly detection is a promising

approach to enable the development of accurate and efficient anomaly detection

models while preserving the privacy and security of sensitive medical data. How-

ever, there are several research gaps that need to be addressed to fully realize

the potential of FL in this domain. One of the research gaps is the incorporation
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Table 2.12: A Summary of Related Work based on application domains

Reference Use case Research
domain

Mode Feature comparison

Energy Cost Delay NU ET

Harshit et al. [64] Online game Real-time
processing

Simulation Ë Ë Ë

Mishra et al. [65] Mission critical Real-time
processing

Simulation Ë Ë

Shreya et al. [66] Time-Critical Hierarchical
processing

Real time Ë Ë

Das et al. [172] Geospatial Geospatial
data pro-
cessing

Simulation Ë Ë

Nashaat et al. [69] IoT IoT data
processing

Simulation Ë Ë Ë

Kumari et al. [70] Smart Healthcare Security
and privacy

Simulation Ë

Zohora et al. [71] Time sensitive IoT med-
ical data
processing

Simulation Ë Ë Ë Ë

Mahmud et al. [33] Smart Healthcare IoT med-
ical data
processing

Simulation Ë Ë Ë Ë

Tuli et al. [99] Remote health-
care

IoT med-
ical data
processing

Real time Ë Ë

[Proposed] Smart healthcare IoT med-
ical data
processing

Simulation Ë Ë Ë Ë Ë
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Table 2.13: Comparison of Various Evaluation Parameters

Parameter
Reference

M
Ahmad
et.al
2016

Fatema
Tuz

Zohora
et.al
2017

Jianhua
Li et.al
2015

Jayneel
Vora
et.al
2017

Redowan
Mah-
mud
et.al
2018

George
et.al.
2018
Gill
et.al
2018

Execution time ✓ ✓
Response time
Delay/Latency ✓ ✓ ✓ ✓
Bandwidth ✓ ✓

Energy consumption ✓ ✓ ✓
Real time processing ✓

Cost ✓
Throughput

Data overloading ✓ ✓
Data consistency
Fault tolerance

of smart decision making (SDM) modules across multiple layers of computing.

To the best of our knowledge, publications have addressed ECG anomaly detec-

tion using IoT microservice applications using SDM. This work aims to propose a

microservice-based federated learning model for one of the critical medical applica-

tions, ECG monitoring which has improved data privacy, increased data diversity,

more efficient use of resources and real-time updates. The proposed FedSDM

model predicts the ECG data anomalies by applying federated learning in edge,

fog, and cloud layers and brings out a policy of usage at the appropriate level.

2.11.4 Blockchain based Federated learning

In the present state of the field, there is a noticeable research gap surrounding

the collaborative involvement of fog/edge devices and end nodes in the mining

process, working together to develop a global model collectively. This innovative

approach diverges from the traditional method of constructing the global model

directly. Instead, these entities choose to distribute their local model updates with

the network, with the global model generation taking place at the end device.

Since the healthcare issues related to ECG anomaly detection in microservice-

based IoT systems are not sufficiently addressed by existing research were moti-

vated to do this study.
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2.12 Objectives and Research goals

The significant contributions of our work are as follows:

• To propose a resource provisioning solution using IoT microservices with

mobility management for healthcare applications.

• To implement multiobjective optimization using the weighted sum method

and to optimize the key parameters associated with the application

• To utilize modified metaheuristic scheduling techniques for efficient resource

provisioning in fog and edge devices

• To design an early warning system for ECG anomalies using Smart Decision

Making module

• To integrate Blockchain-based Federated learning, a privacy-preserving method,

into critical healthcare applications to protect end-user data.

• To identify the most suitable placement policy for deploying the Blockchain

based Federated learning module within the architecture’s Edge, Fog, and

Cloud layers

• To simulate a set of experiments to validate the effectiveness of our proposed

solution under real workloads in terms of energy consumption, network use,

cost, execution time, and latency.
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Chapter 3

Resource Provisioning based on

Multiobjective Optimization

3.1 Introduction

This section describes the proposed solution to the resource provisioning problem

using multiobjective optimization methods. The approach addresses the resource

provisioning problem as a multiobjective optimization problem with the objective

of minimizing the evaluation parameters considered in this work.

A literature survey on different multiobjective optimization methods for pa-

rameter optimization in edge and cloud computing reveals a diverse range of tech-

niques used to balance key factors in achieving efficient and responsive systems.

Different approaches are described in the below paragraph. Many studies uti-

lize Pareto-based methods, such as Non-dominated Sorting Genetic Algorithm

(NSGA) and Strength Pareto Evolutionary Algorithm (SPEA), to find a set of

solutions that represent the Pareto front—solutions that cannot be improved in

one objective without deteriorating another. These methods provide a compre-

hensive understanding of the trade-offs between parameters by offering a range

of optimal solutions. Evolutionary algorithms, such as Genetic Algorithms and

Particle Swarm Optimization, have also been widely employed for multiobjective

optimization in edge and cloud computing. These algorithms iteratively evolve a

population of potential solutions by mimicking natural selection. They allow for

exploring the trade-off between parameters by optimizing resource allocation, task

scheduling, and data distribution parameters.

Multiobjective particle swarm optimization extends the traditional PSO algo-

rithm to handle multi-objective optimization problems. It uses particle movement

to explore the pareto front, making it well-suited for optimizing parameters in

edge and cloud computing scenarios. Fuzzy logic has been applied to model and
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optimize the relationship between energy and latency. Fuzzy-based methods en-

able handling uncertainties and imprecise information, which are common in edge

and cloud environments. These approaches provide a more realistic representation

of the problem by considering factors like data variability and dynamic workload.

Ant Colony Optimization (ACO) is inspired by the foraging behavior of ants and

has been used for solving multiobjective optimization problems in edge and cloud

computing. It optimizes parameter settings by simulating ant behavior, allow-

ing for the discovery of optimal trade-offs between energy and latency. Machine

learning techniques, including reinforcement learning and neural networks, have

been applied to optimize parameters in edge and cloud systems. These methods

can dynamically adjust parameters to achieve desired energy-latency trade-offs

by learning from historical data and real-time observations. Hybrid optimization

techniques combine multiple methods to leverage and mitigate their strengths.

For example, a hybrid approach might combine GA and PSO to achieve bet-

ter convergence and diversity in the solution space. Game theory approaches

consider multiple entities’ interactions and strategic decisions in a system. Such

approaches can model the interactions between edge devices and cloud resources

to optimize energy-latency trade-offs while considering the behaviors of different

players. Other biologically inspired optimization methods, such as Bee Colony

Optimization and Firefly Algorithm, have also been explored for multiobjective

optimization in edge and cloud computing. These methods draw inspiration from

natural phenomena to search for optimal solutions [173–176].

The weighted sum method is a commonly used technique in various fields, in-

cluding mathematics, engineering, economics, and decision making, to aggregate

multiple factors or criteria into a single composite score. This method involves

assigning weights to each factor based on its relative importance and then com-

puting a weighted sum of these factors to arrive at an overall value. The weighted

sum method can be categorized under the “Pareto-based Approaches” as it aims

to find a set of solutions that represent the pareto front by evaluating trade-offs

between different objectives. In the context of multiobjective optimization for pa-

rameter optimization in edge and cloud computing, the weighted sum method can

be considered as a simplified form of pareto based optimization. The weighted

sum method calculates a single composite score for each solution by linearly com-

bining the individual objectives using predefined weights. These weights represent

the relative importance of each objective. While the weighted sum method does

not explicitly generate a diverse set of pareto-optimal solutions like some other

pareto-based algorithms, it effectively explores the trade-offs between objectives

based on the given weights.

By adjusting the weights assigned to the parameters, decision makers can
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navigate the trade-off space to find solutions that align with their preferences.

However, the weighted sum method assumes a linear relationship between objec-

tives, which might not accurately capture complex interactions and trade-offs. In

summary, while the weighted sum method shares similarities with pareto-based

approaches in addressing multiobjective optimization, it offers simplicity and ease

of interpretation. It provides a way to explore the trade-offs between parameters

by assigning weights to objectives, making it a practical and accessible method

for decision-making in edge and cloud computing scenarios.

The weighted sum method offers several advantages in multi-criteria decision

making and analysis. By assigning appropriate weights to individual factors, de-

cision makers can effectively reflect the relative significance of each criterion in

the decision process. This allows for a structured approach to consider multiple

factors simultaneously, promoting a holistic evaluation of options. Furthermore,

the weighted sum method provide a straightforward interpretation of results. The

computed composite score directly represents an option’s aggregated preference or

performance across various criteria. This transparency aids in communicating the

rationale behind decisions to stakeholders and facilitates a clear understanding of

the decision making process.

Flexibility is another advantage of the weighted sum method. It accommo-

dates a wide range of criteria types, whether quantitative or qualitative, making

it adaptable to diverse decision scenarios. The method’s flexibility also enables

decision makers to adjust weights based on changing circumstances or preferences,

ensuring that the model remains responsive and reflective of evolving priorities.

In cases where precise measurements or data may be lacking, the weighted sum

method can still be employed by relying on expert judgment to assign weights

and evaluate criteria. This allows for informed decisions even in situations with

limited available information.

In conclusion, the weighted sum method offer a practical and intuitive approach

to multi-criteria decision making. Its simplicity, interpretability, flexibility, and

capacity to handle a variety of criteria types make it a valuable tool for aiding

decisions across numerous domains while also demanding thoughtful consideration

of weight assignments and potential model limitations. Therefore, we have opted

for the weighted sum technique in our proposed approach.

3.2 ECG anomaly detection

The proposed approach uses ECG dataset to detect the anomalies in the ECG sig-

nal. Real time ECG abnormality detection is one of the applications in medicine

that has several advantages for patient care. First and foremost, it allows health-
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care providers to quickly identify and respond to cardiac abnormalities, potentially

saving lives. Early detection and treatment of cardiac abnormalities can prevent

more serious and costly health issues down the road. Moreover, real time ECG

anomaly detection can help reduce healthcare costs and improve patient outcomes.

By continuously monitoring ECG signals in real time, the system can immediately

detect anomalies and alert healthcare providers, who can take action to diagnose

and treat the patient. Another benefit is that real time ECG anomaly detection

can improve the accuracy of diagnoses. In some cases, anomalies may be missed

or misinterpreted when relying on visual inspections alone. With automated de-

tection, the system can analyze the ECG signals with greater precision, reducing

the risk of errors and false negatives. Additionally, real time monitoring can

help identify potential issues before they become acute, reducing the likelihood

of hospitalizations and emergency room visits. Overall, real-time ECG anomaly

detection has the potential to improve patient care, increase accuracy, and reduce

healthcare costs, making it a valuable tool in healthcare.

3.3 Architecture for Resource Provisioning based

on Multiobjective Optimizations

This section elaborates on the modules and the components needed for fog based

architecture in the proposed healthcare application. The current implementation

uses a cloud based structure where all the edge devices communicate with the

necessary services with the help of the cloud. However, this may introduce a

certain delay and create latency for the entire process, which may be critical for

the patients in an emergency. To overcome this, the architecture of the proposed

system uses an edge/fog integrated cloud implementation, which reduces the delay

and latency when compared with the existing one.

3.3.1 Existing Architecture - Cloud based

All the components used in the work are assumed to be connected via connec-

tivity technologies for IoT wireless applications like ZigBee, Wi-Fi, Z-wave, and

Bluetooth so as to enable machine-to-machine interaction and human-to-machine

interaction. The modules in the existing cloud architecture are detailed below.

• Cloud datacenter: Data centers are centralized places with the combination

of multiple servers that can handle huge amounts of data computing, storage,

and networking. For medical IoT applications, medical data from the sensors

is transmitted to cloud data centers, and the required action commands for
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the actuators are transmitted from the data centers. Data pertaining to

medical history is also processed permanently in the cloud at the same time.

• Resource management components: The key components of resource man-

agement include provisioning, scheduling, and monitoring. Resource provi-

sioning involves identifying, deploying, and managing software and hardware

resources. Resource scheduling is a set of actions that will effectively allo-

cate the resources to complete the task based on resource availability. Cloud

monitoring deals with the assessment, tracking, and management of software

and hardware resources in the cloud that are being used by applications.

• Smartphones

Technologies such as Bluetooth, RFID monitoring, and Near-field Commu-

nications (NFC) allow smartphones, as part of IoT medical health care, to

collect sensor data and perform necessary action commands to actuators.

• Wearable sensors and actuators

The principal role of the smart sensor node is to track environmental con-

ditions [177]. Medical Sensors are used for detecting and responding to

changes in the human body. Sensing technology is evolving so quickly in

such a way that within a few years, we will see trillions of medical sensors

being deployed for complex health care applications. A medical actuator is

a device for medical equipment movement and control.

The data between the modules in the above-said cloud architecture is shown

in Figure. 3.1. The flow of data is as follows

1. Transfer of captured sensor data to the network.

2. Transmission of raw data through resource management components.

3. Transmission of data to the cloud for processing.

4. Response of the resultant communication after cloud processing.

5. Response command transmission through network elements.

6. Transfer of actuation command to the concerned module of operation.
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Figure 3.1: Data flow in Cloud-based architecture

Figure 3.2: Data flow in Edge-based architecture
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Figure 3.3: Flow of data in architecture based on Edge computing

Figure 3.4: Flow of data in architecture based on Fog computing

3.3.2 Proposed architecture - Edge/Fog based

The architecture is based on a set of expectations that are extracted from the

essential application of health care services. If successfully applied, edge/fog com-

puting can reduce the latency experienced in QoS and minimize the bandwidth

usage in any healthcare application and later can be extended to other time-critical

applications. The main difference between fog-based and cloud-based systems is

the computing and storage capability of the fog devices between the patient and

the cloud data center. With the idea of fog technology, the underutilization of

intermediate devices can also be addressed. An edge/fog-based integrated IoT

application system architecture presented in Figure 3.2 has the following steps.

1. Collection of sensor data from the patient.

2. Verification of sensor data for its integrity and origination.

3. Transfer of sensor data to nearby edge/fog devices such as the patient’s

smartphone or laptop in the patient’s room.

68



Figure 3.5: Flow of data in architecture based on Cloud computing

4. Analysis of medical data for any medical attention requirement.

5. Sending regular notifications to the physician/hospital/ caretakers concerned.

Edge/Fog computing based solution consists of advanced networking devices called

fog nodes and edge devices for computing tasks.

To conclude the above, the steps involved in the proposed edge/fog based

architecture include the following

• Sensor data validity testing

• Data filtering and processing of authorized sensor data

• Comparison of ECG data with preset threshold value

• Transmission of output data to the actuator

In the case of cloud architecture, all the above-described steps happen only in

the cloud data center and all the intermediate nodes just act as data forwarding

devices, while in the case of fog, these steps can happen at three levels, namely

• Processing at the nearest edge device

• Processing at the intermediate fog devices

• Processing at the cloud data center

Below is a description of the data flow for the above types. The detailed steps that

each of the above-described levels follow are described as types. The numbering

mentioned at the beginning of the step is related to the numbering given in the

architectures presented in Figures. 3.3, 3.4 and 3.5.
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Type i

i A Transmission of ECG sensor data to the nearest edge device such as the

smartphone of the patient or the laptop placed in the room of the patient.

i B Verification of authenticity, filtering and comparison of ECG sensor data

with the preset threshold and automatic calling of nearby emergency ser-

vices.

i C Forwarding permanent medical history of patient data to intermediate fog

device.

i D Storage of permanent medical history of patient data to the cloud.

Type ii

ii A Transmission of ECG sensor data to the nearest edge device such as the

patient’s smartphone or the laptop placed in the patient’s room.

ii B Transfer of the task to the next fog device, if the nearest edge device is not

capable enough to do the processing.

ii C Verification of authenticity, filtering and comparison of ECG sensor data in

the respective intermediate fog device, automatic calling of nearby emer-

gency services and forwarding suitable response to the edge device.

ii D A suitable response forwarded to the edge device that is sent to the actuator

to perform the required actuator actions.

ii E Storage of the permanent medical history of patient data to the cloud.

Type iii

iii A Transmission of ECG sensor data to the nearest edge device such as the

smartphone of the patient or the laptop placed in the room of the patient.

iii B Transfer of the task to the next fog device, if the nearest edge device is not

capable enough to do the processing.

iii C Transfer of the task to the next cloud data centre, if the nearest fog device

is not capable enough to do the processing.

iii D Verification of authenticity, filtering, and comparison of ECG sensor data in

the cloud data centre, automatic calling of nearby emergency services, and

permanent storage of patient history.
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iii E A suitable response from the fog device being forwarded to the edge device.

iii F A suitable response forwarded to the edge device that is sent to the actuator

to perform the required actuator actions.

In type i fog architecture, authenticity verification, filtering, and comparison of

ECG sensor data takes place in the nearest edge device, occurs in the intermediate

fog device in type ii, and occurs in the cloud in case of type iii. Type iii would

be the same as if the data is entirely processed as in the case of cloud-based

architecture. Notifications are sent to the concerned persons in all three types of

architecture.

3.4 Proposed Model

The healthcare industry is currently facing substantial challenges due to the ongo-

ing pandemic and the prevalence of chronic diseases. The proposed architectural

framework is rooted in insights derived from practical healthcare applications. If

effectively implemented, edge/fog computing has the potential to alleviate latency

issues in QoS and reduce bandwidth consumption across healthcare applications,

with the prospect of extending its utility to other time sensitive scenarios. The pri-

mary distinction between edge/fog based and cloud based systems revolve around

the computational and storage capabilities of fog devices situated between patients

and cloud data centers. Fog technology also addresses the issue of underutilized

intermediate devices. Resources like virtualized processing cores, storage, and

memory are considered valuable assets at fog nodes. Requests that align with

resource requirements, encompassing CPU, memory, and bandwidth, can be ac-

commodated by the current fog or edge device. Otherwise, they may be directed to

neighboring devices. The proposed fog based architecture introduces the concept

of partitioning fog node virtual machines to efficiently manage data from medical

IoT devices. The presence of multiple processes on a single edge/fog node can

lead to congestion, impeding task execution. To tackle this challenge, edge/fog

nodes can establish virtual machines dedicated to allocating computational re-

sources to specific tasks, each operating as a discrete module. In the realm of

medical IoT applications, there is a growing shift towards implementing modular

architectures, leveraging the microservices approach. This approach accommo-

dates time-sensitive operations within fog/edge environments and latency-tolerant

tasks within the cloud, thus prompting the selection of a microservice architec-

ture for designing and modeling critical real-time medical applications. Further

elaboration on the application model will be provided in subsequent sections.
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A multitier architectural approach has been chosen in the envisioned integrated

fog healthcare application. At tier 0, we have IoT devices like sensors and actu-

ators. These sensors, all operating at the same frequency, capture ECG signals

from patients, which are then transmitted to fog nodes through smartphones. The

transmission rates of these sensors are regulated in our system using the ’transmit-

Distribution’ attribute within the Sensor class of the iFogSim2 simulator. Specif-

ically, the transmitDistribution has been set using a DeterministicDistribution

(EEG TRANSMISSION TIME), with a chosen value of 5ms in our proposed sys-

tem. Actuators are responsible for executing corresponding actions based on the

applications’ outcomes. The details of the simulator is explained in the following

sections.

Moving up the tiers, tier 1 and tier 2 comprise the fog nodes, including proxy

servers and gateways. In our fog-based smart healthcare system, this fog layer

serves as a crucial intermediary for processing and analyzing real-time critical

healthcare data, positioned in close proximity to the end-users. Here, the fog

nodes process the data received from the sensor IoT devices, allowing for the

patient’s health condition to be promptly relayed to their smartphone. Given

their strategic placement at the network’s edge, patient’s experience a fast and a

real time response.

The cloud layer, forming tier 3, represent the uppermost level of our proposed

system. Here, the permanent healthcare data of patients is stored. In case fog

devices face challenges in meeting incoming request requirements, the cloud steps

in, providing additional processing power and storage resources. Users connected

to the application can access the stored data in the cloud at any time. This

multitier architecture for our health monitoring system is illustrated in Figure 3.6.

3.4.1 Problem formulation

Resource allocation, a systematic strategy for distributing available resources to

clients, plays a pivotal role in edge/fog computing. Each edge/fog device has a

data center with capabilities similar to the cloud, computing elements, and stor-

age capacity. Consequently, the edge/fog computing model faces limitations in its

resources to cater to incoming user requests characterized by stringent latency de-

mands. Within the edge/fog network, client applications are capable of running as

cloudlets within virtual machines, where cloudlet tasks are executed within their

corresponding VMs. By creating multiple virtualized replicas of the underlying

hardware, VMs offer vital resources to applications. In such distributed environ-

ments, efficient task scheduling becomes paramount as it involves judiciously allo-
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Figure 3.6: Proposed Model-Multitier Architecture

cating resources to tasks. Task scheduling is entrusted to a task scheduler, respon-

sible for mapping an application’s tasks to the available resources to meet specific

requirements. Given the cost-effectiveness of each VM, task scheduling presents

a challenge. To mitigate these challenges, existing literature explores the appli-

cation of multiobjective optimization approaches, for resource allocation. This

study proposes a resource provisioning model for a mobility-aware IoT healthcare

application, employing multiobjective optimization for scheduling. The proposed

approach seamlessly integrates mobility considerations, clustering strategies, and

microservice methodologies into healthcare applications while conducting a com-

prehensive analysis encompassing energy consumption, network utilization, cost,

execution time, and latency parameters. To evaluate this proposed system, we

utilize the IFogSim2 simulator [44]. The subsequent subsections delve deeply into

the intricacies of the proposed method.

In the envisioned system model, a task scheduler is strategically positioned at

the edge/fog nodes, entrusted with the responsibility of scheduling tasks for exe-

cution once they are submitted. Consequently, a resource provisioning technique

is employed within the nodes to facilitate an efficient match between tasks and

available resources.

The primary objective of this research is to achieve efficient resource alloca-

tion, taking into account user mobility while minimizing processing time. The

applications under consideration in this study are time sensitive, making it less

desirable to handle user requests solely through a cloud based approach due to

potential latency issues. The involvement of fog/edge devices become imperative
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Figure 3.7: Proposed Task scheduling diagram

to ensure timely task completion. The proposed model must address the inher-

ent limitations of fog/edge devices, including their highly distributed nature and

limited resource availability. Furthermore, it should accommodate the hybrid fog-

cloud environment, accounting for user deadlines and dynamic behavior. Notably,

previous research has overlooked resource allocation in fog environments while

considering users’ changing locations. As previously mentioned, this proposed ap-

proach explores the mobility of devices and presents a comprehensive analysis of

results under varying conditions. The workflow of this module in the proposed

approach is as follows:

• A mobile user initiates a request, which is processed by the linked fog node

• The fog broker receives the job request and disassembles it into a series of

tasks for distribution across the distributed system, determining the resource

requirements for each task

• The fog broker manages task and node data, employing a scheduling algo-

rithm to optimize resource assignments for each task

• Tasks are then dispatched to the respective fog nodes

• Each fog node is responsible for executing its allocated tasks before sending

the completed work back to the fog broker

• Subsequently, the connected fog node transmits the response to the mobile

user

Figure 3.7 presents the above steps diagrammatically. An edge/fog computing

system comprises a fully interconnected array of “m” servers, with each server
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housing “n” virtual machines. Virtualization facilitates the creation of multiple

virtual machines on a single host or server. It is important to note that all resources

are considered uniform in terms of computing capacity and capability. Each host

may be assigned various services, and the system’s workload consists of tasks sub-

mitted to the scheduler. Tasks are independent scheduling entities that cannot be

interrupted and generally represent user compute or service requests. Efficiently

provisioning resources in edge/fog systems can be framed as an optimization prob-

lem aimed at minimizing execution time. This optimization is particularly crucial

for time-critical applications, which exert a significant influence on this parameter,

a focal point in our model.

User application requests are decomposed into smaller, independent tasks upon

reaching the fog layer, where they undergo processing within the cloud-fog com-

puting infrastructure. To effectively harness the advantages of fog computing,

the approach to application development has shifted from monolithic design to

microservice architecture. Our system’s application model comprises numerous

microservices, underpinned by the microservices methodology. This methodol-

ogy enables the construction of applications from multiple small services, each

operating in its dedicated process and using straightforward protocols for com-

munication. Microservices empower the development of systems composed of

numerous self-contained components, each capable of managing its data. The

adoption of microservices yields benefits like heterogeneity, robustness, scalability,

ease of deployment, organizational alignment, and composability, thus facilitating

the creation of large-scale IoT applications. In the modern landscape, microservice

deployments hold greater significance due to their high performance and suitability

for IoT applications. Figure 3.8 provides a visual representation of the proposed

system’s application model, consisting of an array of microservices. Each microser-

vice is denoted as a vertex, while the edges illustrate the data connections between

them. Within this design, three distinct microservices are identified.

• Client Microservice: Serving as the forefront of the healthcare system based

on fog computing, the client microservice operates on users’ smartphones.

Its primary function is to receive sensor ECG signals linked to the patient.

Subsequently, it forwards this sensor data to the preprocessing microservice,

hosted on the fog device.

• Preprocessing Microservice: The preprocessing microservice is responsible

for conducting data validation and cleansing operations on the ECG sen-

sor data. This crucial step aims to reduce noise in the data before it is

transmitted for further processing.
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Figure 3.8: Data flow diagram with microservice modules

• Decision Making Microservice: To alert the client microservice regarding

the patient’s health status, the decision-making microservice plays a pivotal

role. It must assess the real-time data to determine whether an emergency

situation exists. This critical decision-making process is executed within this

microservice.

For the purpose of user health monitoring, these microservices engage in in-

tercommunication. The deployment of time-critical microservices, responsible for

preprocessing and decision-making, can vary based on the placement policy, with

options including deployment in either the edge/fog or the cloud. The storage

module is responsible for handling data that is intended for permanent storage in

the cloud. This research introduces a resource provisioning mechanism of notable

utility, capitalizing on a multi-level hierarchical fog architecture. Within this ar-

chitecture, multiple levels of application placement requests are processed at the

edge/fog nodes. It employs a decentralized placement approach to distribute mi-

croservices across the edge/fog environment, creating a model for a critical IoT

medical application.
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Figure 3.9: Dataset description

3.4.2 Datasets

Datasets - Mobility

In this study, the EUA dataset [178] is employed, offering precise positioning data

for edge/fog nodes strategically deployed within the Central Business District

areas of major Australian cities, including Melbourne and Sydney. The dataset

is partitioned into distinct regions and further subdivided into blocks. Within

each block, one node is randomly selected as the proxy server to ensure unbiased

representation. In the same block, all nodes, except the proxy server, function as

gateways for IoT devices. This repository houses a compilation of EUA datasets

sourced from real-world data origins, generously shared with the public to support

ongoing research in edge computing. These datasets specifically pertain to the

Australian region, enhancing the fidelity of real time environment simulations. A

sample representation of data set is presented in Appendix A.1.

ECG dataset

The dataset [179] considered for this work has 140 columns representing the ECG

readings and a label encoded as 0 or 1, denoting whether the ECG is abnormal

or normal. Columns 0-139 contain the ECG data point for a particular patient.

These are floating point numbers. The first three column value ranges along with

the final label description, are presented graphically in Figure 3.9 to understand

the spread of values in the dataset. The first column of Figure 3.9 displays the

maximum and minimum values for the first data point of the patient set in the

dataset, while columns 2 and 3 represent the same information for the second and

third data points respectively. The final illustration in the figure provide a label

indicating whether the ECG is classified as normal or abnormal. The dataset has

58% of the tuples belonging to the normal class and the remaining belonging to

the abnormal class. A sample of the dataset is shown in Appendix A.2.
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3.5 Evaluation parameters for proposed approach

The proposed work has been evaluated for identified metrics which is detailed in

this section. A set of n independent tasks are delivered to the system at each time,

assuming that Tk represents the kth task denoted as follows:

T = {T1, T2, T3, ..., Tn} (3.1)

The assumed infrastructure comprises edge/fog/cloud nodes, which are processors

with characteristics such as CPU rate, CPU usage cost, bandwidth usage cost, and

memory usage cost. The set of m processors is made up of fog nodes as mentioned

below:

N = {N1, N2, N3, ..., Nm} (3.2)

where Ni represent the ith processing node. The processor Ni allocated with job

Tk is denoted by T i
k.

A set of one or more tasks may be assigned to one processor for computing:

NiTasks = {T i
x, T

i
y, ..., T

i
z} (3.3)

The subsequent information discuss the performance metrics employed to assess

the implementation of the proposed approach across the edge, fog and cloud layers.

Execution time The execution time (EXT) required by node Ni to finish a set

of NiTasks assigned to it is:

EXT (Ni) =
∑

T i
k∈NiTasks

EXT (T i
k) (3.4)

EXT (T i
k) =

length(T i
k)

CPUi

(3.5)

where length(T i
k) denote the number of instructions in the task Tk. The node

Ni’s CPU rate is represented by CPUi and depends on factors such as clock rate,

core count, instruction level parallelism, etc. Total execution time is the total time

taken by the system to complete all the tasks, defined from the time when the re-

quest is received until the last task, or the time when the last machine completes.

Total execution time is determined by the formula:

TXT =
∑
m

[EXT (Ni)] (3.6)

The time used to complete the job while utilizing system services is included
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in the task’s execution time. Execution times differ amongst tasks because they

rely on how intensive the processing and input-output activities are.

Latency The application’s control loop is Client Microservice → Preprocess-

ing Microservice → Decision Making Microservice → Client Microservice. The

control loop in our proposed approach has a relatively shorter latency, indicating

better coordination and placement of computational resources. The iFogSim2 sim-

ulator provide multiple methods for module placement, including the one called

edge-ward placement which has been utilized in this work. This method involves

shifting microservices towards the top of the fog hierarchy, so that it leads to a de-

ployment of a singular instance of each microservice along the route from the edge

to the cloud. Due to the restricted resource capacity of fog nodes, this strategy

places microservice instances in higher fog layers, increasing average latency.

TL =
∑
m

CAL (3.7)

Total latency (TL) represented in Equation 3.7 directly depends on the alloca-

tion of VMs in fog devices in which the tasks are distributed for execution. Total

latency is the summation of the current average delay (CAL) experienced by every

VM inside the host for m servers, where CAL is calculated as follows.

CAL = CC − ET (3.8)

Here, CC denote the simulator clock and ET is the execution time of the

tuple. CC, the simulator time is recorded by the simulator when the response is

received by the IoT device and ET, when the request is received by the edge/fog

node. The difference between these times give the total latency experienced by the

tuple, which include all the delays in the communication path, such as transmission

delay, propagation delay, processing delay, and queuing delay.

Energy consumption Energy consumption is one of the significant parame-

ters that we have in computing systems. This typically includes infrastructure for

data communications for backup power supplies, environmental controls, including

cooling systems, fire control, and different security technologies. Infrastructure op-

erational costs are impacted by the power supply. Hence methods must be put in

place to lower these costs. The edge-ward method places the majority of microser-

vices on cloud VMs, which increases the energy consumption of cloud resources.

The amount of energy used depends on how many microservices are active on

each tier. Efficiency, affordability, availability, dependability, and environmental

protection of devices are all greatly impacted by energy consumption reduction.
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We model the server or host’s energy consumption as the sum of two compo-

nents: the fixed energy for the server in an idle state and the variable energy for

server utilization while processing the requests. Energy consumption depends on

the server’s number of VMs and the allocated MIPS allocated for each VM.

The variable energy for server utilization while processing the requests is ENik .

E is the total energy consumption which can be calculated by

m∑
i=0

(
n∑

k=1

ENik + E0) (3.9)

ENik = e1 ∗ EXT (T i
k) (3.10)

where ENik is the energy consumption by the task Tk running on the virtual

machine or node i. Operating the data centre requires E0, the fixed energy of

the server in idle state, and e1, the energy consumption per unit time in node Ni.

The suggested method makes some fixed assumptions regarding the simulation

setup, including the distance between fog nodes, energy efficiency, and power

consumption of communication devices. However, we are aware that these factors

typically affect the amount of energy used for communication, therefore we will

address this in the future to improve our model.

Network usage A crucial metric for comparing various approaches is the overall

volume of data delivered across a network. Particularly on large networks, high

data transfer may result in network congestion, service interruptions, or an increase

in the control loop’s average delay for the applications. In comparison to cloud

operations, the latency can be significantly reduced if the edge of the network

can manage the portion of the workload. Additionally, the edge-to-cloud traffic

is to be maintained. Data transmission size could be considerably decreased by

data pre-processing at the edge and fog devices. However, bandwidth conservation

is essential because many endpoints connect to the network and many database

servers are needed to run them. Network usage depends on the latency experienced

by the network and the tuple size of the data for ′n′ VMs in the host as listed in

Equation 3.11.

NU =
∑
n

(l ∗ TNS) (3.11)

where l denote the latency experienced by the network and TNS denote the

tuple network size. Tuple network size refers to the number of tuples that can be

processed simultaneously within the network. Total network use depends on the

number of VMs in fog devices in which the tasks are distributed for execution.
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Cost Costs include network hardware, infrastructure, network communications,

processing, and storage costs. The investment made by service providers in

edge/fog computing also include the placement of processing and communication

workloads in the edge/fog device. One of the main issues with edge/fog computing

is cost saving.

Processing cost is defined as:

cost(T i
k) = c1 ∗ EXT (T i

k) + c2 ∗M(T i
k) + c3 ∗Bw(T i

k) (3.12)

where c1 denote the CPU usage fee per time unit in node Ni, and EXT(T i
k) is

given in Equation 3.5. c2 denote the memory usage fee per data unit in node Ni

and M(T i
k) represent the memory needed by task Tk. Task Tk processed in node

Ni needs an amount of bandwidth Bw(T i
k), which is the sum of input and output

file size. c3 is the bandwidth usage fee per data unit. The following formula is

used to determine the cost of each task in the Edge-Fog-Cloud system in total.

Totalcost =
∑

T i
k∈NiTasks

cost(T i
k) (3.13)

Table 3.1 contains the list of acronyms used in this section.

3.6 Implementation and Results - Weighted sum

method

3.6.1 Experimental setup

The simulator iFogSim2 makes it possible to simulate fog computing environment

to analyze resource management policies and scheduling for IoT applications. It is

an open-source toolkit used to simulate fog, edge and IoT applications. iFogSim2

works in conjunction with CloudSim, a commonly used cloud-based environment

simulation and resource management tool. Fog device, Sensor, Actuator, Tuple,

Application, Monitoringedge and Resource management system are few of the

classes of iFogSim2 that are needed to simulate the fog network. The following

section describes the parameter setup and metrics of optimization considered for

simulation.
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Table 3.1: Notations used in evaluation metrics

Symbol Meaning

T Tasks

E0 Power required for the server in an idle state

N Nodes

NU Network use

m The Number of servers

l Latency experienced by the network

n Number of VMs inside the host

TNS Tuple network size

EXT (Ni) The execution time required by node Ni

cost(T i
k) Cost for processing task T i

k

TXT Total execution time

M(T i
k) Memory needed by task T i

k

TL Total latency

Bw(T i
k) Bandwidth needed by task T i

k

CAL Current average latency

CC Simulator clock

ET Execution time of the tuple

E Total energy consumption

ENik Energy consumption by the task Tk

3.6.2 Parameter set up for simulation

Simulation requires creating cloud data centre, fog devices, sensors and actuators

in iFogSim2. To do so, one can make use of iFogSim2 physical topology classes

such as fogdevice, sensor and actuator and fundamental classes such as controller,

module mapping, module placement and application. The placement policy used

is edge-ward placement. The edge/fog devices are hierarchically linked. edge/fog

devices at low level are connected directly to the relevant sensors and actuators.

edge/fog device is generated with different instruction processing rate and param-

eters of energy consumption such as busy and idle power indicating its capability

and energy efficiency. For defining createFogDevice() function, the standard val-

ues are used for the parameters like mips, ram, upBw, downBw, ratePerMips,

busyPower and idlePower. Creating sensor tuples with specific deterministic dis-

tribution using random function and generation of sensor tuples are event driven.

The settings are as follows for the five-layer approach, cloud in level 4, proxy

and gateway in level 3 and 2, mobile in level 1 and sensors/actuators in level 0.

Similarly for the four-layer approach, the settings are, cloud in level 3, gateway

in level 2, mobile in level 1 and sensors/actuators in level 0. Cost per million
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instruction handling is pre-set for the physical component configuration at sim-

ulation time. Once the simulation is completed, the controller object collects

cost (dollars), network usage (kilobytes), and energy consumption (megajoules)

results from fog devices. It uses the hands-off mechanism for edge and fog node

mobility which is the default set-up in iFogSim2. Execution and analysis of the

performance parameters considered in this proposed work are cloud energy, router

energy, network usage, cost and delay which are described in the following section.

This implementation aims to illustrate the effectiveness of fog based application

over cloud based systems.

3.6.3 Objective function for weighted sum method

The parameters considered for optimization are energy consumption, network use,

execution time, cost and latency represented by the weight vectors w1, w2, w3, w4,

w5 respectively. They hold the values between 0 and 1 and sum to 1. These weights

are subjective and define the contribution of each parameter in the solution space.

The multi criteria decision making methods like analytical hierarchical process

could be used to derive the weight vector. Any point of a convex pareto front can

be obtained by altering the weights. The model is solved for each combination

of weighted coefficients, and the objective function values are saved in the pareto

set. The objective functions considered in this work are presented in Equations

3.14, 3.15, 3.16, 3.17, and 3.18. The multi-objective optimization problem is given

in Equation 3.19.

obj1 = min(TXT ) (3.14)

obj2 = min(TL) (3.15)

obj3 = min(E) (3.16)

obj4 = min(NU) (3.17)

obj5 = min(Totalcost) (3.18)

min(w1 ∗ obj1 + w2 ∗ obj2 + w3 ∗ obj3 + w4 ∗ obj4 + w5 ∗ obj5) (3.19)

where

w1 + w2 + w3 + w4 + w5 = 1 (3.20)

The constraints for this problem ensure that the total CPU requirements of

all jobs assigned to a host do not surpass the host’s capacity. Additionally, each

virtual machine should be allocated to only one host. The start time for the

simulation should be greater than zero, and the tuple network size must not exceed
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the network size limit.

Table 3.2: Weight Selection for Weighted Sum Method

w1 w2 w3 w4 w5 Objective function value
0.165 0.143 0.143 0.221 0.329 2.21E+06
0.18 0.12 0.14 0.21 0.32 2.40E+06
0.18 0.06 0.06 0.1 0.58 2.40E+06
0.18 0.05 0.08 0.08 0.5 2.40E+06
0.2 0.2 0.2 0.2 0.2 2.67E+06

Analytical Hierarchical Process (AHP) is a structured technique that is used to

solve multi-criteria decision making problems in many areas including e-commerce,

transportation, portfolio selection, supplier selection etc. It helps in organizing

and analyzing complex decisions, based on mathematics and psychology, where

alternatives are ranked using the pairwise comparison of multiple criteria [180].

The weighted sum for each alternative is computed by multiplying each objective

value with its corresponding weight and summing up the result, ending in a singu-

lar value representing the performance of each alternative. These alternatives are

then ranked in descending order based on their weighted sum values, creating a list

from best to worst. Beginning with the top alternative, non-dominated solutions

are identified by comparing their weighted sum value to those of the alternatives

below it. If an alternative has a better or equal weighted sum value for at least

one objective and a better-weighted sum value for at least one other objective, it

is considered non-dominated. This process is repeated for all alternatives, and the

preferred solution is selected from the non-dominated set. However, this weight

assignment is subjective and can vary from problem to problem. The use of AHP

in this proposed study leads to the set of weight vectors listed in the Table 3.2 for

the parameters considered.

3.6.4 Use cases considered

The proposed work compares the performance of the cloud and the fog architec-

tures by varying the number of gateways and the number of devices per gateway

deployed at the varying levels in the implementation. These are described as var-

ious case scenarios in this section and they represent the different types of fog

architectures described in section 3.3.2 in order.
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Case Scenario i

Scenario i is implemented with a single gateway deployed with a single device. This

is equivalent to the real-time scenario where patient information is transmitted to a

single mobile phone (patient’s phone) and mobile data is transmitted to the cloud

through a single network provider gateway. The simulation results infer that the

fog-based architecture has a steep reduction in the cost and the network use while

the router energy consumed is at an ignorable level. This basic scenario motivates

the concept of using the fog nodes for critical computations than sending them

to the cloud directly. Implementing the described fog-based use case scenario in

real-life healthcare can enhance patient well-being by providing swift and reliable

access to critical medical information on their mobile devices. This approach

ensures timely communication with healthcare providers, fostering more informed

decision-making and improving overall healthcare quality. These observations can

be seen in the results listed in Table 3.3.

Case Scenario ii

Scenario ii is implemented assuming the use case where patients sensor data is

transferred to four mobile phones (patients phone, caretakers phones etc) and

mobile data is transmitted to the cloud through a single network provider gateway.

Thus, this implementation in iFogSim2 uses a single gateway each deployed with

four devices. The simulation results thus obtained are presented in Table 3.4. The

inference drawn from this table is as follows:

• The cost of the computation and the network usage in fog based implementa-

tion is approximately reduced by 96% and 93% respectively when compared

to the cloud model.

• Meanwhile, the router energy of the fog model increases by 1.5% when com-

pared to the cloud model. This is due to the fact that the computations are

performed in the fog nodes and this increase at the fog level will reduce the

overload on the cloud.

Since the proposed architecture describes a time-critical medical application, it

has to be fault tolerant (i.e.) even in case of failure of a device, the system should

continue functioning and provide correct results with minimal delay. In order to

make the proposed architecture fault tolerant, scenario ii has been tested with four

and five layers as can be seen in Figure 3.10, the additional layer is the use of proxy

server which replaces the main gateway in case of failure. The intention of this

test case is to analyze the parameters with the additional level and check if the fog

architecture still shows up a better or an acceptable performance when compared
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Figure 3.10: Two Approaches

to the standard cloud model. Table 3.5 presents the results of both four and five-

layer model. The default implementation of case scenario ii is the layer 4 approach.

When considering the presence of the proxy server, it could be noticed that the cost

of the computation increases than the default model which is as expected, but this

increase does not compete with the increase attained from the cloud architecture.

To conclude, the network use and the cost seems to be approximately doubled

in case of fog architecture. Even if all the intermediate devices are replicated

to remain fault tolerant, edge/fog based approach yields a better performance

compared to the cloud model. This use case scenario facilitates collaborative

care by providing health professionals with comprehensive and timely information,

fostering improved decision-making and personalized healthcare interventions for

better patient outcomes.

Table 3.3: Case Scenario i

G1D1 Cloud energy Router energy Cost Network use

Fog Based 1.33E+07 895,309.6105 7,504.486 2,821.18

Cloud Based 1.35E+07 834,333 244,466.8 41,661.72

Table 3.4: Case Scenario ii

G1D4 Cloud energy Router energy Cost Network use

Fog Based 1.33E+07 1,048,835.431 26,169.34 11,223.52

Cloud Based 1.38E+07 834,333 721,848.9 166,344
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Table 3.5: Comparison of layer 5 and layer 4 approach

Approach Fog/Cloud Network Use Cost

Layer 5 Fog 22,834 47,788

Layer 5 Cloud 10,577,241 1,118,855

Layer 4 Fog 11,223.52 26,169.34

Layer 4 Cloud 166,344 721,848

Table 3.6: Case Scenario iii

G4D4 Cloud energy Router energy Cost Network use

Fog Based 1.34E+07 1,048,835.431 86,975.14 46,036.88

Cloud Based 1.51E+07 834,333 2,587,193 664,999

Table 3.7: Proposed work parameter selection comparison with literature

Reference Latency Network Use Cost Cloud Energy Router Energy ET

[181] Ë

[71] Ë Ë Ë

[33] Ë Ë Ë

[32] Ë Ë Ë

Proposed Ë Ë Ë Ë Ë Ë

Table 3.8: Parameter Improvements results data from the Literature Survey
Papers

Reference Latency Network Use Cost Cloud Energy Router Energy ET

[181] 73% - - - - -

[71] - 65% - - - -

[33] 46% - 43% 23% - -

[32] 19.56%-29.45% 22.61%-26.78% - 23.56% - -

Case Scenario iii

Scenario iii is implemented assuming the case where the patient sensor data is

transferred to more end-to-end mobile phones (patient phones, caregivers, emer-

gency services, hospitals, doctors) and mobile data is transmitted to the cloud

through multiple network provider gateways. This scenario uses four gateways

each deployed with four devices in the simulation process. In practical terms, the

implementation of Scenario iii, where patient sensor data is shared with a broader
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Figure 3.11: Distributed architecture results for the Proposed Architecture

network of end-to-end mobile phones, offers substantial benefits for patients, care-

takers, and health professionals. This enhanced connectivity enables more imme-

diate access to vital health information, fostering improved collaboration among

healthcare stakeholders, quicker emergency response times, and enhanced patient

care management. The simulation results listed in Table 3.6 indicates that the

observations are similar as discussed in the previous two cases.

The observations drawn from the above results are:

• In case of fog-based architecture, the fog nodes act at intermediate levels

and perform the computation utilizing the router energy completely and

transmit the end result to the cloud for storage, while in the case of cloud-

based architecture, the fog nodes though present, just transmit the data to

the cloud system where the computations occur. Thus, the router energy of

the fog-based model is seen to be high in all the case scenarios

• Fog nodes though compute the results at the intermediate level, it uses the

cloud system for the final storage. Hence, it makes use of a nominal cloud

energy at every stage. This can be seen by comparing the cloud energy usage

parameters in the results section

• As discussed, the network usage and the cost parameters turn out to be

beneficial for the users in the fog-based architecture. This in turn makes the

proposed system more efficient when compared to the existing cloud-based

implementation
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(a) Cloud Energy (b) Router Energy

(c) Cost (d) Network use

(e) Latency (f) Execution time

Figure 3.12: Results of Edge, Fog and Cloud Deployment for the proposed model
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In addition to the above case scenarios, the proposed system has been tested

for its behavior in a distributed environment (i.e.) at intermediate level, the data

transmission which generally happens with a single fog node was replaced with two

fog nodes which transmits the data to the next level. This enables load sharing

where each overloaded node can share its workload with the adjacent less loaded

node in the transmission process. The expectation here is that the execution

time and the delay parameters should showcase an improved performance. The

results presented in Figure 3.11 concludes that the addition of two fog nodes to do

the stipulated task reasonably reduces the execution time with a slight increase

in the delay parameter. The increase in the delay is due to the fact that the

load sharing involves its own initial overhead in distributing the task. Thus, the

proposed fog-based architecture can support load sharing too in addition to the

various other advantages like network use and cost. Hence, it can be concluded

that the proposed model can be preferred over the existing cloud based methods

for time-critical applications. It has undergone testing across cloud, fog, and edge

scenarios, with the outcomes illustrated in Figure 3.12.

Tables 3.7 and 3.8 presents the consolidated list of parameters addressed by

the existing literature along with the performance improvement in the simulator

used. Among the existing fog architectures proposed approach improves network

use by 31% compared to [71] and 71% compared to [32]. Cost improvement of 53%

compared to [33], Latency improvement of 49% compared to [33], 22% compared

to [181] and 75% compared to [32]. With this aggregation of results, it could be

concluded that the proposed model outperforms the existing fog based architec-

tures additionally supporting fault tolerance and load sharing and hence would

be a preferred model for the time critical health care application. Heterogeneity,

privacy, reliability and scalabilty could be open issues for future work [182].

3.6.5 Limitations of weighted sum method

However, it is important to acknowledge that the weighted sum method has cer-

tain limitations. One notable challenge is the potential for subjectivity in assigning

weights, which can introduce bias and influence the final outcome. Additionally,

the method assumes that the relationships between criteria are linear and addi-

tive, which may not always hold true in complex decision landscapes. While the

weighted sum method offer simplicity and ease of implementation, it comes with

certain limitations that can impact its effectiveness, particularly in complex opti-

mization scenarios like energy-latency trade-offs in edge/fog and cloud computing.

One significant limitation is its assumption of linear relationships between ob-

jectives. The weighted sum method assumes that changes in one objective have
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a consistent and linear impact on the overall score. However, in real-world sce-

narios, the relationships between objectives might be nonlinear, intricate, or even

contradictory. For instance, increasing energy efficiency might not always result in

a proportional decrease in latency. Consequently, the weighted sum method might

fail to accurately capture the nuanced trade-offs between energy consumption and

latency, leading to suboptimal solutions.

Furthermore, the subjectivity involved in assigning weights to objectives can

introduce bias and uncertainty. Weight assignment requires decision makers to

have a clear understanding of the relative importance of objectives, which can be

challenging, especially when dealing with complex, interdependent factors. Incor-

rect weight assignments can lead to skewed optimization results, as the method

heavily relies on the accuracy of these weights. In scenarios where preferences

change or where there is no clear consensus on the importance of objectives, the

weighted sum method’s reliability diminishes.

3.6.6 Need of Metaheuristic Methods for Parameter Op-

timization

To address the limitations of the weighted sum method and tackle the complex-

ities of parameter optimization in energy-latency trade-offs for edge and cloud

computing, researchers are increasingly turning to metaheuristic methods. Meta-

heuristic methods, such as Genetic Algorithms, Particle Swarm Optimization, and

Ant Colony Optimization, offer several advantages that make them well-suited for

these optimization tasks.

Metaheuristic methods can handle complex and nonlinear relationships be-

tween objectives without relying on explicit mathematical models. These meth-

ods explore the solution space more comprehensively by using adaptive search

strategies that can adapt to the problem landscape. They can capture intricate

trade-offs and discover optimal solutions in situations where linear methods like

the weighted sum fall short.

Moreover, metaheuristic methods are versatile and customizable, allowing re-

searchers to tailor them to specific problem characteristics. These methods can be

applied to various optimization scenarios, and their parameters can be adjusted to

balance exploration and exploitation efficiently. Additionally, metaheuristic algo-

rithms often incorporate mechanisms to escape local optima and explore diverse

regions of the solution space, thus increasing the likelihood of finding globally

optimal solutions.

In conclusion, metaheuristic methods offer a robust alternative to the weighted

sum method by addressing nonlinear relationships, uncertainty, and subjective
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weight assignments. Their adaptability, ability to explore complex landscapes,

and potential for finding high-quality solutions make them a promising choice for

parameter optimization tasks, especially in the intricate domain of energy-latency

trade-offs in edge/fog and cloud computing environments.

3.7 Summary

Prompt response is very significant for medical applications. However, the reduc-

tion in response to the application is difficult due to several factors. The invention

of IoT that can transfer data without human intervention has come to the rescue

of patients in need of urgent care. As a solution to one of the major problems in

the healthcare industry, this work proposes a edge/fog based architecture that can

transmit data at a faster pace than the current cloud-based implementation. The

proposed model uses a simulator to experiment with the use cases of ECG signal

and tests for its performance. The results show that the model outperforms the ex-

isting literature in many of the parameters compared. In addition, it also enables

load sharing and fault tolerance. The overall performance of the proposed work

is better, as seen in the explanations earlier in this thread. Based on our compre-

hensive literature review, it has become evident that enhancing the efficiency of

the proposed application can be achieved through the utilization of metaheuristic

techniques for resource provisioning. Therefore, we propose the incorporation of a

metaheuristic approach in resource provisioning which is explained in the following

chapter.
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Chapter 4

Resource Provisioning based on

Metaheuristic Methods

4.1 Introduction

This section describes the proposed solution to the resource provisioning problem

using metaheuristic multiobjective optimization methods. The approach addresses

the resource provisioning problem as a multiobjective optimization problem with

the objective of minimizing the evaluation parameters considered in this work.

Resource provisioning and scheduling is a significant problem due to heterogeneity,

mobility, and dispersion of edge/fog/cloud resources. Scheduling aims to match

tasks with the right resources, which are included within the scope of NP-hard

problems, and it takes a long time to discover the optimal solution.

Metaheuristic-based techniques have been proven to achieve near-optimal so-

lutions within a reasonable time for such problems [89]. Finding global optimum

solutions to several complicated multi-modal design problems in engineering and

industry seems to be very difficult. In such scenarios, conventional optimization

techniques perform inadequately because they may become locked in local optima.

The utilization of metaheuristic algorithms derived from nature is hence proposed.

Due to their ability to avoid stagnation in local optima and high convergence speed

in the right direction of the near-optimal solution, meta-heuristic optimization al-

gorithms have greatly impacted many fields in recent decades. These algorithms

tackle many optimization problems, especially problems in the engineering do-

main. Metaheuristic algorithms function as optimization models for solving vari-

ous optimization problems in a reasonable amount of time due to their significant

results. By making a few assumptions about the optimization problems, meta-

heuristics offer a set of solutions that can be applied to various issues. These

algorithms use less processing to find feasible results.
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According to the source of their inspiration, metaheuristic algorithms have

been divided into four groups: human-based, swarm-based, physics-based, and

evolutionary algorithms. Among these evolution-based algorithms, imitate bio-

logical evolution by using reproduction, mutation, recombination, and selection

to create new offspring that are more powerful than their parents. The majority

of evolutionary algorithms, such as genetic algorithms, evolution strategy, genetic

programming, biogeography-based optimizer, and probability-based incremental

learning, have been extensively used for different optimization issues. The swarm-

based or social behavior-based algorithms include the harris hawks algorithm,

particle swarm optimization, cuckoo search, whale optimization algorithm, slime

mold algorithm, marine predators algorithm, grey wolf optimizer, ant colony op-

timization, bat algorithm, and flower pollination algorithm.

The best way to solve task scheduling issues in fog computing is to use meta-

heuristic algorithms that can quickly handle a large search area and find the

best solution. Hence we have selected metaheuristic approaches for the proposed

method.

4.2 Proposed Model

A literature survey pertinent to this proposed model is discussed in Section 2.5

which review existing methodologies and frameworks of metaheuristic methods in

edge/fog/cloud IoT applications.This section explains the solution to the resource

provisioning problem using the metaheuristic methods. This work uses the modi-

fied version of the genetic algorithm and the flower pollination algorithm which is

described below.

4.2.1 Fitness function of the proposed Metaheuristic meth-

ods

A fitness function serves as the guiding compass for metaheuristic methods, en-

capsulating the problem’s core objectives into a quantitative measure. By evalu-

ating potential solutions and assigning numerical values, the fitness function al-

lows metaheuristic algorithms to navigate the solution space effectively. Crafting

an adept fitness function necessitates domain understanding, streamlined com-

putation, and consideration of scale, smoothness, and multiobjective aspects. Its

pivotal role in influencing the optimization process demands careful design, valida-

tion, and potential adaptation to dynamic scenarios, ensuring that the algorithm

converges towards optimal or near-optimal solutions efficiently.
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Fitness function Execution time is the the most important factors influencing

energy consumption, network use, cost, and latency. Thus, an objective function

employed for evaluating the candidate solutions can be represented as follows:

Fitness =
∑
m

[EXT (Ni)] (4.1)

EXT (Ni) =
∑

T i
k∈NiTasks

EXT (T i
k) (4.2)

where length(T i
k) denote the number of instructions in the task Tk and the

node Ni’s CPU rate is represented by CPUi.

Algorithm 1 Modified Genetic Algorithm

1: Input: An application’s set of resources available and unmapped tasks.
2: Output: Output mapping
3: Construct a list of the available resources.
4: Create population
5: for Each chromosome do
6: Determine the optimum resources (best fit) for every activity based on the

time it will take to complete it.
7: Go to the next resource in the list.
8: if The counter of index = last resource then
9: Go to the first resource on the list.
10: end if
11: end for
12: Evaluate all chromosomes using the fitness function
13: while Termination condition not reached do
14: Random selection and crossover
15: Mutation
16: select best chromosomes
17: end while
18: Save the best solution
19: Map the tasks on resources

4.2.2 Modified Genetic algorithm

In the Modified Genetic Algorithm, the initial population is generated using the

best-fit strategy instead of the traditional random method. This modification

ensures that the initial population comprises individuals with favorable traits,

thereby enhancing the algorithm’s efficiency and effectiveness. By commencing

with a population demonstrating promising characteristics, MGA expedites con-

vergence towards optimal solutions, thus reducing computational burden and en-

hancing performance. This strategic initialization not only accelerates the evo-
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Figure 4.1: Modified genetic algorithm flowchart for the Proposed Model

lutionary process but also increases the likelihood of discovering superior solu-

tions within fewer generations. Leveraging the best-fit strategy for population

generation in genetic algorithms significantly augments their ability to produce

high-quality outputs efficiently. By taking into consideration the fog/cloud sys-

tem features, a modified meta-heuristic method based on GA is proposed in this

approach.

• Initial population: In a standard genetic algorithm, it is generated at ran-

dom. In edge/fog time critical applications, creating a good and goal-

oriented initial population that leads to finding the response promptly is

preferable. Hence to build the initial population, the tasks/cloudlets are

sorted by execution times and their processing capacity in MIPS. The chro-

mosome’s first row of genes is occupied with sorted cloudlets. The best-fit

technique is to select a suitable VM with the shortest operating time for

each task from the virtual resource list.

• Crossover: A random gene selection is used in this case. Two parents are

selected randomly, and their genes are chosen at random. Then, two other

solutions are developed by altering resource regions of selected genes.

• Mutation: A chromosome and one of its genes along with a resource from

a virtual list is chosen at random. If the execution time is faster than the
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last candidate, the selected resource will be replaced with the selected gene.

The mutation leads to the speedy discovery of a good solution.

• Evaluation and selection solutions: It uses a fitness function with efficient

parameters to recognize the value of a solution. The fitness function is

applied to all the solutions, and their values are determined in GA. Then

the solution with the best value is identified as the maximum or minimum

for the fittest solution using parameter placement guidelines.

The proposed pseudo-code is presented as Algorithm 1. Figure 4.1 presents

the flowchart for the same. In the proposed approach, solutions with minimum

execution time can be considered the best value after fitness function estimation.

The number of virtual resources in the list is denoted as ′m′. Each solution’s

fitness value is calculated using Equation 4.1.

The chromosome with minimum fitness value is considered as the best solution

among others. The target is to minimize the fitness function. The method tries

to find a solution by using crossover and mutation operations to reduce the fitness

value as much as feasible. Single-point crossover has been applied in the pro-

posed approach due to its advantages, which include enhanced genetic diversity,

expedited convergence, effective exploration of the search space, and retention of

favorable genetic material. By utilizing single-point crossover, the diversity of so-

lutions can be increased, and the search for optimal solutions can be accelerated.

The population selection strategy opted is the elite selection, which is a simple

method to implement. It only involves selecting a fixed number of the most best

individuals from the population. Elite selection helps quicken the convergence,

enhance the genetic diversity, and keep the good genetic material by preserving

the best individuals in the population. It prefers some of the best chromosomes for

the next iteration, considered elites. The time complexity of GA for the resource

allocation problem considered in this work depends on the number of generations

(g), the population size (n), and the complexity of the fitness function (m) rep-

resented as O(g * n * m). The memory complexity of the GA implementation

depends on the representation of the chromosome, the population size, and the

size of the problem. The memory required to store the population is proportional

to the number of chromosomes (n) and the length of each chromosome (l) denoted

as O(n * l).

4.2.3 Modified Flower pollination algorithm

The flower pollination algorithm is a meta-heuristic inspired by flowering plants

for artificial intelligence. In the Modified Flower pollination algorithm, the ini-
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Figure 4.2: Modified flower pollination algorithm flowchart for the Proposed
Model

98



tial population is formed using the best-fit strategy rather than the traditional

random method. This change ensures that the starting group consists of indi-

viduals with favorable traits, making the algorithm more efficient and effective.

By beginning with a population showing promising characteristics, MFPA speeds

up the process of finding the best solutions, reducing the workload and improv-

ing performance. This strategic start not only accelerates the evolution but also

increases the chances of finding superior solutions in fewer attempts. Using the

best-fit strategy for population generation in genetic algorithms significantly im-

proves their ability to produce high-quality outputs efficiently.

Algorithm 2 Modified Flower pollination Algorithm

1: Input: An application’s set of resources available and unmapped tasks.
2: Output: Output mapping
3: Construct a list of the available resources.
4: Create population
5: for Each solution do
6: Determine the optimum resources (best fit) for every activity based on the

time it will take to complete it.
7: Go to the next resource in the list.
8: if The counter of index = last resource then
9: Go to the first resource on the list.
10: end if
11: end for
12: Find the fitness of each solution in the population using the fitness function
13: Find the best solution
14: while Termination condition not reached do
15: if (rand) is less than switching probability (.8) then
16: performs global pollination
17: else
18: performs local pollination
19: end if
20: Find fitness of the new solution
21: if new solution better than existing solutions then
22: swap with the new solution
23: end if
24: end while
25: Save the best solution
26: Map the tasks on resources

The steps of modified FPA in the proposed method are described below:

• Step 1: Initialize the population with the help of the best fit strategy

to get the response rapidly. Hence to build the initial population, the

tasks/cloudlets are sorted by execution times, and their processing capacity

in MIPS. Cloudlets are allocated to VMs in the virtual resource list using

99



the best-fit strategy.

• Step 2: Evaluate performance for each solution in the initial population using

the fitness function in Equation 4.1. The fitness function is applied to all the

solutions, and their values are computed in FPA, after which the solution

with the best value is selected as the maximum or minimum for the fittest

solution using parameter placement guidelines. In the proposed approach,

solutions with minimum execution time can be considered the best value

after fitness function calculation. Each solution’s fitness value is calculated

using Equation 4.1.

• Step 3: Find the best solution among all. The best solution among the

others is the one with the lowest fitness value. The goal is to minimize the

fitness function as much as possible.

• Step 4: Define switch probability. In the proposed approach, the switch

probability is considered as 0.8.

• Step 5: Check the stop criteria. In the proposed approach, the algorithm

stops once it reaches the required number of iterations.

• Step 6: Start the main loop of Flower pollination. According to switch

probability, perform local pollination or global pollination.

• Step 7: Update new solution and compare with old solutions.

• Step 8: Display the best solution among all.

Figure 4.2 shows the flowchart for the same. The proposed algorithm’s pseudo-

code is included in Algorithm 2.

The switching probability p, the scaling parameter, and the population size n

are the parameters in FPA. Empirical findings and numerical simulations imply

that a small population is adequate, regardless of whether the real-world popula-

tion sizes are large. The time complexity of FPA for this implementation depends

on the number of iterations (t), the population size (n), and the complexity of the

objective function or the number of decision variables (m) which is given as O(n

* m * t). The memory complexity of FPA for this work relies on the population

size (n) and the number of decision variables (m) denoted as O(n * m).

The proposed approach described in Algorithm 3 is the implementation of in-

vestigating resource provisioning based on meta-heuristic methods for microservice-

based IoT medical applications in a fog computing environment utilizing mobility

components of iFogSim2.
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Algorithm 3 Microservice-based IoT application in fog environment

1: Input: Sensor data
2: Output: Response to an actuator
3: Create new FogBroker
4: Create new Application
5: Create new dataparser object and location handler object
6: Adding microservices (Client module, datapreprocessing, decision making,

storage) to the application
7: Using edges to connect application modules in the application model
8: Defining the relationships of the input and output microservice modules
9: Defining the microservice application loop as sensor-client module-data

preprocessing-decision making-client-actuator
10: Add application to fogbroker
11: Create fog devices in the physical topology
12: Create Cloud datacenter
13: for each i to locator.getLevelWiseResources do
14: Create proxy fog device
15: Apply modified genetic algorithm for task scheduling and Apply modified

flower pollination algorithm for task scheduling
16: end for
17: for each i=0 to locator.getLevelWiseResources do
18: Create gateway fog device
19: end for
20: Initialize microservice mapping
21: Create MicroservicesMobilityClusteringController and submit the controller

to the application
22: Start Simulation
23: Stop Simulation
24: End
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Figure 4.3: Directional mobility of the user in Melbourne Central Business
District [44]

4.3 Experimental setup

The market is very competitive with simulators for simulating cloud, fog, and

edge devices. One such discrete event network simulator is NS3, which enables

us to create various virtual nodes and install devices, internet stacks, programs,

etc., on our nodes with the aid of various classes. For modeling and simulating

edge/fog/cloud computing infrastructures and services, we have chosen iFogSim2,

an extension of Cloudsim, since this framework can be used to develop and deploy

experiments for edge/fog/cloud devices that handle compute, memory, I/O, and

VM allocation, as well as VM power models, among other things. The iFogSim2

simulator, an extension of the iFogSim simulator, holds the properties of service

migration, distributed cluster building across fog nodes, and microservice orches-

tration. This simulator helps validate the proposed approach’s performance in

the fog computing environment. The components of the iFogSim2, such as mo-

bility, clustering, and microservices, are loosely coupled and can be utilized for

simulation in such scenarios. iFogSim2 incorporates real datasets for assessing the

performance of different service management strategies in fog computing settings,

unlike most existing solutions. It includes node clustering, mobility management,

and microservice orchestration methodologies that can be used as benchmarks for

comparing performance [44].

All iFogSim core classes, such as FogDevice, Actuator, sensor, and AppMod-

ule, have object references in the Controller class, and it can access the Tuple

class through an Application object. The Clustering element of iFogSim2 allows

distributed dynamic coordination and collaboration among multi-fog nodes. To

102



Figure 4.4: Random mobility of the user in Melbourne Central Business
District [44]

Figure 4.5: User mobility Pattern in Melbourne Central Business District [44]
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Figure 4.6: Block-wise Edge/Fog computing nodes in Melbourne Central
Business District [44]

add the modified mobility component, which is customized for the proposed use

case to the iFogSim2 simulation, it includes classes such as DataParser and Mo-

bilityController. The functions of these classes are described below:

• The DataParser class allows the separation and assimilation of location data

from many IoT end devices so that application services may be handled based

on their unique mobility patterns.

• MobilityController class dynamically starts required sequential or parallel

actions on separate FogDevice and AppModule referenced objects for mo-

bility management.

In considering the diverse movements of users, the proposed system explores

scenarios where users either adhere to consistent daily movement patterns or follow

different random paths each day. To address this variability, during simulations,

the proposed model considers two different types of mobility patterns namely ‘DI-

RECTIONAL MOBILITY’ and ‘RANDOM MOBILITY’. The ‘DIRECTIONAL

MOBILITY’ model is being used, which has a significant number of consecutive co-

ordinates lying at the same distances across the Melbourne central business district

(CBD) for a user/IoT device. In ‘RANDOM MOBILITY’ model, the time period

between any two of these motions is made to be equal to ensure that the user/IoT

device maintains a constant speed. Based on those coordinates, events are con-

structed to simulate the movement of the associated end IoT device. There are

numerous random mobility patterns to represent users ‘RANDOM MOBILITY’

model behaviors. According to numerous mobility criteria, user speed, direction,
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stopping time at each location, and duration within each edge/fog node’s com-

munication range can be produced by the RandomMobilityGenerator class and

can be expanded for multiple random mobility models. Figures 4.3 and 4.4 depict

directional and random user movements of a user in the Australian region [178].

Figures 4.5 and 4.6 illustrate user mobility and resource location characteristics

within the dataset. The diagrammatic representation of the connection between

the mobility components of iFogSim2 are presented in Figure 4.7.

This section explains the simulation environment used to evaluate the sug-

gested approach’s performance. The sensors detect ECG details and regularly

send the data to the fog nodes through a smartphone. Data is processed and ana-

lyzed on the fog nodes to determine whether the patient’s health status is normal

or critical. The results are subsequently sent to the patient’s smartphone and to

the cloud for storage. The fog nodes’ connection to the cloud server is established

through a proxy server. The client module is embedded in IoT devices to get

the sensor data. The processing module is embedded in fog nodes to process and

analyze the incoming data and to assess the patient’s health status. The fog node

then communicates the results to the associated IoT device, which displays them.

It must define values for numerous parameters such as CPU length, bandwidth,

RAM, and so on, in iFogSim2 when generating fog devices. The settings used for

device configuration in iFogSim2 [64] are listed in Table 4.1. The typical unit of

measurement for latency is milliseconds, which indicates the amount of time it

takes for a tuple to travel from the sensor to the mobile device, from the mobile

device to the Fog, from the Fog to the Proxy, from the Proxy to the Cloud, and

between clusters of Fog nodes. Table 4.2 displays the values assigned to these

parameters in the configuration settings of iFogSim2.

Table 4.1: Configuration parameters [64]

Parameter Cloud Fog Smartphone

CPU length (MIPS) 44800 2800 2800

RAM (MB) 40000 4000 4000

Uplink BW (MB) 100 10000 10000

Downlink BW (MB) 10000 10000 10000

Busy power (J) 16*103 107.339 87.53

Idle power (J) 16*83.25 83.433 82.44
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Figure 4.8: iFogsim2 Layered configuration of devices [44]

Table 4.2: Latency and Value Table for the Proposed Approach

Latency Value

Sensor to mobile 5 ms

Mobile to Fog 20 ms

Fog to Proxy 20 ms

Proxy to Cloud 30 ms

Fog node clusters 2 ms

In the simulation, edge/fog devices are the computational devices in iFogSim2.

Computational gadgets, on the other hand, come in various levels. On Level 3,

the parent node is a cloud server. The fog nodes are connected to the cloud

server via a proxy server at Level 2. Fog nodes are located closer to the user at

Level 1, giving more frequent computational and storage capacities. Sensors and

actuators are used in Level 0 IoT devices. The MicroserviceFogDevice, Actuator,

and Sensor classes of iFogSim2 simulate the physical topology. The layers within

the architecture of iFogSim2, as described above, are depicted in Figure 4.8.

These scenarios were simulated on an Intel Core i7 CPU running at 1.80 GHz

and 4GB of RAM. The fractional selectivity of the input-output relationship inside

a module is set to 1.0.
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4.4 Results and analysis

In our research, a comprehensive approach was undertaken by integrating spe-

cific datasets to evaluate the proposed meta-heuristic-based resource provisioning

model for healthcare IoT microservices, as elaborated in Chapter 3.4.2. The in-

corporation of a mobility dataset allowed us to simulate the dynamic movement

patterns of IoT devices, mimicking real-world scenarios where devices exhibit mo-

bility. Additionally, the utilization of an ECG dataset enabled the emulation of

authentic healthcare data generation, providing a realistic foundation for evaluat-

ing the performance of our system in healthcare applications. Chapter 3.5 metic-

ulously details the pivotal parameters considered for evaluation, including energy

consumption, cost, latency, execution time, and network usage. These parameters

were chosen based on their critical relevance to the efficiency and effectiveness of

resource provisioning in healthcare IoT microservices. Our methodical descrip-

tion and utilization of diverse datasets, coupled with the meticulous examination

of key evaluation parameters, contribute to the robustness and applicability of our

research findings within the realm of healthcare IoT microservices.

The proposed work compares the system’s performance with two approaches,

namely, cloud-only and edge-fog with cloud, changing the deployment of meta-

heuristic algorithms for resource management. The section also presents the re-

sults with and without mobility considerations of IoT devices. Parameters, namely

cloud energy, router energy, cost, network use, latency, and execution time, are an-

alyzed with and without mobility, the results of which are presented in Figure 4.9.

The proposed system’s performance is evaluated using the modified genetic al-

gorithm for resource provisioning, considering the identified parameters, and are

presented in Table 4.3 by utilizing the evaluation metrics discussed in section 3.5.

The proposed system’s performance is also evaluated using the modified flower

pollination algorithm, considering the same parameters, and is presented in Ta-

ble 4.4. The fitness of solutions for modified FPA and modified GA are depicted

in Figure 4.10. The comparison of fog implementation, edge implementation, and

cloud-only implementations for the identified parameters using modified GA, mod-

ified FPA, the multiobjective optimization method and the existing First Come

First Serve (FCFS) method in the simulator are presented in Figure 4.11.
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Table 4.3: Results of Modified Genetic algorithm based resource provisioning

GA Edge Fog Cloud

Cloud energy (J) 2728189 2664000 2717900

Router energy (J) 174607 174718 172110

Cost ($) 67162 81529 92414

Network use (B) 8309 9961 13907

Latency (ms) 23.4 23 247

Execution time (ms) 747 1417 1660

The results presented in Figure 4.12 and Figure 4.13 describes the results of

modified FPA and modified GA for resource provisioning while taking into account

directional and random mobility models for user movements with microservice

placement and clustering approach and compares the proposed models for different

movement patterns of a patient.

Table 4.4: Results of Modified Flower pollination algorithm based resource
provisioning

Flower pollination
algorithm

Edge Fog Cloud

Cloud energy (J) 2728556 2732075 2734776

Router energy (J) 174608 174718 172719

Cost ($) 58354 68384 79714

Network use (B) 8709 10045 13773

Latency (ms) 23.3 25.6 249

Execution time (ms) 781 1337 1381

4.4.1 Observations from the integration of mobility and

microservice features in edge-fog-cloud computing

environments

• In comparison to simulations lacking mobility components, simulations with

mobility systems are practical

• Cloud energy, cost, network usage, execution time, and latency are all re-

duced in the fog computing model since processing happens at the lower
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Figure 4.9: Result graphs with and without mobility for the Proposed Approach
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(a) Modified FPA (b) Modified GA

Figure 4.10: Fitness values

fog level, which is very close to the end device both in mobility and with-

out mobility implementations. This brings practical proof of performing the

computation at the fog level

• Router energy consumption is less for cloud-only implementations if we

deploy mobility and microservice concepts since microservice modules are

loosely coupled, which consume less energy than monolithic architecture

• If we include mobility in our application, the network use, execution time,

and delay for cloud and fog scenarios is slightly longer in milliseconds since

mobility requires service migration which needs more network requirements

and causes an increase in execution time and delay

4.4.2 Observations from the integration of meta-heuristic

methods in edge-fog-cloud computing environments

• Metaheurtic methods provide efficient provisioning compared to existing sys-

tems. The reason being, meta-heuristic methods converge to optimal or

sub-optimal solutions at a faster rate when compared to multi-objective op-

timization approaches

• The energy consumption of routers are same for GA and FPA since more

computations are happening in the fog layer
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Figure 4.11: Result graphs comparing modified GA, modified FPA,
multi-objective optimization method and existing FCFS method

112



2705000

2710000

2715000

2720000

2725000

2730000

2735000

2740000

FPA Edge FPA Fog FPA Cloud GA Edge GA Fog GA Cloud 

C
lo

u
d

 E
n

e
rg

y 
(J

o
u

le
)

170500

171000

171500

172000

172500

173000

173500

174000

174500

175000

FPA Edge FPA Fog FPA Cloud GA Edge GA Fog GA Cloud 

R
o

u
te

r 
En

e
rg

y 
(J

o
u

le
)

(a) Cloud Energy (b) Router Energy

0

20000

40000

60000

80000

100000

120000

140000

FPA Edge FPA Fog FPA Cloud GA Edge GA Fog GA Cloud 

C
o

st
 (

$
)

0

2000

4000

6000

8000

10000

12000

14000

16000

FPA Edge FPA Fog FPA Cloud GA Edge GA Fog GA Cloud 

N
e

tw
o

rk
 u

se
 (

K
B

)

(c) Cost (d) Network use

0

50

100

150

200

250

300

FPA Edge FPA Fog FPA Cloud GA Edge GA Fog GA Cloud 

La
te

n
cy

 (
m

s)

0

200

400

600

800

1000

1200

1400

1600

1800

FPA Edge FPA Fog FPA Cloud GA Edge GA Fog GA Cloud 

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

(e) Latency (f) Execution time

Figure 4.12: Results of modified FPA and modified GA in fog and edge
computing using directional mobility user model
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Figure 4.13: Results of modified FPA and modified GA in fog and edge
computing using random mobility user model
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(a) Latency fog (b) Latency cloud

(c) Network use fog (d) Network use cloud

Figure 4.14: Comparative analysis [101]

• When compared to GA, FPA has less cost of execution since FPA converges

faster than GA. GA and FPA have almost the same network use and latency

• In cloud scenarios, FPA takes less time to execute since FPA converges fast,

but GA and FPA take about the same amount of time to execute in edge/fog

scenarios

• While considering the parameters, cloud energy, cost, network use, execu-

tion time, and latency, genetic algorithm, and FPA outperforms the existing

(a) Network use comparison with the
existing method

(b) Latency comparison with the
existing method

Figure 4.15: Comparative analysis [183]
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resource provisioning methods since meta-heuristic methods converge to op-

timal or sub-optimal solutions fast. However, router energy is slightly higher

than traditional resource provisioning methods since more computations are

happening in the fog layer

• In comparison, cloud energy consumption decreases by 15%, network use by

7%, cost by 29%, execution time by 16% and latency by 55% when using

meta-heuristic based resource provisioning approach for edge computing.

While cloud energy consumption decreases by 18%, network use by 33%,

cost by 16%, execution time by 18% and latency by 72% when using meta-

heuristic based resource provisioning approach for fog computing

• The router energy consumption is 0.1% more for edge/fog computing since

more computations are happening in the fog layer for the meta-heuristic

methods considered in this work

4.4.3 Observations of directional and randommobility user

models in edge-fog-cloud computing environments

• Cloud energy is lesser for edge computing than fog computing since compu-

tation occurs only in edge devices

• Router energy is the same for edge computing compared to fog computing

because computations are happening in the router for edge and fog comput-

ing in a similar manner

• Since computations are happening in the edge layer, edge computing has

less cost of execution, network use, latency, and execution time than fog

computing for directional and random user mobility models

4.4.4 Comparative analysis

In order to have an effective conclusion, the proposed approach has been com-

pared for its network use and the latency parameters against the existing results

presented in the literature [101] and [183] which are presented in Figures 4.14

and 4.15. The comparison of the parameters for the different architectures named

config 1, 2, 3, 4, and 5, described in Table 4.5 also prove the conclusion statement

presented in the previous subsection.
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Table 4.5: Topologies for simulation for the Proposed Approach

Configurations End IoT devices Total IoT devices

config 1 4 24

config 2 6 36

config 3 8 48

config 4 10 60

config 5 12 72

4.4.5 Sensitivity analysis

Sensitivity analysis is important for analyzing the robustness and reliability of re-

source provisioning mechanisms implemented through metaheuristic methods. By

systematically varying input parameters, sensitivity analysis enable to evaluate

the responsiveness and stability of the provisioning system to changes in the input

factors. This analysis helps identify critical parameters that significantly influence

resource allocation decisions and performance metrics, guiding optimization efforts

for enhancing system efficiency and effectiveness. Moreover, sensitivity analysis

facilitates risk assessment by uncovering potential vulnerabilities and uncertainties

in the provisioning process, enable to develop mitigation strategies and ensure the

resilience of the system in real-world scenarios. Overall, sensitivity analysis plays a

crucial role in validating, optimizing, and enhancing resource provisioning mecha-

nisms based on metaheuristic methods, contributing to the development of robust

and scalable solutions. The proposed model has been tested for its sensitivity to

minor variations in the input feed. The results thus obtained conclude that the

small changes in the input cause little to no change in the output measurements.

This proves that the model is less sensitive to minimal changes in the input and

is robust as can be seen in the results presented in Tables 4.6 and 4.7.
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Table 4.6: Sensitivity analysis for Modified GA

(a) One percentage of increase in input for GA Sensitivity analysis

Genetic algorithm Edge Fog Cloud

Cloud energy (J) 2720126 2721507 2729185

Router energy (J) 173851 173934 172348

Cost ($) 67162 81529 92414

Network use (B) 8309 8668 13586

Latency (ms) 24.3 25.8 249

Execution time (ms) 808 995 1001

(b) One percentage of decrease in input for GA Sensitivity analysis

Genetic algorithm Edge Fog Cloud

Cloud energy (J) 2705161 2712235 2720227

Router energy (J) 173845 174028 172583

Cost ($) 58353 68384 79714

Network use (B) 9857 11029 17340

Latency (ms) 21.3 23.8 249

Execution time (ms) 736 825 954

Table 4.7: Sensitivity analysis for Modified FPA

(a) One percentage of increase in input for FPA Sensitivity analysis

FPA Edge Fog Cloud

Cloud energy (J) 2715807 2717151 2723475

Router energy (J) 174061 173649 172052

Cost ($) 73448 75352 83116

Network use (B) 8308 8803 13539

Latency (ms) 24 25.6 248

Execution time (ms) 764 806 965

(b) One percentage of decrease in input for FPA Sensitivity analysis

FPA Edge Fog Cloud

Cloud energy (J) 2704068 2706462 2717702

Router energy (J) 173819 174005 172664

Cost ($) 56806 60199 76135

Network use (B) 10181 10948 16789

Latency (ms) 21.4 25 249

Execution time (ms) 788 790 840
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4.5 Summary

This chapter intends to conclude that edge computing surpasses fog computing,

emphasizing the notable efficiency in resource provisioning achieved through the

application of metaheuristic techniques. The examination of these findings un-

derscores the advantages inherent in edge computing paradigms, demonstrating

the effectiveness of advanced optimization strategies for enhancing resource allo-

cation within evolving computing architectures. However, in real time scenarios,

there may be around 30 hops between the IoT device and the destination server

making fog computing and cloud computing very distinct in real-world deploy-

ments. In such scenarios, it is evident that the deployment of the microservices

in the edge/fog layers would be beneficial. However, since we only simulate a few

hops, there will not be a significant difference between edge computing and fog

computing in the simulator.

Existing systems in edge and fog-based medical applications grapple with sev-

eral challenges, notably concerning data privacy and efficiency. Traditional cen-

tralized approaches, when applied in these distributed environments, often lead

to latency issues and pose privacy risks as sensitive medical data is transmitted

to a central server. These concerns are further exacerbated by the stringent pri-

vacy regulations governing healthcare. Therefore, to address these pressing issues

and harness the potential of edge and fog computing in medical applications, the

adoption of federated learning is crucial. This approach facilitates collaborative

model training while ensuring data remains localized, offering an effective solution

to privacy and efficiency challenges and ultimately advancing the accuracy and

dependability of machine learning models in these decentralized healthcare envi-

ronments. The next chapter presents Resource provisioning based on Federated

learning.
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Chapter 5

Resource Provisioning based on

Federated Learning

5.1 Introduction

The concept of intelligent healthcare involves utilizing AI to learn and analyze

patient data. However, it can be challenging to find large and diverse datasets to

train machine learning models in individual medical centers. This means that tra-

ditional centralized AI methods require sensitive data to be moved from medical

facilities to data centers, which not only increases the demand for communication

resources and energy, but also violates privacy. This has become a significant

obstacle in promoting scientific collaboration between trans-national clinical med-

ical research centers. A distributed AI technique known as federated learning has

emerged that enables the cooperative training of ML models without the sharing

of patient data. Federated learning may prove to be an advantageous method for

facilitating IoT based intelligent applications [184–186].

Due to the necessity for real time processing, low latency, and privacy consid-

erations, Edge/Fog computing is becoming more and more significant for medical

applications [187]. Edge computing can limit the quantity of data that must be

transferred to centralized servers or the cloud by processing and analyzing the

data closer to the data’s source, thereby reducing network traffic and delays [47].

Additionally, Edge computing can help address privacy concerns by keeping sen-

sitive data within a local network and limiting access to authorized users only. In

medical applications, where time and accuracy are critical, and privacy is essential,

Edge computing has become a necessity [68], [188].

Real time ECG abnormality detection is one of the applications in medicine

that has several advantages for patient care. First and foremost, it allows health-

care providers to quickly identify and respond to cardiac abnormalities, potentially
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saving lives. Early detection and treatment of cardiac abnormalities can prevent

more serious and costly health issues down the road. Moreover, real time ECG

anomaly detection can help reduce healthcare costs and improve patient outcomes.

By continuously monitoring ECG signals in real-time, the system can immediately

detect anomalies and alert healthcare providers, who can take action to diagnose

and treat the patient. Another benefit is that real-time ECG anomaly detection

can improve the accuracy of diagnoses. In some cases, anomalies may be missed

or misinterpreted when relying on visual inspections alone. With automated de-

tection, the system can analyze the ECG signals with greater precision, reducing

the risk of errors and false negatives. Additionally, real time monitoring can help

identify potential issues before they become acute, reducing the likelihood of hospi-

talizations and emergency room visits. Overall, real-time ECG anomaly detection

has the potential to improve patient care, increase accuracy, and reduce healthcare

costs, making it a valuable tool in healthcare. Since the healthcare issues related

to ECG anomaly detection in microservice-based IoT systems are not sufficiently

addressed by existing research on edge/fog/cloud federated learning approaches,

we were motivated to do this study.

5.2 Proposed Model

Federated Learning is a distributed privacy-preserving machine learning paradigm

in which a central server connects with various end devices, including smartphones,

laptops, and security cameras, with limited computation and storage availability.

Hence the clients avoid sharing the data with the server. Clients receive the server’s

most recent global model for each communication round, and a small percentage

of clients use stochastic gradient descent (SGD) to update it throughout several

rounds. The new global model is then obtained by aggregating these updated

parameters on the central server. Most of the server’s cloud deployments need

enormous storage and computing capacity. In the proposed system, the edge/fog

devices use a methodology named FedAvg to launch the federated learning mod-

ule. This selection is based on the findings from the literature survey conducted

in Section 2.6, which highlight FedAvg’s effectiveness specifically for edge applica-

tions. Federated averaging is a communication-efficient approach for distributed

training with multiple clients. Compared to traditional training and learning,

FedAvg considerably lowers the communication cost between servers and clients

by involving many local SGD updates and one aggregate by the server in each

communication cycle [189]. The FedAvg module used in this work is depicted in

Figure 5.1.

To initiate the process, an overall model is downloaded from the central server
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and is trained with local data over several epochs. The outcomes are the local

updates. These local model updates collected from the end devices are aggregated

by the FegAvg algorithm to generate the global model, which is continued until the

required performance is achieved. The proposed method considers three scenarios

where the FedAvg is deployed in different layers: edge, fog, and cloud.

Figure 5.1: Structure of FedAvg for FedSDM

The proposed approach also uses autoencoders, a particular type of neural

network used for training and testing the data to detect anomalies in the ECG

readings. An autoencoder consists of three components: encoder, code, and de-

coder. The encoder compresses the input and produces the code, which is later

used by the decoder to reconstruct the input. An encoding technique, a decod-

ing technique, and a loss function to compare the output with the objective are

required when building an autoencoder. Autoencoders can only compress data

meaningfully similar to what they have been trained on. Although the autoen-

coder’s output will not be a perfect replica of its input, it will be a similar degraded

representation. The encoder and decoder are both fully linked feedforward neural

networks. Figure 5.2 depicts the flowchart of the proposed system’s autoencoder

module.

The architecture of the autoencoder is presented in Figure 5.3 (a). The pro-

posed approach has two layers in both the encoder and decoder, without account-

ing for the input and output, as shown in Figure 5.3 (b). The number of nodes per

layer reduces with each subsequent encoder layer and grows back in the decoder.
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Figure 5.2: Flowchart - Autoencoder in FedSDM

In terms of layer structure, the decoder and encoder are also symmetrical. The

loss function is the mean squared error in the proposed system configuration.

(a) Auto encoder architecture for FedSDM

(b) ANN for the Proposed Approach

Figure 5.3: Auto encoder and ANN for FedSDM

The proposed architecture implements an encoder and a decoder using an

ANN architecture. The ECG data is fed as input to the model, and the model

tries to reconstruct it. The error between the original data and the reconstructed
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output will be called the reconstruction error. Based on this reconstruction error,

the ECG data is classified as anomalous. In order to do this, the model is first

trained on the standard ECG data and is tested on the complete test set. The

autoencoder reconstructs the abnormal ECG when the input is provided. However,

since it has been trained only on the standard ECG data, the output will have

a more significant reconstruction error. The input is classified as anomalous if

the reconstruction error exceeds the threshold. The proposed system uses the

Keras Subclassing API to build the model, as it provides reasonable control over

the model compared to Sequential API. Autoencoders are unsupervised learning

models, but the proposed method trains them using the supervised method, so it

is more like they are used as self-supervised.

Large-scale FL experiments can be deployed and carried out using FL frame-

works. The flower is a comprehensive FL framework that offer new tools to conduct

large-scale FL experiments and consider highly heterogeneous FL device environ-

ments. It can run FL experiments with clients up to 15M in size. It uses only

a pair of high-end GPUs. We have selected the flower framework to implement

the Federated Learning module of the proposed system. The architecture of the

flower framework for the proposed system is depicted in Figure 5.4 (a). As can be

seen in Figure 5.4 (b), the autoencoder is added to the flower framework.

5.2.1 Proposed method - Resource Provisioning based on

Federated Learning

The proposed method works as follows: ECG sensor values collected from the

patient are stored in the edge device (Ex: mobile phones). The client microser-

vice and the data preprocessing microservice, resides on the edge, do the required

computation. The preprocessed ECG values are fed to the Smart Decision Making

module, which checks for the anomaly. If any anomaly exists, the notification is

sent to the end device. The proposed architecture compares the results of plac-

ing the FL-based decision making module at different layers, as mentioned in the

previous section. In all the placement policies, the local updates from the corre-

sponding devices/nodes are aggregated in the respective layer (edge/fog/cloud).

The diagrammatic representation of the different deployment policies is presented

in Figure 5.5. Each deployment has been compared for its performance in the

learning efficiency and the QoS parameters, which are presented in the next sec-

tion.
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(a) Modified Flower framework for FedSDM

(b) Autoencoder in Flower framework for FedSDM

Figure 5.4: Auto encoder integrated Flower framework for FedSDM
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(a) Layered FL (b) FL deployment in cloud

Local 
data

Local 
data

Local 
data

Edge layer

Cloud Layer

Fog Layer

(c) FL deployment in fog (d) FL deployment in edge

Figure 5.5: FL deployment in different computing layers for FedSDM
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5.3 Results and analysis

5.3.1 Data set and Evaluation Parameters in Federated

Learning for Healthcare Applications

In our research on Federated Learning, a comprehensive approach was employed,

incorporating specific datasets to assess the effectiveness of the proposed metaheuristic-

based resource provisioning model for healthcare applications. As elucidated in

Chapter 3.4.2, the utilization of a mobility dataset allowed for the simulation of

dynamic device movements, mirroring real-world scenarios where devices exhibit

mobility in federated learning environments. Additionally, the integration of an

ECG dataset facilitated the emulation of authentic healthcare data, providing

a realistic foundation for evaluating the performance of our federated learning

system. Chapter 3.5 meticulously details the crucial parameters considered for

evaluation, encompassing energy consumption, cost, latency, execution time, and

network usage. These parameters were selected based on their critical relevance

to the efficiency and effectiveness of resource provisioning in federated learning

for healthcare applications. Our methodical description and utilization of diverse

datasets, coupled with the meticulous examination of key evaluation parameters,

contribute to the robustness and applicability of our research findings within the

realm of Federated Learning for healthcare applications.

5.3.2 Simulation Environment

This section explains the simulation environment used in evaluating the proposed

approach. The sensors detect the ECG of the patient and send the data to the

edge/fog nodes regularly. Data is processed and analyzed on the edge/fog nodes

to determine whether the patient’s health status is normal or critical. The results

are subsequently sent to the cloud and the patient’s smartphone for storage. The

edge/fog nodes’ connection to the cloud server is established through the proxy

server. The client module is integrated in IoT devices to get sensor data. The

processing module is embedded in edge/fog nodes to process and analyze the in-

coming data in order to assess the patient’s health status. The edge/fog node then

communicates the results to the associated IoT device, which displays them. It

must define values for numerous parameters in iFogSim2 when generating edge/fog

devices, such as CPU length, RAM, Bandwidth, and so on.

Edge/Fog devices are the computational devices in iFogSim2. Computational

gadgets, on the other hand, come in various levels. The parent node acts as

a Cloud server and is placed on Level 3. The Fog nodes are connected to the

Cloud server via a proxy server at Level 2. Fog nodes are closer to the user at
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(a) Normal ECG (b) Anomalous ECG

Figure 5.6: Normal ECG and anomalous ECG plot

Level 1, which is considered as Edge device, giving more frequent computational

and storage capacities. Sensors and actuators are used in Level 0 IoT devices.

The MicroserviceFogDevice, Sensor, and Actuator classes of iFogSim2 simulate

the physical topology. The layering architecture of the iFogSim2 simulator is

described with diagram in Section 4.3. The scenarios were simulated on an Intel

Core i7 CPU running at 1.80 GHz and 4GB of RAM. The fractional selectivity of

the input-output relationship inside a module is set to 1.0.

5.3.3 Analysis and Observations

This section presents the results and the observation. The model is evaluated

as described in the previous sections for varying placement policies. Figure 5.6

presents the normal and abnormal ECG samples. Figure 5.7 shows the recon-

structed normal and abnormal ECG plots. The reconstructed ECG helps in pre-

dicting whether the ECG is anomalous. The reconstructed one with the error

beyond a threshold is considered anomalous. The error calculated from these fig-

ures helps in this classification. Figure 5.8 highlights the training and the testing

loss graphically.

Figure 5.9 compares the identified performance parameters for different place-

ment policies discussed in this work. It could be observed that the deployment

of the FL module in the Edge layer reduces the Cloud energy consumption by

2% with a decrease in network use of 32%. This, in turn, reduces the cost by
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(a) Reconstructed Normal ECG (b) Reconstructed anomalous ECG

Figure 5.7: Reconstructed normal and anomalous ECG plot

(a) Train loss (b) Test loss

Figure 5.8: Train and test loss graphs for FedSDM
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(a) Cloud Energy (b) Router Energy

(c) Cost (d) Network use

(e) Latency (f) Execution time

Figure 5.9: Result of FL deployment in Edge/Fog/Cloud layers
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50%, the execution time by 32%, and the latency by 86%. All the above com-

parisons are against the placement of the FL module in the Cloud layer. While

analyzing the results of placement of the FL module in the Fog layer against the

Cloud layer, Cloud energy consumption decreases by 2%, network use by 31%,

cost by 41%, execution time by 23%, and latency by 85%. Table 5.1 presents

the above discussions in a consolidated manner for better understanding of the

results. However, the router energy consumption is found to be more (i.e.) 2.3%

and 2.4% for FL module deployment in the Edge, and Fog layers since more com-

putations are performed in those layers. A similar comparison of placing the FL

module in Edge and Fog yields a performance increase of 0.3%, 2%, 15%, 11%,

and 3% for energy consumption, network usage, cost, execution time, and latency,

respectively as presented in Table 5.2. Table 5.3 shows the number of simulations

conducted and the average results for each of the parameters. In conclusion, FL

module deployment in the Edge layer is superior to FL module deployment in Fog

or Cloud, which adds to the fact that the integration of AI on Edge enables smart

healthcare systems. This could also support real-time or advanced remote patient

monitoring by immediately processing the clinical tests.

Table 5.1: Comparison of Edge and Fog FL placement against Cloud

Metric Edge FL placement Fog FL placement

Energy Consumption (J) 2% 2%

Network Use (KB) 32% 31%

Cost ($) 50% 41%

Latency (ms) 86% 85%

Execution Time (ms) 32% 23%

Table 5.2: Comparison of Edge FL placement against Fog

Metric Edge FL placement

Energy Consumption (J) 0.3%

Network Use (KB) 2%

Cost ($) 15%

Latency (ms) 11%

Execution Time (ms) 3%
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Table 5.3: Number of simulations and the mean parameter values for the
implementation of Edge FL compared to Fog FL implementation

Metric Number of Simulations Average

1 2 3 4 5

Energy Consumption (J) 0.34% 0.37% 0.30% 0.25% 0.36% 0.3%

Network Use (KB) 1.6% 1.2% 1.3% 1.5% 2% 1.5%

Cost ($) 14.8% 11.3% 12.7% 13.7% 12% 12.9%

Latency (ms) 2.9% 1.5% 3.4% 3.3% 1.7% 2.5%

Execution Time (ms) 10.8% 10.1% 11.3% 11% 9.6% 10.5%

Comparative analysis

In order to have an effective conclusion, the proposed approach has been compared

for its accuracy and the training loss parameters against the existing results pre-

sented in the literature [112]. Figure 5.10 and Figure 5.11 show the contrast of

the parameters used for various batch sizes and epochs. These results also prove

the conclusion statement in the previous sub-section.

Figure 5.10: Accuracy comparison of FedSDM with FedAvg and Edgefed

Figure 5.11: Training loss comparison of FedSDM with FedAvg and Edgefed
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5.4 Summary

Due to the heterogeneous and dynamic nature of critical medical IoT applications

in fog scenarios, the privacy of patients become a crucial problem. This chapter

investigates the federated learning-based smart decision making module for ECG

Data in microservice-based IoT medical applications. In addition, we also examine

the performance of the proposed system with three different placement policies

considering the deployment at edge, fog and cloud layers.

The deployment of federated learning in edge, fog, and cloud-based medical

applications brings about several challenges that necessitate innovative solutions.

One of the primary concerns is the preservation of patient data privacy and se-

curity. In healthcare, sensitive medical records and diagnostic information are

involved, making it imperative to maintain the confidentiality of patient data.

Federated learning mitigates this risk by training machine learning models di-

rectly on patient devices, but it introduces complexities in ensuring that data

remains secure throughout the collaborative training process.

Moreover, the distributed nature of edge, fog, and cloud computing environ-

ments amplifies the challenge of maintaining data integrity and traceability. Med-

ical professionals and regulatory bodies require a verifiable record of data access

and usage for compliance and accountability purposes. Without a robust mecha-

nism to track and audit data interactions, it becomes difficult to maintain trust in

the federated learning system. Additionally, federated learning systems must con-

tend with the dynamic and heterogeneous nature of edge and fog devices, which

can vary significantly in terms of computational capabilities and network connec-

tivity. Ensuring efficient model updates and synchronization across these diverse

endpoints is a technical hurdle that must be addressed to achieve seamless and

timely training.

In light of these challenges, the integration of blockchain technology emerges

as a promising solution. Blockchain offers a secure, tamper-proof ledger that can

enhance data security, privacy, and traceability in federated learning systems. It

provides a transparent and immutable record of all data transactions, ensuring

that patient data remains confidential, unaltered, and auditable throughout the

federated learning process. Blockchain can also facilitate trust among the various

stakeholders involved, including medical professionals, patients, and regulatory

bodies, ultimately enabling the adoption of federated learning for more accurate

medical diagnoses and treatment recommendations in edge, fog, and cloud-based

healthcare applications.

Incorporating blockchain into our proposed approach for federated learning

within edge, fog, and cloud-based medical applications represents a crucial step
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towards achieving AI-driven healthcare solutions that are not only more precise

but also more secure and transparent. This integration enhances the potential for

improved medical diagnoses, treatment recommendations, and overall patient care

outcomes. Therefore, we are committed to integrate blockchain into our approach

to meet these essential objectives, which is the focus of the next chapter.
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Chapter 6

Resource Provisioning based on

Blockchain Integrated Federated

Learning Methods

6.1 Introduction

The integration of IoT and healthcare, commonly known as medical IoT, has wit-

nessed remarkable growth in recent years, offering unprecedented opportunities

for real-time patient monitoring and personalized healthcare. Among the nu-

merous medical IoT applications, ECG anomaly detection plays a vital role in

identifying potential cardiovascular irregularities and assisting in timely diagnosis

and treatment. Accurate ECG anomaly detection is crucial for preventing life-

threatening conditions and improving patient outcomes. Traditional approaches

to ECG anomaly detection often involve centralizing medical data in cloud-based

infrastructures, where machine learning models are trained and updated. How-

ever, this centralized paradigm raises significant concerns regarding data privacy,

security, and latency. Medical data, being sensitive and highly regulated, re-

quires stringent protection to comply with data privacy laws and maintain patient

trust. Moreover, the reliance on a centralized server introduces potential points

of failure, making the system vulnerable to cyber-attacks and data breaches. By

keeping data decentralized and processing it locally, federated learning enhances

data privacy and security, ensuring that sensitive medical information remains

with the users who generate it. This decentralized approach minimizes the risk of

data breaches and facilitates compliance with data protection regulations. While

federated learning addresses many privacy concerns, it still faces certain limita-

tions, especially in resource-constrained IoT environments. Communication over-

head, limited computational capabilities of edge devices, and the potential for
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Byzantine attacks require further enhancements for effective federated learning

in medical IoT applications. In this context, blockchain technology emerges as a

complementary solution to enhance the security, transparency, and efficiency of

federated learning in medical IoT environments. Blockchain, as a decentralized

and tamper-proof ledger, provides an immutable record of all transactions and

model updates. When combined with federated learning, blockchain ensures the

integrity and transparency of data and model updates, creating a distributed and

trustless environment for collaborative training [116,190–194].

The motivation behind this research is to explore the potential of blockchain-

based federated learning for ECG anomaly detection in edge, fog, and cloud com-

puting environments. By leveraging blockchain’s immutability and decentraliza-

tion, we aim to address the privacy and security concerns associated with medical

data while enabling efficient and accurate ECG anomaly detection. This imple-

mentation seeks to empower medical IoT devices, edge, and fog nodes to collabora-

tively participate in the training process, leading to improved model accuracy and

robustness. This research can contribute to the advancement of healthcare services

by presenting a cutting-edge solution that guarantees data privacy, security, and

efficient model training. The integration of blockchain and federated learning in

medical IoT applications holds the potential to revolutionize patient care, enabling

more personalized and timely medical interventions while upholding the highest

standards of data protection and confidentiality. The motivation for conducting

this study stems from the fact that existing research on Edge/Fog/Cloud Feder-

ated learning approaches does not adequately address the healthcare issues related

to ECG anomaly detection in microservice-based IoT healthcare applications

6.2 Proposed Model

Based on the comprehensive literature review presented in Section 2.7, which

examines existing methodologies and frameworks, highlighting the integration of

IoT microservices, mobility management, and blockchain-based federated learning

techniques for healthcare applications, a novel approach has been introduced. The

proposed approach adopts a strategy centered around federated clients. Within

this framework, every client is furnished with a pre-existing model from the feder-

ated server. This model is curated using a public data set, which serves as a foun-

dational resource for initializing the training procedures of individual clients. By

leveraging the knowledge encapsulated within this initial model, federated clients

can then embark on personalized training based on their local data, ultimately con-

tributing to the collective learning process in a distributed and privacy-preserving

manner. This distributed architecture enable clients to harness the power of col-
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Figure 6.1: Proposed Federated learning architecture

lective data while maintaining data privacy on their local devices. Leveraging this

access, each federated client autonomously undertakes model training using its

own local data, tailoring the model to its unique circumstances and requirements.

Upon the local training phase’s completion, the federated clients transmit their

model updates back to the federated server. This communication process facili-

tates information exchange, allowing the federated server to consolidate the various

local models into a unified and robust global model. Aggregating insights from

diverse data sources enhances the overall model’s accuracy and adaptability. The

configuration for the suggested federated learning approach has been illustrated

in Figure 6.1.

Notably, the federated server employs a mining process that involves the ac-

tive participation of all federated clients and edge devices. Smart contracts play

a crucial role in this stage, ensuring the mining process’s transparency, security,

and fairness. This collaborative mining process is vital for producing a reliable

and trustworthy global model that caters to the collective needs of the federated

ecosystem. To ensure tamper-proof storage and easy accessibility, the resulting

global model is securely stored inside a blockchain. The immutable nature of

blockchain technology ensures the integrity of the model and enable efficient re-

trieval whenever needed. This integration of federated learning with blockchain

offer a cutting-edge solution that combines privacy, decentralization, and relia-

bility, fostering a new paradigm for collaborative and secure machine learning in

diverse applications. The configuration of the proposed blockchain based federated

learning approach has been visually presented in Figure 6.2.

The described approach functions in the following manner: Patient-generated
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Figure 6.2: Proposed approach Sequence diagram

ECG sensor data is stored on the edge device, for instance, a mobile phone. Com-

putation tasks are managed by the client and data preprocessing microservices,

respectively, both located at the edge. Subsequently, the preprocessed ECG data

is transferred to the Smart Decision Making module for anomaly analysis. In the

event of anomaly detection, a notification is sent to the end device to inform the

user of potential health concerns.

The presented architecture assesses and contrasts the effectiveness of various

placement strategies for the decision-making module built on federated learning,

as outlined in the preceding section. In every placement circumstance, be it at the

edge, fog, or cloud, the individual updates from the associated devices or nodes

are consolidated within their respective tiers. Following each round of federated

learning, the clients and edge devices collaborate in the data extraction process

and engage in the execution of smart contracts.

The key functions of smart contract are “updateGlobalModel” and “getGlob-

alModel.” The former allows for updating the global model with a new model

represented as an array, ensuring that the new model’s length matches the exist-

ing global model’s length to prevent invalid updates. The latter function enables

clients to retrieve the latest version of the global model. This smart contract is

intended to be used in conjunction with the federated learning system, where a

federated server generates a new global model after each round of training, and

clients interact with the smart contract using web3.js to obtain the global model for

their local training, enabling collaborative machine learning while preserving data

privacy on the blockchain. Consequently, the globally generated model is securely

stored on the Ganache blockchain and is treated as a transaction. The integration

of blockchain technology enhances the system’s resilience, facilitating smooth co-
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operation among participants while safeguarding data privacy and preventing any

unauthorized alterations to the global model. Smart contract algorithm proposed

is presented in Algorithm 4.

Algorithm 4 Smart Contract for Global Model

1: procedure Initialize
2: Initialize the global model in the smart contract with zeros in the construc-

tor.
3: end procedure
4: procedure updateGlobalModel(input newModel: array)
5: if newModel.length == globalModel.length then
6: require newModel.length == globalModel.length, “Invalid model size”
7: globalModel = newModel
8: end if
9: end procedure
10: procedure getGlobalModel
11: return globalModel
12: end procedure

call updateGlobalModel(newModel) ▷ Passing the new model parameters as
an array
call getGlobalModel ▷ To retrieve the latest version of the global model

▷ Clients use the retrieved global model for local training and updates in
subsequent rounds of federated learning

The proposed method explores three different deployment scenarios for FedAvg

in various layers: edge, fog, and cloud. In the edge scenario, the computation and

model training takes place on the edge devices closer to the end users. In the fog

scenario, the computation occurs on intermediate fog nodes, while in the cloud

scenario, the central server handles the computation and aggregation of the global

model. Each scenario offers unique advantages and trade-offs in terms of commu-

nication efficiency, latency, and resource utilization, allowing the system to adapt

and optimize according to the application’s specific requirements. Following every

round of federated learning, the clients and edge devices actively engage in the

mining process and execute smart contracts. As a result, the collectively generated

global model is securely stored within the Ganache blockchain, where it is treated

as a transaction. This decentralized and immutable ledger ensures the integrity

and transparency of the model updates, enhancing the overall security and trust-

worthiness of the federated learning system. By leveraging blockchain technology,

the process becomes more robust, enabling seamless collaboration among the par-

ticipants while preserving data privacy and preventing unauthorized modifications

to the global model.

Each deployment policy is assessed for its learning efficiency and QoS param-

eters. By comparing the results from various deployment options, the proposed
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method aims to determine the most effective and efficient approach for integrat-

ing federated learning in the healthcare system for ECG anomaly detection in real

time. The suggested approach includes applying blockchain based FedSDM in the

edge, fog, and cloud layers to assess effectiveness and cost-efficiency.

6.3 Results and Analysis

6.3.1 Blockchain-Based Federated Learning Evaluation pa-

rameters and Dataset for Healthcare IoT Microser-

vices

Proposed research employs a comprehensive methodology by incorporating specific

datasets to evaluate the effectiveness of the proposed meta-heuristic-based resource

provisioning model for healthcare IoT microservices in a blockchain-based feder-

ated learning context, as detailed in Chapter 3.4.2. The integration of a mobility

dataset enable the simulation of dynamic device movement patterns, emulating

real-world scenarios with mobile IoT devices within the blockchain-based federated

learning framework. Additionally, the incorporation of an ECG dataset facilitate

the emulation of authentic healthcare data, providing a realistic foundation for

assessing the performance of our system in healthcare applications within the con-

text of blockchain-based federated learning. Chapter 3.5 meticulously outlines the

key parameters considered for evaluation, encompassing energy consumption, cost,

latency, execution time, and network usage, specifically tailored to the blockchain-

based federated learning paradigm. These parameters were carefully selected due

to their critical relevance in determining the efficiency and effectiveness of resource

provisioning for healthcare IoT microservices within the blockchain-based feder-

ated learning framework. Our detailed description of the dataset utilization and

the examination of key evaluation parameters contribute to the robustness and

practical applicability of our research in the context of healthcare IoT microser-

vices within the blockchain-based federated learning environment.

6.3.2 Simulation Environment

iFogSim2

This section presents the simulation environment utilized to assess the proposed

approach. The sensors are responsible for detecting the patient’s ECG data,

which is then regularly transmitted to the Fog nodes. On the edge/fog nodes,

the data undergoes processing and analysis to determine the patient’s health sta-

tus, whether it is normal or critical. The outcomes are subsequently transmitted
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to both the Cloud for storage and the patient’s smartphone. To establish the con-

nection between the Fog nodes and the Cloud server, a proxy server is employed.

To obtain sensor data, the client module is integrated into IoT devices. On the

other hand, the processing module is embedded in the edge/fog nodes, enabling

them to process and analyze the incoming data for the assessment of the patient’s

health status. Once the analysis is complete, the edge/fog node communicates

the results to the associated IoT device, which displays them to the user. During

the generation of Fog devices in iFogSim2, various parameters need to be defined,

such as CPU length, RAM, Bandwidth, and more.

In summary, this simulation environment facilitates the evaluation of the pro-

posed approach’s performance by simulating the flow of ECG data from sensors to

edge/fog nodes, cloud storage, and end-user devices. It allows for the examination

of various system configurations and parameter values to assess the efficiency and

effectiveness of the proposed system in processing and analyzing real-time critical

healthcare data.

In the iFogSim2 simulation, computational devices are categorized into Fog

devices, and they are available at various levels. The highest level, Level 3, rep-

resents the parent node, which functions as the Cloud server. At Level 2, the Fog

nodes are connected to the Cloud server through a proxy server. These Fog nodes,

situated at Level 1, are closer to the end-users and are considered Edge devices.

They offer more frequent computational and storage capabilities. At the lowest

level, Level 0, IoT devices are equipped with sensors and actuators. A thorough

explanation of the aforementioned is provided in section 4.3.

In iFogSim2, the physical topology is simulated using the MicroserviceFogDe-

vice, Sensor, and Actuator classes. The scenarios are conducted on a computer

system with an Intel Core i7 CPU running at 1.80 GHz and 4GB of RAM. The

fractional selectivity of the input-output relationship within a module is set to 1.0.

This configuration enables the simulation of the proposed system’s behavior

across different levels of computational devices, from edge to fog and cloud servers,

with realistic processing capabilities and communication links. The simulation is

conducted on a standard computer setup, allowing for comprehensive evaluations

of performance and efficiency under various scenarios.

Ganache

Ganache is a popular personal blockchain designed specifically for Ethereum devel-

opment and testing purposes. It serves as a local and private Ethereum network,

enabling developers to deploy, interact, and debug their smart contracts with-

out the need for real transactions on the main Ethereum network. One of its
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essential functionalities is providing a local blockchain environment, which signifi-

cantly speeds up development and testing cycles. Ganache comes with predefined

accounts containing test Ether, facilitating the testing of various scenarios and

functionalities in smart contracts. interaction with the local blockchain through

the RPC interface using JSON-RPC or web3.js, making it easy to integrate with

smart contract development tools and libraries. Although Ganache is a local net-

work, it simulates gas prices and limits, giving developers insights into how their

smart contracts would perform on the main Ethereum network. Another crucial

feature is the ability to take snapshots of the blockchain state and later reset

it, allowing for easy testing and debugging with different initial states. Ganache

also offers transaction tracing and logs, enabling detailed analysis and debugging

of smart contract executions. Integrated seamlessly with the Truffle development

framework, Ganache provides Ethereum developers with a convenient and efficient

environment for local testing, making smart contract development a smoother and

more enjoyable experience [195]

In our proposed approach, Ganache is set up with port 7545 selected for ac-

cessibility through ’localhost’ or ’127.0.0.1’. A smart contract was then created

using Truffle, a widely used development framework that streamlines the build-

ing and deployment of smart contracts. The contract was meticulously compiled

to ensure its precision and efficiency. The smart contract was successfully de-

ployed to the Ganache blockchain, leveraging Truffle’s migration scripts, making

it readily available and operational on the network. The web3.js library, a power-

ful JavaScript framework, was utilized to facilitate interaction with the deployed

smart contract. This integration with web3.js enabled seamless communication

with the smart contract, empowering the applications to invoke its functions and

execute transactions with ease.

6.3.3 Analysis and Observations

In this section, we present the results and observations of the proposed model,

which were evaluated using different placement policies, as explained in the pre-

ceding sections. These reconstructed ECGs are crucial in predicting whether the

ECG readings are anomalous. An ECG is considered anomalous if its reconstruc-

tion error surpasses a predefined threshold. The error values calculated from these

figures facilitate the classification of ECG readings.

Ganache Interface includes features for account management, network config-

uration, blockchain data, and logs and events. Users can create, import, and fund

Ethereum accounts, configure network settings, and access essential blockchain in-

formation. Figure 6.3 provides the snapshot of Ganache Interface of the proposed
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Figure 6.3: Ganache interface

approach.

Within Ganache, the smart contract deployment interface component allows

to compile and deploy smart contracts. We compiled the Solidity contracts into

bytecode and deployed them to the local or test Ethereum network. This interface

includeed a transaction history that records the details of contract deployments,

such as transaction IDs and statuses. It has interaction with deployed contracts,

facilitating function calls and state inspection. Figure 6.4 provides the snapshot

of smart contract deployment interface component of the proposed approach.

The Transactions page in Ganache is dedicated to displaying a comprehensive

transaction history. It provides a chronological record of all transactions on the

blockchain, offering insights into their senders, receivers, gas costs, and times-

tamps. Users can conveniently access transaction details by clicking on specific

transactions, revealing critical information like transaction hashes, block numbers,

and input data. This page is invaluable for tracking the flow of transactions and

their associated data. Figure 6.5 provides the snapshot of transactions of the

proposed approach.

The created blocks page in Ganache operates as a block explorer, offering in-

sights into each block added to the blockchain. It provides details about individual

blocks, including their block numbers, timestamps, gas used, and the transactions

included within each block. Additionally, users can access information regard-

ing the mining process, including the current miner’s address. This page plays a

pivotal role in helping developers monitor the blockchain’s structure and under-

stand the relationships between blocks and transactions. Figure 6.6 provides the
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Figure 6.4: Smart contract deployment

Figure 6.5: Transactions
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Figure 6.6: Created blocks

snapshot of details of the created blocks in the proposed approach.

The results of the BCFL model has been compared with the results obtained

from the FL model without Blockchain which is diagrammatically presented in

Figure 6.7. Figure 6.8 comprehensively compares the performance parameters

for different placement policies discussed in this study. When the FL module is

deployed in the Edge layer, significant improvements are observed compared to

placing it in the Cloud layer. Specifically, deploying FL in the Edge layer reduces

Cloud energy consumption by 1%, decreases network usage by 32%, cuts down

costs by 23%, reduces execution time by 40%, and decreases latency by 80%.

Similarly, when comparing the FL module placement in the Fog layer against

the Cloud layer, significant improvements are also observed. Deploying FL in the

Fog layer reduces Cloud energy consumption by 0,9%, decreases network usage by

31%, lowers costs by 20%, reduces execution time by 28%, and decreases latency

by 79%.

Furthermore, a comparison between FL module placement in the Edge and

Fog layers reveals that Edge deployment outperforms Fog deployment. Specifi-

cally, Edge deployment shows improvements of 0.1%, 1.1%, 3%, 16%, and 1% in

terms of energy consumption, network usage, costs, execution time, and latency,

respectively.

Table 6.1 and 6.2 consolidate the results and provide a clearer understanding

of the comparisons made. The graph illustrating the Latency-Execution time

composite for Edge BCFL, Fog BCFL, and Cloud BCFL is depicted in Figure 6.9.

In conclusion, deploying the FL module in the Edge layer proves to be superior to
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(a) Cloud Energy (b) Router Energy

(c) Cost (d) Network use

(e) Latency (f) Execution time

Figure 6.7: Result of BCFL deployment in Edge/Fog/Cloud layers with and
without Blockchain integration
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(a) Cloud Energy (b) Router Energy

(c) Cost (d) Network use

(e) Latency (f) Execution time

Figure 6.8: Result of BCFL deployment in Edge/Fog/Cloud layers
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both the Fog and Cloud layer deployments, supporting the integration of AI on

Edge for efficient and smart healthcare systems. It enables real-time or advanced

remote patient monitoring by immediately processing clinical tests.

Figure 6.9: Latency-Execution Time Composite Graph

Table 6.1: Comparison of Edge and Fog FL placement against Cloud

Metric Edge FL placement Fog FL placement

Energy Consumption (J) 1.07% 0.95%

Network Use (KB) 32% 31%

Cost ($) 23% 20%

Latency (ms) 80% 79%

Execution Time (ms) 40% 28%

Table 6.2: Comparison of Edge FL placement against Fog

Metric Edge FL placement

Energy Consumption (J) 0.1%

Network Use (KB) 1.1%

Cost ($) 3%

Latency (ms) 1%

Execution Time (ms) 16%

6.4 Summary

Patients’ privacy is a significant concern in fog scenarios due to the diverse and

dynamic nature of critical medical IoT applications. This study explores a Feder-
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ated Learning-based Smart Decision Making module for ECG Data in microservice

based IoT medical applications. Additionally, the system’s performance is evalu-

ated using three different placement policies, considering deployment at the edge,

fog, and cloud layers. Future research will address the limitations of this work

and focus on experimenting with the model’s energy usage. The proposed method

will be implemented, and additional aggregation techniques will be explored and

deployed to enhance prediction models. Moreover, blockchain techniques will be

leveraged to enhance system security in real time edge/fog/cloud scenarios.
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Chapter 7

Conclusions and Future

Directions

7.1 Conclusions

In conclusion, this thesis has delved into the intricate realm of resource provi-

sioning for critical ECG medical applications, employing both the weighted sum

method and heuristic methods within the context of edge, fog, and cloud comput-

ing. Throughout our exploration, we have highlighted the significance of resource

allocation precision in ensuring the uninterrupted functionality and reliability of

such life-critical applications. The utilization of the weighed sum method has

demonstrated its efficacy in achieving optimal resource allocation by consider-

ing multiple factors such as latency, throughput, and energy consumption. This

approach has allowed for a more comprehensive and balanced distribution of re-

sources, which is crucial for real-time ECG monitoring and diagnosis. The heuris-

tic methods, on the other hand, have offered practical solutions for resource al-

location when dealing with dynamic and unpredictable workloads, enhancing the

adaptability of the system to changing conditions.

Furthermore, the extension of this project to integrate federated learning and

blockchain technologies showcases the commitment to advancing the capabilities

of resource provisioning for ECG medical applications. Federated learning em-

powers distributed edge and fog nodes to train machine learning models while

preserving data privacy collaboratively, ultimately enhancing the accuracy and

responsiveness of ECG analysis. Simultaneously, blockchain technology adds an

additional layer of security and transparency to the data exchange and resource

allocation processes, ensuring the integrity of medical data and resource utiliza-

tion. This holistic approach enhances the performance of critical ECG medical

applications and addresses the paramount concern of data privacy and security in
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the healthcare domain. It represents a significant step forward in the evolution of

edge, fog and cloud computing solutions for healthcare, setting the stage for even

more sophisticated and robust systems in the future.

In summary, the research presented in this thesis underscores the vital role of

resource provisioning methodologies in ensuring the effectiveness and reliability

of ECG medical applications. Incorporating weighed sum and heuristic methods,

alongside the integration of federated learning and blockchain technologies, is a

testament to the commitment to advancing healthcare technology. As we move

forward, it is imperative to continue exploring innovative approaches to resource

provisioning and data security, with the ultimate goal of enhancing patient care

and well-being through cutting-edge technology.

7.2 Summary of Research Findings

Throughout this thesis, we have systematically investigated several key research

questions pertaining to the effective utilization and optimization of IoT microser-

vices, metaheuristic scheduling techniques, Smart Decision Making modules for

ECG anomaly detection, Blockchain-based Federated learning in healthcare ap-

plications, and resource provisioning solutions in fog and edge computing environ-

ments. Here’s a summary of our findings and the status of each research question

discussed in Chapter 1:

• Utilization of IoT Microservices for Healthcare Applications: We

have explored effective strategies for utilizing IoT microservices in resource

provisioning and mobility management within healthcare applications, high-

lighting their potential to enhance operational efficiency. This has been ac-

complished through the implementation of the strategies outlined in Section

3.4.

• Multiobjective Optimization in Healthcare Applications: Through

the weighted sum method, we have identified and optimized key parame-

ters crucial for healthcare applications, improving outcomes across multiple

objectives. The results of this optimization are detailed in Figure 3.12.

• Metaheuristic Scheduling Techniques for Resource Provisioning:

Modified metaheuristic scheduling techniques have been investigated to en-

hance resource provisioning efficiency in fog and edge devices, showcasing

promising results in optimizing resource allocation. The outcomes of these

investigations are presented in Tables 4.3 and 4.4.
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• Design Considerations for Early Warning Systems: Essential design

considerations for developing an early warning system for ECG anomalies

using Smart Decision Making modules have been outlined, focusing on real-

time detection and response. The results of these considerations, including

the comparison of Edge and Fog FL placement against Cloud, and the com-

parison of Edge FL placement against Fog, are detailed in Tables 5.1 and

5.2, respectively.

• Integration of Blockchain-based Federated Learning in Healthcare:

We have proposed methodologies to integrate Blockchain-based Federated

learning into critical healthcare applications, emphasizing privacy-preserving

methods for protecting end-user data. The outcomes of these methodologies

are illustrated in Figure 6.7.

• Placement Policy for Blockchain-based Federated Learning: The

most suitable placement policy for deploying the Blockchain-based Feder-

ated learning module across edge, fog, and cloud layers has been identified,

ensuring optimal performance within distributed healthcare architectures.

From the discussions in Section 6.3.3, it is evident that the edge deployment

policy proved to be more effective.

• Performance Evaluation of Resource Provisioning Solutions: We

have evaluated the performance of our resource provisioning solution under

various conditions, assessing energy consumption, network use, cost, execu-

tion time, and latency. Deploying BCFL in the Edge layer has resulted in

1% reduction in Cloud energy consumption, 32% decrease in network usage,

23% cut in costs, 40% reduction in execution time, and 80% decrease in

latency.

• Challenges in Implementing IoT Microservices with Mobility Man-

agement: Challenges associated with implementing IoT microservices with

mobility management in healthcare applications have been identified, along

with potential mitigation strategies. These discussions are extensively cov-

ered in Section 4.3 of the study.

• Validation of Resource Provisioning Solution through Simulation:

The effectiveness of our proposed resource provisioning solution has not yet

been validated through simulation experiments. This is primarily due to the

absence of existing literature on Blockchain-based Federated learning meth-

ods in edge computing, which limits our ability to benchmark and validate

our approach against established standards.
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• Impact of Blockchain-based Federated Learning on Healthcare Ap-

plications: We have examined the impact of integrating Blockchain-based

Federated learning on the performance and security of healthcare applica-

tions in distributed environments, highlighting its potential benefits and

challenges. The integration of Blockchain-based Federated Learning intro-

duces additional overheads, yet it significantly enhances security and ensures

robust privacy preservation measures.

7.3 Real-World Deployment Challenges

Deploying the proposed Efficient Resource Management Framework for critical

healthcare applications in integrated edge-fog-cloud environments using blockchain-

based federated learning methods presents several real-world challenges. One of

the primary issues is ensuring seamless interoperability between the diverse com-

ponents of edge, fog, and cloud infrastructures, which often have varying capabil-

ities and standards. Additionally, the integration of blockchain technology, while

enhancing security and data integrity, introduces computational overhead that

can strain resource-constrained edge devices. Federated learning methods, which

rely on decentralized data processing, must contend with inconsistent data quality

and connectivity issues across different network nodes. Ensuring data privacy and

compliance with stringent healthcare regulations, such as HIPAA, further compli-

cates the deployment. Moreover, achieving real-time performance and reliability in

critical healthcare scenarios demands robust fault tolerance and efficient resource

allocation mechanisms. Addressing these challenges requires comprehensive test-

ing, optimization, and collaboration with healthcare stakeholders to ensure the

framework’s efficacy and sustainability in real-world applications.

7.4 Future Directions

This thesis addressed several challenges of resource management for critical health-

care applications in integrated edge/fog/cloud environments using Blockchain-

based Federated Learning methods. However, the proposed approach can be fur-

ther refined by addressing several key issues that require additional investigation.

An overview of these future research directions is detailed in the following sections

and depicted in Figure 7.1.
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Figure 7.1: Future Directions

7.4.1 Enhanced Data Privacy and Security

The integration of Blockchain technology in Federated Learning offers a promis-

ing approach to ensuring data privacy and security. However, there are still chal-

lenges related to the computational overhead and energy consumption associated

with Blockchain operations. Future research could focus on developing lightweight

Blockchain protocols that can be efficiently deployed on resource-constrained de-

vices within the edge/fog/cloud continuum. Additionally, exploring advanced en-

cryption techniques and secure multi-party computation methods can further en-

hance the privacy and security of sensitive healthcare data.

7.4.2 Scalability and Interoperability

As the number of connected devices and the volume of data in healthcare ap-

plications continue to grow, ensuring the scalability and interoperability of the

proposed framework becomes crucial. Future work could investigate scalable Fed-

erated Learning algorithms that can handle a large number of participants and

diverse data sources. Moreover, developing standardized protocols and interfaces

can facilitate seamless interoperability between different healthcare systems and

platforms, enabling broader adoption of the framework.

7.4.3 Adaptive Resource Allocation

Healthcare applications often have dynamic and unpredictable resource demands.

Future research could focus on adaptive resource allocation strategies that can
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respond in real-time to changing workloads and network conditions. Machine

Learning-based predictive models can be employed to forecast resource usage pat-

terns and optimize the allocation of computing resources across the Edge, Fog,

and Cloud layers. Additionally, integrating Quality of Service (QoS) metrics can

ensure that critical healthcare applications meet stringent performance and relia-

bility requirements.

7.4.4 Energy Efficiency

Energy efficiency is a critical concern in the deployment of resource management

frameworks in integrated edge/fog/cloud environments. Future studies could ex-

plore energy-aware scheduling algorithms that minimize energy consumption while

maintaining high performance. Techniques such as DVFS and energy-efficient net-

working protocols can be incorporated to achieve energy savings. Furthermore,

research into renewable energy sources and energy harvesting technologies can

contribute to the sustainability of the proposed framework.

7.4.5 Real-Time Analytics and Decision Support

The ability to perform real-time analytics and provide decision support is essential

for critical healthcare applications. Future research could investigate the integra-

tion of real-time data processing frameworks and advanced analytics platforms

within the proposed resource management framework. This includes developing

efficient data aggregation and processing pipelines that can handle streaming data

from medical devices and sensors. Additionally, incorporating decision support

systems that leverage AI and ML algorithms can assist healthcare professionals in

making timely and informed decisions.

7.4.6 Federated Learning Optimization

Federated Learning, while promising, faces challenges such as communication over-

head and model convergence. Future work could explore optimization techniques

to improve the efficiency of Federated Learning in resource-constrained environ-

ments. This includes developing communication-efficient protocols, model com-

pression techniques, and asynchronous training methods. Moreover, personalized

Federated Learning approaches can be investigated to tailor models to the specific

needs and preferences of individual healthcare providers and patients.
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7.4.7 Integration with Emerging Technologies

The proposed framework can benefit from the integration of emerging technologies

such as 5G, Internet of Medical Things, and AI. Future research could examine how

these technologies can enhance the performance, reliability, and functionality of

the resource management framework. For instance, 5G networks can provide ultra-

low latency and high bandwidth connectivity, enabling real-time data transfer

and processing. Similarly, IoHT devices can offer rich data sources for training

Federated Learning models, while AI can enhance predictive analytics and decision

support capabilities.

7.4.8 Usability and User Experience

Ensuring the usability and positive user experience of the proposed framework

is critical for its adoption in healthcare settings. Future studies could focus on

designing user-friendly interfaces and tools that simplify the deployment, man-

agement, and monitoring of the resource management framework. Conducting

usability testing with healthcare professionals can provide valuable insights into

the design and functionality of the framework, leading to improvements that align

with the needs and workflows of end-users.

7.4.9 Compliance and Regulatory Considerations

Healthcare applications must comply with stringent regulatory requirements and

standards to ensure the safety and privacy of patient data. Future research could

investigate the legal and regulatory implications of deploying the proposed frame-

work in different regions and healthcare systems. This includes ensuring compli-

ance with regulations such as the Health Insurance Portability and Accountability

Act in the United States and the General Data Protection Regulation in Europe.

Developing frameworks and guidelines that address these compliance requirements

can facilitate the safe and lawful adoption of the proposed approach.

7.4.10 Enhancing Resilience and Efficiency in Federated

Learning and Blockchain Integration

Future work can focus on developing lightweight, optimized algorithms and frame-

works to ensure edge devices efficiently handle the computational load imposed

by Federated Learning and blockchain processes. Additionally, implementing fed-

erated client timeout mechanisms and asynchronous local updates can serve as

contingency plans for handling node failures during the Federated Learning pro-
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cess, ensuring robustness and continuity even if some nodes become unresponsive.

Strategies for handling federated clients that fail and later rejoin may include

storing intermediate updates on the blockchain, allowing the federated server to

aggregate these updates once the client reconnects. Fault-tolerant mechanisms

such as checkpointing and state synchronization can also ensure that rejoining

clients seamlessly continue contributing to the federated learning process without

disrupting the overall system.

7.4.11 Final Remarks

In summary, while the proposed Efficient Resource Management Framework for

Critical Healthcare Applications in Integrated Edge/Fog/Cloud Environments us-

ing Blockchain-based Federated Learning Methods presents a robust solution, fur-

ther research in these areas will be essential to address existing challenges and

harness the full potential of this innovative approach.
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Appendix A

Dataset

A.1 Mobility dataset

A.1.1 random usersLocation-melbCBD 1.csv

The “random usersLocation-melbCBD 1.csv” dataset within the iFogSim frame-

work contains geospatial information about randomly generated user locations

within the Central Business District (CBD) of Melbourne. It includes attributes

such as latitude and longitude coordinates, indicating the approximate locations

of users within the CBD area. This dataset is valuable for simulating user in-

teractions and mobility patterns in edge computing scenarios, providing essential

spatial data for evaluating edge resource allocation and task scheduling strate-

gies [178]. Due to space limitations, below is a condensed sample from the “ran-

dom usersLocation-melbCBD 1.csv” dataset:

Latitude Longitude

-37.81349283 144.9523705

-37.81349283 144.9523705

-37.81349283 144.9523705

-37.81349283 144.9523705

-37.81349283 144.9523705

-37.81349283 144.9523705

-37.81484742 144.9537732

-37.81607696 144.9550465

-37.81571029 144.9566347

-37.81478954 144.9575238

-37.81574041 144.9587857

-37.81628541 144.9597297

-37.81628541 144.9597297

-37.81628541 144.9597297

-37.81628541 144.9597297

-37.81781084 144.9587007

-37.81781084 144.9587007
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A.1.2 edgeResources-melbCBD.csv

The “edgeResources-melbCBD.csv” dataset contains spatial information about edge re-

sources located in the Central Business District (CBD) of Melbourne. It includes at-

tributes such as unique identifiers (ID), latitude, longitude coordinates, block infor-

mation, level, parent relationship, state, and additional details about each resource.

This dataset is valuable for simulating edge computing scenarios within urban environ-

ments, providing essential geographical and logistical data for deploying and managing

edge resources effectively [178]. Due to space constraints, a limited sample from the

“edgeResources-melbCBD.csv” dataset is provided below:

ID Block Level Parent Details

0 0 0 -1 DataCenter

1 1 1 0 Block1 Proxy

2 2 1 0 Block2 Proxy

3 3 1 0 Block3 Proxy

4 4 1 0 Block4 Proxy

5 5 1 0 Block5 Proxy

6 6 1 0 Block6 Proxy

7 7 1 0 Block7 Proxy

8 8 1 0 Block8 Proxy

9 9 1 0 Block9 Proxy

10 10 1 0 Block10 Proxy

11 11 1 0 Block11 Proxy

12 12 1 0 Block12 Proxy

13 12 2 12 Spring and Flinders ucell Optus North West corner Spring and

Flinders St MELBOURNE

14 1 2 1 Optus Minicell - Lon Spencer Corner Spencer and Lonsdale St MEL-

BOURNE

15 11 2 11 136 Exhibition St MELBOURNE

16 9 2 9 Federation Square North -V 164A Flinders Street MELBOURNE

17 3 2 3 KING ST (3144 REPLACEMENT) -V 530 Collins Street MEL-

BOURNE

18 4 2 4 Empire Apartments 402-408 La Trobe Street MELBOURNE

19 10 2 10 CMTS Site 287-293 Exhibition St MELBOURNE

20 1 2 1 CGU Bldg 485 La Trobe Street MELBOURNE

21 6 2 6 360 Collins St Collins Wales Building MELBOURNE

22 3 2 3 Stock Exchange Bldg 530 Collins Street MELBOURNE

23 2 2 2 625 Lt Collins St MELBOURNE

24 12 2 12 ANZ Bank Tower 55 Collins Street MELBOURNE

25 2 2 2 Bourke Place 600 Bourke Street MELBOURNE

26 2 2 2 Marland House 570 Bourke Street MELBOURNE

27 3 2 3 Rialto Towers 525 Collins Street MELBOURNE
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A.2 ECG dataset

A.2.1 ecg.csv

This dataset contains electrocardiogram (ECG) readings of patients, with each row

representing a complete ECG recording. Each recording consists of 140 data points,

with columns 0 to 139 containing the ECG data points represented as floating-point

numbers. Additionally, there is a label column indicating whether the ECG reading is

classified as normal or abnormal, with categorical values of either 0 or 1 [179]. Given

the extensive nature of the dataset, a restricted sample from the “ecg.csv” dataset is

presented below:

Column A Column B Column C Column D Column E Column EK

-1.1008778 -3.9968398 -4.2858426 1.1196209 -0.17456252 1

-0.56708802 -2.5934502 -3.8742297 0.90422673 -0.55638598 1

0.49047253 -1.9144071 -3.6163638 1.403011 -0.67499495 1

0.80023202 -0.87425189 -2.3847613 1.6143924 -0.98324201 1

-1.5076736 -3.57455 -4.4780109 1.4933655 -0.80992101 1

-0.297161 -2.7666349 -4.1021848 1.2881654 -0.63651154 1

0.44676853 -1.5073974 -3.1874679 0.96121472 -0.83883747 1

0.087630577 -1.7534903 -3.3044731 -0.64868286 -0.75435259 1

-0.83228111 -1.7003675 -2.2573013 1.6792986 -0.76728083 1

0.084430128 -3.1903071 -4.686175 1.6267069 -0.76484136 1

-0.007819138 -2.3367567 -3.527643 1.470211 -1.0828626 1

-1.0743015 -3.2593996 -4.1259793 1.1316334 -0.4515052 1

4.0581274 2.0878442 0.4231153 -1.0382589 -0.79944254 1

-0.76160326 -2.9212433 -3.8943153 1.1621124 -0.63460819 1

-0.18649962 -2.6824878 -4.0168823 2.1514756 -0.71594341 1

0.80393944 -1.1069099 -2.8541073 0.61324167 -0.56830862 1

-0.92021269 -2.4495095 -3.1920276 -0.37083214 -0.22780434 1

2.7446026 -0.10192395 -2.8516809 1.5902704 -0.62244661 1

2.4028692 2.036719 0.34090237 1.9628195 -1.5850003 1

-1.3622631 -3.3530235 -3.9756571 -0.35122193 -0.47888403 1

1.9354139 -0.54876161 -2.3433933 1.8711056 -0.79419029 1

-1.862747 -3.2036327 -3.6341531 -0.302293 -0.20626303 1

-0.99857184 -2.8897248 -3.3877792 1.5209621 -0.8781486 1

-0.28834122 -2.2725454 -3.6660708 1.7227841 -0.94959214 1

0.53974315 0.66577827 -1.2755868 -0.70528326 -0.91614426 1

-1.1812944 -2.3030416 -2.8690724 -0.28587388 -0.5096429 1

1.5319341 0.92006083 -0.49019514 1.8501208 -1.2343389 1

-3.5278988 -5.1176214 -4.6348854 0.80512981 -0.38265832 1

-0.77586665 -3.4141412 -4.0897041 0.44012228 -0.49072884 1

-0.03594174 -0.27819632 -0.38375438 -0.24737942 0.1036615 1

-1.3132285 -1.9628833 -0.84626258 -2.4051707 0.93777282 1

-2.0956639 -4.182035 -4.3009498 0.82778817 -0.3609917 1

-0.65713662 -1.4969218 -2.0119899 1.587308 -0.85828141 1

1.0066612 -0.7129771 -2.1090848 0.7774028 -1.35122 1

0.30348816 -1.7968885 -3.596764 1.0289664 -0.76894357 1

-0.83354058 -1.4633151 -2.2679727 -1.3197323 -0.46750944 1
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-0.869182 -2.2065865 -2.9895709 1.8521256 -0.85471294 1

0.1940386 -2.6269766 -4.0946853 1.2951468 -0.87573421 1

1.381994 0.36621607 -2.4019983 -0.15810707 -0.072694063 1

0.8601815 -0.1418624 -1.9673779 0.59271243 -1.1037867 1

-0.50162131 -1.0885841 -1.9397493 2.5894742 -0.59484332 1

-0.53334196 -1.8556681 -2.2140382 1.1994292 -0.81267242 1
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[45] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins, E. Madeira, E. Min-

gozzi, O. Rana, and L. F. Bittencourt, “Mobfogsim: Simulation of mobility and

migration for fog computing,” Simulation Modelling Practice and Theory, vol. 101,

p. 102062, 2020.

[46] M. Shinu and M. Supriya, “Performance comparison of vm allocation and selec-

tion policies in an integrated fog-cloud environment,” in International Conference

on Ubiquitous Communications and Network Computing, pp. 169–184, Springer,

2021.

165



[47] H. Pydi and G. N. Iyer, “Analytical review and study on load balancing in edge

computing platform,” in 2020 Fourth International Conference on Computing

Methodologies and Communication (ICCMC), pp. 180–187, IEEE, 2020.

[48] B. Zhou and R. Buyya, “Augmentation techniques for mobile cloud computing:

A taxonomy, survey, and future directions,” ACM Computing Surveys (CSUR),

vol. 51, no. 1, pp. 1–38, 2018.

[49] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges,

methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3,

pp. 50–60, 2020.

[50] A. A. Monrat, O. Schelén, and K. Andersson, “A survey of blockchain from the

perspectives of applications, challenges, and opportunities,” IEEE Access, vol. 7,

pp. 117134–117151, 2019.

[51] Y. Li, C. Chen, N. Liu, H. Huang, Z. Zheng, and Q. Yan, “A blockchain-based de-

centralized federated learning framework with committee consensus,” IEEE Net-

work, vol. 35, no. 1, pp. 234–241, 2020.

[52] G. Xu, “Iot-assisted ecg monitoring framework with secure data transmission for

health care applications,” IEEE Access, vol. 8, pp. 74586–74594, 2020.

[53] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet of things,”

IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29, 2016.

[54] H. Wang, T. Liu, B. Kim, C.-W. Lin, S. Shiraishi, J. Xie, and Z. Han, “Architec-

tural design alternatives based on cloud/edge/fog computing for connected vehi-

cles,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2349–2377,

2020.

[55] S. Singh, S. Rathore, O. Alfarraj, A. Tolba, and B. Yoon, “A framework for

privacy-preservation of iot healthcare data using federated learning and blockchain

technology,” Future Generation Computer Systems, vol. 129, pp. 380–388, 2022.

[56] N. Wang, J. Zhou, G. Dai, J. Huang, and Y. Xie, “Energy-efficient intelligent ecg

monitoring for wearable devices,” IEEE transactions on biomedical circuits and

systems, vol. 13, no. 5, pp. 1112–1121, 2019.

[57] D. Agarwal, “Cloud computing- a brief introduction,” Jan 2019.
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