

i

SLA-based Resource Provisioning for Management of
Cloud-based Software-as-a-Service Applications

by

Linlin Wu

Submitted in total fulfillment of

the requirements for the degree of

Doctor of Philosophy

Cloud Computing and Distributed Systems Laboratory

Department of Computing and Information Systems

The University of Melbourne, Australia

March 2014

ii

iii

SLA-based Resource Provisioning for Management of
Cloud-based Software-as-a-Service Applications

PhD Candidate: Linlin Wu

Principle Supervisor: Professor Rajkumar Buyya

 Co-Supervisor: Dr. Saurabh Kumar Garg

Abstract

 The Cloud computing Software-as-a-Service (SaaS) model has changed the sales model for

software providers. The SaaS model transforms the traditional license based model to a

subscription model, which allows customers to access applications over the Internet without

software and hardware upfront costs and provides reduced maintenance costs. However, the

key for sales is still customer satisfaction which is at the heart of the selling process. To

guarantee Quality of Service (QoS) for customer satisfaction therefore, the Service Level

Agreement (SLA) is implemented between customers and SaaS providers, where the main

objectives are profit maximization and increased market share.

 To achieve these objectives, there are several challenges due to the dynamic nature of the

Cloud environment. Firstly, the SaaS provider utilizes shared infrastructure and various types

of request loads which can lead to unpredictability in performance and availability of

resources. Secondly, there is a possibility that existing customers may make changes in

requirements, which can lead to resource reallocation. As such, resource allocation may cause

SLA violations which could reduce the SaaS providers’ profit margin and reputation, meaning

a possible loss of existing customers and potential new customers. Thirdly, SaaS providers

need to attract customers with special needs and consider market competition from other

providers in order to increase profit and market share.

 To overcome the above challenges, most proposed solutions are focused on the resource

management with the aim of minimizing cost without sufficiently consideration of customer’

needs. Therefore, to address these challenges, this thesis proposes algorithms and techniques

for optimal provisioning of Cloud resources with the aim of maximizing profit and customer

base by handling the dynamism associated with SLAs and heterogeneous resources.

The key contributions of the thesis are:

 A comprehensive survey of how SLAs are created, managed and used with case

examples drawn from both academy and industry with a major emphasis on the SLA-

based resource management systems.

 The admission control and scheduling algorithms assist in identifying which request

is more acceptable based on profitability, reducing the probability of SLA violations

given the heterogeneous nature of Cloud resources.

 The customer requirements driven resource provisioning algorithms can help in

adapting to changes in the requirements. The proposed algorithms provide

personalized attention to the customer and are also able to understand specific

customer needs.

 A new negotiation framework to enlarge a SaaS provider’s customer base that

considers dynamism in the Cloud environment with time and market factors to make

the best possible decisions for negotiation.

 A prototype of the customer requirements driven SLA-based resource management

system to prove the usefulness of our proposed strategies using the latest

technologies.

iv

This is to certify that

(i) the thesis comprises only my original work,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of table, maps,

bibliographies, appendices and footnotes.

 Signature

 Date

v

ACKNOWLEDGMENTS

Throughout my PhD journey, I received guidance, support and motivation from

amazing people whom I wish to acknowledge. First and foremost, I would like to

express my sincere gratitude to my supervisors Professor Rajkumar Buyya and Dr.

Saurabh Kumar Garg for their continuous support, advice, and guidance throughout

my candidature. These individuals have built and directed an environment that

granted me the opportunity to learn and practice research skills, meet and collaborate

with brilliant researchers, and transfer the long journey of the PhD into an immensely

rewarding experience. This was especially so when I encountered personal issues, and

they supported me as a family.

I also wish to extend my gratitude to the members of the PhD committee: Prof. Rao

Kotagiri and Dr. Rodrigo N. Calheiros for their encouragement and insightful

comments in relation to my research. In particular, it has been consistently beneficial

to discuss initial research ideas with Dr. Rodrigo. Dr. Rodrigo has also generously

assisted both in preparing for my experiments and in the proof-reading of my papers

and thesis.

I would also like to thank the past and present members of the CLOUDS Laboratory

at the University of Melbourne. They include Mohsen Amini, Anton Beloglazov,

Atefe Khosravi, Sare Fotouhi, Deepak Poola, Mohammed Alrokayan, Yaser

Mansouri, Marco Netto, Mustafi zur Rahman, Mukaddim Pathan, Suraj Pandey, Rajiv

Ranjan, Christian Vecchiola, and Marcos Dias de Assuncao. I would also like to

thank Dr. Steve Versteeg and Mr. Bevan Mailman for proof-reading this thesis, and

for their extensive comments.

It has been a great pleasure and a privilege to work with you all. I wish to

acknowledge the Australian Federal Government, the University of Melbourne, the

School of Engineering, the Australian Research Council (ARC), Computer Associates

(CA), IEEE Victoria, Google, and CLOUDS Laboratory for granting scholarships and

the travel support which enabled me to pursue doctoral study and attend international

conferences.

Finally, I would like thank my family members including parents, my sister and my

parents-in-law for their support and love.

Linlin Wu

Melbourne, Australia

March 2014.

vi

vii

CONTENTS
1 Introduction ... 1

1.1 SaaS Model ... 2

1.1.1 SaaS and Service Level Agreements .. 3

1.2 SLA-based Resource Management for SaaS... 4

1.2.1 Limitation of Existing Solutions ... 5

1.3 Problem Statement and Objectives ... 6

1.3.1 Challenges and Requirements ... 7

1.3.2 Proposed Solution ... 9

1.4 Contributions ... 10

1.5 Methodology ... 11

1.5.1 Workload ... 11

1.5.2 Experiment System ... 12

1.6 Organization .. 12

2 Service Level Agreement (SLA) in Utility Computing Systems 15
2.1 Introduction ... 15

2.2 Utility Architecture and SLA Foundations ... 18

2.2.1 Utility Architecture .. 18

2.2.2 SLA Definitions .. 19

2.2.3 SLA Components ... 20

2.2.4 SLA Lifecycle .. 21

2.3 SLA in Utility Computing Systems .. 24

2.3.1 SLA Management in Utility Computing Systems ... 24

2.3.2 Solutions for SLA Management in Utility Computing Systems 27

2.4 SLA Use Cases in Utility Computing Systems ... 35

2.4.1 SLA in Grid Computing Systems .. 35

2.4.2 SLA in Cloud Computing .. 36

2.5 Open Problems .. 44

2.6 Summary ... 45

3 SLA-based Admission Control for Software-as-a-Service Providers 49
3.1 Introduction ... 49

3.2 System Model .. 50

3.2.1 Actors .. 51

3.2.2 Profit Model .. 53

viii

3.3 Algorithms and Strategies ... 55

3.3.1 Strategies ... 55

3.3.2 Proposed Algorithms ... 59

3.4 Performance Evaluation .. 64

3.4.1 Experimental Methodology ... 65

3.4.2 Performance Results ... 66

3.5 Related Work .. 77

3.5.1 Admission Control ... 78

3.5.2 Scheduling ... 79

3.6 Summary ... 80

4 SLA-based Resource Provisioning for SaaS Applications 83
4.1 Introduction ... 83

4.2 System Model .. 85

4.2.1 Actors .. 86

4.2.2 Mathematical Models ... 89

4.2.3 Mapping of products to resources .. 93

4.2.4 Problem description .. 93

4.3 Resource Provisioning Algorithms ... 96

4.3.1 Base Algorithm: Maximizing the profit by minimizing the cost by sharing the

minimim available space VMs (BestFit). ... 97

4.3.2 Proposed Algorithms ... 99

4.3.3 Lower Bound ... 105

4.4 Performance Evaluation .. 107

4.4.1 Experimental Methodology ... 107

4.4.2 QoS parameters .. 108

4.4.3 Results Analysis ... 110

4.5 Related Work .. 119

4.5.1 Grid .. 120

4.5.2 Cloud ... 121

4.6 Summary ... 122

5 Automated SLA Negotiation Framework.. 125
5.1 Introduction ... 125

5.1.1 Motivations ... 126

5.1.2 Contribution .. 127

5.2 Automated Negotiation Framework .. 127

ix

5.2.1 Framework Components ... 127

5.2.2 System Scenario .. 129

5.3 Negotiation Objectives .. 130

5.3.1 Mathematical Models ... 130

5.4 Negotiation Policy Specification ... 132

5.4.1 QoS Model ... 132

5.4.2 Policy Specification .. 132

5.5 Negotiation Protocol ... 133

5.6 Decision Making System .. 136

5.6.1 Broker .. 136

5.6.2 Provider ... 137

5.7 Negotiation Strategy .. 138

5.8 Performance Evaluation .. 140

5.8.1 Reference Heuristic ... 140

5.8.2 Experimental Methodology ... 140

5.8.3 Result Analysis ... 141

5.9 Related Works ... 145

5.10 Summary ... 146

6 An SLA-based Resource Management System for SaaS Providers 147
6.1 Motivation and Requirements ... 147

6.2 System Architecture .. 148

6.2.1 Details .. 149

6.3 System Implementation Technologies .. 153

6.3.1 Design Considerations ... 154

6.3.2 Implementation Details ... 155

6.4 Case Study: CA (Computer Associates) Directory ... 157

6.4.1 System Details ... 157

6.5 Performance Evaluation .. 159

6.5.1 Experiment Setup .. 159

6.5.2 Scheduling algorithms evaluate .. 159

6.5.3 Admission control algorithms evaluate .. 160

6.6 Related Work .. 161

6.7 Summary ... 161

7 Conclusions and Future Directions .. 163
7.1 Summary ... 163

x

7.2 Lessons Learned and Significance .. 165

7.3 Future Directions ... 167

7.3.1 Providing Services with Different Pricing Models .. 167

7.3.2 Using Resources with Different Pricing Models ... 167

7.3.3 Resource Provisioning for Multi-tier Applications ... 168

7.3.4 Resource Provisioning for Network and Data-Aware Application 168

7.3.5 Customer Usage Model for Customer Driven Resource Management 168

References .. 169

xi

LIST OF FIGURES

Figure 1.1 A layered architecture for Cloud computing .. 2

Figure 1.2 Thesis Organizations .. 13

Figure 2.1 A typical architectural view of utility computing system 16

Figure 2.2 SLA-based Utility Computing System Architecture .. 19

Figure 2.3 SLA Components .. 21

Figure 2.4 SLA high level lifecycle phases, according to the description of Ron et al. [51] 22

Figure 2.5 SLA life cycle six steps, as defined by Sun Microsystems Internet Data Center

Group [54] ... 23

Figure 2.6 Layered Cloud computing architecture [23] .. 38

Figure 3.1 A high level system model for application service scalability for in IaaS providers.

 ... 52

Figure 3.2 Flow Chart of ‘Initiate new VM strategy’ ... 56

Figure 3.3 Flow Chart of ‘wait strategy’ .. 57

Figure 3.4 Flow Chart of ‘insert strategy’ .. 58

Figure 3.5 Flow Chart of ‘penalty delay strategy’ ... 58

Figure 3.6 Overall algorithms’ performance during variation in number of user requests 68

Figure 3.7 Impact of arrival rate variation .. 69

Figure 3.8 Impact of deadline variation .. 70

Figure 3.9 Impact of budget variation ... 72

Figure 3.10 Impact of request length variation .. 73

Figure 3.11 Impact of penalty rate factor variation ... 74

Figure 3.12 Impact of initiation time variation ... 75

Figure 3.13 Impact of performance degradation variation .. 76

Figure 3.14 Impact of performance degradation variation after considering slack time 77

Figure 4.1 A system model of SaaS layer structure ... 86

Figure 4.2 Mapping between VMs and a Host .. 93

Figure 4.3 Best Fit Strategy ... 97

Figure 4.4 The Reservation Strategy ... 100

Figure 4.5 The Reschedule Strategy .. 102

Figure 4.6 Impact on reservation strategy during the variation in proportion of customers

with high credit level ... 110

Figure 4.7 Impact of request arrival rate variation .. 112

Figure 4.8 Impact of proportion of upgrade requests variation .. 113

Figure 4.9 Impact of credit level variation .. 115

Figure 4.10 Impact of service initiation time variation .. 116

Figure 4.11 Impact of penalty rate factor variation ... 117

Figure 4.12 Impact of Future Interest Error (Over-Claim) ... 118

Figure 4.13 Impact of Future Interest Error (Under-Claim) ... 118

Figure 5.1 Negotiation Framework High Level Architecture ... 128

Figure 5.2 Negotiation Rule Register Web Form .. 133

Figure 5.3 The Interaction between Components during Negotiation Process 135

file:///C:/temp/SLACloud-Thesis-2907.docx%23_Toc394941058
file:///C:/temp/SLACloud-Thesis-2907.docx%23_Toc394941059

xii

Figure 5.4 Impact of Deadline Variation ... 142

Figure 5.5 Impact of Variation in Expected Margin .. 143

Figure 5.6 Impact of Market Factor Variation ... 145

Figure 6.1 the SLA-based resource management system high level architecture 149

Figure 6.2 Class diagram ... 150

Figure 6.3 Sequence diagram among entities ... 152

Figure 6.4 Sequence diagram among resource level entities ... 153

Figure 6.5 States diagram of requests in the SLARA system ... 154

Figure 6.6 Implementation Technologies ... 155

Figure 6.7 Varitaion in Request Arrival Rate ... 160

Figure 6.8 Varitaion in User Request Number .. 160

xiii

LIST OF TABLES

Table 2.1 Summary of SLA definitions classified by the area .. 20

Table 2.2 Mapping between two types of SLA lifecycle.. 23

Table 2.3 Comparison of SLA Management frameworks and Languages 32

Table 2.4 SLA Use Cases of the most famous Cloud Provider and related characteristics in

SLAs ... 39

Table 2.5 From users’ perspective SLA Use Cases of Cloud Provider follows six steps SLA

lifecycle .. 41

Table 3.1 The summary of resource provider characteristics. .. 67

Table 3.2 Summary of heuristics of comparison results (Profit) .. 81

Table 4.1 The summary of penalty delay time according to request types 92

Table 4.2 The summary of mapping between requests and resources 93

Table 4.3 The summary of best and worst results (cost) comparison 119

Table 5.1 The Negotiation States and Description Summary ... 134

Table 5.2 The Mincost Heuristic .. 136

Table 5.3 The Maxcsl Heuristic ... 136

Table 5.4 Provider’s Decision Making Heuristic .. 137

Table 6.1 Mapper Details .. 158

1

1 Introduction

A vision for delivering “computing as a utility” was introduced in 1969 by Leonard

Kleinrock, the chief scientist of the original Advanced Research Project Agency (ARPA)

project. Kleinrock envisioned that computer networks would be used as a “utility” [1]. From

1969, Information and Communication Technology (ICT) has made many advances in

various areas to make this vision a reality [2]. The advances in networked computing

environments have transformed computing to a model consisting of services that can be

commoditized and delivered similarly to utilities such as water, electricity, gas, and telephony

[3]. In the utility computing model, consumers can access services on-demand according to

their requirements regardless of where they are hosted.

The utility computing model can be used as a new outsourcing service model that can bring

extensive opportunities and benefits for ICT users. The foremost advantage is the decrease of

IT-related costs and complexities, because enterprises no longer need to invest heavily on or

maintain their own computing infrastructure, and are not constrained to specific computing

service providers. Furthermore, this model benefits small businesses lacking working capital.

Hence utility computing provides businesses with greater flexibility and resilience, and more

efficient utilisation of resources at lower operating and maintenance costs. Indeed, enterprises

simply need to pay for resource usage as required the computing service providers.

Today this outsourcing model has emerged in the form of Cloud computing, which promises

elastic resources to the consumers (customers) [4]. Cloud computing is considered a solution

for challenges, such as licensing, distribution, configuration, and operation of enterprise

applications associated with the traditional IT infrastructure, software sales, and deployment

models. A layered architecture for Cloud services is shown in Figure 1.1. From bottom to top,

the Infrastructure as a Service (IaaS) layer is a resource provisioning model where a provider

offers infrastructure resources like hardware, storage, servers, and networking components on

demand to consumers. The Platform as a Service (PaaS) layer offers a computing platform

and solution stack as a service. It includes application development tools and execution

2

management services. The Software as a Service (SaaS) layer licenses a software application

to customers as a service on demand using PaaS layer functionalities, such as resource

management and IaaS layer resources.

Figure 1.1 A layered architecture for Cloud computing

1.1 SaaS Model

Prior to the Cloud, the ICT administration tasks were comparatively easy since the single

important objective of resource provisioning was the performance, such as the time spent on

resource provisioning for web-based application [115]. Over time, the complexity of

applications has grown, increasing the difficulties in their administration. Accordingly,

enterprises have realized that it is more efficient to outsource some of their applications to

third-party SaaS providers enabled by Cloud computing due to the following reasons [110]:

 It reduces the maintenance cost, because along with the growth in the complexity, the

level of sophistication required to maintain the system has increased dramatically.

 By using SaaS, enterprises do not need to invest in expensive software licenses and

hardware upfront before knowing the business value of the solution.

Therefore, by moving to the SaaS model customers benefit from continuously maintained

software. The complexity of transitioning to new releases is managed transparently by SaaS

providers, who pursue profit maximization by minimizing cost and enlarging market share by

accepting more profitable requests and improving the Customer Satisfaction Level (CSL).

IaaS

PaaS

SaaS

SLA ManagementAdmission Control

Resource Management

ERP

CMS Email WEB APP…

CRM HPC

Customers

Request Software Services

Data Canter

VMs

Physical Machines

Request & Resource

Mapping

3

There are two design patterns for SaaS layers. The first one is the one presented in Figure 1.1,

with three layered architecture using virtualized resources. This is the focus of this thesis. The

second alternative utilizes dedicated software on physical servers that share resources between

users. These two patterns sharing resources for multiple users are called multi-tenancy.

However, customer satisfaction is a crucial success factor to excel in the service industry, as

highlighted by Yeo and Buyya [62]. The way to ensure the QoS is to define a legal contract,

which is SLA (Service Level Agreement), between a service provider and a consumer [21]. In

general, a customer requests web-based application services from a SaaS provider by agreeing

with the QoS requirements specified in the SLA. When the SaaS provider can guarantee the

SLA, the customer is satisfied. If the level of service is better than the specified in the SLA,

the customer satisfaction level will be more than satisfied.

1.1.1 SaaS and Service Level Agreements

SLAs can be traced back to 1980s in telecommunication companies. As an example,

telecommunication companies include an SLA within the terms of their contracts with

customers to define the level(s) of service being sold in plain language terms. The SLA

typically identifies parties who engage in the business processes and specifies the minimum

expectations and obligations between them [21].

In Cloud computing, generally service providers define a publically published common SLA

for all their customers. For instance, Microsoft promises to guarantee at least 99.9%

availability in the SLA of the Microsoft Azure backup service. The SLA is established and

commenced automatically when a customer requests service with confirmed payment. If any

clauses in the SLA are violated, the penalty should be enforced, such as the granting of more

credit for future services to the customer.

Two typical types of SLA are provider predefined and negotiated SLAs. The provider

predefined SLA provides a generic SLA template for all customers. For example, Amazon

EC2 has a predefined static SLA. However, customers may have special QoS requirements

which may not be included in a predefined SLA. In this case, the customer and the provider

will go through negotiation processes to achieve a mutually agreed SLA (Negotiated SLA). In

order to ensure the agreed SLA, SaaS providers require strategies to manage resources to

satisfy the QoS specified in SLA without deteriorating their profit.

Several researchers have satisfied these requirements by providing SLA-based resource

management mechanisms [72][69] and negotiation strategies [152][153]. There are still

several challenges for resource management, but the key issue for SaaS providers in Cloud is

4

how to optimize resource provisioning, which aims at improving the utilization of cloud

systems in order to achieve profit maximization and market share enlargement. More details

on the SLA-based resource management are discussed along with their limitations in the

following section.

1.2 SLA-based Resource Management for SaaS

Resource management is a central and the most challenging task in Cloud computing,

particularly when there is a legal document specified in the form of SLA, which contains QoS

requirements. There are several problems to consider while managing resources given SLAs,

such as, type of resource required, mapping, provisioning, allocation, adaptation, and

brokering. The basic responsibility of a Resource Management System (RMS) is to accept

requests from customers and then map them to the available resources, provision the matched

resources, and allocate them to the customer. In practice, due to the heterogeneous and

dynamic nature of Cloud environments, the RMS needs to be able to adapt to the

heterogeneity from resource side and dynamic changes from customer sides. In general, there

are two types of resources for SaaS - physical and logical. For example, data centres, physical

machines, network elements are physical resources, on the other hand, Virtual Machines

(VMs) and energy are logical resources.

Research on SLA-based market driven resource management started in 1980s [72][69].

However, the SaaS Cloud model has brought into view new challenges that have not been

addressed before. As Professor David Patterson of the University of California, Berkeley,

illustrates, the challenges faced by software developers currently, "There are dramatic

differences between developing software for millions to use as a service versus distributing

software for millions to run their PCs" [5].

One of the challenges is dealing with heterogeneous geographically distributed resources with

different usage policies, price models, availability and performance patterns and varying loads.

Moreover, the SaaS service providers and customers have different goals, objectives,

strategies, and requirements. Resource sharing becomes further complicated in SaaS Cloud

due to the self-interested nature of customers. In addition, each customer includes multiple

user accounts, with different requests. Therefore, SLA-based resource management involved

in delivering software as a service for millions of customers in Cloud environments is much

more complex compared to just distribute software [6].

As mentioned before, the goal of SaaS providers are twofold i.e. maximizing profit and

5

enlarging the customer base by offering better services. To achieve these goals, SaaS providers

employ different techniques, such as utilizing internal hosted resources of private data centres

or renting resources from an IaaS provider to guarantee the SLA. For example, Saleforce.com

[102] hosts resources, but Animoto rents resources from Amazon EC2 [92]. However, the

main challenge for SaaS providers to achieve these goals is how to manage these resources

efficiently ensuring SLA specified QoS requirements. Several research works have explored

this topic to a certain degree [121][122][127][42]. However, still there is a long way to go for

achieving SaaS providers goals as depicted below.

1.2.1 Limitation of Existing Solutions

The current resource management techniques for SaaS in Cloud mainly focus on either

minimizing the number of VMs without considering SLA or only consider limited QoS

parameter such as availability only. In contrast, most of these resource management techniques

need to be extended to include the dynamic, diverse and competitive nature of participants

with conflicting Quality of Service (QoS) requirements in Cloud.

In a shared resource infrastructure such as Cloud, the heterogeneous nature of resources and

self-interested nature of customers can lead to problems, where every customer acquires as

many types of software as possible because there is no incentive for customers to back off

during times of high demand. The self-interested customers, in turn, over exploit the service

by degrading the SaaS provider’s ability to deliver the required service to all customers using

heterogeneous resources. Therefore, resource management needs to be SLA-based, which can

regulate the supply and demand of resources at peak usage time.

In order to meet the above requirements, most of the SLA-based resource management

methods are either non-profit based [6] or designed for a fixed number of resources, such as

FirstPrice [48] and FirstProfit [70]. To resolve the problem caused by customers’ self-interest

nature and conflicting interests between customer requests, admission control and scheduling

was proposed as a solution[70][90][91], such as learning-based admission control in Cloud

[67]. However, these works do not target profit maximisation and an increase in market share

simultaneously.

SaaS providers aim to optimally provision resources so that service costs can be minimized. In

general, SaaS providers utilize internal resources of its data centres or rent resources from a

specific IaaS provider to guarantee SLA. For SaaS providers, in-house hosting resources can

generate administration and maintenance cost while renting resources from IaaS providers can

impact the service quality offered to SaaS customers due to performance variability [103].

6

Several profit-driven resource management solutions are proposed by minimizing the number

of resources [121][122][127][42]. However, these works did not consider customer

satisfaction level related QoS parameters.

To satisfy the customer requirements, customer side QoS parameters are essential. However,

most of the current works consider provider side QoS parameters, such as price [105][127].

Although some work consider customer side QoS parameters, some SaaS layer related QoS

parameters are missing, such as software response time [128][65].

Several projects are related at different degrees to the SLA-aware management of resources,

such as SLA@SOI [182], Claudia [176], BonFIRE [179], Optimis [177], 4CaaSt [178] and

Cloud-TM [180]. However, SLA@SOI does not consider Cloud computing infrastructures as

their target platform, and hence it does not account for some specific needs in this area.

Claudia [176], BonFIRE and 4CaaSt [178] do not consider management of heterogeneous

resources. Although Optimis [177] does scheduling for resource management and PaaSage

[181] provides runtime monitoring and dynamic adaptation, they do not cover SaaS level

parameters, such as service response time.

Cloud-TM [180] cannot be applied to general purpose Cloud computing, since it is focused on

datacentric Cloud applications. In the context of the resource allocation algorithms for

enterprise applications, evolutionary algorithms, such as Genetic Algorithm (GA) have been

used [111]. As evolutionary algorithms create a pre-planning schedule, they are not able to

deal with dynamic environments such as Cloud.

Therefore, these approaches are not suitable for SLA-based resource management in dynamic

Cloud environments to achieve the goal of maximizing profit and customer base for SaaS.

1.3 Problem Statement and Objectives

This thesis focuses on the following problem:

How to design and develop algorithms and techniques that help in maximizing profit and

market share for Cloud SaaS providers, who lease applications to customers by using Cloud

resources and simultaneously handle dynamism and variations associated with SLAs and

available resources.

In the context of the problem, the two key stakeholders are (1) SaaS providers and (2) SaaS

customers. A model/architecture that depicts key components of SaaS Cloud is shown in

Figure 1.1. The model consists of application layer and platform layer functions. Customers

7

request the software service with their QoS requirements to application layer. The platform

layer is responsible for application development and deployment (such as Aneka [107]). In our

model, this layer includes the admission control function to analyse the customer’s QoS

parameters and decide whether to accept or reject the request. The request and resource

mapping function is responsible for translating the customer side QoS requirements to

infrastructure level parameters. Based on admission control decision, the resource

management component is responsible for provisioning and allocating resources. Furthermore,

the SLA management is required since we consider SLA with customers. For some customers

with special requirements, which are different from what is publically offered by SaaS

providers, a negotiation process is required for SLA establishment.

In dynamic Cloud environments, several issues that need to be addressed to solve the

problem are:

 Can a new request be accepted without impacting accepted requests using distributed

and heterogeneous resources, whose capabilities, availabilities and performance (such

as service time) can change very frequently?

 How to deal with the resource level heterogeneity (such as service initiation time)?

 How to map various customer requests with different QoS parameters to the

resources?

 How to manage dynamic customer demands? (such as upgrading from a standard

product edition to an advanced product edition or adding more accounts)

 How to design the negotiation related processes and decision-making strategies to

fulfil special customer requests?

1.3.1 Challenges and Requirements

Answering the questions above is not trivial considering the various dynamic and variety of

factors associated with Cloud environments and actors. Cloud environments give access to

heterogeneous resources having different price schemas and performance capabilities and that

can be dynamically expanded and contracted on demand. Each customer has his own

requirement in terms of services and QoS which can also change dynamically. This brings

several challenges and requirements for the SaaS provider in order to manage their resources

in a profitable manner.

To accept any customer request, SaaS providers need to ensure the minimum level of service

specified in SLA is delivered to the customer using heterogeneous Cloud resources. Currently,

most SaaS providers use VMs to host their software services and these VMs in general sharing

8

a common physical server with other VMs hosting similar or different software services. The

challenge comes from unpredictability of the software services performance which is

dependent on the unknown configuration of underline physical server and variation in other

VMs resource usage. This can lead to SLA violation or revenue loss when the resource

performance degradation causes the breach of the minimum level of service requirements

specified in the SLA. SaaS providers need to consider which customer request is more

profitable to accept given this heterogeneous nature of Cloud resources. Therefore we need

new admission control and scheduling strategies that take care of these factors.

Once a customer request is accepted there is always a possibility of changes in requirement,

since the SaaS provider is expected to scale up and out accordingly. When the customer

changes his/her requirement, resources have to be dynamically reallocated according to the

customer’s on-demand requirements. Moreover, while allocating/reallocating resources the

SaaS provider has to minimize the impact on existing customers while satisfying the

customers’ requirement changes. Therefore, new adaptive customer requirements driven

resource management algorithms considering customer profile and the providers’ quality

parameters are required.

As discussed, SaaS providers want to expand their customer base. Therefore, they need to

provide more flexibility in terms of service to cater to variations associated with individual

customer requirements. This is generally done through a negotiation process between

customers and the service providers. However, while undertaking negotiations, the service

provider needs to take into consideration not only what they can provide to customers but also

the competition with other SaaS providers. Thus, new negotiation frameworks are needed for

SaaS providers that consider the dynamism in the Cloud environment with time and market

factors to make best possible decisions. In summary, we identified three sub objectives to

align with maximizing profit and market share for SaaS:

 To design SLA-based admission control and scheduling algorithms that differentiate

customer requests based on the heterogeneous resource capability to minimize cost

and SLA violations by accepting more profitable requests.

 To investigate adaptive SLA-based resource provisioning algorithms according to

customer requirements changes by considering more customer factors that provide

personalized attention to customers which include considering customer profiles and

understanding customer specific needs.

9

 To investigate the architectural model for automated SLA negotiation framework to

establish SLA between SaaS and customers, whose requirements are not covered by

existing SaaS predefined static SLA.

In this thesis, we propose a solution that meets these objectives.

1.3.2 Proposed Solution

As discussed above, SaaS providers need to deal with the heterogeneity and variety from both

the resource providers’ side and the customers’ side. To solve the problem as stated in the

previous section, we consider the following example scenarios of SaaS to achieve the

specified objectives.

SaaS providers lease web-based software as services to customers and use either 3rd party

resources (such as Virtual Machines from Amazon) or in house hosted resources. Take

Animoto as a SaaS example, it creates videos based on the customer uploaded pictures or

videos with selected themes. Three simple steps, 1) customers upload pictures or videos; 2)

customers select style, text, music to generate video; 3) customers download or share

generated video [108]. In this service application model, different customers will submit their

request at any time with different QoS parameters, such as different file size from customer

side impact the resource management for SaaS providers. Therefore, this thesis focuses on the

dynamism in terms of resource availability and capability caused by the variety of customer

requests and resource heterogeneities. Admission control algorithms are proposed employing

different strategies to accept more profitable requests for minimal performance impact,

avoiding SLA penalties for existing customer requests that decrease the SaaS provider’s

profit and the customer satisfaction level. The scheduling algorithms determine where and

which type of resource should be used by incorporating the heterogeneity of IaaS providers in

terms of QoS factors, such as price, service initiation time, and data transfer time.

Another SaaS application model is enterprise application, which is required for day to day

business. For instance, Microsoft sales Office365 software packages with three product

editions (for example, small business, small business premium and midsize business) and

each product edition has a fixed price. The existing customer may require an upgrade in their

service by adding additional user accounts or an upgrade of the software edition at any time.

In practice, the SaaS provider has to handle these on-demand customer requests in line with

the SLA. Hence, to achieve SaaS providers’ objectives, we minimize total cost and improve

customer satisfaction levels in two ways: 1) minimizing SLA violations and 2) improve

service quality. Our work further investigates the dynamic changes in customer requirements

with the consideration of customer profile to pay more personalized attention to customers.

10

In terms of SLAs, the above two scenarios consider pre-defined SLAs, however, in many

circumstances; some customers may request special services for special needs. For example,

the Department of Education requires the Office 365 with a particular type of template for

teachers and students to automatically provision the classes and lectures when they login the

portal. In this case, the pre-defined SLA listed on the web site will not suit their requirements.

Thus, our work proposes the automated SLA negotiation framework to maximize profit and

enlarge market share for SaaS by considering two factors. Firstly, the dynamic nature of the

Cloud, as service cost and quality are constantly changing and customers have varying needs.

Secondly, time and market oriented resource allocation, as any delay incurred in waiting for a

resource assignment is perceived as an overhead [145].

1.4 Contributions

This thesis makes the following research contributions towards the understanding and the

advancement of SLA-based resource management in Cloud environments to achieve the goal

of Cloud service providers:

1. It presents a comprehensive taxonomy and survey on SLAs and their creation,

management, and usage in utility computing environments. It discusses existing use

cases from Grid and Cloud computing systems to identify the level of SLA

realization in state-of-art systems and emerging challenges for future research. The

survey not only helps researchers to understand primary design factors and issues that

are still outstanding and crucial but also provides insights for extending and reusing

components of existing market-based Resource Management Systems (RMSs).

Therefore, the survey can help in the design and implementation of more practical

and enhanced SLA-based Cloud resource management systems in the near future.

The SLA-based RMSs selected for the survey are primarily research works as they

reflect the latest technological advances. The design concepts and architectures of

these research-based RMSs are also well-documented in publications to facilitate

comprehensive comparisons, unlike commercially released products by vendors.

2. It proposes admission control and scheduling algorithms for SaaS providers to

effectively utilise heterogeneous Cloud resources to maximize profit by accepting

more profitable customer requests using the least cost resources while minimizing the

SLA violations for existing customers. It also conducts detailed performance analysis

using trace-based simulation to highlight the effectiveness of managing the risk of

inaccurate runtime estimates for various scenarios that includes varying workload,

11

deadline, budget, contract length, service initiation time, performance degradation,

and inaccurate estimated high: low ratio.

3. Thesis proposes customers’ requirements driven resource provisioning algorithms for

SaaS providers who lease enterprise applications to customers. The proposed

provisioning algorithms consider customer profiles and providers’ quality parameters

(e.g. response time) to handle dynamic customer requirement changes and

infrastructure level heterogeneity by minimizing infrastructure and penalty cost. It

also takes care of CSL by minimizing SLA violations and improving the quality of

service (e.g. response time) expected by the customer. We also take into account

customer-side parameters (such as the proportion of upgrade requests), and

infrastructure-level parameters (such as the service initiation time) to compare

algorithms. These algorithms are evaluated by extensive experimental study using

data from a real Cloud.

4. It proposes a novel automated negotiation framework considering the SaaS Broker as

the one-stop-shop for customers to efficiently get required services. The automated

negotiation framework performs adaptive and intelligent bilateral bargaining of SLAs

between SaaS brokers and SaaS providers including negotiation policies, protocols,

and strategies. It proposes decision-making heuristics considering time, market

constraints, and trade-off between different issues as well. These negotiation

heuristics are evaluated by extensive experimental study of our prototype framework

using data from real Cloud as detailed in particular chapters.

5. It details an implementation of SLA-based Resource Management System

(SLARMS) to demonstrate the usefulness of the algorithms proposed in the thesis.

1.5 Methodology

We primarily evaluated the proposed algorithms using the CloudSim [80] simulator with

workloads from real Cloud software systems, such as CloudMinder
1
.

1.5.1 Workload

From the customer requests perspective, we adopted as workload data shared with us by the

cloud provider CA Technologies, who offers a number of enterprise software solutions to

customers delivered as SaaS [108]. The data provided includes the response, refresh and

processing times of an enterprise solution hosted on VMs, as measured by the quality

assurance team. As SaaS availability depends on the infrastructure availability, this

1
 CloudMinder is Software as a Service product from CA Technologies (Computer Associates).

12

information is collected from the CloudHarmony benchmarking system [156], which provides

real data from Cloud providers.

In order to analyse technical challenges to manage resources, we performed experiments by

collecting real data from both public Cloud infrastructures, such as Amazon EC2 [92], GoGrid

[94], and private Clouds from industry, such as CA (Computer Associates) hosted private

Cloud.

We modelled and adapted the workload data to meet the requirements of our experiments. In

order to evaluate the proposed algorithms under different loads, we model request arrival rate

using Poisson distribution similar to many previous works [100][101]. Similar as other works,

we use a normal distribution to model all the other parameters (standard deviation = (1/2) x

mean) that are not available from real workload.

1.5.2 Experiment System

CloudSim Toolkit [80] is used to model and simulate the proposed algorithms for resource

management. We simulated data centres with physical machines whose configuration

resembles public Cloud such as Amazon EC2 large image. We map a number of VMs of

different types to physical machines. The general scheduling policy is time shared scheduling.

We have extended the existing Cloud environment and added our algorithm for SLA-based

resource management.

We also implemented a prototype system called Service Level Agreement Resource

Management System (SLARMS) to validate and demonstrate the usefulness and practicality of

the proposed algorithms and techniques. The details of experiment settings of our works will

be explained throughout the thesis.

1.6 Organization

The rest of this thesis is organized as follows (Figure 1.2): Chapter 2 presents a

comprehensive survey of how SLAs are created, managed and used in utility computing

environments in practice. Chapter 3 proposes an admission control and scheduling algorithm

that utilizes multiple resources to minimize the penalty cost of accepting a new request,

which may violate the SLA objectives. Chapter 4 proposes customer driven SLA-based

resource provisioning for web-based enterprise applications by minimizing the cost and the

number of SLA violations. The proposed provisioning algorithms consider customer profiles

and the providers’ parameters to handle dynamic customer requests and infrastructure level

13

heterogeneity. Chapter 5 proposes a novel automated web-based negotiation framework

considering the SaaS Broker as the one-stop-shop for customers to get required service

efficiently. Chapter 6 describes an implementation of SLA-based Resource Management

System to demonstrate the usefulness of the proposed algorithms. Chapter 7 concludes and

provides directions for future work.

Figure 1.2 Thesis Organizations

The core chapters are derived from various research works that have been published during

the course of candidature as detailed below:

• Chapter 2 is derived from:

Linlin Wu and Rajkumar Buyya, Service Level Agreement (SLA) in Utility

Computing Systems, Performance and Dependability in Service Computing:

Concepts, Techniques and Research Directions, Pages: 1-25, V. Cardellini et al.

(eds), ISBN: 978-1-60-960794-4, IGI Global, Hershey, PA, USA, July 2011.

• Chapter 3 is derived from:

Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya, SLA-based Admission

Control for a Software-as-a-Service Provider in Cloud Computing Environments,

Journal of Computer and System Sciences, Volume 78, No. 5, Pages: 1280-1299,

ISSN 0022-0000, Elsevier Science, Amsterdam, The Netherlands, September 2012.

 • Chapter 4 is derived from:

Chapter 2

Taxonomy and Survey

Chapter 3:

Admission Control

Chapter 4 :

Customer Requirements Driven Resource

Management

Chapter 5:

SLA Negotiation Framework

Chapter 6

Prototype of SLA-based RMS

Chapter 7

Conclusions and Future Directions

Maximize profit by minimizing cost

Enlarge market share by

minimizing SLA violations and

improving CSL

Maximize profit by minimizing cost

Enlarge market share by accepting

more profitable requests in a way to

avoid SLA violations for existing

customers

Issue: Dynamic

nature of Cloud

Resources

Issue: Dynamic

Request Changes

Issue: Special

customer requests

Maximize profit by minimizing cost

Enlarge market share by improving

CSL

http://www.buyya.com/papers/SLA-UtilityComputing2011.pdf
http://www.buyya.com/papers/SLA-UtilityComputing2011.pdf
http://www.buyya.com/papers/AdmissionControlInClouds-JCSS.pdf
http://www.buyya.com/papers/AdmissionControlInClouds-JCSS.pdf

14

Linlin Wu, Saurabh Kumar Garg and Rajkumar Buyya, SLA-based Resource

Allocation for a Software as a Service Provider in Cloud Computing Environments,

Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid 2011, IEEE CS Press, USA), Los Angeles, USA, May 23-

26, 2011.

Linlin Wu, Saurabh Kumar Garg Steve Versteeg, and Rajkumar Buyya, SLA-based

Resource Provisioning for Software-as-a-Service Applications in Cloud Computing

Environments, IEEE Transactions on Services Computing (TSC), ISSN: 1939-1374,

IEEE Computer Society Press, USA (in press, accepted on Oct. 11, 2013).

• Chapter 5 is derived from:

Linlin Wu, Saurabh Kumar Garg, Rajkumar Buyya, Chao Chen, and Steve Versteeg,

Automated SLA Negotiation Framework for Cloud Computing, Proceedings of the

13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

(CCGrid 2013, IEEE CS Press, Los Alamitos, CA, USA), Delft, the Netherlands,

May 13-16, 2013.

http://www.buyya.com/papers/SLA-SaaS-CCGrid2011.pdf
http://www.buyya.com/papers/SLA-SaaS-CCGrid2011.pdf

15

2 Service Level Agreement (SLA) in Utility

Computing Systems

This chapter presents a comprehensive survey of how SLAs are created, managed, and used in

utility computing environments. We discuss existing use cases from Grid and Cloud computing

systems with major emphasis on resource management to identify the level of SLA realization in

state-of-art systems and emerging challenges for future research.

2.1 Introduction

As discussed before, utility computing [62] offers computing services on demand, thus it makes

them consumed as other utilities, such as water, electricity, gas, and telephony. With this new

service model, users no longer have to invest heavily on or maintain their own computing

infrastructures, and they are not constrained to any specific computing service provider. Instead,

they can outsource jobs to service providers and just pay for what they use. Utility computing has

been increasingly adopted in many fields including science, engineering, and business [66]. Grid,

Cloud, and Service-oriented computing are some of the paradigms that enabled delivery of

computing as a utility. In these computing systems, different Quality of Service (QoS) parameters

have to be guaranteed to satisfy user’s request. A Service Level Agreement (SLA) is used as a

formal contract between service provider and consumer to ensure service quality [21].

A typical utility computing system architecture is shown in Figure 2.1 with the following

components: the User/Broker, SLA Management, Service Request Examiner, and

Resource/Service Provider. User or Broker submits its requests via applications to the utility

computing system, which includes the bottom three layers. The Service Request Examiner is

responsible for Admission Control. The SLA Management includes SLA establishment and

16

enforcement. The Resource Allocation component takes care of resources scheduling. Finally,

the Resource or Service Provider offers resources or services.

Figure 2.1 A typical architectural view of utility computing system

In the above architecture, SLAs are used to identify parties who engage in the electronic

business, computation, and outsourcing processes and to specify the minimum expectations and

obligations that exist between parties [21]. The most concise SLA includes both general and

technical specifications, including business parties, pricing policy, and properties of the resources

required to process the service [63]. According to Sun Microsystems Internet Data Center

Group’s report [54], a good SLA sets boundaries and expectations of service provisioning and

provides the following benefits:

 Enhanced customer satisfaction level: A clearly and concisely defined SLA increases

the customer satisfaction level, as it helps providers to focus on the customer

requirements and ensures that the effort is put on the right direction.

 Improved Service Quality: Each item in an SLA corresponds to a Key Performance

Indicator (KPI) that specifies the customer service within an organization.

 Improved relationship between two parties: A clear SLA indicates the reward and

penalty policies of a service provision. The consumer can monitor services according to

Service Level Objectives (SLOs), which are QoS items specified in the SLA. Moreover,

the precise contract helps parties to resolve conflicts more easily.

User/BrokerUser/BrokerUser/Broker

Service Request Examiner and Admission Control

SLA Management and Resource Allocation

Web Applications Mobile Applications Desktop Applications

Resource/Service

Provider

Resource/Service

Provider

Resource/Service

Provider

U
tility

 C
o

m
p

u
tin

g
 S

y
stem

17

A clearly defined lifecycle is essential for effective realization of an SLA. Ron, S. et al. [51]

define SLA lifecycle in three high level phases, which are the ‘creation phase’, ‘operation phase’,

and ‘removal phase’. Sun Microsystems Internet Data Center Group [54] defines a practical SLA

lifecycle in six steps, which are ‘discover service providers’, ‘define SLA’, ‘establish agreement’,

‘monitor SLA violation’, ‘terminate SLA’, and ‘enforce penalties for violation’.

The realization of an SLA can be traced back to 1980s in telecommunication companies.

Furthermore, the advent of Grid computing reinforces the necessity of using SLA [62].

Specifically, in service-oriented commercial Grid computing [22], resources are advertised and

traded as services based on an SLA after users specify various levels of service required for

processing their jobs [49]. However, SLAs have to be monitored and assured properly [52]. SLA

management has been addressed partially by frameworks such as WS-Agreement [12] and

WSLA [40].

Recently, Cloud computing has emerged as a new platform for delivering utility computing

services. In Clouds, infrastructure, platform and application services are available on-demand and

companies are able to access their business services and applications anywhere in the world

whenever they need. In this environment, massively scalable systems are made available to end

users as a service [20]. In this scenario, where both request arrival rate and resources availability

continuously vary, SLAs are used to ensure that service quality is kept at acceptable levels.

This chapter reveals key design factors and issues that are still significant in utility computing

platforms such as Grids and Clouds. It provides insights for extending and reusing components of

the existing SLA management frameworks and it aims to be a guide in designing and

implementing enhanced SLA-based management systems.

This chapter presents key use cases that reflect the latest technological advances. The design

concepts and architectures of these works are well-documented in publications to facilitate

comprehensive investigation.

The rest of the chapter is organized as follows: Utility architecture and SLA foundational

concepts are summarized in Section 2.2. In Section 2.3, the key challenges and solutions for SLA

management are discussed. SLA use cases are proposed in Section 2.4. The open problems

18

addressing some of the issues in current systems are presented in Section 2.5. Finally, the chapter

concludes with the open challenges in SLA management in Section 2.6.

2.2 Utility Architecture and SLA Foundations

In this section, initially, a typical utility computing architecture is presented. SLA definitions

from different areas are summarized in Section 2.2.2. SLA components are described in Section

2.2.3. In Section 2.2.4, two types of SLA lifecycle are presented and compared.

2.2.1 Utility Architecture

The layered architecture of a typical utility computing system is shown in Figure 2.2. From top

to bottom it is possible to identify four layers, a User or Broker submits its requests using

various applications to the utility computing system, the Service Request Examiner is

responsible for admission control, SLA Management balances workloads, and a Resource or

Service Provider offers resources or services. Users or Brokers, who act on users’ behalf, submit

their service requests of using applications, from anywhere in the world, to be processed by

utility computing systems. When a service request is submitted, the Service Request Examiner

(SRE) uses Admission Control mechanism to interpret request’s QoS requirements before

determining whether to accept or reject it after interacting with SLA Management component

which is responsible for enforcing SLA. Thus, the SRE ensures that there is no overloading of

resources whereby many service requests cannot be fulfilled successfully due to limited

availability of resources/services.

The SLA Management component is responsible for resource allocation and consists of several

components: Discovery, Negotiation/Renegotiation, Pricing, Scheduling, Monitoring, SLA

Enforcement, Dispatching and Accounting. The Discovery component is responsible for

discovering service providers that can satisfy user requirements. In order to define mutually

agreed terms between parties, it is common to put in place price negotiation mechanisms or to

rely on quality metrics. The Pricing mechanism decides how service requests are charged. Pricing

serves as a basis for managing supply and demand of computing resources within the utility

computing system, and facilitates in prioritizing resource allocations. Once the negotiation

process is completed, the Scheduling mechanism uses algorithms or policies to decide how to

map requests to resource providers. Then the Dispatching mechanism starts the execution of

accepted service requests on allocated resources.

19

The Monitoring component consists of a Resource Monitoring mechanism and a Service Request

Monitoring mechanism. The Resource Monitoring mechanism keeps track of the availability of

Resource Providers and their resource entitlements. On the other hand, the Service Request

Monitoring mechanism keeps track of the execution progress of service requests. The SLA

enforcement mechanism manages violation of contract terms during the execution. Due to the

SLA violation, sometimes Renegotiation is needed in order to keep ongoing trading. The

Accounting mechanism maintains the actual usage of resources by requests so that the final cost

can be computed and charged to the users. At the bottom of the architecture, there exists a

Resource/Service Provider that comprises multiple services such as computing services, storage

services and software services in order to meet service demands.

Figure 2.2 SLA-based Utility Computing System Architecture

2.2.2 SLA Definitions

Dinesh et al. [27] define an SLA as: “An explicit statement of expectations and obligations that

exist in a business relationship between two organizations: the service provider and customer”.

Since SLA has been used since 1980s in a variety of areas, most of the available definitions are

contextual and vary from area to area. Some of the main SLA definitions in Information

Technology related areas are summarized in Table 2.1.

User/BrokerUser/BrokerUser/Broker

Service Request Examiner and Admission Control
- User-driven Service Management

- Computational Risk Management

- Autonomic Resource Management

Re/Negotiation

Scheduling Monitoring
SLA

Enforcement

SLA Management and Resource Allocation

Pricing AccountingDiscovery

Web Applications Mobile Applications Desktop Applications

Resource/Service

Provider

Resource/Service

Provider

Dispatching

Resource/Service

Provider

U
tility

 C
o

m
p

u
tin

g
 S

y
stem

20

Table 2.1 Summary of SLA definitions classified by the area

Area Definition Source

Web

Services

“SLA is an agreement used to guarantee web service delivery.

It defines the understanding and expectations from service

provider and service consumer”.

HP Lab [36]

Networking “An SLA is a contract between a network service provider and

a customer that specifies, usually in measurable terms, what

services the network service provider will supply and what

penalties will assess if the service provider cannot meet the

established goals”.

Research

Project

Internet “SLA constructed the legal foundation for the service delivery.

All parties involved are users of SLA. Service consumer uses

SLA as a legally binding description of what provider promised

to provide. The service provider uses it to have a definite,

binding record of what is to be delivered”.

Internet NG [51]

Data Center

Management

“SLA is a formal agreement to promise what is possible to

provide and provide what is promised”.

Sun Microsystems

Internet Data

Center group [54]

2.2.3 SLA Components

An SLA defines the delivery ability of a provider, the performance target of consumers’

requirement, the scope of guaranteed availability, and the measurement and reporting

mechanisms [50].

Jin et al. [36] provided a comprehensive description of the SLA components, including: (Figure

2.3):

 Purpose: Objectives to achieve by using an SLA.

 Restrictions: Necessary steps or actions that need to be taken to ensure that the

requested level of services are provided.

 Validity period: SLA working time period.

 Scope: Services that will be delivered to the consumers, and services that will not be

covered in the SLA.

 Parties: Any involved organizations or individuals involved and their roles (e.g. provider

and consumer).

21

 Service-level objectives (SLO): Levels of services which both parties agree on. Some

service level indicators such as availability, performance, and reliability are used.

 Penalties: If delivered service does not achieve SLOs or is below the performance

measurement, some penalties will occur.

 Optional services: Services that are not mandatory but might be required.

 Administration: Processes that are used to guarantee the achievement of SLOs and the

related organizational responsibilities for controlling these processes.

Figure 2.3 SLA Components

2.2.4 SLA Lifecycle

Ron et al. [51] define the SLA life cycle in three phases (Figure 2.4). Firstly, the creation phase,

in which the customers find service provider who matches their service requirements. Secondly,

the operation phase, in which a customer has read-only access to the SLA. Thirdly, the removal

phase, in which SLA is terminated and all associated configuration information is removed from

the service systems.

22

Figure 2.4 SLA high level lifecycle phases, according to the description of Ron et al. [51]

A more detailed life cycle has been characterized by the Sun Microsystems Internet Data Center

Group [54] , which includes six steps for the SLA life cycle: the first step is ‘discover - service

providers’, in where service providers are located according to consumer’s requirements. The

second step is ‘define – SLA’, which includes definition of services, parties, penalty policies and

QoS parameters. In this step it is possible to negotiate between parties to reach a mutual

agreement. The third step is ‘establish – agreement’, in which an SLA template is established

and filled in by specific agreement, and parties are starting to commit to the agreement. The

fourth step is ‘monitor – SLA violation’, in which the provider’s delivery performance is

measured against to the contract. The fifth step is ‘terminate – SLA’, in which SLA terminates

due to timeout or any party’s violation. The sixth step is ‘enforce - penalties for SLA violation’,

if there is any party violating contract terms, the corresponding penalty clauses are invoked and

executed. These steps are illustrated in Figure 2.5.

The mapping between three high level phases and six steps of SLA lifecycle is shown in Table

2.2 Mapping between two types of SLA lifecycle. The ‘creation’ phase of three phase lifecycle

maps to the first three steps of the other lifecycle. In addition, the ‘operation’ phase of three

phase lifecycle is the same as the fourth step of the other lifecycle.

1.Creation Phase

2. Operation Phase
3. Removal Phase

SLA Lifecycle

Three Phases

23

Table 2.2 Mapping between two types of SLA lifecycle

Three phases Six steps

1. 1.2 .3

2. 4.

3. 5.6.

The six steps SLA lifecycle is more reasonable and provides detailed fine grain information,

because it includes important processes, such as re/negotiation and violation control. During the

service negotiation or renegotiation, a consumer exchanges a number of contract messages with a

provider in order to reach a mutual agreement. The result of these processes leads to a new SLA

[66]. In six steps lifecycle, steps 2 and 3 map to these processes. However, the three phase’s

lifecycle does not include them. Furthermore, the ‘Enforce Penalties for SLA violation’ phase is

important because it motivates parties adhere to follow the contract. We believe that the six steps

formalization of the SLA life cycle provides a better characterization of the phenomenon and

from here onwards we will refer to this as SLA life cycle.

Figure 2.5 SLA life cycle six steps, as defined by Sun Microsystems Internet Data Center Group [54]

1.Discover Service
Provider

2. Define SLA

3. Establish Agreement

4. Monitor SLA Violation

5.Terminate SLA

6. Enforce Penalties for
SLA Violation

SLA Lifecycle

Six Steps

24

2.3 SLA in Utility Computing Systems

As highlighted by Patterson [5], there are many challenges involved in developing software for a

million users to use as a service via a data center as compared to distributing software for a

million users to run on their individual personal computers. Using SLAs to define service

parameters that are required by users, the service provider knows how users value their service

requests, hence it provides feedback mechanisms to encourage and discourage service request

submissions. In particular, utility models are essential to balance the supply and the demand of

computing resources by selectively accepting and fulfilling limited service requests out of many

competing service requests submitted.

However, in the case of service providers making available a commercial offer to enable crucial

business operations of companies, there are other critical QoS parameters to be considered in a

service request, such as reliability and trust/security. In particular, QoS requirements cannot be

static and need to be dynamically updated over time due to continuing changes in business

operations and operating environments. In short, there should be greater importance on customers

since they pay for accessing services. Therefore, the emphasis of this section is to describe SLA

management in utility computing systems.

2.3.1 SLA Management in Utility Computing Systems

SLA management includes several challenges and in this section we will discuss them as part of

the steps of the SLA life cycle.

Discover - Service Provider

In current utility computing environments, especially Grid and Cloud, it is important to

locate resources that can satisfy consumers’ requirement efficiently and optimally [32]. Such

computing environments contain a large collection of different types of resources, which are

distributed worldwide. These resources are owned and operated by various providers with

heterogeneous administrative policies. Resources or services can join and leave a computing

environment at any time. Therefore, their status changes dynamically and unpredictably.

Solutions for service provider discovery problems must efficiently deal with scalability,

dynamic changes, heterogeneity and autonomous administration.

25

Define - SLA

Once service providers have been discovered, it is necessary to identify the various elements

of an SLA that will be signed by agreeing metrics. These elements are called service terms

and include QoS parameters, the delivery ability of the provider, the performance target of

diversity components of user’s workloads, the bounds of guaranted availability and

performance, the measurement and reporting mechanisms, the cost of the service, the data set

for renegotiation, and the penalty terms for SLA violation. In this stage of the SLA lifecycle,

measurement metrics and definition of each of these elements is done by a negotiation

process between both parties [16][25].

Other challanges are related to the negotiation process. Firstly, parties may use different

negotiation protocols or they may not have the common definition of the same service [19].

Secondly, service descriptions, in an SLA, must be defined unambiguously and be

contextually specified by the means of its domain and actor. Therefore, an SLA language

must allow the parameterisation of service description [43]. Moreover it should allow a high

degree of flexibility and enable a precise formalisation of what a service guarantee means.

Another aspect is how to keep SLA definition consistent throughout the entire SLA lifecycle.

Establish - Agreement

In this step an SLA template is constructed. A template has to include all aspects of SLA

components. In utility computing environments, to facilitate dynamic, versatile, and adaptive

IT infrastructures, utility computing systems have to promply react to environmental

changes, software failures, and other events which may influence the system’s behavior.

Therefore, how to manage SLA-based adaptive systems, which exploit self-renegotiation

after system failure, becomes an open issue [20]. Although most of the works recognise SLA

negotiation as a key aspect of SLA managemet, recent works only provide little insight on

how negotiation (especially automated negotiation) can be realised. In generalclients provide

their QoS requirements; however, given the dynamic and hetergeneous nature of underline

computing system, it is not trivial for the service providers to reflect or gurantee the quality

aspects of SLA components in a template.

Monitor - SLA Violation

SLA violation monitoring begins once an agreement has been established. It plays a critical

role in determining whether SLOs are achieved or violated. There are three main concerns.

26

Firstly, which party should be in charge of this process? There are two types of SLAs,

negotiable and non-negotiable. When a non-negotiable SLA is offered, the provider

administers those portions stipulated in the agreement. In the case of PaaS or IaaS, it is

usually the responsibility of the consumer’s system administrators to effectively manage the

residual services specified in the SLA, with some offset expected by the provider to ensure

basic quality of service [183]. In the case of SaaS, it is the customer who monitors the quality

of service and SaaS provider will be responsible for the SLA violations, and this

responsibility might be transferred to the PaaS or IaaS providers if SaaS using their services.

Secondly, how fairness can be assured between parties. Thirdly, how the boundaries of SLA

violation are defined.

SLA violation means ‘un-fulfillment’ of service agreement. According to the Principles of

European Contract Law, the term ‘un-fulfillment’ is defined as defective performance

(parameter monitored at lower level than agreed), late performance (service delivered at the

appropriate level but with unjustified delays), and no performance (service not provided at

all). There are three broad provisioning categories based on the above definition [48]. ‘All-

or-Nothing’ provisioning, characterizes the case in which all SLOs must be satisfied or

delivered by the provider. ‘Partial’ provisioning identifies some SLOs as mandatory ones,

and must be met for the successful service delivery by both parties. ‘Weighted Partial’

provisioning, is the case in which the “provision of a service meets SLO if it has a weight

greater than a threshold (defined by the client)” [48]. ‘All-or-Nothing’ provisioning is used

in most cases of SLA violation monitoring, because violation leads to complete failure and

negotiation to create a new SLA. An SLA contains mandatory SLOs that must be delivered

by the provider. Hence, in ‘Partial’ provisioning, all parties assign these SLOs the highest

priority to reduce violation risk. How much the SLO affects the ‘Business Value’ a measure

of the importance of a particular SLO term? The more important the violated SLO, the more

difficult it is to renegotiate the SLA, because any party does not want to lose their

competitive advantages in the market.

Terminate - SLA

In terminating a SLA, a key aspect is to decide when it should be terminated, and once

decided, all associated configuration information is removed from the service systems.

If the termination is due to a SLA violation, two questions need to be answered, who is the

party that triggered this activity and what are the consequences of it.

27

Enforce Penalties for SLA Violation

In order to enforce penalties for SLA violation, penalty clauses are need to be defined. In

utility computing systems, where consumers and provides are globally distributed, the

penalty clauses work differently in various countries.

This leads to two problems, which particular clause should be used and whether it is fair for

both sides. Moreover, due to the different types of violation, the penalty clauses need to be

comprehensive. Recently, some works used the linear model for penalty enforcement of SLA

violations in simple contexts [42][63]. The linear model exhibits a poor performance, thus,

the selection of these best models for SLA violation penalty clauses enforcement is still an

open problem.

2.3.2 Solutions for SLA Management in Utility Computing Systems

This section introduces solutions for the problems presented in the previous section. Six SLA

management languages and frameworks are analyzed, because they can be used as solutions in

multiple steps of SLA lifecycle.

SLA Management Frameworks and Languages

SLA can be represented by specialized languages for easing SLA preparation, automating

SLA negotiation, adapting services automatically according to SLA terms, and reasoning

about their composition. In this section we introduce six languages for SLA specification and

management. Among them, the WS-Agreement and Web Service Level Agreement (WSLA)

are the most popular and widely used in research and industry. The comparison among all of

these languages is shown in Table 2.3.

Bilateral Protocol: Venugopal et al. [56] presented a negotiation mechanism for advanced

resource reservation. It is a protocol for negotiating SLAs based on Rubinsteins Alternating

Offers protocol for bargaining between parties. Any party is allowed to modify the proposal

in order to reach a mutually-agreed contract. The authors implemented this protocol by using

the Gridbus Broker on the customer’s side and Aneka on the provider’s side. Web services

enable platform independence, and are therefore used to communicate between consumers

and providers because the Gridbus Broker is implemented in Java, and Aneka is a .Net based

28

enterprise Grid. The advantage of these high level languages is that they are object oriented

and web services enable semantic definition. Thus, this protocol supports SLA component

reuse, and type and semantic definition.

WS-Agreement: Open Grid Forum (OGF) has defined a standard for the creation and the

specification of SLAs called Web Services Agreement Specification (WS-Agreement) [12].

It is a language and a protocol for establishing, negotiating, and managing agreements on the

usage of services at runtime between providers and consumers. It uses an XML-based

language for specifying the nature of an agreement template, which facilitates discovery of

compatible providers. Its interaction is based on request and response. Moreover, it helps

parties in exposing their status, so SLA violation can be dynamically managed and verified.

Originally the language did not support negotiation and currently it has been complemented.

WS-Agreement Negotiation, which lies on the top of WS-Agreement and describes the

re/negotiation of the SLA. Its main feature is the robust signaling protocol for the

negotiation.

Web Service Level Agreement (WSLA): WSLA [40] is a framework developed by IBM to

specify and monitor SLA for Web Services. It provides a formal XML schema based

language to express SLAs, and architecture to interpret this language at runtime. It can

measure, and monitor QoS parameters and report violations to the party. It separates

monitoring clauses from contractual terms for outsourcing purposes. It provides the

capability to create new metrics over existing metrics to implement multiple QoS parameters

[40]. However, the semantic of metrics is not formally defined, hence, there are limitations

for the creation of new terms base on existing terms.

WSOL: Web Service Offerings Language (WSOL) defines a syntax for service offers’

interaction [53]. It provides template instantiation and reuse of definitions. WSOL and

WSLA support definition of management information and actions, such as violation

notifications. However, they are not defined by a formal semantic. WSOL and QML (Quality

Management Language) support type systems allowing the same SLA to be described either

in abstract or specific values to create a new SLA. The generalization relationships between

SLAs facilitate definitions of SLA types.

29

SLAng: Skene et al. [55] propose Service Level Agreement Language (SLAng), which uses

Extensible Markup Language (XML) to define SLAs. It is motivated by the fact that

federated distributed systems must manage the quality of all aspects of their deployment.

SLAng is different from other languages and frameworks. Firstly, it defines an SLA

vocabulary for Internet services. Secondly, its structure is based on the specific industry

requirement, aiming to provide usable terms. Thirdly, it is modeled using Unified Markup

Language (UML) and defined according to the behavior of services and consumers involved

in service usage, unlike other languages, such as WSLA and WSOL, where QoS definition is

based on metrics. Moreover, it supports third party monitoring schemes. However, it lacks of

the ability to define management information, such as associated financial terms. Thus, it is

not suitable for commercial computing environments.

QML: QML [31] define a type system for SLAs, allowing users to define their own

dimension types. However, it does not support extension of individual defined metrics

because the exchange of SLAs between parties requires a common understanding of metrics.

QML defines semantic for both its type system and its notion of SLA conformance.

QUO: It is a CORBA specific framework for QoS adaption based on proxies [43]. It includes

a quality description language used for describing QoS parameters, adaptations and

notifications. QUO properties are the response of invoking instrumentation methods on

remote objects. Like WSLA, no formal constraints are placed on the implementation of these

methods.

Discover - Service Provider

In the Grid computing community, Fitzgerald [28] introduced the Monitoring and Discovery

System, Gong et al. [32] proposed the VEGA Grid Project and also relevant is the work of

Iamnitchi et al. [35].

Monitoring and Discovery System (MDS) is the information service described in the Globus

project [28]. In its architecture, Lightweight Directory Access Protocol (LDAP) is used as

directory service, and information stored in information servers are organized in tree

topology. In utility computing systems, resources’ availability and capability are dynamic in

nature. However, in MDS, the relationship between information and information servers is

30

static. In addition, service provider’s information is frequently updated in these dynamic

changing environments, whilst LDAP is not designed for writing and updating information.

VEGA Infrastructure for Resource Discovery (VIRD) has three-level hierarchy architecture.

The top level is a backbone, which is responsible for the inter-domain resource discovery and

consists of Border Grid Resource Name Servers (BGRNS). The second level consists of

several domains and each domain consists of Grid Resource Name Servers (GRNS). The

third level includes all clients and resource providers. There is no central control in this

architecture, thus resource providers register themselves to GRNS server within a domain.

When clients submit requests, GRNS responses to them with requested resources. The

limitation of this architecture is that it only focuses on the issue of scalability and dynamic

environmental changes but not on heterogeneity and autonomous administration.

Iamnitchi et al. [35] propose a resource discovery framework using peer-to-peer (P2P)

technologies in Grids. P2P architecture is fully distributed and all the nodes are equivalent.

However, one major limitation of their work is that every node has little knowledge about

resources distribution and their status. Specifically, when there is large number of resource

types or the work-set is very large, the opportunity for inaccurate results increases, because

the framework is not able to use history data to accurately discover resources.

Define - SLA and Establish - Agreement

‘Define – SLA’ and ‘Establish – Agreement’ are two dependent steps, and SLA languages

facilitate their development. For example, WSLA and WS-Agreement are the most widely

used languages in these steps. Creation and Monitoring of Agreements (CREMONA) is a

WS-Agreement framework implemented by IBM [26]. It proposes a Commitment

Agreement and architecture for the WS-Agreement. All of these agreements are normal WS-

Agreements, following a certain naming convention. This protocol basically aims at solving

problems related to the creation of agreements on multiple sites. However, it is unable to

solve limitations when service providers and consumers have different standards, policies,

and languages during negotiations. For example, if a consumer uses WSLA but a provider

uses WS-Agreement, the interaction is actually not possible. In order to solve this, Brandic et

al. [19] proposed a Meta-Negotiation Architecture for SLA-Aware Grid Services based on

meta-negotiation documents. These documents record supported protocols, document

31

languages, and the prerequisites for starting negotiations and establishing agreements for all

participants.

SLA-based Resource Management Systems (RMS) have been developed for addressing

negotiation problems in Grids, for example, Wurman et al. [61] state a set of auction

parameters and a price-based negotiation platform, which serves as an auction server for

humans and software agents. Nevertheless, their solution only support one-dimensional

auction (only focus on price), but not multiple-dimensional auctions, which are important in

utility computing environments.

32

Table 2.3 Comparison of SLA Management frameworks and Languages

Name Type Domain Dynamic

Establish /

Management

Negotiation Metrics Define

Management

Actions

Support

Reuse

Provide

Type

Systems

Define

Semantic

Cope

with SLA

lifecycle

Bilateral

Protocol

Java, .Net

and Web

Service

based

protocol

Originally

for resource

reservation in

Grids.

Yes Yes Yes Yes Yes. Yes Support by

Web

Service.

Step 1 to

Step 4.

WS-

Agreement

XML

language;

Framework;

A protocol

Any domain Establish and

manage

dynamically

Re/negotiation

with WS-

Agreement

Negotiation

Do not

define

specification

of metrics

associated

with

agreement

parameters.

Yes Yes Yes Not

formally

defined

Step 1 to

step 6

WSLA Provide

language;

Framework;

runtime

architecture

Originally

for Web

services

Establish and

manage

dynamically

Re/negotiation. Allows

creation of

new metrics

Yes Yes NA Not

formally

defined

Step 1 to

step 6

QML language Any Domain Yes Yes Allows

creation of

new metrics

Yes Yes Yes,

allows

definition

of new

Yes Step 1 to

step 4

33

type

systems

WSOL XML Originally

for Web

Services

Yes Originally do

not support

NA Yes Yes Yes No Step 1 to

step 4

QUO CORBA

specific

framework

Any domain Yes Yes NA Yes Yes Yes No Step 1 to

step 4

SLAng XML

Language

Originally

for

Internet DS

environment

NA Yes No

But based on

behavior of

SLA parties

NA Yes Yes Yes Step 1 to

Step 4

34

Monitor - SLA Violation

Monitoring infrastructures are used to measure the difference between the pre-agreed and

actual service provision between parties [48]. There are three types of monitoring

infrastructures, which are trusted third party (TTP), trusted module on the provide side, and

trusted module on the client side. Nowadays, TTP provides most of functionalities for

monitoring in most typical situations to detect SLA violation.

Terminate - SLA

There are two scenarios in which an SLA may be terminated. The first is termination due to

normal time out. The second one is termination because any party violated its contract terms.

Normally, in Clouds, this step is conducted by customers and termination typically is caused

by normal time out or the provider’s SLA violation. Sometimes, providers also terminate

SLAs depending on the task priorities. If the reason for SLA termination is violation, then the

‘Enforce Penalties for SLA Violation’ step of the SLA lifecycle has to be applied. This step

is normally performed manually.

Enforce Penalties for SLA Violation

A penalty clause can be applied to the party who violates SLA terms. First is a direct

financial deposit being negotiated and agreed between parties. Second is a decrease in price

along with the extra compensation for any subsequent interaction. In other words, this option

is according to the value of loss caused by the violation. In this case, TTP is usually used as a

mediator. The workflow for this option is that clients transfer their deposit, bond, and any

other fees into the Third Party’s account, and then if the SLOs have been met, the money is

paid to provider via TTP. Otherwise, the TTP returns the amount of fees back to the

consumer as compensation for SLA violations. The SLA violation has two indirect side

impacts on providers. The first is that consumers use less service from the provider in the

future. The second is that provider’ reputation decreases and it affects other clients’ willing

to choose this provider subsequently. The major indirect influence on consumer is future

request will be rejected due to bad credit record.

A major issue, in the above discussion, is the variety of laws enforced in different countries.

This problem can be solved by a ‘choice of law clause’, which indicates expressly which

country’ laws are applied when a conflict happens between parties. ‘Legal templates’ [27]

can be used to refine these clauses [48].

35

2.4 SLA Use Cases in Utility Computing Systems

Utility computing provides access to on-demand delivery of IT capabilities to the consumer

according to cost-effective pricing schema. Typically, a resource in a Data Center is idle during

85% of time [63]. Utility computing provides a way for enterprises to lease this 85% of idle

resource or to use outsourcing to pay for resources according to their usage. Two approaches of

utility computing that achieve above goals are Grid and Cloud. In the rest part of this section, we

present use cases in Grid and Cloud computing environments.

2.4.1 SLA in Grid Computing Systems

In this section we introduce the definition of Grid computing, and some recent significant Grid

computing projects that have focused on SLAs and enabled them in their frameworks.

According to Buyya et al. (2009) “A Grid is a type of parallel and distributed system that enables

the sharing, selection, and aggregation of geographically distributed ‘autonomous’ resources

dynamically at runtime depending on their availability, capability, performance, cost, and users’

quality-of-service requirements [22].” Grid computing is a paradigm of utility computing,

typically used for access to NPC and scientific resources, even though it has been also used in the

industry.

SLA has been adopted in Grid computing, and many Grid projects are SLA oriented. We classify

them into three categories, which are SLA for business collaboration, SLA for risk assessment,

and SLA renegotiation supports dynamic changes.

SLA for Business Collaboration: GRIA (The GRIA Project) is a service-oriented infrastructure

designed to support B2B collaborations across organizational boundaries by providing services.

The framework includes a service manager with the ability to identify the available resources

(e.g. CPUs and applications), assign portions of the resources to consumers by SLAs, and charge

for resource usage. Furthermore, a monitoring service is responsible for monitoring the activity

of services with respect to agreed SLOs.

The BREIN consortium (The BREIN Project, 2006-2009) defines a business framework

prototype for electronic business collaborations. Some capabilities of this framework prototype

include Service Discovery with respect to SLA capabilities, SLA negotiation in a single-round

36

phase, system monitoring and evaluation, and SLA evaluation with respect to the agreed SLA.

The WSLA/WS-Agreement specifications are suggested for SLAs management. The project

focuses on dynamic SLAs. This initiative shows that the industry is demonstrating their interest

in SLA management.

In the work of Joita et al. [37], WS-Agreement specification is used as a basis to conduct

negotiation between two parties. An agent-based infrastructure takes care of the agreement offer

made by the requesting party. In this scenario, many one-to-one negotiations are considered in

order to find the service that best matches the offer.

Risk Assessment: The AssessGrid [15] project focuses on risk management and assessment in

Grid. It aims at providing service providers with risk assessment tools, which help them to make

decisions on the suitable SLA offer by assigning, mapping, and associating the risk of failure to

penalty fees. Similarly, end-users get knowledge about the risk of an SLA violation by a resource

provider that helps them to make appropriate decisions regarding acceptable costs and penalty

fees. A broker is the matchmaker between end-users and providers. WS-Agreement-Negotiation

protocol is responsible for negotiating SLAs with external contractors.

SLA renegotiation supporting dynamic changes: Ludwig et al. [44] propose an extension of

WS-Agreement allowing a run-time SLA renegotiation. Some modifications are proposed in

the ’GuaranteeTerm’ section of the agreement schema and a new section is added to define

possible negotiations, to be agreed by parties before the offer is submitted. The limitation is that

it does not support run-time renegotiation to adapt dynamic operational and environmental

changes, because after the agreement’s acceptance, there is no interaction between the provider

and the consumer. Sakellariou et al. [53] specify the guarantee terms of an agreement as variable

values rather than fixed values. This work aims at minimizing the number of re-negotiations to

reach consensus with agreement terms. BabelNet, is a Protocol Description Language for

automated SLA negotiation, has been proposed [34] to handle multiple-dimensional auctions.

2.4.2 SLA in Cloud Computing

Cloud computing is a paradigm of service oriented utility computing. In this section we introduce

a definition of Cloud computing and SLA use cases in industry and academia. Finally, we

compare SLA usage difference between Cloud computing and traditional web services.

37

Cloud Computing

Based on the observation of the essence of what Clouds are promising to be, Buyya et al.

(2009) propose the following definition: “A Cloud is a type of parallel and distributed system

consisting of a collection of inter-connected and virtualized computers that are dynamically

provisioned and presented as one or more unified computing resource(s) based on service-

level agreements established through negotiation between the service provider and

consumer[22].” Hence, Clouds fit well into the definition of utility computing.

Figure 2.6 shows the layered design of Cloud computing architecture. Physical Cloud

resources along with core middleware capabilities from the bottom for delivering IaaS. The

user-level middleware aims at providing PaaS capabilities. The top layer focuses on

application services (SaaS) by making use of services provided by the lower layer services.

PaaS/SaaS services are often provided by 3rd party service providers, who are different from

IaaS providers [23].

User-Level Applications: this layer includes the software applications, such as social

computing applications and enterprise applications, which be deployed by PaaS providers

renting resources from IaaS providers.

Core Middleware: this layer provides runtime environment enabling Capabilities to

application services built using User-Level Middleware. Dynamic SLA management,

Accounting, Monitoring and Billing are examples of core services in this layer. The

commercial example suit this layer are Google App Engine and Aneka.

System Level: physical resources including physical machines and virtual machines sit in

this layer. These resources are transparently managed by higher level virtualization services

and toolkits that allow sharing of their capacity among virtual instances of servers.

38

Figure 2.6 Layered Cloud computing architecture [23]

Use Cases

In this section, we present industry and academic use cases in Cloud computing

environments.

Industry Use Cases: In this section, we present how Cloud providers implement SLA.

Important parameters are summarized in Table 2.4. All elements in Table 2.4, are original

from formal published SLA documents of AmazonEC2 and S3 (IaaS provider), and

Microsoft Azure
1
 Compute and Storage (IaaS/PaaS provider).

A Characterization of studied systems following the six steps of SLA lifecycle model is

summarized in Table 2.5. From the users’ perspective, the process of activating SLA

lifecycle with Amazon and Microsoft is simple because the SLA has been pre-defined by the

provider. According to SLA lifecycle, the first step is to find the service providers according

to users’ requirements. For example, users find the provider via searching on the Internet,

and then explore the providers’ web site for collecting further information. Most Cloud

service providers offer pre-defined SLA documents. In this case, the second step and third

step are pre-defined and always be entwined together. The check for SLA violation

monitoring can be done by third party tools, such as Cloudwatch, Cloudstatus, Monists,

39

Nimsoft. Developers are able to develop their own monitoring systems by taking use of these

tools.

For what concerns the termination of a SLA we can consider IaaS services as a reference

example. In this case three scenarios may occur. The normal termination of a SLA is

constituted by the release of Cloud release of Cloud resources by the user. An SLA can also

be actively terminated by a provider if the resource usage lasts beyond the predefined expire

time. A termination with penalty may occur in case the resource is unable to provide

resources according to the expected Quality of Service. The last step of SLA lifecycle will be

invoked if any party violates contract terms. Currently most of service providers give service

credit to customer if they violate SLA.

 Table 2.4 SLA Use Cases of the most famous Cloud Provider and related characteristics in SLAs

Cloud

Provider

Name

Service Commitment Effective

Date

Monthly Uptime

Percentage (MUP)%

Service Credits

Percentage (%)

Amazon

AWS EC2

“AWS will use

commercially reasonable

efforts to make Amazon

EC2 and Amazon EBS each

available with a Monthly

Uptime Percentage (defined

below) of at least 99.95%, in

each case during any

monthly billing cycle (the

“Service Commitment”). In

the event Amazon EC2 or

Amazon EBS does not meet

the Service Commitment,

you will be eligible to

receive a Service Credit

“(AWS EC2 Service Level

Agreement).

01 June,

2013

99%=<MUP<99.9% 10%

MUP%<99% 30%

Amazon “AWS will use 01 June, 99%=<MUP<99.9% 10%

40

AWS S3 commercially reasonable

efforts to make Amazon S3

available with a Monthly

Uptime Percentage (defined

below) of at least 99.9%

during any monthly billing

cycle (the “Service

Commitment”). In the event

Amazon S3 does not meet

the Service Commitment,

you will be eligible to

receive a Service Credit as

described below. “(AWS S3

Service Level Agreement).

2013 MUP<99 25%

Microsoft

Azure

“For Cloud Services, we

guarantee that when you deploy

two or more role instances in

different fault and upgrade

domains, your Internet facing

roles will have external

connectivity at least 99.95% of

the time.

For all Internet facing Virtual

Machines that have two or

more instances deployed in the

same Availability Set, we

guarantee you will have

external connectivity at least

99.95% of the time.

For Virtual Network, we

guarantee a 99.9% Virtual

Network Gateway availability.”

(Windows Azure Service Level

Agreement)

NA <99.95% 10%

<99% 25%

1.The formula used to calculate Monthly Connectivity Uptime Percentage (MCUP) is depending on

Maximum Connectivity Minutest (MCM), Connectivity Downtime (CD) and Maximum Connectivity

Minutest (MCM). The equation is given as follows MCMCDMCMMCUP)(Source:

Windows Azure Service Level Agreement

41

Table 2.5 From users’ perspective SLA Use Cases of Cloud Provider follows six steps SLA lifecycle

Cloud

Service

Provider

Service

Type

Step 1:

Discover-Service

Provider

Step 2:

Define-SLA

Step 3:

Establish-

Agreement

Step 4:

Monitor-SLA

Violation

Step 5:

Terminate-

SLA

Step 6:

Enforce

Penalties for

SLA Violation

Amazon

EC2

IaaS

(Computi

ng)

Discover manually

(e.g. via web site)

Pre-defined

SLA

terms and QoS

parameters

Pre-defined

SLA document

by provider

Can use third

party monitor

systems

(e.g.

CloudWatch)

By user, or

provider

programmaticall

y or manually

Service Credit

given by

provider

Amazon

S3

IaaS

(Storage)

Discover manually Pre-defined

SLA terms

and QoS

parameters

Pre-defined

SLA document

by provider

Can use third

party monitor

systems

(e.g. CloudStatus)

By user, or

provider

programmaticall

y or manually

Service Credit

given by

provider

Microsoft

Azure

Compute

PaaS Discover manually

(e.g. via web site)

Pre-defined

SLA

terms and QoS

parameters

Pre-defined

SLA document

by provider

Can use third

party monitor

systems

(e.g. Monitis)

By user, or

provider

programmaticall

y or manually

Service Credit

given by

provider

Microsoft

Azure

Storage

PaaS

Discover manually Pre-defined

SLA terms

and QoS

parameters

Pre-defined

SLA document

by provider

Can use third

party monitor

systems

(e.g. Monitis)

By user, or

provider

programmaticall

y or manually

Service Credit

given by

provider

42

Academy Use Cases: In this section, we present SLA-based projects and algorithms as

academy use cases.

SLA-based Resource Allocation for Data Centers and Cloud Computing Systems: The

Cloud Computing and Distributed Systems (CLOUDS) Laboratory, at the University of

Melbourne has proposed the use of market-based resource management to support utility-

based resource management for cluster computing [65][64]. The initial work successfully

demonstrated that market-based resource allocation strategies are able to deliver better utility

for users than traditional system-centric strategies. However, early research focused on

satisfying only two static Quality of Service (QoS) parameters: the deadline for completing a

service request and the budget that the consumer is willing to pay for completing the request

before the deadline. In the commercial computing environment, there are other critical QoS

parameters to consider in a service request, such as reliability and trust/security. In particular,

QoS requirements cannot be static and need to be dynamically updated over time due to

continuing changes in business operations and operating environments.

SLA based Management and Scheduling: Lee et al. [42] propose profit-driven SLA based

scheduling algorithms in Clouds to maximize the profit for service providers. The application

model used in this work can be classified as SaaS and PaaS. The service types supported by

their algorithm are dependent services, which mean one sub-service can not start until the

pre-required services complete. However, their work does not support multiple providers and

full simulation configuration is not available. We recommend possible future research

direction is SLA management with multiple providers, since it is required for emerging

research in InterCloud. We define InterCloud as multiple Cloud providers with peer

agreement to support collaborative activities.

Several projects in the last years are related at different degrees to the SLA-aware

management of resources, such as Claudia[176], BonFIRE [179], Optimis [177] and 4CaaSt

[178].

Claudia: is a toolkit aims to provide dynamic provision and scalability of services in IaaS

Clouds. BonFIRE is a European project provides a unified federation environment for

developers to manage Cloud deployments. In addition, European project 4CaaSt targets to

provide a platform for the deployment, management and trade of Cloud services. It allows

43

providers to federate their resources in a common marketplace and enables users to compose

services. However these works neither consider dynamic management of resources nor

consider QoS parameters, so SLA-based resource management is not in their scope.

Optimis: A European project aimed to enable private Cloud to automatically interact with

public Cloud providers, optimizing the usage of resources by means of Cloud federation; it

does scheduling operations by deciding the best provider to host resources. It allows

specifying requirements at IaaS level and constraints in Cloud services. However, this work

does not cover SaaS level requirements and only considers cost but not customer satisfaction

level.

SLA@SOI: The SLA@SOI project has developed a methodology for the SLA-aware

management of infrastructures and services, and encompasses activities such as dynamic

service discovery and composition, service monitoring and assessment, infrastructure

planning and optimization etc. However this project does not consider Cloud computing

infrastructures as their target platform, and hence it does not account for some specific needs

of this area.

Cloud-TM [180]: a European project aimed to provide a data centric PaaS middleware for

the development of distributed Cloud applications. However, this work does not cover SaaS

level. The SLA system is based on SLA@SOI. However this project does not cover the PaaS

and SaaS levels of Cloud computing, and is focused on data centric Cloud applications,

instead of the general purpose Cloud computing.

PaaSage [181] : another recent European project providing runtime monitoring and dynamic

adaptation, intelligent metadata retrieval, multi provider support, etc. Although this project

covers several topics dealing with QoS assessment and dynamic management of resources, it

does not use SLAs for the definition of resources or QoS requirements, nor cover SaaS Level

of Cloud computing.

SLA related difference between Cloud and Web Service

In this section we compare the difference between SLAs applied in cloud computing and in

traditional web services as follows:

44

QoS Parameters: Most web services focus on parameters such as response time, SLA

violation rate for the task, reliability, availability, levels of user differentiation, and cost of

service. In Cloud computing more QoS parameters than traditional web services need to be

considered, for example, energy related QoS, Security related QoS, Privacy related QoS,

trust related QoS. More than 20 QoS parameters are defined by the SMI (Service

Management Index) consortium to be used in the industry and academy as standard

benchmark.

Automation: The whole process of SLA negotiation and provisioning, service delivery and

monitoring need to be automated for highly dynamic and scalable service consumption.

Researches in traditional web services explored this topic, for example, Jin L.J et al [36]

proposed a model for SLA analysis of Web Services. Nevertheless, SLA automation is a

rapidly growing area in Cloud computing. In fact there are some research projects starting to

focus on it, such as CLOUDS Lab at the University of Melbourne and SLA@SOI.

Resource Allocation: SLA oriented resource allocation in Cloud computing is possible

different from allocation in traditional web services, because web services have a Universal

Description Discovery and Integration (UDDI) for advertising and discovering between web

services. However, in Clouds, resources are allocated and distributed globally without central

directory, so the strategy and architecture for SLA based resource allocation in such

environment are different from traditional web services.

2.5 Open Problems

SLA management must provide ways for reliable provisioning of services, monitoring of SLA

violations and detection of any potential performance decrease during service execution [41][45].

The goal of SLA management is to establish a scalable and automatic SLA management

framework for automatically adapting to dynamic environmental changes by considering

multiple QoS parameters. In addition, an SLA has to be suitable for multiple domains with

heterogeneous resources. The VIRD architecture is a three-level hierarchy focused on scalability.

Wurman et al. [61] state a set of auction parameters and price-based negotiation platform.

Nevertheless, this solution only supports one-dimensional auction, thus could not handle

45

multiple-dimensional auctions, which are important in utility computing environments. Recently,

BabelNet handles multiple-dimensional auctions.

Nevertheless, somehow consumers still need to be involved in the management process to some

extent. Moreover, multiple QoS parameters have been investigated by CLOUDS Lab’s initial

work. Whilst that work only focused on the most common QoS parameters (price and deadline),

there are other critical QoS parameters that should be considered in a service request, such as

reliability and trust/security. In particular, QoS parameters are must be updated dynamically over

time due to continuing changes in business operations environments. Thus, multiple QoS

parameters should be investigated in the future research work.

More specifically, there are some open challenges for SLA-based resource management. First

and foremost, different SLA negotiation protocols and processes constraint the negotiation for

establishing SLAs, the modification of an implemented SLA, and SLA negotiation between

distinct administrative domains. Second, the SLA has to be established between providers and

consumers from different end-to-end viewpoint. For example, if the system service has been

outsourced from one provider to another, there should be SLA agreement between them as well.

Similar to Business to Consumer (B2C) models and Business to Business (B2B) models, there

will be different types of SLAs that needs to be established depending on entities involved..

Third, admission control policies, because decision on which user request to accept affects the

performance, profit, and reputation of the resource provider. Moreover, the resource allocation

management has to be considered carefully, because it addresses which resource is best suitable

for current admitted requests from both parties’ point of view. In addition, management of QoS

metrics, different parties using different parameters, and the failure management become a

challenge especially for the automatic handling, such as cause analysis and automatic problem

resolution. We can also mention, performance forecast management is another open question in

utility computing environments because it enables the recommendation for performance

improvement.

2.6 Summary

This chapter presented the literature survey, issues and solutions of SLA management in utility

computing systems and how SLAs have been used in these systems. An SLA is a formal contract

between service providers and consumers to guarantee that the service quality is delivered to

46

satisfy pre-agreed consumers’ expectations. SLA management is important in utility computing

systems because it helps to improve the CSL and to define clear relationship between business

parties. In this chapter, we summarized the main fundamental concepts of SLA and analyzed two

types of SLA lifecycle. One is the three phase high level lifecycle, which includes creation phase,

operation phase and removal phase; the other is more specific lifecycle including six steps, which

are ‘discover-service provider’, ‘define-SLA elements’, ‘establish-agreement’, ‘monitor-SLA

violation’, ‘terminate-SLA’ and ‘SLA violation control’. The second type of lifecycle is more

comprehensive, and introduces the characterization of SLA violation that is a foundation in

utility computing environments where services are consumed on a pay-as-you-go basis.

The analysis carried out in this chapter identified four major goals in case of SLA-based utility

computing. First, supporting customer-driven service management based on customer profiles

and requested service requirements. Second, defining computational risk management tactics to

identify and manage risks involved in the execution of applications with regards to service

requirements and customer needs. Third, deriving appropriate market-based resource

management strategies encompassing customer-driven service management to sustain SLA-based

resource allocation. Fourth, how to incorporate adaptive resource management models and

dynamic changes in service requirements in order to satisfy both new service demands and

existing service obligations.

To achieve these goals, the main challenges and solutions of SLA-based resource management in

utility computing environments are discussed by following the steps of SLA lifecycle. In the

‘discover-service provider’, the main issues are scalability, dynamic changes, heterogeneity, and

autonomous administration. Some architectures and algorithms have been proposed to cope with

them, such as the MDS and VIRD architectures. To design an automatic negotiation framework

is a challenge during the ‘define-SLA’ and ‘establish- agreement’ steps, because two parties need

to negotiate before they agree on the terms to be included in SLAs. SLA frameworks and

languages are used as solutions. Currently, the most widely used languages are WSLA and WS-

Agreement. However, there are not many effective solutions for the automatic negotiation

framework for SLA-based resource management. Thus, the automatic negotiation is still an open

issue. Regarding the ‘monitor SLA violation’ step, the most popular solution is using Third Party

(TTP) who provides most of functionalities for monitoring a service in most typical situations to

detect SLA violations. The main issues for the last two steps ‘terminate SLA’ and ‘enforce

penalties for SLA violation’, are automatic failure management, such as cause analysis, penalty

47

clauses invocation, and automatic failure resolution. Some penalty strategies were presented.

However, resource management with penalty model and automatic problem resolution still are

open challenges and more investigation is needed in the future.

In conclusion, SLA in utility computing systems is a rapidly moving target although some works

have been explored in the past. The rest of this thesis will explore three major challenges listed in

the Chapter 1. In addition, the next chapter will investigate admission control and scheduling

algorithms for SaaS providers to effectively utilise public Cloud resources to maximize profit by

minimizing cost and improving customer satisfaction level.

48

49

3 SLA-based Admission Control for Software-as-

a-Service Providers

This chapter presents innovative admission control and scheduling algorithms for SaaS providers

to effectively utilise heterogeneous Cloud resources to maximize profit by minimizing cost and

enlarging market share by accepting more user requests while minimizing the SLA violations for

existing customers. Then, an extensive evaluation study is conducted to analyse which algorithm

suits best in which scenario to achieve SaaS (Software-as-a-Service) providers’ objectives.

Simulation results show that our proposed algorithms provide substantial improvement (up to

40% cost saving) over reference ones across all ranges of variation in QoS parameters.

3.1 Introduction

The general objective of SaaS providers is to maximize profit and enlarge market share. To

maximize profit, SaaS (Software-as-a-Service) providers need to minimize the infrastructure cost,

administration operation cost and penalty cost caused by SLA violations. Market share can be

enlarged by accepting more user requests, which also increases the profit. Market share can also

be improved by satisfying more customers. To satisfy the customer, SaaS providers need to

guarantee Quality of Service (QoS) specified in SLAs.

In general, SaaS providers utilize internal resources of its data centres or rent resources from a

specific IaaS provider. For example, Saleforce.com [102] hosts resources but Animoto rents

resources from Amazon EC2 [92]. In-house hosting can generate administration and maintenance

cost while renting resources from a single IaaS provider can impact the service quality offered to

SaaS customers due to the variable performance [103].

50

To overcome the above limitations, multiple IaaS providers and admission control are considered

in this chapter. Procuring from multiple IaaS providers brings huge amount of resources, various

price schemas, and flexible resource performance to satisfy Service Level Objectives, which are

items specified in Service Level Agreement (SLA). Admission control has been used as a general

mechanism to avoid overloading of resources and SLA satisfaction [2]. However, current SaaS

providers do not have admission control and how they conduct scheduling is not publicly known.

Therefore, the following questions need to be answered to allow efficient use of resources in the

context of SaaS providers using multiple resources from IaaS providers, where resources can be

dynamically expanded and contracted on demand:

 Can a new user request be accepted without impacting accepted requests?

 How to map various user requests with different QoS parameters to VMs?

 What available resource should the request be assigned to? Or should a new VM be

initiated to support the new user request?

This chapter provides answers to the above questions by proposing an innovative cost-effective

admission control and scheduling algorithms to maximize the SaaS provider’s profit and CSL. Our

proposed solutions are able to maximize the number of accepted users through the efficient

placement of requests on VMs leased from multiple IaaS providers. We take into account various

customer’s QoS requirements and infrastructure heterogeneity. The key contributions of this

chapter are twofold: 1) it proposes the system and mathematical models for SaaS providers to

satisfy customers; and 2) it proposes three innovative admission control and scheduling

algorithms for profit and market share maximization by accepting as many new user requests as

possible with guaranteed SLA and minimized cost.

3.2 System Model

In this section, we introduce a model, which consists of actors and ‘admission control and

scheduling’ system (as depicted in Figure 3.1). The actors are users/customers, SaaS providers,

and IaaS providers. The system consists of application layer and platform layer functions. Take

Animoto.com as an example of SaaS provider, who leases video generation software to users.

There are three steps for users to generate video using Animoto.com: 1) upload pictures or videos;

2) select themes, music and styles for the video; 3) download or share the video. In this example,

customers expect video to be generated within deadline and budget. We extended this application

model by focusing more on customer requirements satisfaction. Thus, users request the software

51

service from a SaaS provider by submitting their QoS requirements, such as service deadline and

budget. The QoS model considered is adapted from utility models proposed in previous work [6].

In general, budget is computed by clients through own their market research and strategic plans.

The platform layer uses admission control to interpret and analyse the user’s QoS parameters and

decides whether to accept or reject the request based on the capability, availability and price of

VMs. Then, the scheduling component is responsible for allocating resources based on admission

control decision. Furthermore, in this section we design two SLA layers with both users and

resource providers, which are SLA (U) and SLA (R) respectively.

3.2.1 Actors

The participating actors involved in the process are discussed below along with their objectives

and constraints:

User

On users’ side, a request for application is sent to a SaaS provider’s application layer with

QoS constraints, such as, deadline, budget and penalty rate. Then, the platform layer utilizes

the ‘admission control and scheduling’ algorithms to admit or reject this request. If the request

can be accepted, a formal agreement (SLA) is signed between both parties to guarantee the

QoS requirements. SLA with Users – SLA (U) includes the following properties:

 Deadline: Maximum time user would like to wait for the result.

 Budget: How much user is willing to pay for the requested services.

 Penalty Rate Ratio: A ratio for consumers’ compensation if the SaaS provider misses the

deadline.

 Input File Size: The size of input file provided by users. Users upload the file, and the size is

calculated by the application layer function.

 Request Length: How many Millions of Instructions (MI) are required to be executed to

serve the request? This value is predefined in the SLA (U) by the SaaS provider.

52

Figure 3.1 A high level system model for application service scalability for in IaaS providers.

SaaS provider

A SaaS provider rents resources from IaaS providers and leases software as services to users.

SaaS providers aim at minimizing their operational cost by efficiently using resources from

IaaS providers, and improving CSL by satisfying SLAs, which are used to guarantee QoS

requirements of accepted users. From SaaS provider’s point of view, there are two layers of

SLA with both users and resource providers, which are described in Section A and Section C.

It is important to establish two SLA layers, because SLA with user can help the SaaS provider

to improve the CSL by gaining users’ trust of the QoS; SLA with resource providers can

enforce resource providers to deliver the satisfied service. If any participants in the contract

violate its terms, the defaulter has to pay for the penalty according to the clauses defined in the

SLA.

IaaS Provider

An IaaS resource provider (RP), offers VMs to SaaS providers and is responsible for

dispatching VM images to run on their physical resources. The platform layer of SaaS

53

provider uses VM images to create instances. It is important to establish SLA with a resource

provider – SLA (R), because it enforces the resource provider to guarantee service quality.

Furthermore, it provides a risk transfer for SaaS providers, when the terms are violated by

resource provider. In this work, we do not consider the compensation given by the resource

provider because 85% resource providers do not really provide penalty enforcement for SLA

violation currently [93]. The SLA (R) includes the following properties:

 Service Initiation Time: How long it takes to deploy a VM.

 Price: How much a SaaS provider has to pay per hour for using a VM from a

resource provider?

 Input Data Transfer Price: How much a SaaS provider has to pay for data transfer

from local machine (their own machine) to resource provider’s VM.

 Output Data Transfer Price: How much a SaaS provider has to pay for data

transfer from resource provider’s VM to local machine?

 Processing Speed: How fast the VM can process? We use Machine Instruction Per

Second (MIPS) of a VM as processing speed.

 Data Transfer Speed: How fast the data is transferred? It depends on the location

distance and also the network performance.

3.2.2 Profit Model

In this section we describe mathematical Equations used in our work. Let assume at a given time

instant t, I be the number of initiated VMs, and J be the total number of IaaS providers. Let IaaS

provider j provides Nj types of VM, where each VM type l has Pjl price. The prices/GB charged

for data transfer-in and –out by the IaaS provider j are inPrij and outPrij

respectively. Let (iniTijl)

be the time taken for initiating VM i of type l from provider j.

Let a new user submit a service request at submission time subT
new

 to the SaaS Provider. The new

user offers a maximum price B
new

 (Budget) to SaaS provider with deadline DL
new

and Penalty

Rate β
new

. Let inDS
new

 and outDS
new

 be the user requests required transfer in and transfer out

data.

Let Costijl
new

 be the total cost incurred to the SaaS provider by processing the user request on

VM i of type l uses resource provider j. Then, the profit Profijl
new

 gained by the SaaS provider is

defined as:

54

new

ijl

newnew

ijl CostB Prof jNlJjIi ,, (3.1)

The total cost incurred to SaaS provider for accepting the new request consists of request’s

processing cost (PCijl
new

), data transfer cost (DTCjl
new

), VM initiation cost (ICijl
new

), and penalty

delay cost (PDCijl
new

) (to compensate for miss deadline). Thus, the total cost is given by

processing the request on VM i of type l on IaaS provider j.

new

ij

new

ijl

new

jl

new

ijl

new

ijl PDCICDTCPCCost jNlJjIi ,,

(3.2)

The processing cost (PCijl
new

) for serving the request is dependent on the new request’s

processing time (procTijl
new

) and hourly price of VMil offered by IaaS provider j . Thus, PCijl
new

 is

given as:

 jjl

new

ijl

new

ijl NlJjIiPprocTPC ,,,
 (3.3)

Data transfer cost as described in Equation (3.4) includes cost for both data-in and data-out.

 jl

new

jl

newnew

jl ioutoutDSiininDSDTC PrPr
jNlJj ,

(3.4)

The initiation cost (ICij
new

) of VM i (type l) is dependent on the type of VM initiated in the data

center of IaaS provider j.

 jjlij

new

ijl NlJjIiPiniTIC ,,, (3.5)

In Equation (3.6), penalty delay cost (PDCij
new

) is how much the service provider has to give

discount to users for SLA(U) violation. It is dependent on the penalty rate (β
new

) and penalty

delay time (PDTijl
new

) period. We model the SLA violation penalty as linear function which is

similar to other related works [65][48][68].

new

ijl

newnew

ijl PDTPDC
jNlJjIi ,, (3.6)

To process any new request, SaaS provider either can allocate a new VM or schedule the request

on an already initiated VM. If service provider schedules the new request on an already initiated

VMi, the new request has to wait until VM i becomes available. The time for which the new

request has to wait until it starts processing on VM i is

K
k

ijl
k

procT
1

 , where K is the number of

request yet to be processed before the new request. Thus, PDTljl
new

 is given by:

 {

,

1

new
K

k

ijl DL
new

ijl
procT

k
procTt

 (3.7)

DTTijl
new

 is the data transfer time which is the summation of time taken to upload the input

(inDTill
new

) and download the output data (outDTijl
new

) from the VM il on IaaS Provider j. The

data transfer time is given by:

55

new

ijl

new

ijl

new

ijl outDTinDTDTT jNlJjIi ,, (3.8)

Thus, the response time (Tijl
new

) for the new request to be processed on VMil of IaaS Provider j is

calculated in Equation (3.9) and consists of VM initiation time (iniTijl
new

), request’s service

processing time (procTijl
new

), data transfer time (DTTijl
new

), and penalty delay time (PDTijl
new

).

 {

,

1

new

ijl
procT

k
procT

K
k

ijl

 (3.9)

The investment return (retijl
new

) to accept new user request per hour on a particular VM il on IaaS

Provider j is calculated based on the profit (profijl
new

) and response time (Tijl
new

):

new

ijl

new

ijlnew

ijl
T

prof
ret jNlJjIi ,, (3.10)

3.3 Algorithms and Strategies

In this section, we present four strategies to analyse whether a new request can be accepted or not

based on the QoS requirements and resource capabilities. Then, we propose three algorithms

utilizing these strategies to allocate resources. In each algorithm, the admission control uses

different strategies to decide which user requests to accept in order to cause minimal performance

impact, avoiding SLA penalties that decrease SaaS provider’s profit. The scheduling part of the

algorithms determines where and which type of VM will be used by incorporating the

heterogeneity of IaaS providers in terms of their price, service initiation time, and data transfer

time.

3.3.1 Strategies

In this section, we describe four strategies for request acceptance: a) initiate new VM, b) queue

up the new user request at the end of scheduling queue of a VM, c) insert (prioritize) the

new user request at the proper position before the accepted user requests and, d) delay the

new user request to wait all accepted users to finish. Inputs of all strategies are QoS

parameters of the new request and resource providers’ related information. Outputs of all

strategies are admission control and scheduling related information, for example, which VM and

in which resource provider the request can be scheduled. All flow charts in this section are in the

context of each VM in each resource provider.

Initiate New VM Strategy

56

Figure 3.2 illustrates the flow chart of “initiate new VM strategy”, which first checks for

each type of VMs in each resource provider in order to determine whether the deadline of

new request is long enough comparing to the estimated finish time. The estimated finish time

depends on the estimated start time, request processing time, and VM initiation time.

If the new request can be completed within the deadline, the investment return is calculated

(Equation 3.10). If there is value added according to the investment return, and then all

related information (such as resource provider ID, VM ID, start time and estimated finish

time) are stored into the potential schedule list. This strategy is represented as

canInitiateNewVM () in algorithms.

Figure 3.2 Flow Chart of ‘Initiate new VM strategy’

Wait Strategy

Figure 3.3 illustrates the wait strategy, which first verifies each VM in each resource

provider if the flexible time (fTijl
new

) of the new request is enough to wait all accepted

requests in vmil to complete. The fTijl
new

 is given by Equation (3.11), in which K indicates

total number of all accepted requests, I indicates all VMs, J indicates all resource providers, l

indicates VM type, and Nj indicates all VM types provided by resource provider j.

K

newk

ijl

new

k
procTDLfT subTnew

ijl
1

jNlKkJjIi ,,, (3.11)

If new request can wait for all accepted requests to complete, and then the investment return

is calculated and the remaining steps are the same as those in initiate new VM strategy. This

strategy is called as canWait () in algorithms.

Request can complete

within deadline

Store Related Info. Return True

Return False

Calculate Investment Return

Investment Return > 0

No

Yes

Yes

No

57

Figure 3.3 Flow Chart of ‘wait strategy’

Insert Strategy

Figure 3.4 shows the flow chart of “insert strategy”, which first checks verifies if any

accepted request uk according to latest start time in vmil can wait the new request to finish. If

the flexible time of accepted request (fTijl
k
) is enough to wait for a new user request to be

completed then the new request is inserted before request k. The fTijl
k
 indicates the duration

of request wait time with deadline and it is given by Equation (3.12), in which DL
k
indicates

the deadline of accepted request, k indicates the position of accepted request, and K indicates

the total number of accepted user requests, l indicates the VM type and Nj indicates all VM

types provided by resource provider j.

newnew

ijl

K

kn
n

n

ijl

kk subTTprocTDLfTijl

 ,1

jNlKkJjIi ,,, (3.12)

If there is an already accepted request u
k
 that is able to wait for the new user request to

complete, the strategy checks if the new request can complete before its deadline. If so, u
new

gets priority over u
k
, then the algorithm calculates the investment return and the remaining

steps are the same as those in initiate new VM strategy. This strategy is presented as

canInsert () in algorithms.

Request can wait all

accepted requests to finish

Yes

No

Store Related Info. Return True

Return False

Calculate Investment Return

Investment Return > 0

Yes

No

58

Figure 3.4 Flow Chart of ‘insert strategy’

Penalty Delay Strategy

Figure 3.5 describes the flow chart of “penalty delay strategy”, which first checks if the new

user request’s budget is enough to wait for all accepted user requests in vmi to complete after

its deadline. Equation (3.1) is used to check whether budget is enough to compensate the

penalty delay loss, and then the investment return is calculated and the remaining steps are

the same as those in initiate new VM strategy. This strategy is presented as funciton

canPenaltyDelay() in algorithms.

Figure 3.5 Flow Chart of ‘penalty delay strategy’

Any accepted request can

wait for new request

Yes

No

Store Related Info. Return True

Return False

Calculate Investment Return

Investment Return > 0

Yes

No

Budget is enough to

compensate delay penalty

No

Store Related Info. Return True

Return False

Calculate Investment Return

Investment Return > 0

Yes

Yes

No

59

3.3.2 Proposed Algorithms

A service provider can increase the profit by reducing the infrastructure cost, which depends on

the number and type of initiated VMs in IaaS providers’ data centre. Therefore, our algorithms

are designed to minimize the number of VMs by maximizing the utilization of already initiated

VMs. The assumption here is that SaaS provider will offer proper security protection for business

data, especially when data is copied to VMs that are already created. In this section, based on

above strategies we propose three algorithms, which are ProfminVM, ProfRS, and ProfPD:

 Maximizing the profit by minimizing the number of VMs (ProfminVM).

 Maximizing the profit by rescheduling (ProfRS).

 Maximizing the profit by exploiting the penalty delay (ProfPD).

Maximizing the Profit by Minimizing the number of VMs (ProfminVM)

Algorithm 1 describes the ProfminVM algorithm, which involves two main phases: a)

admission control and b) scheduling.

In admission control phase, the algorithm analyses if the new request can be accepted either

by queuing it up in an already initiated VM or by initiating a new VM. Hence, firstly, it

checks if the new request can be queued up by waiting for all accepted requests on any

initiated VM - using Wait Strategy (Step 3). If this request cannot wait in any initiated VM,

then the algorithm checks if it can be accepted by initiating a new VM provided by any IaaS

provider - using Initiate New VM Strategy (Step 8). If a SaaS provider does not make any

profit by utilizing already initiated VMs nor by initiating a new VM to accept the request,

then the algorithm rejects the request (Step 9). Otherwise, the algorithm gets the maximum

investment return from all of the possible solutions (Step 13). The decision also depends on

the minimum expected investment return (expInvRetijlnew) of the SaaS provider. If the

investment return

new

ijlret
is more than the SaaS provider’s expInvRetijlnew, the algorithm

accepts the new request (Step 14, 15), otherwise it rejects the request (Step 16, 17). The

expected investment return ratio w is customized by SaaS providers. The expected

investment return (expInvRetijlnew) is given by Equation (3.13):

new

ijl

new
ijlnew

ijl
T

Cost
 expInvRet

jNlJjIi ,,
 (3.13)

60

The scheduling phase is the actual resource allocation and scheduling based on the admission

control result; if the algorithm accepts the new request, the algorithm first finds out in which

IaaS Provider rpj and which VM vmi a SaaS provider can gain the maximum investment

return by extracting information from PotentialScheduleList (Step 20). If the maximum

investment return is gained by initiating a new VM (Step 22), then the algorithm initiates a

new VM in the referred resource provider (rpj), and schedule the request to it. Finally, the

algorithm schedules the new request on the referred VM (vmi) (Step 23). The time

complexity of this algorithm is O(KIJ+KI), where K indicates the total number of accepted

requests, I indicates the total number of initiated matched type of VMs and J indicates the

number of resource providers.

Algorithm 1. Pseudo-code for ProfminVM algorithm

Input: New user’s request parameters (unew), expInvRetijnew

Output: Boolean

Functions:

admissionControl() {

 1. If (there is any initiated VM) {

 2. For each vmi in each resource provider rpj {

 3. If (! canWait (unew, vmi)) {

 4. continue;

 5. }

6. }

 7. }

 8. Else If (! canInitiateNew(unew, rpj))

9. Return reject

10. If (PotentialScheduleList is empty)

11. Return reject

12. Else {

13. Get the max[retijnew, SDij] in PotentialScheduleList

14. If (max(retijnew) ≥ expInvRetijnew)

15. Return accept

16. Else

17. Return reject

18. }

61

19. }

}

schedule () {

20. Get the [retmaxnew, SDmax] in maxRet(PotentialScheduleList)

21. If (SDmax is initiateNewVM)

22. initiateNewVM in rpj

23. Schedule the unew in VMmax in rpmax according to SDmax.

 }

Maximizing the Profit by Rescheduling (ProfRS)

In ProfminVM algorithm, a new user request does not get priority over any accepted request.

This inflexibility affects the profit of a SaaS provider since many urgent and high budget

requests will be rejected. Thus, ProfRS algorithm reschedules the accepted requests to

accommodate an urgent and high budget request. The advantage of this algorithm is that a

SaaS provider accepts more users utilizing initiated VMs to earn more profit.

Algorithm 2 describes ProfRS algorithm. In the admission control phase, the algorithm

analyses if the new request can be accepted by waiting in an already initiated VM, inserting

into an initiated VM, or initiating a new VM. Hence, firstly it verify if new request can wait

all accepted requests in any already initiated VM - invoking Wait Strategy (Step 3). If the

request cannot wait, then it checks if the new request can be inserted before any accepted

request in an already initiated VM -using Insert Strategy (Step 4). Otherwise the algorithm

checks if it can be accepted by initiating a new VM provided by any IaaS provider - using

Initiate New VM Strategy (Step 5). If a SaaS provider does not make sufficient profit by any

strategy, the algorithm rejects this user request (Step 10, 11). Otherwise the algorithm gets

the maximum return from all analysis results (Step 15). The remaining steps are the same as

those in ProfminVM algorithm. The time complexity of this algorithms is O (KIJ+IK
2
),

where K indicates the total number of accepted requests, I indicates the total number of

initiated matched type of VMs and J indicates the number of resource providers.

Algorithm 2. Pseudo-code for ProfRS algorithm

Input: New user’s request parameters (unew), expInvRetij
new

Output: Boolean

62

Functions:

admissionControl() {

 1. If (there is any initiated VM) {

 2. For each vmi in each resource provider rpj {

 3. If (! canWait (unew, vmi)) {

 4. If (! canInsert (unew, vmi)) {

 5. If (! canInitiateNew(unew, rpj)) {

 6. continue;

 7. }

 8. }

 9. }

 10. Else If (! canInitiateNew(unew, rpj))

 11. Return reject

 12. If (PotentialScheduleList is empty)

 13. Return reject

 14. Else {

 15. Get the max[retij
new, SDij] in PotentialScheduleList

 16. If (max(retij
new) ≥ expInvRetij

new)

 17. Return accept

 18. Else

 19. Return reject

 20. }

 }

schedule () {

21. Get the [retmax
new, SDmax] in maxRet(PotentialScheduleList)

22. If (SDmax is initiateNewVM)

23. initiateNewVM in rpj

24. Schedule the unew in VMmax in rpmax according to SDmax.

 }

Maximizing the Profit by exploiting penalty delay (ProfPD)

To further optimize the profit, we design the algorithm ProfPD by considering delaying the

new requests to accept more requests.

63

Algorithm 3 describes ProfPD algorithm. In the admission control phase, we analyse if the

new user request can be processed by queuing it up at the end of an already initiated VM, by

inserting it into an initiated VM, or by initiating a new VM. Hence, firstly the algorithm

check if the new request can wait all accepted requests to complete in any initiated VM -

invoking Wait Strategy (Step 3). If the request cannot wait, then it checks if the new request

can be inserted before any accepted request in any already initiated VM -using Insert

Strategy (Step 4). Otherwise the algorithm checks if the new request can be accepted by

initiating a new VM provided by any resource provider - using Initiate New VM Strategy

(Step 5) or by delaying the new request with penalty compensation - using Penalty Delay

Strategy (Step 7). If a SaaS provider does not make sufficient profit by any strategy, the

algorithm rejects the new request (Step 14). Otherwise, the request is accepted and scheduled

based on the entry in PotentialScheduleList which gives the maximum return (Step 23). The

rest of the steps are the same as those in ProfminVM. The time complexity of this algorithms

is O (KIJ+IK
2
), where K indicates the total number of accepted requests, I indicates the total

number of initiated matched type of VMs and J indicates the number of resource providers.

Algorithm 3. Pseudo-code for ProfPD algorithm

Input: New user’s request parameters (unew), expInvRetij
new

Output: Boolean

Functions:

admissionControl() {

 1. If (there is any initiated VM) {

 2. For each vmi in each resource provider rpj {

 3. If (! canWait (unew, vmi)) {

 4. If (! canInsert (unew, vmi)) {

 5. If (! canInitiateNew(unew, rpj))

 6. continue;

 7. If (! canPenaltyDelay(unew, rpj))

 8. continue;

 9. }

10. }

11. }

12. }

13. Else If (! canInitiateNew(unew, rpj))

64

14. Return reject

15. If (PotentialScheduleList is empty)

16. Return reject

17. Else { Get the max[retij
new, SDij] in PotentialScheduleList

18. If (max(retij
new) ≥ expInvRetij

new)

19. Return accept

20. Else

21. Return reject

22. }

}

schedule () {

23. Get the [retmax
new, SDmax] in maxRet(PotentialScheduleList)

24. If (SDmax is initiateNewVM)

25. initiateNewVM in rpj

26. Schedule the unew in VMmax in rpmax according to SDmax.

}

3.4 Performance Evaluation

In this section, we first explain the reference algorithms and then describe our experiment

methodology, followed by performance evaluation results, which includes comparison with

reference algorithms and among our proposed algorithms.

As existing algorithms in the literature are designed to support scenarios different to those

considered in our work, we are comparing proposed algorithms to reference algorithms exhibiting

lower and up bounds: MinResTime and StaticGreedy.

 The MinResTime algorithm selects the IaaS provider where new request can be processed

with the earliest response time to avoid deadline violation and profit loss, therefore it

minimizes the response time for users. Thus, it is used to know how fast user requests

can be served.

 The StaticGreedy algorithm assumes that all user requests are known at the beginning of

the scheduling process. In this algorithm, we select the most profitable schedule obtained

by sorting all the requests either based on Budget or Deadline, and then using ProfPD

algorithm. Thus, the profit obtained from StaticGreedy algorithm acts as an upper bound

65

of the maximum profit that can be generated. It is clear that assumption taken in

StaticGreedy algorithm is not possible in reality as all the future requests are not known.

3.4.1 Experimental Methodology

We use CloudSim [80] as a Cloud environment simulator and implement our algorithms within

this environment. We observe the performance of the proposed algorithms from both users’ and

SaaS providers’ perspectives. From users’ perspective, we observe how many requests are

accepted and how fast user requests are processed (we call it average response time). From SaaS

providers’ perspective, we observe how much profit they gain and how many VMs they initiate.

Therefore, we use four performance measurement metrics: total profit, average request response

time, number of initiated VMs, and number of accepted users. All the parameters from both users’

and IaaS providers’ side used in the simulation study are given in following sub-sections:

Users’ side

We examine our algorithms with 5000 users. From the user side, five parameters (deadline,

service time, budget, arival rate and penalty rate factor) are varied to evaluate their impact on

the performance of our proposed algorithms. Request arrival rate follows poisson distribution

as many previous works [100][101] model arrival rate as poisson distribution. Similar as

other works, we use a normal distribution to model all parameters (standard deviation

=(1/2)xmean), because there is no available workload specifiying these parameters. Equation

3.14 is used to calculate the deadline (DLijl
new

). is the factor which is used to vary the

deadline from “very tight” (=0.5) to “very relax” (=2.5). estprocTijl
new

 indicates the new

service request’s estimated processing time.

new
ijl

estprocTnew
ijl

estprocTnew
ijl

DL

jNlJjIi ,, (3.14)

Service time is estimated based on the Request Length (MI) and the Millions of Instruction

per Second (PS) of a VM. The mean Request Lengths are selected between 10
6

MI (“very

small”) to 5x10
6
MI (“very large”), while MIPS value for each VM type is fixed.

In common economic models, budget is generated by random numbers [65]. Therefore, we

follow the same random model for budget, and vary it from “very small” (mean=0.1$) to

“very large” (mean=1$). We choose budget factor up to 1, because the trend of results does

66

not show any change after 1. Five different types of request arrival rate are used by varying

the mean from 1000 to 5000 users per second. The penalty rate β (the same as in Equation

3.1) is modelled by Equation 3.15. It is calculated in terms of how long a user is willing to

wait (r) in proportion to the deadline when SLA is violated. In order to vary the penalty rate,

we vary the mean of r from “very small” (4) to “very large” (44).

 rnewDL

newB

 JjIi , (3.15)

Resource Providers’ side

We consider five resouce providers – IaaS providers, which are Amazon EC2[92],

GoGrid[94], Microsoft Azure[96], RackSpace[95] and IBM[97]. To simulate the effect of

using different VM types, MIPS ratings are used. Thus, a MIPS value of an equivalent

processor is assigned to the request processing capability of each VM type. The price schema

of VMs follows the price schema of GoGrid [94] , Amazon EC2 [92], RackSpace [95],

Microsoft Azure [96], and IBM [97]. The detail resource characteristics which are used for

modelling IaaS providers are shown in Table 3.1. The three different types of average VM

initiation time are used in the experiment, and the mean initiation time varies from 30

seconds to 15 minutes (standard deviation= (1/2)xmean). The mean of initiation time is

calculated by conducting real experiments of 60 samples on GoGrid [94] and Amazon EC2

[92] done for four days (2 week days and 2 weekend days).

3.4.2 Performance Results

In this section, we first compare our proposed algorithms with reference algorithms by varying

number of users. Then, the impact of QoS parameters on the performance metrics is evaluated.

Finally, robustness analysis of our algorithm is presented. All of the results present the average

obtained by 5 experiment runs. In each experiment we vary one parameter, and others are given

constant mean vaule. The constant mean, which are used during experiment, are as follows:

arrival rate=5000 requests/sec, deadline=2*estprocT, budget=1 $, requst length= 4x10
6
MI, and

penalty rate factor (r) =10.

67

Table 3.1 The summary of resource provider characteristics.

Provider VM Types VM Price ($/hour)

Amazon EC2 Small / Large 0.12/0.48

GoGrid 1 Xeon / 4 Xeon 0.19/0.76

RackSpace Windows 0.32

Microsoft Azure Compute 0.12

IBM VMs 32-bit (Gold) 0.46

Comparison with Reference Algorithms

To observe the overall performance of our algorithms, we vary the number of users from

1000 to 5000 without varying other factors such as deadline and budget. Figure 3.6 presents

the comparison of our proposed algorithms with reference algorithms StaticGreedy and

MinResTime in terms of the four performance metrics. When the number of user requests

varies from 1000 to 5000, for each algorithm the total profit and average response time has

increased, because of more user requests.

Figure 3.6 shows that ProfPD earns 8% less profit (Requests = 5000) for SaaS provider than

StaticGreedy which is used as the upper bound. That is because in the case of StaticGreedy,

all the user requests are already known from the beginning to the SaaS provider. The base

algorithm MinResTime has smaller (two third of StaticGreedy) response time, but earns less

profit (approximately half of ProfPD). These observations indicate the trade-off between

response time and profit, which SaaS provider has to manage while scheduling requests.

Figure 3.6a shows that the ProfPD achieves (15%) more profit over ProfRS and (17%) over

ProfminVM by accepting (10%, 15%) more user requests and initiating (19%, 40%) less

number of VMs, when number of users changes from 1000 to 5000. When number of users is

1000 ProfPD earns 4% and 15% more profit over ProfminVM and ProfRS respectively.

When the user number is increased from 1000 to 5000, the profit difference between ProfPD

and other two algorithms became larger. This is because when the number of requests

increased, the number of users being accepted increased by utilizing initiated VMs. If all

requests are known before scheduling, then StaticGreedy is the best choice for maximizing

profit, however, in the real Cloud computing market, these are unknown. Therefore, a SaaS

provider should use ProfPD, however, ProfRS is a better choice for a SaaS provider in

68

comparison with ProfminVM. In addition, the ProfPD is effective in maximizing profit in

heavy workload situations.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

Figure 3.6 Overall algorithms’ performance during variation in number of user requests

Figure 3.6b shows that our algorithms’ trends of response time increase from 1000 users to

5000 users because of increasing in processing of user requests per VM. When there is

smaller number of requests, the difference between different algorithm’s response times

becomes significant. For example, with 1000 requests, ProfPD gives users 16% lower

response time than ProfminVM and ProfRS, and even accept more requests. This is because

ProfPD scheduled less number of users per VM, thus user’s experience less delay. In other

scenarios the reason for lower response time is smaller initiation time. ProfminVM provides

the lowest response time compared to others, because it can serve a new user with new VMs.

Impact of QoS parameters

In the following sections, we examine various experiments by varying both user and resource

provider side’s SLA properties to analyse the impact of each parameter.

1) Impact of variation in arrival rate

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 2000 3000 4000 5000

T
o

ta
l
P

ro
fi

t
($

)

Variation in User Requests Number

ProfminVm ProfRS ProfPD StaticGreedy MinResTime

0

100

200

300

400

500

600

700

800

900

1000 2000 3000 4000 5000

A
v
g

.
R

e
s
p

o
n

s
e

T

im
e
 (s

e
c

.)

Variation in User Request Number

ProfminVm ProfRS ProfPD StaticGreedy MinResTime

0

20

40

60

80

100

120

1000 2000 3000 4000 5000

V
M

 I
n

it
ia

te
d

Variation in User Request Number

ProfminVm ProfRS ProfPD StaticGreedy

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1000 2000 3000 4000 5000

U
s
e
r

A
c
c
e

p
te

d

Variation in User Request Number

ProfminVm ProfRS ProfPD StaticGreedy MinResTime

69

To observe the impact of arrival rate in our algorithms, we vary the arrival rate factor, while

keeping all other factors such as deadline, budget as the same. All experiments are conducted

with 5000 user requests. It can be seen from Figure 3.7 that when arrival rate is “very high”,

the performance of ProfminVM, ProfRS, and ProfPD are affected significantly. The overall

trend of profit is decreasing and the response time is increasing because when there is more

user arrival per second, the service capability is decreased due to fewer new VM

instantiations.

Figure 3.7a shows that the ProfPD achieves the highest profit (maximum 15% more than

ProfminVM and ProfRS) by accepting (45%) more users and initiating the least number of

VMs (19% less than ProfminVM, 28% less than ProfRS) when arrival rate increases from

“very small” to “very large”. This is because ProfPD accept users with existing machines

with penalty delay. In the same scenario, ProfminVM and ProfRS achieve similar profit, but

ProfRS accepts 4% more requests with 13% more VMs than ProfminVM. Therefore, in this

scenario ProfPD is the best choice for a SaaS provider. However, when arrival rate is “very

large”, and the number of VM is limited, ProfRS is a better choice compared to ProfminVM

because although it provides similar profit as ProfminVM, it accepts more requests, leading

to market share expanding.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.7 Impact of arrival rate variation

200

1200

2200

3200

4200

5200

6200

7200

8200

very low low medium high very high

T
o

ta
l
P

ro
fi

t
($

)

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

0

20

40

60

80

100

120

very low low medium high very high

V
M

 In
it

ia
te

d

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

0

1000

2000

3000

4000

5000

6000

very low low medium high very high

U
s

e
r

A
c

c
e

p
te

d

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

70

Figure 3.7b shows that the ProfPD achieves in the smallest response time and accepted more

number of users with less number of VMs except when arrival rate is very high. Even in the

case of high arrival rate, the difference between response time from ProfPD and its next

competitor is just 3%. ProfminVM and ProfRS have similar response times. However, there

is a drastic increase in response time when the arrival rate is very high because more requests

are accepted per VM which delays the processing of requests. It is safe to conclude that even

considering the response time constraints from users, the first choice for a SaaS provider is

still the ProfPD.

2) Impact of variation in deadline

To investigate the impact of deadline in our algorithms, we vary the deadline, while keeping

all other factors such as arrival rate and budget fixed. Figure 3.8a shows that the ProfPD

achieved the highest profit (45% over ProfminVM and 41% over ProfRS) by accepting 33%

more user requests (Figure 3.8d) and initiating 52% less VMs (Fig. 8c)”. In some scenarios,

ProfminVM provides higher profit than ProfRS, for example, when deadline is “very tight”,

because ProfRS accepted requests with larger service time, which occupy the space for

accepting other requests.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

Figure 3.8 Impact of deadline variation

200

1200

2200

3200

4200

5200

6200

7200

very tight tight medium relax very relax

T
o

ta
l
P

ro
fi

t
($

)

Variation in Deadline

ProfminVm ProfRS ProfPD

0

200

400

600

800

1000

1200

1400

1600

very tight tight medium relax very relax

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in Deadline

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

90

100

very tight tight medium relax very relax

V
M

 I
n

it
ia

te
d

Variation in Deadline

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very tight tight medium relax very relax

U
s

e
r

A
c

c
e

p
te

d

Variation in Deadline

ProfminVm ProfRS ProfPD

71

Figure 3.8b shows that when deadline is relaxed, ProfPD results in 4% higher average

response time than in the case of ProfminVM and ProfRS. The ProfPD has larger response

time because of the two factors governing response time, i.e., request’s service time and VM

initiation time. It can be seen from Figure 3.8d that ProfPD always requires less VMs, to

process more requests. Thus, when service time is comparable to the VM initiation time, the

response time will be lower. When the VM initiation time is larger than the service time, the

response time is affected by the number of initiated VMs.

3) Impact of variation in budget

Figure 3.9 shows variation of budget impacts our algorithms, while keeping all other factors

such as arrival rate and deadline fixed. Figure 3.9a shows that when budget is varies from

“very small” to “very large”, in average the total profit by all the algorithms has increased,

and response time has decreased since less requests are processed using more VMs. From

Figure 3.9a, it can be observed that ProfPD gains the highest profit for SaaS provider except

when budget is “large”. In case of scenario when budget is “large”, ProfminVM provides the

highest profit (20%) over other algorithms by accepting similar number of requests while

initiating more VMs without penalty delay. This is due to an increase in the Penalty Delay

Rate (β) (Equation15) with the budget raise. Between ProfminVM and ProfRS, ProfminVM

provides more profit in all scenarios. Therefore, in this scenario a SaaS provider should

consider ProfPD, ProfminVM compared with ProfRS.

In the case of response time (Figure 3.9b), ProfPD on average delayed the processing of

request for the longest time (e.g. 33% bigger response time for “very small” budget scenario)

even though it processed more user requests and initiated less VMs. However, when budget

is “large”, the response time provided by ProfminVm is the longest even though it accepts

similar number of users as ProfPD. This anomaly caused by the contribution of VM initiation

time which becomes very significant when ProfRS initiated large number of VMs.

72

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.9 Impact of budget variation

4) Impact of variation in service time

Figure 3.10 shows how service time impacts our algorithms, while keeping all other factors

such as arrival rate and deadline as the same. In order to vary the service time, five classes of

request length (MI) are chosen from “very small” (10
6
MI) to “very large” (5x10

6
MI).

Figure 3.10a shows that the total profit by all algorithms has slightly decreased but response

time increased rapidly when the request length varies from “very small” to “very large”.

ProfPD achieves the highest profit among other algorithms. For example, in the case of “very

large” request length scenario, ProfPD generated about 30% more profit than other

algorithms by accepting 24% more requests (Figure 3.10d) and initiating 32% (Figure

3.10c) less VMs. In addition, ProfminVM and ProfRS achieve similar profit in most of the

cases. Therefore, the ProfPD is the best solution for any size of requests.

In addition, it can be observed from Fig. 10b that ProfPD provides only a slightly higher

response time (almost 6%) than others except when the request size is very small. When

0

500

1000

1500

2000

2500

3000

3500

4000

4500

very small small medium large very large

T
o

ta
l
P

ro
fi

t
($

)

Variation in Budget

ProfminVm ProfRS ProfPD

0

200

400

600

800

1000

1200

1400

very small small medium large very large

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in Budget

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

90

very small small medium large very large

V
M

 I
n

it
ia

te
d

Variation in Budget

ProfminVm ProfRS ProfPD

0

1000

2000

3000

4000

5000

6000

very small small medium large very large

U
s
e

r
A

c
c

e
p

te
d

Variation in Budget

ProfminVm ProfRS ProfPD

73

request size is very small, the response time provided by ProfPD becomes 27% bigger than

others, because it accepts 63% more user requests with 22% more VMs, leading to more

requests waiting for processing on each VM.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.10 Impact of request length variation

5) Impact of variation in penalty rate

In this section, we investigate how penalty rate (β) impacts our algorithms. The penalty rate

(Equation 3.15) depends on how long user is willing to wait (r), which is defined as penalty

rate factor in our chapter. Therefore, when the penalty rate factor (r) is large, the penalty rate

is small. All the results are presented in Figure 3.11.

In can be observed from Figure 3.11 that only ProfPD shows some effect of variation in

penalty rate since this is the only algorithm which uses Penalty Delay strategy to maximize

the total profit. The total profit (Figure 3.11a) and average response time (Figure 3.11b) are

only slightly decreased when the (r) is varied from “very low” to “very high”. In almost all

scenarios, ProfPD achieves 29% more profit over others by accepting 22% more requests

and initiating 30% less VMs. In addition, when the penalty rate varies from “very low” to

very high”, the response time slightly decreased. This is because ProfPD accepts a little bit

200

1200

2200

3200

4200

5200

6200

7200

8200

very small small medium large very large

T
o

ta
l
P

ro
fi

t
($

)

Variation in Request Length

ProfminVm ProfRS ProfPD

0

200

400

600

800

1000

1200

very small small medium large very large

A
v
g

.
R

e
s

p
o

n
s

e
T

im
e

 (S
e

c
.)

Variation in Request Length

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

very small small medium large very large

V
M

 In
it

ia
te

d

Variation in Request Length

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very small small medium large very large

U
s

e
r

A
c

c
e

p
te

d

Variation in Request Length

ProfminVm ProfRS ProfPD

74

less requests with similar number of VMs. Thus, the number of requests waiting in each VM

becomes smaller, leading to faster response time for each request.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.11 Impact of penalty rate factor variation

6) Impact of variation in Initiation Time

In this section, we analyse the variation of initiation time impacts our algorithms. Figure

3.12a illustrates that with increase in initiation time the total profit achieved by all the

algorithms decreases slightly while response time has increased a little bit. Due to increase in

initiation time, the number of initiated VMs (Figure 3.12c) has decreased rapidly due to the

contribution of initiation time in SaaS providers cost (spending). In all the scenarios, ProfPD

achieves highest profit over others by accepting 17% more requests (Figure 3.12d) and with

37% less initiated VMs. Therefore, ProfPD is the best choice for a SaaS provider in this

scenario.

The response time offered by ProfPD is slightly higher than others in most of cases, because

it accepted more users with less number of VMs, in other word, a VM required to serve more

number of users, leading to delay in request processing. The response time of ProfPD is the

lowest in this scenario; because of large initiation time of VM, the response time is also

200

1200

2200

3200

4200

5200

6200

7200

8200

very low low medium high very high

T
o

ta
l
P

ro
fi

t
($

)

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

A
v
g

.
R

e
s

p
o

n
s

e
T

im
e

 (S
e

c
.)

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

very low low medium high very high

V
M

 I
n

it
ia

te
d

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very low low medium high very high

U
s

e
r

A
c

c
e

p
te

d

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

75

increased with each initiated VM. However, the contribution to delay in processing of

requests, due to more number of requests per VM also increases. This leads to higher

response time in the scenario when the initiation time is “very long”.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.12 Impact of initiation time variation

Robustness Analysis

In order to evaluate the robustness of our algorithms, we run some experiments by reducing

the actual performance of VMs in the SLA(R) promised by IaaS providers. This performance

degradation has been observed by previous research study in Cloud computing environments

[98]. This experiment is conducted also to justify the inclusion of compensation (penalty)

clauses in SLAs which is absent in current IaaS providers’ SLAs [93]. We modelled the

reduced performance using a normal distribution with average variation between mean varies

0% and 50%.

200

1200

2200

3200

4200

5200

6200

7200

8200

very short short medium long very long

T
o

ta
l
P

ro
fi

t
($

)

Variation in VM InitiationTime

ProfminVm ProfRS ProfPD

0

100

200

300

400

500

600

700

800

900

very short short medium long very long

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in VM Initiation Time

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

very short short medium long very long

V
M

 I
n

it
ia

te
d

Variation in VM Initiation Time

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very short short medium long very long

U
s

e
r

A
c

c
e

p
te

d

Variation in VM Initiation Time

ProfminVm ProfRS ProfPD

76

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.13 Impact of performance degradation variation

Figure 3.13 shows that during the degradation of VM performance, the average total profit

(Figure 3.13a) has reduced 11% and average response time (Figure 3.13b) has doubled with

the increase in performance degradation of initiated VMs. This is because of the performance

degradation of VMs has not been accounted in SLA(R). Therefore, a SaaS provider does not

consider this variation during their scheduling, but it impacts significantly on the total profit

and average user requests response time.

Two solutions to handle this VMs performance degradation are: first, utilization of the

penalty clause in SLA(R) to compensate for profit loss; second, considering the degradation

as a potential risk. Therefore, during the scheduling process a (300 seconds) slack time is

added in estimated service processing time and it can be seen from Figure 3.14, that the latter

solution reduces considerably (from 0% to 50%, profit decreased only by 2%). Thus, if there

is a risk for a SaaS provider to enforce SLA violation with an IaaS provider, an alternative

solution to reduce risk is by considering a slack time during scheduling.

200

250

300

350

400

450

500

0% 10% 20% 30% 40% 50%

T
o

ta
l
P

ro
fi

t
($

)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

0% 10% 20% 30% 40% 50%

A
v
g

.
R

e
s

p
o

n
s

e
T

im
e

 (S
e

c
.)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

0% 10% 20% 30% 40% 50%

V
M

 I
n

it
ia

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

3200

3400

3600

3800

4000

4200

4400

0% 10% 20% 30% 40% 50%

U
s
e

r
A

c
c

e
p

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

77

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.14 Impact of performance degradation variation after considering slack time

3.5 Related Work

Research on market driven resource allocation and admission control has started as early as 1981

[72][69]. Most of the market-based resource allocation methods are either non-pricing-based [6] or

designed for fixed number of resources, such as FirstPrice [48] and FirstProfit [70]. In Cloud, IaaS

providers focusing on maximize profit and many works [89][6][42] proposed market based

scheduling approaches. For instance, Amazon [92] introduced spot instance way for customers to

buy those unused resources at bargain prices. This is a way of optimizing resource allocation if

customers are happy to be terminated at any time. However, our goal is not only to maximize

profit but also satisfy the SLA agreed with the customer.

At platform category, Projects such as InterCloud [77], Sky Computing [79], and Reservoir [78]

investigated the technological advancement that is required to aid the deployment of cloud

services across multiple infrastructure providers. However, research at the SaaS provider level is

still in its infancy, because many works do not consider maximizing profit and guaranteeing SLA

200

250

300

350

400

450

500

550

0% 10% 20% 30% 40% 50%

T
o

ta
l
P

ro
fi

t
($

)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

0% 10% 20% 30% 40% 50%

A
v
g

.
R

e
s

p
o

n
s
e

T
im

e
 (S

e
c

.)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

0% 10% 20% 30% 40% 50%

V
M

 I
n

it
ia

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0% 10% 20% 30% 40% 50%

U
s
e

r
A

c
c

e
p

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

78

with the leasing scenario from multiple IaaS providers, where resources can be dynamically

expanded and contracted on demand.

As we focus on developing admission control and scheduling algorithms and strategies for SaaS

providers in Cloud, we divide related work into two sub-sections: admission control and

scheduling.

3.5.1 Admission Control

Yeo and Buyya presented algorithms to handle penalties in order to enhance the utility of the

cluster based on SLA [65]. Although they have outlined a basic SLA with four parameters in

cluster environment, multiple resources and multiple QoS parameters from both user and provider

sides are not explored.

Bichler and Setzer proposed an admission control strategy for media on demand services, where

the duration of service is fixed [74]. Our approach allows a SaaS provider to specify its expected

profit ratio according to the cost, for example; the SaaS provider can specify that the service

request which can increase the profit in 3 times will be accepted.

Islam et al. investigated policies for admission control that consider jobs with deadline constraints

and response time guarantees [90][91]. The main difference is that they consider parallel jobs

submitted to a single site, whereas we utilize multiple VM from multiple IaaS providers to serve

multiple requests.

Jaideep and Varma proposed learning-based admission control in Cloud computing environments

[67]. Their work focuses on the accuracy of admission control but does not consider software

service providers’ profit.

Reig G. et al contributed on minimizing the resource consumption by requests and executing them

before their deadline with a prediction system [86]. Both the works use deadline constraint to

reject some requests for more efficient scheduling. However, we also consider the profit constraint

to avoid wastage of resources on low profit requests.

79

3.5.2 Scheduling

Chun et al. built a prototype cluster of time-sharing CPU usage to serve user requests [75]. A

market-based approach to solve traffic spikes for hosting Internet applications on Cluster was

studied by Coleman et al. [76][75]. Lee et al. investigated a profit-driven service request

scheduling for workflows [42]. These related works focus on scenarios with fixed resources, while

we focus on scenarios with variable resources.

Liu et al. analysed the problem of maximizing profit in e-commerce environment using web

service technologies, where the basic distributed system is Cluster [83]. Kumar et al. investigated

two heuristics, HRED and HRED-T, to minimize business value but they studied only the

minimization of cost [99]. Garg et al. also proposed time and cost based resource allocation in

Grids on multiple resources for parallel applications [89]. However, our current study uses

different QoS parameters, (e.g. penalty rate). In addition, our current study focuses on Clouds,

where the unit of resource is mostly VM, which may consist of multiple processors.

Menasce et al. proposed a priority schema for requests scheduling based on user status. The

algorithm assigns higher priority to requests with shopping status during scheduling to improve

the revenue [84]. Nevertheless, their work is not SLA-based and response time is the only concern.

Xiong et al. focused on SLA-based resource allocation in Cluster computing systems, where QoS

metrics considered are response time, Cluster utilization, packet loss rate and Cluster availability

[87]. We consider different QoS parameters (i.e., budget, deadline, and penalty rate), admission

control and resource allocation, and multiple IaaS providers. Netto et al. considered deadline as

their only QoS parameter for bag-of-task applications in utility computing systems considering

multiple providers [88]. Popovici et al. mainly focused on QoS parameters on resource provider’s

side such as price and offered load [70]. However, our work differs on QoS parameters from both

users’ and SaaS providers’ point of view, such as budget, deadline, and penalty rate.

In summary, this chapter is unique in the following aspects:

 The utility function is time-varying by considering dynamic VM deploying time (aka

initiation time), processing time and data transfer time.

80

 Our strategies adapt to dynamic resource pools and consistently evaluate the profit of adding a

new instance or removing instances, while most previous work deal with fixed size resource

pools.

3.6 Summary

We presented admission control and scheduling algorithms for efficient resource management to

maximize profit and market share by accepting more profitable user requests with minimum

number of resources for SaaS providers. Through simulation, we showed that the algorithms

work well in a number of scenarios. Simulation results show that in average the ProfPD

algorithm gives the maximum profit (in average save about 40% VM cost) among all proposed

algorithms in all scenarios varying all types of QoS parameters. If a user request needs fast

response time, ProfRS and ProfminVM could be chosen depending on the scenario. The summary

of algorithms and their ability to deal with different scenarios is shown in Table 3.2.

In this work, we assumed that the estimated service time is accurate since existing performance

estimation techniques (e.g. analytical modelling Error! Reference source not found., empirical,

and historical data [83]) can be used to predict service times on various types of VMs. However,

still some error can exist in this estimated service time [98] due to variable VMs’ performance in

Cloud. The impact of error could be minimized by two strategies: first, considering the penalty

compensation clause in SLAs with IaaS provider and enforce SLA violation; second, adding

some slack time during scheduling for preventing risk.

The next chapter generalizes the problem and presents customer requirements-driven algorithms

to achieve SaaS providers’ objectives by dedicating personalized attention to customers. These

algorithms take into account customer profiles (such as their credit level) and multiple Key

Performance Indicator (KPI) criteria.

81

Table 3.2 Summary of heuristics of comparison results (Profit)

Algorithm Time

Complexity

Overall Performance

Arrival

Rate

Deadline Budget Request

Length

Penalty

Rate

Factor

VM

Initiation

Time

Data

Transfer

ProfminVM O(KIJ+KI) Good (low

-high)

Good

(low-high)

Good Good

(very low

& very

high)

No

effect

Okay Good

(very low

& very

high)

ProfRS

O(KIJ+IK
2
)

Okay

(very

high)

Okay

(very

high)

Okay

(very low)

Okay No

effect

Good

(low-

high)

Okay

ProfPD O(KIJ+IK
2
) Best Best Best Best Best Best Best

82

83

4 SLA-based Resource Provisioning for SaaS

Applications

This chapter proposes customers’ requirements-driven resource provisioning algorithms to

achieve SaaS providers' objectives. The proposed provisioning algorithms consider customer

profiles and providers’ quality parameters (e.g. response time) to handle dynamic changes in

customer requirements and infrastructure level heterogeneity for SaaS providers that lease

enterprise software. We also take into account customer-side parameters (such as the proportion

of upgrade requests), and infrastructure-level parameters (such as the service initiation time) to

compare algorithms. Simulation results show that our algorithms reduce the total cost up to 54%

and the number of SLA violations up to 45%, compared with the previously proposed best

algorithm.

4.1 Introduction

Research related to SLA-based cost minimization and Customer Satisfaction Level (CSL)

maximization for SaaS providers are still in their preliminary stages, and current research on

Cloud computing [42][6][89] focus mostly on market oriented models for IaaS providers. Many

authors do not consider customer driven resource management, where resources have to be

dynamically reallocated according to the customer’s on-demand requirements.

CSL can be reduced by SLA violations while it also can be improved by delivering services better

than expected. For example, if actual service response time is higher than the one specified in SLA,

it causes SLA violations and customer will be unsatisfied. On the other hand, if the response time

is smaller than the one specified in the SLA, the customer satisfaction level will be improved.

This chapter proposes customer driven algorithms to minimize the total cost and maximize CSL

by resource provisioning. These algorithms also take into account customer profiles (such as their

84

credit level) and multiple Key Performance Indicator (KPI) criteria. A holistic way to quantify the

customer experience is by considering KPIs from seven categories: Financial, Agility, Assurance,

Accountability, Security and Privacy, Usability and Performance [115]. To improve a SaaS

application’s performance quality rating, we consider three KPIs, including one from provider’s

perspective: cost (part of the Financial category) and two from customers’ perspective: service

response time (part of the Performance category) and SLA violations (related to Assurance):

 Cost: the total cost of resource usage including VM and penalty cost.

 Service response time: how long it takes for users to receive a response.

 SLA violations: the possibility of SLA violations creates a risk for SaaS providers. In

this chapter, SLA violations are caused by elapse in the expected response time, and

whenever a SLA violation occurs, a penalty is charged.

To satisfy customer requests in order to minimize the total cost and SLA violations for SaaS

providers, the following key questions are addressed:

 How to manage dynamic customer demands? (such as upgrading from a standard

product edition to an advanced product edition or adding more accounts)

 How to reserve resources by considering the customer profiles and multiple KPI

criteria?

 How to map customer requirements to infrastructure level parameters?

 How to deal with infrastructure level heterogeneity (such as different VM types and

service initiation time)?

The key contributions of this chapter are:

 Design of a resource provisioning model for SaaS Clouds considering customer profiles

and multiple KPI criteria. These considerations are important for resource reservation

strategies to improve the CSL.

 Development of innovative scheduling algorithms to minimize the total cost and

number of SLA violations.

 Extensive evaluation of the proposed algorithms with new QoS parameters such as

credit levels.

85

4.2 System Model

The SaaS model for serving customers in the Cloud is shown in Figure 4.1. The SaaS provider

uses a three layered Cloud model, namely the application layer, the platform layer and the

infrastructure layer, to satisfy the user requests. The application layer manages all the secured

application services, such as the Customer Relationship Management (CRM) or Enterprise

Relationship Package (ERP) applications, that are offered to customers by the SaaS provider. The

platform layer is responsible for application development and deployment (such as Aneka [106],

Google App Engine [135], Spring framework). In our model, the function of this layer also

includes mapping and scheduling policies for translating the customer side QoS requirements to

infrastructure level parameters. The mapping policy considers customer profiles and KPI criteria

to measure the SaaS provider’s QoS.

The infrastructure layer includes the virtualization VM management services (such as VMWare

[137], Hyper-V [136]) and controls the actual initiation and termination of VMs resources, which

can be leased from IaaS providers, such as Amazon EC2, S3 [106] or own private virtualized

clusters. In both cases, the minimization of the number of VMs will deliver savings for the

providers.

86

Figure 4.1 A system model of SaaS layer structure

4.2.1 Actors

The actors involved in our system model are described below along with their objectives, activities

and constraints.

SaaS Providers

SaaS providers lease web-based enterprise software as services to customers. The main

objective of SaaS providers is to minimize cost and SLA violations. We achieve this objective

by proposing customer-driven SLA-based resource provisioning algorithms for Web-based

enterprise applications. In our context, a SaaS service provider X offers CRM or ERP software

packages with three product editions (for example, Standard, Professional and Enterprise) and

each product edition with a fixed price. The current SaaS providers, such as ‘Compiere ERP’,

use a similar service model [107]. In this service model, when a customer Company Y submits

its ‘first time rent’ request with a product edition (Standard), and additional number of

accounts, the SaaS provider needs to allocate resources and then provides the login

information to the customer. Company Y may require an upgrade in their service by adding

SaaS Provider

Application Layer (e.g. CRM, ERP)

Platform Layer (e.g Aneka, Google App Engine, Spring)

Infrastructure Layer (e.g. Hyper-V, EC2, S3)

Application Service Application Service

Application

Development

Environment and Tools

Application Deployment

and Execution

Management Services

Virtualization and VM

Management Services

Data

Centre

Resources

Request Service Provide Access Info.

Customers

87

additional user accounts or an upgrade of the software edition. In this case, sometimes a new

VM is created and the content from the previous VM is migrated to the new one. In practice,

the provider has to handle these on-demand customer requests in line with the SLA. The SLA

properties including the provider’s pre-defined parameters and the customer specified QoS

parameters are as follows:

 Product Edition (p): It is defined as the software product package that is offered to

customers. For example, SaaS X offers Standard, Professional, and Enterprise product

editions.

 Request Type (j): This defines the type of customer request, which may be a ‘first time

rent’ or a ‘service upgrade’ request. ‘First time rent’ means the customer is renting a

new service from this SaaS provider. A ‘service upgrade’ includes two types of

upgrade, which are ‘add account’ and ‘upgrade product’. To downgrade a service, first,

the customer needs to terminate the current contract, and then processing of this

downgrade request will be treated as a new request.

 Contract Length (cl): How long the customer is going to use the software service.

 Number of Accounts (a): The actual number of user accounts that a customer wants to

create. The maximum number of accounts is related to and restricted by the type of

product edition.

 Number of Records (n): The average number of records that a customer is able to

create for each account during a transaction and this may impact the data transfer time

during the service upgrade (The value of this parameter is predefined in the SLA).

 Response Time (respT): It represents the time taken by the provider to process a

particular customer request. For example, An SLA violation occurs when the actual

response time is longer than it was defined in the SLA. We consider four types of

response time: (a) first time renting (ftr) of the service - respT(ftr), (b) upgrading the

service(upServ) by adding additional accounts (addAcc) - respT(upServ,addAcc) (c)

upgrading the product (upProd) - respT(upServ,upProd), and (d) the service usage

(useServ), such as for saving a document (the value of each type of response time is

different and predefined in the SLA).

 Penalty Conditions: For each SLA violation the SaaS provider needs to pay a penalty,

which is based on the delay in the response time to the customer. For each request type

there is a different penalty (detailed in the cost model on Section 2.2.2). Penalty rate is

the monetary cost incurred to the provider for unit time delay in serving the customer

request.

88

The infrastructure layer (Figure 4.1) uses VM images to create instances on their physical

infrastructure according to mapping decisions. The following infrastructure layer

properties are important for mapping:

 VM types (l): The type of VM image that can be initiated. For instance, there may be

three types of VMs: large, medium, and small. The three types of VMs have different

capability to serve different numbers of accounts and records since different requests

may consume different memory and storage. Therefore, for a particular type of VM,

price, and the maximum capabilities are listed in Table 4.1.

 Service Initiation Time (iniT): How long it takes to initialize the service, which

includes the VM initiation time and application deployment and installation time.

 Service Processing Time (procT): It is defined as the time taken to process an

operation of SaaS service. For example, how long it takes to generate a report, or save

a transaction record.

 VM Price (VMPrice): How much it costs for the SaaS provider to use a VM for the

customer request per hour. It includes the physical equipment, power, network and

administration cost.

 Data Transfer Time (DTT): How long it takes to transfer one Gb record from one VM

to another. This depends on the network bandwidth.

Customers

When customers register on the SaaS provider’s portal, their profile information is gathered.

In practice, this happens via forms that customers fill during the registration process. To

categorize customers, high level information such as company size in range is collected. For

example, when the number of information workers, who may be the potential users, are

between 5 to 10. The following items are considered:

 Company Name (compName): The legally registered trade name.

 Company Size (compSize): The number of information workers (staffs who may use

the software service) in the company.

 Company Type (compType): The classification of a customer’s company based on the

number of employees and revenue. Customer companies are categorized into three

divisions, i.e., small, medium, and large.

 Future Interest Expression (futureInterest): The customer’s expected future upgrade

requirements. Such as the need for additional user accounts. This allows the SaaS

89

provider to plan for possible offering of discount as it helps them in making resource

reservation decisions. The provider’s reduced cost due to advance booking is shared

with customer by offering them a discounted price. Such practice is quite commonly

used by current industries and service providers. Therefore, we believe that this model

will work well for Cloud computing.

Moreover, in the service market, there are two types of sales models, which are one off

and long term relationships. The entire sales process is based on relationship building and

trust [129]. In addition, the application type we provide is enterprise application, which is

used as a pay-as-you-go and most of time with the customer repeatedly using the service.

For instance, Company Y may need to use the invoice and report services only a few

times a month, but they will use these services repeatedly over the long term. Therefore,

we focus on the relationship model but not the once off model (e.g. spot pricing).

4.2.2 Mathematical Models

Customer Profile Model

Credit Level (creditLevel): It measures the creditability and loyalty of a customer, which

depends on the value of the company type and credit level factor (Equation 4.1).

 creditLevel= compTypeValue (4.1)

The CompTypeValue indicates the company type, which is categorized based on the range of

company size. In practice, the company size can be verified during the registration identity

and security verification process. The CompTypeValue for small, medium and large company

types are 1, 2 and 3 respectively. The reason we use the values 1, 2 and 3 rather than say 10,

20, 30 or other sets of values, because the trend of other value sets are found to be the same

during the evaluation. The company type is considered when calculating the credit level,

because having larger companies as customers adds more value to the SaaS provider’s market

share. The credit level factor () is determined by the customer’s historical upgrade requests

and the actual upgrade action. The actual upgrade is a boolean value. If an actual upgrade

happened, the actual upgrade is true, and otherwise it is false. The value of actual upgrade

(actualUpgradeValue) is the actual value, such as number of account, that service upgrades

requested. The credit level factor () is the ratio of the actualUpgradeValue and

futureInterestValue (which cannot be 0) (Equation 4.2).

90

 restValuefutureInte

adeValueactualUpgr

(4.2)

For example, Company Y expresses a future interest to add 2 user accounts before the contract

expiry date. In this case the future interest is ‘add user accounts’ and the value of the future

interest (futurInterestValue) is 2. If they do not come back to request more user accounts (the

actual upgrade is false, and the actualUpgradeValue is 0), its credit level factor () is 0; but

if it adds one user account (the actual upgrade is true, and the actualUpgradeValue is 1), the

credit level factor () is 1/2 =0.5 (Equation 4.2). If it adds 3 user accounts (the

actualUpgradeValue is 3), the credit level factor is 3/2 = 1.5. If there is no history about

previous actions or user does not specify the future interest value, then is 0 (in this case the

‘future interest value’ is not used for new requests). The customers have to specify the future

interest every time they submit requests.

This model is used to adjust the inaccuracy or ensure information from the customer using the

actually verified and historical data. However it is necessary for providers to keep gathering

future interest data from customers, since customers supplied high level “future” expectations/

requirements guided in the initial planning and helps resource providers to plan about possible

incentives they may offer to their “high” value customers.

Cost Model

Let C be the number of customer requests and c indicates a customer request id. At a given

time t, a customer submits a service request c to the SaaS provider. The customer specifies a

product edition, contract length, and number of accounts after agreeing with the pre-defined

SLA clauses (response time). After the SLA establishment, the SaaS provider will reserve the

requested software services which are translated at the infrastructure level to match the VM

capacity.

Let Cost

be the total cost incurred to the SaaS provider to serve all customer requests C and as

described in Equation (4.3). It depends on the VM cost and the penalty cost.

 Cost = VMCost + PenaltyCost

 (4.3)

Let I be the number of initiated VMs, and i indicates the VM id. The VM cost is the total cost

for all VMs and is expressed by Equation (4.4):

91

)(

1

I

i
iVMCo stVMCo st Ii (4.4)

The Penalty cost is the total penalty cost for all customer requests C and is expressed by

Equation (4.5):

C

c
ctPenaltyCosPenatyCost

1

 Cc
 (4.5)

For each VM i, the VM cost depends on the VM price of type l (VMPricel), the time slot when

the VM is on (si), and the time slot when the VM is off (fi) and the set up time of the VM i (tsi)

and it is expressed by Equation (4.6):

)(iiili t ssfVM Pr i ceVM Cos t LlIi , (4.6)

Let c’ be the previous request from the same customer. The time spent on a VM set up is

expressed by Equation (4.7) and it depends on the request type j, VM initiation time iniTi, total

data transfer time for c’ (totalDTTc’). If j is ‘first time rent’ then the data transfer time is zero.

Only when j is ‘service upgrade’ and requires data migration, the data transfer time occurs.

 tsi = iniTi + totalDTTc’ CcLlIi ',, (4.7)

The total data transfer time depends on the number of accounts ('ca) that previously were

requested by the same customer, the data records created by previous request c’, the storage

size per record ('crs) and data transfer time per size ('cDTT). N indicates the total number of

records and n is the record id.

'

1
''' c

N

n
ccc DTTrsatotalDTT

 CcNn ',
 (4.8)

The SLA violation penalty (Penalty) model is similar to the models used in the related

publications [65][48][68] and is modeled as a linear function. The penalty model is shown in

Equation (4.9). The constant factor α is used to make sure the minimum penalty is always

greater than 0. β is the penalty rate and td indicates delay time. β is based on the request type,

and each type of request incurs the same range of penalty rate. This is a similar model to credit

card penalty, in which the late payment for a particular type of card will have the same range

of penalty [132].

 t dPenal t y (4.9)

92

The penalty function penalizes the service provider by increasing the cost. According to the

penalty model, the penalty cost equation for each customer request c is depicted as follows

where the customer request c is of request type j and tdc indicates the delay time for customer

request c.

 cjc tdtPenaltyCos CcJj , (4.10)

The delay time td is the variation between the value of the response time defined in the SLA

and the actual experienced response time. There are four situations in which a penalty delay

can occur (Table 4.1). If the request type is ‘first time rent’, the delay (violation) can occur

due to a long service initiation time. If the request type is ‘upgrade service’, the delay can be

caused by adding accounts or upgrading the product edition. Moreover, during the service

usage, the delay can be caused by machine performance degradation, which is out of the scope

of this chapter.

Average performance can be calculated based on a per-user (macroaverage) or per-request

(microaverage). Macroaverage performance treats all users equally, although some users will

be more active and generate more traffic than others. In contrast, microaverage performance

emphasizes the requests made by highly active users. Authors claimed that “we don’t always

build per-user predictive models. Individual models of behavior require more space, and tend

to be less accurate because they see less data than a global model. Thus for comparison, we

will report only per-request average” [139]. In addition, we consider penalties caused by

service preparation response time which are once-off activities without moving average and

thus it is based on per-request.

Table 4.1 The summary of penalty delay time according to request types

Response Time First Time Rent-ftr Upgrade Service

Add account-addAcc Upgrade product-upServ

Defined in SLA respT (ftr) respT(upServ, addAcc) respT (upServ, upPro)

Actual Time iniT iniT + totalDTT iniT +totalDTT

The service initiation time varies subjected to the physical machine’s capability

ctd iniTi – respTj where,j = first time rent

iniTi + totalDTT- respTj where,j = upgrade service (4.11)

93

4.2.3 Mapping of products to resources

In our work, the infrastructure layer focuses on the VM and the host level. The mapping between a

host and hosted VMs is depicted in Figure 4.2. Our VM to physical machine ‘Mapping

configuration’ supports heterogeneous physical machines. Homogeneous physical machines are

depicted just for easy comparison and presentation of results.

Table 4.2 The summary of mapping between requests and resources

VM Type VM Capacity and Price Product Edition Max Account # Min Account #

Small 1 CPU Unit, 2Gb RAM,

160 G Disk.

$0.12 per hour

Standard M 1

Medium 2 CPU Unit, 4Gb RAM,

850 G Disk.

$0.48 per hour

Standard, Professional 2m m+1

Large 4 CPU Unit, 8Gb RAM,

1690 G Disk.

$0.96 per hour

Standard, Professional,

Enterprise

10m 2m+1

We use a similar record model as ‘Salesforce.com’ to restrict each account to create the maximum

number of records. This configuration is chosen to avoid/minimize the SLA violations due to

service response delay. Because the VM performance can degrade after a certain number of VMs

are hosted on the same server due to using shared resources, such as CPU. An example of a

mapping strategy between customer requests and VM resources is shown in Table 4.2.

4.2.4 Problem description

Let a SaaS provider have I VMs initiated in a data center, and C is the number of requests

currently arriving to the SaaS provider. The SaaS provider charges a fixed service price from

Small VM Medium VM Large VM 4 small 2 medium 1 large

1 Host

or or

Figure 4.2 Mapping between VMs and a Host

94

customers for an application based on their request parameters. The request parameters include

request type (j), product edition (p), contract length (cl), and the number of accounts (a). The SaaS

provider has a dual objective, i.e., minimizing the cost and improving CSL. The objective

functions and constraint functions are explained below with input parameters and variables:

Input Parameters

1. L: Set of VM type.

2. η: Time-slot size.

3. I: Set of VM has been initiated from time 0 to time T. T is divided in slots of size η

4. VMPricel : The cost of VM of type l , l

5. c: The particular request. The parameter of this request includes the number of accounts, when

the contract starts, when the contract finishes, which type of request it is, and what type of

product it is requesting.

6. C: Set of customer requests received from time 0 to T.

7. βj: Penalty rate that is associated with request type j.

8. Al: Maximum number of accounts that can be allocated for VM type l.

9. ac: The number of accounts requested by request c.

10. sc: The time slot when this customer request contract started.

11. fc: The time slot when this customer request contract finished.

Variables

12. yil = 1, if VM i is of type l, otherwise = 0.

13. zcj : For request c, zcj=1, if request c is of request type j.

14. fi: The time slot when the VM is off.

15. si: The time slot when the VM is on.

16. xcit= 1, if request c is served by VM i at time slot t.

17. tdc: The time delayed to serve request c.

18. tsi: The time spent in setting up the VM i.

Objective Functions In our model we are interested in minimizing the total cost and SLA

violations. Consequently, cost minimization can be described by the following function:

 Minimize (Cost) = VMCost + PenaltyCost (4.12)

Where

 (4.13)

95

l

i

iii

i

al tssfyiceVMVMCost
0

3

1

Pr

c

c j

cjcj tdztPenaltyCos
1

3

1

(4.14)

In Equation (4.12), the minimization of cost depends on the VM Cost, and Penalty Cost due to

SLA violations. In Equation (4.13), the VM Cost depends on the type of VM l and the time

period VM is on, which is calculated by (fi – si). VM Cost is the cost of all initiated VM of type l

during the time period when the VM is on. In Equation (4.14), the Penalty Cost depends on the,

penalty rate βj of request type j and time delayed to serve request c (tdc).

The other objective function is to maximize of the CSL by minimizing the SLA violations, which

is expressed below:

Minimize (SLA violations) (4.15)

The number of SLA violations impacts CSL, so we consider minimizing the number of SLA

violations as the objective function for maximizing CSL.

Constraints: The SaaS provider needs to ensure that the customer requested product edition, and

the number of accounts are allocated before a threshold time (refer to Table 4.1) to minimize the

penalty delay. To this end, we define the following set of constraint functions:

3

10 l

tll

C

c

ccit yAax
(4.16)

}{min ccit
c

i sxs

 (4.17)

= }{max ccit

c

i fxf

 (4.18)

I

l l

lilcitc Ayxa
0

3

1

)(0
(4.19)

The Equation (4.16) restricts the number of accounts requested by all customers on VM i which

should be within the maximum capability of the VM of type l (the VM capability is listed in

96

Table 4.2). In Equation (4.17), si represents the minimum time when customer contract started.

In Equation (4.18), fi represents the max time when customer contract finished. In Equation

(4.19), the number of accounts (ac) should be less than or equal to the maximum capability of the

VM of type l, which is serving the customer request c.

The objective functions (4.12) and (4.15) of the SLA based resource provision problem are to

minimize cost and SLA violations for a SaaS provider. The constraints ensure that the customer

requirements of an application are met. However, it is difficult to allocate the exact number of

accounts to a VM to avoid space wastage within the response time, because customer requests

have different parameters, require different types of VMs, and have dynamic arrival rates [133].

Moreover, this problem maps to the 2-dimensional bin-packing problem which is NP-hard [134]

(proof as below), hence we propose various algorithms to heuristically approximate the optimum.

Proof of 2-dimensional bin-packing problem

Definition 1. Let X=(x1, xij, …., xn) be a given list of n items with a value of xij , and B=

b1, … bm be a finite sequence of m bins each of unit capacity. The 2-dimensional bin-packing

problem is to assign each xij into a unique bin, with the sum numbers in each bj not exceeding

one, such that the total number of used bins is a minimum (denoted by L*) [43].

Proposition 1.The optimization problem described in Equation (13) and (14) is an NP-hard

problem

Proof. The proposition can be proven by reducing the problem to the (2-dimensional) bin-

packing problem [43], which is a well-known NP-hard problem. The number of bins m is equal

to the available N VMs. The dimensions of an application request c consist of two parameters:

the number of accounts (ac) and the contract length (fc-sc). However, to serve the request on a

particular VM depends on these two parameters with objective that total number of VMs is

minimum. By Definition 1, it is a 2-dimensional bin-packing problem defined by the number of

accounts and contract length.

4.3 Resource Provisioning Algorithms

As discussed on the provider side, the main objective of our work is to minimize cost and SLA

violations using resource provisioning strategies to achieve SaaS providers' objectives. We use the

best algorithm (ProfminVMMinAvaiSpace) proposed in our previous chapter [114] as a benchmark

algorithm (renamed to BestFit) and propose two new algorithms: BFResvResource and

BFReschedReq, which consider customer profiles and provider KPI criteria.

97

4.3.1 Base Algorithm: Maximizing the profit by minimizing the cost by sharing the

minimim available space VMs (BestFit).

A SaaS provider can maximize its profit by minimizing the resource cost, which depends on the

number and type of initiated VMs. Therefore, this algorithm is designed to minimize the number

of VMs by utilizing the same already initiated one for serving other user requests as well. The

algorithm avoids SLA violations of existing requests by not allocating new request to the initiated

VM if the new request can cause an SLA violation to existing customers.

The strategy of this algorithm is illustrated in Figure 4.3, where the gray space indicates

unavailable space, x axis indicates the id of VM, which has the same VM type and is deployed

with the same type of product as customer c requested; y axis indicates the number of accounts a

VM can hold.

Base Algorithm Pseudo-code for BestFit

Input

Output

Functions

request c with QoS parameters

Boolean

FirstTimeRent (), Upgrade ()

1 2 3 4 5
VM ID

5

4

3

2

1

U
ti

li
ty

 (
 #

 o
f

ac
co

un
ts

)

1 2 3 4 5
VM ID

5

4

3

2

1

5

4

3

2

1

U
ti

li
ty

 (
 #

 o
f

ac
co

un
ts

)

1 2 3 4 5
VM ID

5

4

3

2

1

U
til

it
y

(

of
 a

cc
ou

nt
s)

1 2 3 4 5
VM ID

5

4

3

2

1

5

4

3

2

1

U
til

it
y

(

of
 a

cc
ou

nt
s)

Request c

First Time Rent (c)

1 Let p be the product edition and ac be the number of accounts required by request c

2 Let L be type of VM which can serve c after applying mapping strategy.

3 Foreach VM i of type ‘l’ from ‘L’ to ‘Large’

{ //get list of VMs of type l which can serve the request ‘c’

4 Let vmList=GetVMlist(l, p , ac)

5 If(vmList is empty)

6 continue;

7 Else

{

8 Allocate capacity of VMmin with minimum available space in vmList to request c

9 update the available capacity of VMmin to (VMmin‘s available capacity – ac)

Figure 4.3 Best Fit Strategy

98

Customer request c is the input of the algorithm, which includes the request type, product edition,

and the number of accounts. The algorithm involves two main request types: a) first time rent and

b) upgrade service.

10

}

break;

 }

11 If(request c is still not served)

{

12 Initiate a new VM of type L and deploy the product type p on the VM

13 Allocate capacity of the new VM to request c

14

}

Update the available capacity of the new VM to (available capacity – ac)

Upgrade(c)

1 If (upgrade type is ‘add account’)

{

2 Get VMil which is processing the previous request from the same customer as c

3 If (VMilhas enough space to serve request c and can guarantee SLA objectives of existing requests)

{

4

}

Process request c using VMil

5 Else

{

6 Let ac’ be the number of account that are already rented by the customer.

7 Let new ac be the number of more accounts requested by the customer

8 Using similar process as of the function First Time Rent(c) search a newVMil which can serve request

with

(ac’+new ac) accounts

9

10

}

Transfer data from VMil to newVMil

Release the space in old VMil

11 If (upgrade type is‘upgrade service’)

{

12 Get the VMil which processed the previous request from the same customer as c

13 Using similar process as of the function First Time Rent (c) search a newVMil which can serve the request

14 Transfer data from VMil to newVMil

15

}

Release the space in old VMil

99

If the request type is ‘first time rent’, the algorithm gets the VM type L using a mapping table

similar to Table 4.2 (Line 1). Then, it checks and gets the list of all initiated VMs of type L (Line 2)

that can serve the request ‘c’ (Line 4). If there is no such initiated VM, it will find space in other

types of VMs which are larger in size (Line 5-6). Otherwise, the request c is assigned to the VM

from ‘vmList’ that has minimum available space (Line 8). The available capacity of VMmin is

updated (Line 9-10) (it is illustrated in Figure 4.3). If there is no initiated VM, which can serve the

request, then it initiates a new VM according to the mapping strategy and deploys the requested

product on this VM (Line 13).

If the request type is ‘upgrade’, then it checks the type of upgrade. If upgrade type is ‘add

account’, the algorithm gets the id (i) and type (l) of VM, which has placed the previous request

from the same customer as c’ (Line 2). If VMil has enough space to place the new request c, the

algorithm schedules c to VMil (Line 3, 4). Otherwise, the algorithm searches for a newVMil using a

similar way as given in First Time Rent (Line 6-8).Then, the algorithm transfers data stored on the

old VM to the new VM and releases space on the old VM (Line 9, 10). On the other hand, if a

customer requests an upgrade to a more advanced product edition, the new request is placed to a

suitable VM by using the First Time Rent() function, and then the customer’s old data is migrated

to the new VM and the space occupied by the old request on the old VM is released (Lines 11-15).

The time complexity of this algorithm is O(IK+I), where I represents the total number of initiated

VMs and K represents the total number of existing requests.

The “BestFit” algorithm minimizes the number of initiated VMs in order to minimize cost.

However, the disadvantage is that it can increase the cost in some cases due to delay penalties. For

example, when a new customer requests to add more accounts on the VM which has been fully

occupied by other requests, initiating a new VM may be more expensive than the delay penalty.

4.3.2 Proposed Algorithms

 Minimizing the cost by minimizing the penalty cost through resource provisioning based

on the customer’s credit level (BFResvResource).

 Minimizing the cost by rescheduling the existing requests (BFReschedReq).

Algorithm 1 : Minimizing the cost by minimizing the penalty cost through resource provisioning

based on the customer’s credit level (BFResvResource)

The base algorithm can cause upgrade penalties in the situations when a customer requests to

add more accounts and the available space is filled by other requests, because this could

100

trigger the initialization of a new VM. To optimize the cost caused by adding new accounts,

Algorithm 1 provisions more resources than requested based on the customer’s credit level

(which is driven by customer’s actual requirements, the credit level is 0 when the request type

is new). When a request’s credit level is greater than the provider’s expected value, more

resources will be provisioned in order to minimize the time spent on adding user accounts.

The algorithm is designed to minimize penalty cost due to the addition of new accounts to the

system by reserving resources according to the customer requirements (Line 11). Penalty cost

is caused by SLA violations; therefore the reduction of penalty cost will automatically reduce

SLA violations. The algorithm also reserves resources according to the historical record and

customer estimation to reduce VM cost. Therefore, the total cost (based on VM cost and

penalty cost) are minimized.

The customers may be unsure about their future interest, so we design two types of

reservation strategies (dynamic and fixed) to figure out how much resources should be

reserved. Dynamic reservation (dynamicR) strategy reserves resources for customer request c

depending on its credit level (creditLevelc), the number of accounts (ac(futureInterest))

specified in the future interest and provider’s expected value for credit level (its value is ‘1’ in

the experiments) using Equation (4.20). Fixed reservation strategy uses a fixed percentage

(e.g. 20%) customer specified future interest value instead of credit level.

dynamicR

The ReservationStrategy is depicted in Figure 4.4 (The pattern with horizontal line indicates

the reserved resources for the same customer; gray space, x axis and y axis are the same as

Figure 4.3). The other lines are the same as those in the base algorithm. The time complexity

of this algorithm is O(IK+I), where I represents the total number of initiated VMs and K

represents the total number of existing requests.

Figure 4.4 The Reservation Strategy

Request c

1 2 3 4 5
VM ID

5

4

3

2

1

U
ti

li
ty

 (
 #

 o
f

ac
co

un
ts

)

1 2 3 4 5
VM ID

5

4

3

2

1

5

4

3

2

1

U
ti

li
ty

 (
 #

 o
f

ac
co

un
ts

)

1 2 3 4 5
VM ID

5

4

3

2

1

U
ti

li
ty

 (
 #

 o
f

ac
co

un
ts

)

1 2 3 4 5
VM ID

5

4

3

2

1

5

4

3

2

1

U
ti

li
ty

 (
 #

 o
f

ac
co

un
ts

)

(4.20) valueexpectedprovider if),(ca cc lcreditLeverestfutureIntelcreditLeve

 0, otherwise

101

Algorithm 1. Pseudo-code for BFResvResource

Input

Output

Functions:

request c with QoS parameters

Boolean

FirstTimeRent (), Upgrade ()

First Time Rent (c)

1 Let p be the product type and acbe the number of accounts required by request c

2 Let L be type of VM which can serve c after applying mapping strategy.

3 Foreach VM i of type ‘l’ from ‘L’ to ‘Large’

{

4 Let vmList=GetVMlist(l, p , ac)//get list of VMs of type l which can serve request ‘c’

5 If (vmList is empty)

6 continue;

7 Else

{

8 Allocate capacity of VMmin with minimum available space in vmList to request ‘c’

9 CreditLevel = getCreditLevel(Profile Information)

//get the credit level for request ‘c’

10 If (CreditLevel ≥ Threshold)

11 update the available capacity of VMmin to (VMmin‘s available capacity – ac(futureInterest))

12 Else

13 update the available capacity of VMmin to (VMmin‘s available capacity – ac)

14

}

break;

 }

15 If (request c is still not served)

{

16 Initiate a new VM of type L and deploy the product type p on the VM

17 Allocate capacity of the new VM to request c

18

}

 update the available capacity of the new VM to (available capacity – ac)

Upgrade(c)

1 If (upgrade type is ‘add account’)

{

2 Get VMil which is processing the previous request from the same customer c

3 If (VMil has enough space to serve request c and can guarantee SLA objectives of existing requests)

{

4

}

Process request c using VMil

5 Else

{

6 Let ac’ be the number of account that are already rented by the customer.

102

Algorithm 2: Minimizing the cost by rescheduling existing requests. (BFReschedReq).

Algorithm 1 prevents the penalties caused by adding accounts but does not prevent penalties

caused by upgrading the product edition. Algorithm 2 further minimizes the product edition

upgrade penalty by rescheduling accepted requests, which leads to a reduction of SLA

violations and total cost (Line 11-26).

The strategy of this algorithm is depicted in Figure 4.5 (The pattern with horizontal line

indicates the reserved resources for the same customer; gray space, x axis and y axis are the

same as Figure 4.3). The time complexity of this algorithm is O(IK+I
2
) where I represents

the total number of initiated VMs and K represents the total number of existing requests.

 Figure 4.5 The Reschedule Strategy

This algorithm is designed in a way that all VMs are deployed with the full software package

to reduce the resource discovery and content migration time for rescheduling accepted

requests. If the request type of c is ‘service upgrade’, the algorithm checks the available

1 2 3 4 5
VM ID

U
ti

li
ti

e
s
 (

#
o

f
a
c
c
o

u
n

ts
)

5

4

3

2

1

1 2 3 4 5
VM ID

U
ti

li
ti

e
s
 (

#
o

f
a
c
c
o

u
n

ts
)

5

4

3

2

1

1 2 3 4 5
VM ID

U
ti

li
ti

e
s
 (

#
o

f
a
c
c
o

u
n

ts
)

5

4

3

2

1Request c

Request c

1 2 3 4 5
VM ID

5

4

3

2

1

U
t
i
l
i
t
y

(

#

o

f

a
c
c
o

u
n

t
s
)

1 2 3 4 5
VM ID

5

4

3

2

1

5

4

3

2

1

U
t
i
l
i
t
y

(

#

o

f

a
c
c
o

u
n

t
s
)

1 2 3 4 5
VM ID

5

4

3

2

1

U
t
i
l
i
t
y

(

#

o

f

a
c
c
o

u
n

t
s
)

1 2 3 4 5
VM ID

5

4

3

2

1

5

4

3

2

1

U
t
i
l
i
t
y

(

#

o

f

a
c
c
o

u
n

t
s
)

Request c

1 2 3 4 5
VM ID

5

4

3

2

1

U
t
i
l
i
t
y

(

#

o

f

a
c
c
o

u
n

t
s
)

1 2 3 4 5
VM ID

5

4

3

2

1

5

4

3

2

1

U
t
i
l
i
t
y

(

#

o

f

a
c
c
o

u
n

t
s
)

1 2 3 4 5
VM ID

5

4

3

2

1

U
t
i
l
i
t
y

(

#

o

f

a
c
c
o

u
n

t
s
)

1 2 3 4 5
VM ID

5

4

3

2

1

5

4

3

2

1

U
t
i
l
i
t
y

(

#

o

f

a
c
c
o

u
n

t
s
)

7 Let new ac be the number of more accounts requested by the customer

8 Using similar process as of the function First Time Rent (c) search a newVMil which can serve

request with (ac’+new ac) accounts

9 Transfer data from VMil to newVMil

10

}

}

Release the space in old VMil

11 If (upgrade type is ‘upgrade service’)

{

12 get the VMil which processed the previous request from the same customer c

13 Using similar process as of the function First Time Rent (c) search a newVMil which can serve the

request

14 Transfer data from VMil to newVMil

15

}

Release the space in old VMil

103

space of VMi which has served the previous request c’. If the available space of VMi is less

than the c required and there is an existing request ce, which causes a lower (or zero) penalty

than the current request c, then request c is scheduled on VMi and the ce is migrated to

another available and capable VM (Upgrade (c)). The request ce is rescheduled to the

cheapest VM. The rest of the lines are the same as those in Algorithm 1 except that Algorithm

2 does not differentiate VM types, because all VMs are deployed with the full package.

When the customer requests more accounts than the reserved fixed percentage for upgrade,

the upgrade function will take care of the exception (Lines 13-26). Briefly, the algorithm

checks if the current VM has enough available resources to fit the extra accounts. If yes, the

extra accounts will be allocated to the same VM. If no, we will search for the same type of

VM with minimum available but enough capability. If there is no suitable VM, Algorithm2

need to check if a new VM can be initiated. This may require content migration and incurs

penalty cost.

Algorithm 2. Pseudo-code for BFReschedReq

Input

Output

Functions:

request c with QoS parameters

Boolean

FirstTimeRent (), Upgrade ()

First Time Rent (c)

1 Let p be the product type and acbe the number of accounts required by request ‘c’

4 Let vmList=GetVMlist(p , ac)//get list of VMs of which can serve request ‘c’

5 If (vmList is not empty){

8 Allocate capacity of VMmin with minimum available space in vmList to request ‘c’

9

CreditLevel = getCreditLevel(Profile Information)

//get the credit level for request ‘c’

10 If (CreditLevel ≥ Threshold)

11 update the available capacity of VMmin to (VMmin‘s available capacity – ac(futureInterest))

12 Else

13 update the available capacity of VMmin to (VMmin‘s available capacity – ac)

 }

14 Else

{

15 Initiate a new VM of type L and deploy the product type p on the VM

16 Allocate capacity of the new VM to request c

17

}

 Update the available capacity of the new VM to (available capacity – ac)

Upgrade(c){

1 If (upgrade type is ‘add account’)

{

104

2 Get VMil which is processing the previous request from the same customer as c

3 If (VMil has enough space to serve request c and can guarantee SLA objectives of existing requests)

{

4

}

Process request c using VMil

5 Else

{

6 Let ac’ be the number of account that are already rented by the customer.

7 Let new ac be the number of more accounts requested by the customer

8 Using similar process as of the function First Time Rent (c) search a newVMil which can serve request

with (ac’+newac) accounts

9 Transfer data from VMil to newVMil

10

}

}

Release the space in old VMil

11 If (upgrade type is ‘upgrade service’)

{

12 get the VMil which processed the previous request from the same customer as c

13 If (the available space of VMil is less than request c required in VMil) {

15

16

17

18

19

 If (migrating c’generates minimum penalty cost || after trying to migrate all requests,

available space in VMil is still less than request c required) {

 Find or initiate the VM where new and previous requests generate minimum penalty

cost

 Migrate c’ and assign c to the VM found or initiated in last step.

 Transfer all the data to this VM.

 }

20

21

22

23

24

 Else {

 Find or initiate the VM where migrating other requests generate minimum penalty cost

 Migrate these requests to the VMs found or initiated in last step.

 Transfer all the data to this VM.

 }

 Release the space in old VMil

25

26

 }

Else {

 Allocate c to VMil;

}

 }

105

4.3.3 Lower Bound

Due to the NP hardness of the SLA-based resource provisioning problem described in the system

model section, it is difficult to find the optimal solution in polynomial time. Thus, to estimate the

performance of our algorithms, we present a lower bound for the cost. The lower bound is derived

from the scenario when we can get the minimum cost in case all requests are allocated to the VM

to minimize the VM space wastage, penalty cost and number of SLA violations.

The constraint of the request and VM mapping relationship depends on the number of accounts,

product edition, and request type. For the sole purpose of deriving the lower bound, we relax these

constraints to minimize the VM space wastage and penalty cost by initiating the large VM to

deploy and install the full package (e.g. enterprise edition) on them. Take the product edition as an

example, when the type of the old VM is small, but the customer requests to upgrade product

edition to enterprise, which requires the VM of type large but the existing large VMs may do not

have enough space for the new request, which causes the penalty. Because all VMs have the same

capability, when one VM does not have enough space, we can allocate some accounts to other

VMs to minimize VM space wastage. In addition, to relax the dynamic request constraint, the

incoming customer requests are known in advance. This forms the ideal lower bound scenario,

where all incoming requests are known in advance without any request constraint. c denotes the

individual customer request and C denotes the total number of customer requests arrived at time t.

ac denote the number of accounts requested by customer request c. The maximum number of

accounts can be accepted by the large VM is defined as M. According to Equation 4.3, the

equation for lower bound is expressed by:

Minimize (Cost) = VMCost + PenaltyCost ; Where PenaltyCost = 0

PerUnitTimeVMCostlarge = VMPricelarge × Min(VMlarge) =
)(10

1

small

C

c c

VM

a

VMPricelarge ×
)(arg

1

el

C

c c

VMM

a

(4.21)

(4.22)

However, this lower bound solution is the ideal solution, whereas in real dynamic and constraint

Cloud environment we cannot achieve the lower bound but can optimize proposed algorithms to

be as close as possible to the lower bound. The reason for initiating the large VM to minimize the

total cost is proved as below.

106

Proof for using large VM in lower bound

For VM of type l, the base number of accounts can be accepted is m, the VM capability of type l in

regard to the maximum number of accounts can be accepted is expressed by:

M (VMl) = ×m

(4.23)

Let I denote the total number of initiated VMs. Let c denotes the individual customer request and

let C denote the total number of customer requests arrived at time t. Let ac denote the number of

accounts requested by customer request c. The maximum number of accounts can be accepted by

the large VM is defined as M.

The minimum number of VMs required to allocate all requests, Min(VM) can be expressed by:

 Min(lVM)=

)(

1

l

C

c c

VMM

a

 (4.24)

According to the Equation (4.23) and (4.24), the minimum number of VMs required to allocate

the same number of all requests for the small VM, medium and large VM are expressed by (4.25),

(4.26) and (4.27):

 Min(smallVM)=

)(

1

mall

C

c c

VMsM

a

(4.25)

Min(mediumVM)=

)(2

1

mall

C

c c

VMsM

a

(4.26)

Min(elVM arg)=

)(10

1

mall

C

c c

VMsM

a

(4.27)

The price cost by using the small, medium and large type VM for initiating minimum number of

VMs are expressed below:

VMCostsmall = Min(VMlarge) × 0.12 = 0.12 ×
)(

1

mall

C

c c

VMsM

a

(4.28)

107

VMCostmedium = Min(VMmedium) × 0.48 = 0.48 ×
)(2

1

mall

C

c c

VMsM

a

= 0.24×

)(

1

mall

C

c c

VMsM

a

(4.29)

VMCostlarge = Min(VMlarge) × 0.96 =
)(10

1

mall

C

c c

VMsM

a

× 0.96 = 0.096 ×

)(

1

mall

C

c c

VMsM

a

(4.30)

Clearly, the above Equations prove that by initiating large VMs the total cost is minimized, when

the total number of accounts requested is greater than the capability of a large VM. In addition, for

a SaaS provider the total number of accounts requested by customers should always be greater

than a large VM’s capability, otherwise it means that this SaaS provider does not have market

share. Therefore, the lower bound minimize cost is achieved by initiating large VMs to serve all

requests without space wastage and penalty cost.

4.4 Performance Evaluation

We present the performance results obtained from an extensive set of experiments comparing the

proposed algorithms with the best algorithm introduced in our previous chapter [114]. We discuss

the experiment methodology along with performance metrics and detailed QoS parameters. Our

analysis of results shows the impact of (1) reservation strategies and (2) QoS parameters:

customer’s QoS parameters (request arrival rate, proportion of upgrade requests, and credit level)

and SaaS provider’s parameters (service initiation time and penalty rate).

4.4.1 Experimental Methodology

We used CloudSim Toolkit [80] to model and simulate the proposed algorithms for resource

provisioning. We simulated a data center with 500 physical machines whose configuration

resembles are Amazon EC2 large image. A number of VMs of different types that are mapped to a

physical machine is shown in Figure 4.2. Configuration details of three different types of VMs

(small, medium and large) are given in Table 4.2. The bandwidth of the network connecting

physical machine is 10 Gb. The general scheduling policy is time shared scheduling. We have

extended the existing Cloud environment and added our algorithm for SLA-based resource

provisioning. We model the execution time (i.e. service processing time) based on what we

measured from dynamic CRM 4.0 system on a VM with Windows Server 2008R2 OS and 10Gb

bandwidth over 2 weekdays and a weekend. For an operation of 303 items records, the mean time

108

for query response time was 2.0 second with a standard deviation of 0.2 second.

We observe the performance of the proposed algorithms by considering performance criteria from

both customers’ and SaaS providers’ perspectives. From customers’ perspective, CSL

improvement is considered as reducing SLAs violations (from provider’s perspectives this is KPI

Assurance) and improving service quality (from provider’s perspectives this is KPI Performance)

in the experiment section. Although in the proposed algorithms only minimization of SLA

violations is considered. The number of SLA violations is defined as the number of requests which

experience slower response time than the specified in the SLA. Service Quality Improvement (SQI)

for an algorithm in the system model is defined as how much faster the actual response time respT

(actual) than the SLA pre-defined response time respT (SLA).

SQI = respT(SLA) - respT(actual) (4.23)

In experiments, how much the response time of a proposed algorithm is faster than the base

algorithm and is calculated as below:

ServiceQualityImprov. = SQI (base algorithm) – SQI (proposed algorithm) (4.24)

From SaaS providers’ perspective, how much the total cost is reduced by minimizing the number

of VMs is observed. Therefore, there are four performance measurement metrics: the total cost,

number of initiated VMs, percentage of SLA violations, and service quality improvement.

In this chapter, experiments are designed from the following three high level considerations:

1) Impact of reservation strategies: The credit level is defined by multiple parameters including

(1) company type, which is based on company size (2) customer actual requirements (3)

customer expressed future interest. We look into different resource reservation strategies to

analyse how dynamic (based on credit level) and fixed reservation strategies impact on

performance metrics.

2) Impact of QoS parameters: Which algorithm performs better in which situation by varying

arrival rate, proportion of upgrade requests, credit level, service initiation time and penalty rate?

3) Performance Analysis under Uncertainty Future Interest Value: To evaluate the performance

of our algorithms in handling the uncertainty in the future interest value.

All the parameters used in the simulation study are given in the following sections.

4.4.2 QoS parameters

 Customers’ Side

109

From the customers’ side, three parameters (request arrival rate, proportion of upgrade

requests, and credit level) are varied to evaluate their impact on the performance of our

proposed algorithms. Requests arrival rate follows a Poisson distribution as suggested by

previous publications [100][138]. We use a normal distribution (standard deviation = (1/2) x

mean) to model all parameters, because there is no available workload specifying these

parameters.

Five different types of request arrival rate are used by varying the mean from 200 to 650

simulated customers per second. The probability of a customer to have small, medium and

large company type is equal.

Five different variations in the proportion of upgrade requests are used by varying the mean

proportion of upgrade requests from 20% to 80%.

Five scenarios varying the proportion of customers having a credit level factor ≥ 1. This

proportion is varied from 10% to 90% (‘very low’ to ‘very high’ proportion of companies

having high credit level).

SaaS Providers’ Side

A SaaS provider offers three product editions (Table 4.2). Due to unavailability of the public

data of the SaaS provider’s spending on VMs, we have used the price schema of Amazon EC2

[106] to estimate the cost per hour of using a hosted VM. It is a reasonable assumption, since

today many SaaS providers lease resources from IaaS providers rather than maintaining their

own resources. Resource price and capabilities, which are used for modeling VMs, are shown

in Table 4.2.

 Five different types of service initiation time (mean value varies from 5 to 15 minutes)

were used in the experiments. The mean of initiation time is calculated by conducting

real experiments of 60 samples on Amazon EC2 [106] over four days (2 week days

and a weekend) by deploying different editions of products.

 The penalty cost is modelled by Equation (10) and it depends on the request type. The

mean of penalty rate (β) varies from $3 per second (very low) to $12 per second (very

high).

110

4.4.3 Results Analysis

We evaluate our proposed algorithms – BFResvResource and BFReschedReq by examining the

impact of QoS parameters on the providers’ KPIs. For all results, we present the average obtained

from 5 experiment runs. In the following sections, we examine various experiments by varying

both customers’ and SaaS providers’ SLA properties to analyze the impact of each parameter.

The mean response time which governs SLA violations is set at 5 seconds for ‘first time rent’

requests, 10 seconds for ‘upgrade product’ requests and 3 seconds for ‘add account’ requests.

(a). Total Cost

(b). Number of initiated VMs

(c). Percentage of SLA Violations

(d). Service Quality Improvement

 Figure 4.6 Impact on reservation strategy during the variation in proportion of customers with high

credit level

Impact of Reservation Strategies

In this set of experiments a dynamic and four fixed (20%, 40%, 60%, and 80%) reservation

0

10

20

30

40

50

60

1 2 3 4 5

To
ta

l
C

o
st

 (
$

)

Variation in Credit Level Factor
BFRechedReq - 20 BFRechedReq - 40 BFRechedReq - 60

BFRechedReq - 80 BFRechedReq - dynamic

0

10

20

30

40

50

60

1 2 3 4 5

#
 V

M
 I

n
it

ia
te

d

Variation in Credit Level Factor
BFRechedReq - 20 BFRechedReq - 40 BFRechedReq - 60

BFRechedReq - 80 BFRechedReq - dynamic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5

%
 S

LA
 V

io
la

ti
o

n
s

Variation in Credit Level Factor
BFRechedReq - 20 BFRechedReq - 40 BFRechedReq - 60

BFRechedReq - 80 BFRechedReq - dynamic

0

1

2

3

4

5

6

7

1 2 3 4 5

S
e

rv
ic

e
 Q

u
a

li
ty

 I
m

p
ro

v.
(s

)

Variation in Credit Level Factor
BFRechedReq - 20 BFRechedReq - 40 BFRechedReq - 60

BFRechedReq - 80 BFRechedReq - dynamic

 very low low medium high very high

Variation in Credit Level

 very low low medium high very high

Variation in Credit Level

very low low medium high very high

Variation in Credit Level

very low low medium high very high

Variation in Credit Level

111

strategies are examined by varying the proportion of high credit level customers, for instance,

20% reservation strategies mean reserve 20% more space during resource reservation.

In Figure 4.6, the variation in credit level (x-axis) indicates the variation in the proportion of

customers having high credit level. For instance, the ‘very low’ credit level indicates that most

customers have very low credit level. Fixed (20%) reservation strategy costs the least (about

20% higher) by utilizing the least number of VMs, but responses slowest (about 60% slower)

when the credit level is not very low. The dynamic strategy performs the best with respect to

the response time but costs the most, because it initiates the largest number of VMs, when the

credit level is high.

In regard to the customer satisfaction level, there are two aspects: (1) how many requests

experience violations (Figure 4.6c), and (2) the service quality improvement (Figure 4.6d). In

conclusion, during the service type variation experiments, dynamic reservation gives the best

service quality improvement, but the fixed reservation saves the most cost. Varying the credit

level has the greatest impact on the results, although the overall conclusions are the same as

those obtained from the experiments which varied the other parameters, such as upgrade

frequency. On the other hand, when the credit level is very low, the dynamic strategy saves

the largest amount of cost and incurs the smallest number of SLA violations.

Impact of QoS parameters

a) Impact of arrival rate variation

 (a). Total cost (b). Number of initiated VMs

0

100

200

300

400

500

600

700

800

900

very small small medium large very large

To
ta

l
C

o
s
t

Variation in Request Arrival Rate

BestFit BestFitResvResource

BestFitRescheduleReq LowerBound

0

100

200

300

400

500

600

700

800

900

very small small medium large very large

V
M

 I
n

it
ia

te
d

Variation in Request Arrival Rate

BestFit BestFitResvResource

BestFitRescheduleReq LowerBound

112

 (c). Percentage of SLA Violations (d). Service Quality Improvement

Figure 4.7 Impact of request arrival rate variation

In this section, we present the performance results of our proposed algorithms in different

scenarios. In each experimental scenario, we varied one QoS parameter and set others as

constant. For instance, the scenario considered for credit level is ‘medium’, which indicates

the medium proportion of companies with high credit level. The reason for presenting the

‘medium’ is to minimize the impact of other factors during the evaluation of reservation

strategies. For all experiments, only dynamic reservation strategy is used in algorithms, since

it performs best among other evaluated reservation strategies.

The impact of arrival rate on our algorithms is depicted in Figure 4.7 with the following

parameter settings: ‘low’ upgrade frequency, ‘low’ initiation time, and ‘medium’ for all rest

parameters. The lower bound is plotted in line chart. The BFReschedReq is the closest to the

lower bound, and it is 18 times and 13 times closer than the BFResvResource and the base

algorithm respectively.

 (a). Total cost (b). Number of initiated VMs

0

5

10

15

20

25

30

35

40

very small small medium large very large

%
 S

L
A

 V
io

la
ti

o
n

s

Variation in Request Arrival Rate

BestFit BestFitResvResource

BestFitRescheduleReq LowerBound

0

50

100

150

200

250

very low low medium high very high

S
e

rv
ic

e
 Q

u
a

li
ty

 I
m

p
ro

v.
 (

s
)

Variation in Request Arrival Rate

BestFit BFResvRsource BFReschedReq

0

50

100

150

200

250

300

350

very low low medium high very high

T
o

ta
l
C

o
s

t

Variation in Proportion of Upgrade Requests

BestFit BFResvRsource BFReschedReq

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

#
 V

M
 I
n

it
ia

te
d

Variation in Proportion of Upgrade Requests

BestFit BFResvRsource BFReschedReq

113

 (c). Percentage of SLA Violations (d). Service Quality Improvement

 Figure 4.8 Impact of proportion of upgrade requests variation

On average, the BFReschedReq performs the best by saving about 50% of the cost and

reducing 60% of the SLA violations by using approximately half the number of VMs

compared with the base algorithm. As Figure 4.7c shows, when the request arrival rate is

‘very high’, the BFResvResource causes more SLA violations than other algorithms, because

when a large number of concurrent requests arrive, they increase the response time for

upgrading the services (Figure 4.7d). However, the total cost generated by this algorithm is

lower than the by the base algorithm due to a lower VM cost. It can be seen from Figure 6d

that BFReschedReq has a smaller improvement in service quality compared with other

algorithms, because of the additional time consumed by request rescheduling in transferring

data and initiating new VMs. In addition, Figure 4.7 a and d show that as the service quality

improves but costs more. Therefore, during the variation of the arrival rate, the

BFReschedReq performs best in respect to the total cost, the number of initiated VMs and

causes the least number of SLA violations.

b) impact of proportion of upgrade requests variation

We investigate the strengths and weaknesses of the algorithms by varying the proportion of

upgrade requests from ‘very low’ to ‘very high’. In Figure 4.8, ‘very low’ is when there is no

product upgrade but low level of ‘add account’ upgrade. ‘low’ is when there is low proportion

of both ‘product upgrade’ and ‘add account upgrade’. ‘medium’, ‘high’, and ‘very high’ is

when there is ‘medium’, ‘high’, and ‘very high’ proportion of both upgrades respectively.

Other parameter settings are: ‘very high’ for request arrival rate, ‘low’ for service initiation

time, and ‘medium’ for the rest of parameters. As it can be seen from Figure 4.8, the

proportion of upgrades increases, the total cost of the base algorithm slightly increases

because of more SLA violations while utilizing the similar number of initiated VMs. In

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

very low low medium high very high

%
 S

L
A

 V
io

la
ti

o
n

s

Variation in Proportion of Upgrade Requests

BestFit BFResvRsource BFReschedReq

0

50

100

150

200

250

very low low medium high very highS
e

rv
ic

e
 Q

u
a

li
ty

 I
m

p
ro

v.
 (

s
)

Variation in Proportion of Upgrade Requests

BestFit BFResvRsource BFReschedReq

114

contrast, the total cost that is generated by two proposed algorithms decreases, because less

number of VMs are initiated by utilizing reserved resources. In the worst case scenario, our

proposed algorithms deliver results similar or close to the Best-fit algorithm. When the

proportion of upgrade requests is ‘very low', BFResvResource saves more cost than the

BFReschedReq, because BFReschedReq uses large VMs, which cost more than the small and

medium VMs. However, when the proportion of upgrade requests varies from ‘low’ to ‘very

high’, the BFReschedReq saves cost over the BFResvResource, because BFReschedReq takes

care of product upgrade penalty (SLA violations) and utilizes less VMs to serve an increasing

number of product upgrade requests.

To compare with the base algorithm, on average BFReschedReq reduces the cost more than

27% when the proportion of upgrade requests varies from ‘very low’ to ‘very high’, because

it initiates about 30% of the number of VMs (Figure 4.8b) and SLA violations reduces to

about 1% (Figure 4.8c). The overall trend of SLA violations is increasing (Figure 4.8c).

Nevertheless, when the upgrade frequency varies from ‘low’ to ‘very high’, the

BFReschedReq causes more SLA violations than the BFResvResource, because the

BFReschedReq cannot prevent SLA violations caused by product upgrade.

In regard to the service quality improvement, the BFReschedReq takes more time for

rescheduling and the BFResvResource provides better service quality, because the

BFResvResource takes about half of the time than that the BFReschedReq takes to respond to

the customers’ requests (Figure 4.8d).

c) Impact of credit level variation

To investigate the impact of customer profiles, we investigate how the proportion of high

credit level customers impacts the performance of our algorithms. In Figure 4.9, the variation

in credit level (x-axis) indicates the variation in the proportion of customers with high credit

level. Parameter settings are: ‘very high’ value of requests arrival rates, ‘very high’ value of

upgrade proportion, and ‘medium’ value of all rest parameters. It can be seen from Figure 4.9

that there is no influence on the base algorithm, which does not consider customer profiles.

However, our proposed algorithms are affected during the variation of proportion of high

credit level customers, because our algorithms reserve resources according to the credit level.

When the proportion of high credit level customers varies from ‘very low’ to ‘very high’,

proposed algorithms generates less cost than the base algorithm by initiating up to 12% less

number of VMs (Figure 4.9b) and violating up to 6% less SLA violations (Figure 4.9c). This

is because the wastage of reserved resources is lower, when the credit level increases. The

115

service quality improvement decreases for both proposed algorithms (Figure 4.9d), because it

takes longer to serve the same number of requests using fewer VMs.

 (a). Total cost (b). Number of initiated VMs

 (c). Percentage of SLA Violations (d). Service Quality Improvement

 Figure 4.9 Impact of credit level variation

d) Impact of service initiation time variation

Figure 4.10 shows how service initiation time variation impacts the SaaS provider’s total

cost. Parameter settings are: ‘very high’ value of requests arrival rate, and ‘medium’ value of

all rest parameters. When the initiation time varies from ‘very short’ to ‘very long’, the trend

of the total cost generated by all algorithms increases about 1.5 times, because it causes

penalty delays (SLA violations) resulted in new service initiation. The base algorithm is

affected more when service initiation time varies from ‘long’ to ‘very long’, because it

initiates more VMs. The service quality improvement falls down during the enlargement of

service initiation time, because the service initiation time includes the time for deploying

software services.

e) Impact of penalty rate variation

0

100

200

300

400

500

600

very low low medium high very high

T
o

ta
l
C

o
s

t
($

)

Variation in Credit Level Factor

BestFit BFResvRsource BFReschedReq

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

#
 V

M
 I
n

it
ia

te
d

Variation in Credit Level Factor

BestFit BFResvRsource BFReschedReq

0

5

10

15

20

25

30

35

very low low medium high very high

%
 S

L
A

 V
io

la
ti

o
n

Variation in Credit Level Factor

BestFit BFResvRsource BFReschedReq

0

20

40

60

80

100

120

very low low medium high very highS
e
rv

ic
e
 Q

u
a
li

ty
 I
m

p
ro

v.
 (

s
)

Variation in Credit Level Factor

BestFit BFResvRsource BFReschedReq

Variation in Credit Level

Variation in Credit Level

Variation in Credit Level

Variation in Credit Level

116

 (a). Total cost (b). Number of initiated VMs

 (c). Percentage of SLA Violations (d). Service Quality Improvement

 Figure 4.10 Impact of service initiation time variation

How the penalty rate (β) impacts our algorithms is investigated. Parameter settings are: ‘very

high’ requests arrival rate, ‘low’ value of service initiation time, and ‘medium’ value of all rest

parameters. It can be observed from Figure 4.10 that all algorithms are affected during the

variation of the penalty rate, because requests are scheduled with shared resources. When

penalty rate varies from ‘very low’ to ‘very high’, the base and the BFResvResource

algorithms cost more because of more SLA violations. However, the BFReschedReq saves

cost and causes very small number of SLA violations (the maximum percentage is less than

1%).

When penalty rate varies from ‘medium’ to ‘very high’, the BFResvResource initiates less

VMs by using reserved resources, which causes more SLA violations. Because the

BFResvResource may delay first time rent requests to serve upgrade requests. In summary,

Figure 4.11 shows that the BFReschedReq minimizes the total cost, although penalty cost

grows during penalty rate variation.

0

100

200

300

400

500

600

700

800

very short short medium long very long

T
o

ta
l
C

o
s
t

($
)

Variation in Service Initiation Time

BestFit BFResvRsource BFReschedReq

0

100

200

300

400

500

600

700

800

900

very short short medium long very long

#
 V

M
 I
n

it
ia

te
d

Variation in Service Initiation Time

BestFit BFResvRsource BFReschedReq

0

5

10

15

20

25

30

35

very short short medium long very long

%
 S

L
A

 V
io

la
ti

o
n

Variation in Service Initiation Time

BestFit BFResvRsource BFReschedReq

0

50

100

150

200

250

300

very short short medium long very longS
e

rv
ic

e
 Q

u
a

li
ty

 I
m

p
ro

v.
 (

s
)

Variation in Service Initiation Time

BestFit BFResvRsource BFReschedReq

117

 (a). Total cost (b). Number of initiated VMs

 (c). Percentage of SLA Violations (d). Service Quality Improvement

 Figure 4.11 Impact of penalty rate factor variation

Performance Analysis under Uncertainty Future Interest Value

Since customer may be uncertain about their future interest value, they may under-claim or

over-claim the value. To evaluate the performance of our algorithms in handling the

uncertainty in the future interest value, we carried out two sets of experiments by varying the

(1) future interest from 10% to 50% over-claim (Figure 4.12). (2) future interest from 10% to

50% under-claim (Figure 4.13). The base algorithm (BestFit) is not impacted since it does

not consider resource reservation.

(a). Total Cost (b). Number of initiated VMs (c). Percentage of SLA Violations

0

50

100

150

200

250

300

350

very low low medium high very high

T
o

ta
l
C

o
s

t
($

)

Variation in Penalty Rate Factor

BestFit BFResvRsource BFReschedReq

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

#
 V

M
 I
n

it
ia

ti
o

n

Variation in Penalty Rate Factor

BestFit BFResvRsource BFReschedReq

0

2

4

6

8

10

12

very low low medium high very high

%
 S

L
A

 V
io

la
ti

o
n

Variation in Penalty Rate Factor

BestFit BFResvRsource BFReschedReq

0

50

100

150

200

250

very low low medium high very highS
e

rv
ic

e
 Q

u
a

li
ty

 I
m

p
ro

v.
 (

s
)

Variation in Penalty Rate Factor

BestFit BFResvRsource BFReschedReq

0

50

100

150

200

250

300

0% 10% 20% 30% 40% 50%

T
o

ta
l
C

o
s
t

Variation in Future Interest Error

BestFit BFResvRsource BFReschedReq

0

100

200

300

400

500

600

700

0% 10% 20% 30% 40% 50%

#
 V

M
 I
n

it
ia

te
d

Variation in Future Interest Error

BestFit BFResvRsource BFReschedReq

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0% 10% 20% 30% 40% 50%

%
 S

L
A

 V
io

la
ti

o
n

s

Variation in Future Interest Error

BestFit BFResvRsource BFReschedReq

118

Figure 4.12 Impact of Future Interest Error (Over-Claim)

Figure 4.12 shows that during the over-claim of customers’ specified future interest

value, the total cost (Figure 4.12a) increases for both proposed algorithms (upto 10%).

This is because more VMs are initiated for resource reservation. However, the SLA

violations have decreased due to availability of more reserved resources than required.

(a). Total Cost (b). Number of initiated VMs (c). Percentage of SLA Violations

Figure 4.13 Impact of Future Interest Error (Under-Claim)

Figure 4.13 shows that during the under- claim of the future interest, the total cost

(Figure 4.13a) is increasing for both proposed algorithms (upto 2%). This is because of

more SLA violations, which is due to under allocation of required resources.

The summary of heuristic comparison results regarding to total cost to show on which condition

each algorithm can get best and worst results are presented in Table 4.3.

0

50

100

150

200

250

300

0% -10% -20% -30% -40% -50%

T
o

ta
l
C

o
s

t

Variation in Future Interest Error

BestFit BFResvRsource BFReschedReq

0

100

200

300

400

500

600

700

0% -10% -20% -30% -40% -50%

#
 V

M
 I
n

it
ia

te
d

Variation in Future Interest Error

BestFit BFResvRsource BFReschedReq

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-10% -20% -30% -40% -50%

%
 S

L
A

 V
io

la
ti

o
n

s

Variation in Future Interest Error

BestFit BFResvRsource BFReschedReq

119

Table 4.3 The summary of best and worst results (cost) comparison

Algorith

ms

Time

Complex

ity

Overall performance

O(IK+K) Arrival Rate Proportion of

Upgrade

Requests

Credit Level Service

Initiation

Time

Penalty

Rate

Factor

BestFit O(IK+I
2
) Best (very small)

Worst (very large)

Best (no upgrade)

Worst (very high)

No effect Best (very

short)

Worst (very

long)

Best

(very

high)

Worst

(very

low)

BFResv

Resource

O(IK+I
2
) Best (very small)

Worst (very large)

Best(only add

account upgrade)

Worst (very high

proportion of

product upgrade)

Best (very

high)

Worst(very

low)

Best (very

short)

Worst (very

long)

Best

(very

high)

Worst

(very

low)

BFResch

edReq

 Best (very small)

Worst (very large)

Best (very high

proportion of

product upgrade)

Worst (no product

upgrade)

Best (very

high)

Worst(very

low)

Best (very

short)

Worst (very

long)

Best

(very

high)

Worst

(very

low)

4.5 Related Work

Research on market driven resource allocation was started in early 80s [69][72]. Most market-

based resource allocation methods [6] are designed for fixed number of resources [48][104]

[118][119]. Our work is related to user driven SLA-based economic-oriented resource provision

with dynamic number of resources. In the following sub-sections, we present related publications

in Grid and Cloud computing that focus on the area of resource allocation and SLA management.

In addition, the resource usage patterns and usage prediction are related areas to our work. The

discipline of Web Usage Mining (WUM) has grown rapidly in the past few years, despite the

crash of the e-commerce boom of the late 1990s. WUM is the application of data mining

120

techniques to Web clickstream data in order to extract usage patterns [139]. In the current WUM

area, the data has been classified as content, structure, usage and user profile [139]. The first

three data categories are related to the usage of Web sites but not the e-commerce transactions.

Current three types of usage prediction algorithms, which are history-based, sequence-based and

MARKOV-based algorithms [139][142] are mainly used in the first three data categories. Thus,

in this chapter as our first attempt we consider user profile and using history-based method as the

basis of the transaction-based enterprise system usage prediction to calculate the credit level.

In the following sub-sections, we present related publications in Grid and Cloud computing that

focus on the area of resource allocation and SLA management.

4.5.1 Grid

Harnscher et al. discussed typical scheduling strategies in computational Grids [116]. They have

considered scientific tasks, which run for short term, whereas we consider transaction based

applications, which run for long term. Moreover, customer driven scenarios are out of their scope.

In addition, the evaluation metrics are different, because they focused on the response time and

utilization, while we focus on the cost and the number of SLA violations.

Gomoluch et al. proposed market-based resource allocation algorithms for Grid computing [117].

The common points between their and our chapter are: firstly, the consideration of state-based

and pre-emptive strategies. The state-based strategy indicates all resource allocation based on the

current service/system state. The pre-emptive strategy means tasks assigned to a resource, and

they are allowed to be migrated to other resources for some advantageous purposes. Secondly,

both chapters focused on market-based resource allocation. Nevertheless, their work considered

independent tasks with input data, deadline as QoS parameters using fixed number of resources.

In our case, a customer requests the enterprise applications with multiple QoS parameters using

dynamic and flexible resources.

He et al. introduced a QoS guided task scheduling algorithm in Grid [128]. The bandwidth was

considered as one of the major QoS parameters; and their strategy was based on the earliest

completion time, while our chapter focuses on minimizing the cost by considering QoS parameters

on both customer and provider side.

121

Reig et al. contributed to minimizing the resource consumption for serving requests and

executing them within the deadline with a prediction system [105]. Their prediction system

enables the scheduling policies to discard the service of a request, if the available resource cannot

complete the request within its deadline. However, in our work, we consider the data intensive

transaction based application, which run for long term, whereas they considered compute intensive

independent application, which are relatively short term. Moreover, the QoS parameters we

considered are different from the ones in their work. In addition, our model considers penalty and

market oriented targets which do not exist in their work.

Fu et al. proposed an SLA-based dynamic scheduling algorithm of distributed resources for

streaming [112]. Moreover, Yarmolenko et al. evaluated various SLA-based scheduling

heuristics on parallel computing resources with two evaluation metrics: resource (number of CPU

nodes) utilization and income [113]. Nevertheless, our work focuses on scheduling enterprise

applications on VMs in Cloud computing environments (the minimum unit of resources in our

work is the number of VMs).

4.5.2 Cloud

As virtualization is a core technology of Cloud computing, the VM placement has become crucial

[123][124][125] in the resource management and scheduling, while the virtualization at the

operating system (such as, VMware [119]) and storage (such as [120]) level is entering the

mainstream. For instance, Grit et al. investigated various algorithms for assignment of VMs[123].

Similarly, Van et al. proposed the resource provisioning and VM placement [124]. Hermenier et al.

designed a dynamic consolidation mechanism for homogeneous resources [125]. However, these

related publications [123][124][125] did not consider monetary cost or uncertainty of future

demand. Bobroff proposed a dynamic heuristic-based VM placement methodology that did not

focus on customer-driven scenario to minimize the total cost for SaaS providers [126].

Kimbre et al. proposed an allocation algorithm to minimize the number of VM migrations during

resource reallocation [121]. Khannaet al. pursued the goal to minimize the number of VM

migrations and the number of physical machines [122]. In contrast, the objective of our work is to

minimize the total cost and number of initiated VMs by considering request migrations instead of

VM migrations.

122

Popovici et al. mainly considered QoS parameters on the resource provider’s side, such as price

and offered load in Cloud computing [104]. Lee et al. investigated the profit driven service

requests scheduling for dependent tasks without user-driven consideration [42]. In contrast, our

work focuses on SLA driven QoS parameters on both user and provider sides; and solves the

challenge of assigning dynamically varying customer requests to minimize the cost and number

of SLA violations.

Chaisiri et al. proposed optimisation of resource provisioning cost in Cloud computing by

applying stochastic programming approach in multiple phases [127]. They minimized the cost by

considering the uncertainty which is only a part of our objective. In the context of the resource

allocation algorithms for enterprise applications, Yang et al. used Genetic Algorithm (GA) in

their chapter [110]. As GA-based algorithms create a pre-planing schedule, they will not be able

to deal with dynamic environment such as Cloud. Therefore, this approach is not suitable for

SLA-based resource provisioning in dynamic Cloud computing environments. This chapter

improves our previous work [114] by proposing two extended algorithms and considering

additional QoS parameters such as credit level. We also propose resource provisioning and

request migration strategies to optimize the total cost and SLA violations.

In summary, our work is unique in the following ways:

 It manages the CSL based on the customer QoS requirements by minimizing the SLA

violations.

 The utility function is time-varying that considers dynamic VM deployment time (service

initiation time).

 It considers KPI criteria as a decision making approach for scheduling.

 Scheduling algorithms consider the customer profiles to minimize penalty cost.

 It adapts to dynamic resource pools and consistently evaluates the cost of adding new

instances, while most of the previous chapters deal with a fixed size of resource pool.

4.6 Summary

This chapter focused on customer driven SLA-based resource provisioning for SaaS providers

with the explicit aim of cost minimization while maximizing CSL to achieve SaaS providers’

objectives. To achieve this goal, we answered questions raised in the Section 4.1 by considering

customer profiles and KPI criteria while using mapping and scheduling mechanisms to deal with

the dynamic demands and resource level heterogeneity. We implemented two customer driven

123

algorithms that consider various QoS parameters (such as arrival rate, service initiation time, and

penalty rate) from both customers’ and SaaS providers’ perspectives using respectively resource

reservation and request rescheduling strategies. In addition, in order to find out how many

resources should be reserved to further optimize the solution, for each QoS parameter, we

implemented five sets of reservation strategies (one dynamic and four fixed percentage

reservation strategies).

The analysis of our evaluation focused on customers’ and SaaS providers’ perspectives to

maximize various KPI criteria, including total cost, number of initiated VMs, percentage of SLA

violations, and service quality improvement. Simulation results showed that on average, the

BFReschedReq results in maximum cost savings and the lowest number of SLA violations

compared with the other evaluated algorithms. In general, both proposed algorithms improved

service quality to a level higher than that specified in the SLAs and the BFResvResource

improved most in regard to the service quality. The lower bound is the ideal solution and the

BFReschedReq is the closest to the ideal solution. The dynamic reservation strategy performed

best during the scenarios of service type variation with respect to the total cost, number of

initiated VMs and percentage of SLA violations in general.

The CRM application scenario is a good representative example of many enterprise applications.

In addition, the scenario can also be applied to HPC (High Performance Computing) and

scientific applications by mapping VM capabilities to QoS requirements. The package upgrade

scenario may not be required by HPC applications, which simplifies the scenario compared to

enterprise web applications. Therefore, techniques and algorithms proposed in our chapter can

support a wide range of applications from many domains.

In addition, the upper bound of our proposed algorithms can be explored in the future, such as the

worst case scenarios for SaaS providers are that 1). All requests concurrently come together and

minimized number of requests can share the same VM. 2). All scheduled requests need to be

migrated to more expensive VMs.

As customer may not always like the standard offers made, and thus need more flexible offers

from provider, more sophisticated mechanism is needed to accept users. Thus in the next chapter,

the SLA negotiation framework is introduced.

124

125

5 Automated SLA Negotiation Framework

This chapter propose an automatic negotiation framework to help SaaS providers to attract more

customers in a more flexible and profitable way. The chapter includes negotiation framework

components, negotiation policies, protocols, strategies and decision making heuristics that take

into account time, market constraints and trade-off between QoS parameters. The negotiation

heuristics are evaluated by extensive experimental studies of our framework using data from a

real Cloud provider.

5.1 Introduction

A service level agreement (SLA) is a legal contract between providers and consumers that define

the Quality of Service (QoS) that is achieved through a negotiation process [142]. Negotiation

processes in Cloud are essential because participating parties (customers and SaaS providers) are

independent entities with different objectives and QoS requirements. Through negotiation,

players in the Cloud marketplace [159] are given the opportunity to maximize their return-on-

investment.

Currently, SLAs are defined by service providers without providing customers with sufficient

negotiation opportunity. Moreover, current preliminary research work [158] on automated SLA

negotiation frameworks in Cloud is minimal and generally does not consider, in combination, the

following two factors: 1) the dynamic nature of the Cloud, as service cost and quality are

constantly changing and consumers have varying needs, and 2) time and market oriented

resource allocation, as any delay incurred in waiting for a resource assignment is perceived as an

overhead [145]. These two factors make answering the following questions in the design of a

negotiation framework for Cloud a challenging task: 1) how to balance the trade-off between

multiple QoS parameters 2) how to make a decision for acceptance and rejection of the proposal,

and 3) how to generate a counter offer?

126

To address these questions, our proposed negotiation framework integrates a decision making

system considers the current Cloud market situation, time constraints, and multiple QoS

parameters. In the dynamic Cloud market, opportunities and competition between service

providers can have a considerable impact on strategies and decision making processes. For

example, when the competition increases or the opportunity decreases, the counter offer

generation strategy is to concede faster. SaaS providers aim to accept more profitable customers

with the objective of maximizing profit and market share considering the cost, market and time

constraints. For SaaS customers: 1) to choose the best provider, a SaaS broker is introduced on

behalf of customers to negotiate with multiple providers simultaneously in order to select the best

offer, and 2) multiple QoS parameters are balanced through prioritization, which is based on

customer preferences. The best offer is selected based on different objectives of the parties

involved in the negotiation.

5.1.1 Motivations

Our work is motivated by: 1) the emergence of the SaaS broker model [155], and 2) the lack of

automated negotiation frameworks along with decision making systems and strategies to

maximize profit and improve CSL in Cloud.

The broker model has been used mainly in utility markets. Due to lack of detailed information

about different providers and current market, customers prefer using brokers, which provide fast

and economical solutions. Similarly, in Cloud, customers face the problem of identifying the best

provider, as the number of providers is dramatically increasing. Therefore, the SaaS broker model

in Cloud provides a one-stop-shop for guaranteed customer service.

Currently, in the Cloud market, brokers like ViTLive [155], Cordys [167], only provide a portal

listing of different providers. However, they do not select or negotiate with providers to maximize

profit and improve customer satisfaction. If negotiation is required, specialist knowledge is

sourced to manage the process which incurs additional direct costs. In addition, the existing

negotiation framework may not be automated [149], or suitable for Cloud specific negotiations

[154].

We propose an automated Cloud negotiation framework, counter offer generation strategies, and

decision making heuristics considering time and market factors to achieve various objectives for

127

different parties. In this way, the parallel negotiation process can be set up to maximize profit or

the CSL for SaaS broker and SaaS provider. Our proposed negotiation framework can be extended

for any layer (e.g. Platform-as-a-Service, and Infrastructure-as-a-Service) in Cloud.

5.1.2 Contribution

The key contributions of this chapter are: 1) a novel negotiation framework for Cloud along with

decision making heuristics to achieve different objectives and strategies considering both time

and market factors for counter offer generation, and 2) a prototype of our framework which is

implemented proposed decision making heuristics and strategies, and compared with the latest

best approach proposed by Zulkernine and Martin [152]. The experimental results demonstrate

that our approach generates up to 50% increased profit and about a 60% customer satisfaction

level (CSL) improvement for brokers over the base heuristic.

5.2 Automated Negotiation Framework

In order to design an automated negotiation framework in Cloud, it is important to define

negotiation objectives, processes, and strategies.

5.2.1 Framework Components

The main components in our negotiation framework are: Customer Agent (CA), Broker

Coordinator Agent (BCA), Provider Agent (PA), IaaS Provider, SLA Generator, Directory,

Policy Database (PD), and Knowledge Base (KB).

Customer Agent: Represents a customer that submits requests for software services and

registers their QoS requirements into PD.

128

Figure 5.1 Negotiation Framework High Level Architecture

Broker Coordinator Agent: Represents the broker by receiving customer requests and

negotiates with providers to achieve business objectives. It includes Negotiation Policy

Translator (NPT), Negotiation Engine (NE), and Decision Making System (DMS).

Negotiation Policy Translator: Maps customer’s QoS parameters to provider level parameters.

Negotiation Engine: Includes workflows which use negotiation strategies during the negotiation

process.

Decision Making System: Uses decision making heuristics to update the negotiation status.

Provider Agent: Represents the provider. PA could include the third party monitoring system to

update the provider’s dynamic information. Although out of the scope of this chapter, systems

and processes can be implemented to monitor and measure provider capabilities.

The SLA Generator: When the negotiation has been successfully completed, the SLA Generator

creates an SLA between the customer and the provider using templates retrieved from the KB.

The template includes specified Service Level Objectives (SLOs) according to the QoS (SLA

excludes any general legal terms and conditions).

129

The Directory: The repository stores the providers’ registered service information.

The Policy DB: The repository stores QoS terms that both providers and customers understand.

The Knowledge Base: The repository stores negotiation strategies and SLA templates.

This chapter focus on two main components: the NE, by proposing strategies considering both

time and market, and the DMS, by proposing heuristics for different objectives.

5.2.2 System Scenario

We consider three entities: consumers, SaaS brokers and SaaS providers. Each consumer c

submits a service request to the SaaS broker, who leases software services from SaaS providers.

The customer c requests services with the following attributes:

 Budget Bc: the maximum price a customer can afford.

 Software service set SRb: the service editions.

 The service start time tss: the latest service available time for a customer c.

 The contract length indicates the period of service usage conLength, so that customer c must

be able to use software service within the contract term.

 The service refresh time tr: time it takes a query operation to be executed in a software

service.

 The service process time tp: the maximum time for a consumer c to wait for completing a

transaction.

 The service availability avai: the minimum availability that the customer requires.

 The expected discount percentage for budget σ: the percentage a customer can save from

their actual budget.

 The preference level of each QoS parameter γ: the absolute importance level which varies (0,

1].

The broker receives the customer request and calculates the expected budget, expected refresh

time, process time, and availability. These expected values are the best values that the broker

expects to provide to the customer and they will be proposed to providers in the quote request

process. If providers cannot fulfil these expected values, the broker will adjust the expected value

up to the customer requested value during the negotiation process. The broker always seeks to

secure the expected value from provider.

130

Each provider offers the same or different types of services. The provider can host or lease

infrastructure services from 3
rd

 party IaaS providers.

5.3 Negotiation Objectives

In sophisticated markets, the negotiation objective is not only price but also other elements such

as quality, reliability of supply, or the creation of long-term relationships. We consider multiple

objectives including cost, refresh time, process time and availability. The main objectives for a

customer, a SaaS broker and a provider are:

 Customer: minimize price and guaranteed QoS within expected timeline.

 SaaS Broker: maximize profit from the margin between the customer’s budget and the

providers’ negotiated price.

 SaaS Provider: maximize profit by accepting as many requests as possible to enlarge market

share.

5.3.1 Mathematical Models

SaaS Broker

The broker’s actual budget maxBc for serving a customer c depends on the customer’s

budget Bc and the customer expected discount percentage σ for budget.

maxBc =)1(cB (5.1)

The initial budget proposed to all providers is the expected budget expBc, which is based on

the maxBc and the broker’s expected margin marginc:

expBc=)1(max cc maginB (5.2)

The profit of broker b gained from serving customer c depends on the Bc and the best

provider’s price pricep.

Profb = maxBc - pricep (5.3)

In the following sections, a QoS parameter shall also be referred to as an “Issue”. The δi

represents the expected improvement percentage for an issue. Therefore, the CSL is reflected

by these Issues, which are service refresh time, process time and availability.

The expected refresh time expTr depends on the customer requested refresh time tr and the

improvement percentage for refresh time δr. The expTr changes during the negotiation

process up to tr.

131

expTr =)1(rrt (5.4)

The customer requested service process time tp and the improvement percentage for process

time p impact the expected process time expTp and varies during the negotiation process up

to the tp.

expTp =)1(ppt (5.5)

The expected availability expAvai depends on the customer requested service availability

avai and the improvement percentage of availability a .

expAvai =)1(aavai (5.6)

The CSL of an individual Issue icsl depends on the variation between the current proposed

value from provider icurrentV and the broker expected value iVexp . The parameter is a

value to guarantee that csli lies in the interval [0, 1].

i

ii
i

V

VcurrentV
csl

exp

exp

 (5.7)

The total customer satisfaction level CSLc, where i represents the individual issue, I indicates

all Issues, γi indicates the importance level of the Issue i, and the csli.

I

i

iic cslCSL
0

 (5.8)

SaaS Provider

The provider’s service price is based on the provider’s cost costp and expected margin

expMaginp. Different providers calculate price differently. The general equation for a

provider to calculate price is proposed below.

ppp Magintprice expcos (5.9)

The costp depends on the base cost baseCostp (such as infrastructure cost, admin cost,

software cost) and the relevant cost of satisfying each Issue i, where i I. Take availability as

an example. To provide a higher availability than what currently exists, it may cost extra for

the provider to buy another server as a mirror server. This extra cost is the relevant cost for

satisfying availability.

 costp=

I

i

p itbaseCost

0

)(cos

(5.10)

132

5.4 Negotiation Policy Specification

The negotiation policy specifications are used to specify QoS parameters, which are to be

negotiated and the acceptable range of them to reach the mutual agreement [157]. In this section,

we propose the QoS model and policy specification.

5.4.1 QoS Model

Different participants’ using different terms is one of the critical challenges in SLA negotiation

[166]. In our framework, a QoS model is used to provide shared knowledge about QoS attributes

among negotiating participants. A QoS model defines a set of QoS dimensions. Each QoS

dimension represents a specific quality aspect of a service, such as refresh time, availability, and

price. In our QoS model, a quality dimension is defined using: a title, a category, a name, a

description, and a metric. The QoS model is shared among service consumers and service

providers. Thus, they have a common understanding on the QoS attributes about how they are

defined, how they are measured, and so on. In this chapter, we consider the following QoS

dimensions – price, refresh time, process time and availability. These dimensions are the ones that

are mostly used and they are domain-independent. Our QoS model can be easily extended to

include other QoS dimensions.

Before negotiation, both participants specify the rule of QoS parameter in a policy specification.

The policy usually refers to a high-level description of goals to be achieved and actions to be taken

in different situations.

5.4.2 Policy Specification

Our policy specification is inspired by WS-Policy and XACML. WS-Policy is a XML-based

specification, in which assertions are basic blocks [167]. Each assertion defines domain specific

constrains, capabilities, and requirements. However, the WS-Policy framework does not provide

any assertion, and therefore users of this framework need to develop their own assertions.

XACML is a XML-based language which is standardized by OASIS and has been successfully

used widely as access-control policy languages [157]. With XACML, the QoS parameter

constraints can be domain-independent, because XACML is based on generic data type. However,

both of them are only machine-readable but not human-readable, especially for non-IT

background users. Therefore, based on the concept of constraints and goals in WS-Policy and

133

XACML, we design our domain-independent policy in a both human-readable and machine-

readable manner by providing web user interface to register constraints (rules) and goals.

The main concepts of our policy specification are rules and goals:

 The rules: are used to specify the QoS parameters and the acceptable range of these

parameters (Figure 5.2).

 The goals: are non-negotiable rules.

Moreover, in order to take care of different policy rules from different agents we provide a rule

register to extend policy flexibly.

Figure 5.2 Negotiation Rule Register Web Form

In Figure 5.2, the rule names are QoS parameters. The lower value and upper value fields are

lower and upper bounds of the rule value. If a rule does not exist, there is another interface to

register new rule names. Any policy and rule registered by providers are stored in Policy DB

component of the framework. The NPT component matches these policies with customer QoS

parameters during the negotiation.

5.5 Negotiation Protocol

The negotiation protocol refers to a set of rules, steps or sequences during the negotiation process,

aiming at SLA establishment. It covers the negotiation states (e.g. propose offer, accept/reject

offer, and terminate negotiation). It is common to characterize negotiations by their settings:

bilateral, one-to-many, or many-to-many. We focus on the one-to-many bargaining setting, where

we consider three types of agents (CA, BCA and PA). A BCA negotiates with many PAs in a

bilateral fashion.

134

During the negotiation process, the negotiation status is updated using negotiation states described

in Table 5.1.

Table 5.1 The Negotiation States and Description Summary

States Description

Propose The agent propose initial or counter offer to the opponent agent.

Reject The agent does not accept the offer proposed by the opponent agent.

Accept The agent accepts the offer proposed by the opponent agent.

Failure System failure, trigger renegotiation.

Terminate Negotiation is terminated due to timeout or no mutual agreement.

In our framework, the sequential negotiation process is described as follows and depicted in

Figure 5.3:

Phase 1: CA submits requests: CA requests services on behalf of the customer to the Broker.

Phase 2: The BCA requests initial proposals from all providers, who are registered in the

Directory. The values sent from BCA to PAs are expected values.

Phase 3: PAs propose initial offer: All PAs propose initial offers based on their current

capabilities and availability to fulfil BCA’s requirements.

Phase 4: Negotiation Process with PAs:

a). If there are providers who can fulfil all requirements, then the BCA selects the best

vendor.

b). If there is no provider that can fulfil all requirements, then the BCA starts the

negotiation process with PAs.

Step 1: BCA selects the best initial offer from all offers that are proposed by all

providers according to the objective.

Step 2: BCA adjusts its initial offer according to the offer selected in Step 1 to

generate new counter offer and propose it to all providers.

Step 3: A PA evaluates BCA’s counter proposal.

Step 4: If the counter offer proposed by BCA cannot be accepted, PA proposes a

counter offer.

Step 5: Terminate negotiation. There are three termination conditions: First, when

negotiation deadline expires. Second, when the offer is mutual agreed by both the

135

CA and the PA. Third, when BCA is not able to accept any counter offer proposed by

all providers within the negotiation deadline.

Phase 5: SLA Generation: Initiate SLA creator to generate SLA for customer and provider

respectively using SLA templates stored in KB.

Phase 6: Send SLA to all participants: The generated SLA will be sent to the customer and

provider respectively by the SLA creator.

 Figure 5.3 The Interaction between Components during Negotiation Process

4. Negotiation

 {Iteration}

CA PABCA SLA CreatorDirectory KB

1. request service

2.1Retrive Providers Info.

2.2 All Providers List

3.1 Request Proposal from All Providers

3.2 Propose Initial Offer

4.1 Validate Offers and Select Best Deal

4.2 Propose Counter Offer to All Providers

4.3 Validate Counter Offer

4.4 Propose Counter Offer

5.1 Triger SLA

5.2 Request SLA Templage

5.3 SLA Template

6. Send SLA

6 Send SLA

4.5 Terminate Negotiation

136

5.6 Decision Making System

In the negotiation process, the action that a participant performs is determined by a decision

making system. In the decision making system, three main questions need to be answered: 1)

how to evaluate the offer; 2) what actions to take: accept, reject or generate counter offer; and 3)

how to generate counter offer? We design negotiation heuristics to answer them from the broker

and provider’s perspectives.

5.6.1 Broker

After BCA requests quotes from all PAs, each PA proposes an initial offer to the BCA, which

selects the best offer and makes a decision. If the decision is to propose a counter offer, then the

new counter offer will be proposed to all PAs. The best offer is selected based on different

objectives. We consider cost-benefit objectives as follows:

 Minimum cost: selects the offer with the lowest price first and then the highest cumulative

CSL for all QoS.

 Maximize CSL: selects the offer with the highest cumulative CSL for all QoS first and then

the lowest price.

Table 5.2 The Mincost Heuristic

Conditions Within BCA’s expB Exceed BCA’s expB

All QoS parameters are

satisfied

If deadline condition is urgent, agree.

Otherwise decrease expB.

If expB is less than actual budget,

then increase expB.

Otherwise reject.

Not all QoS are satisfied Satisfy all parameters and reduce

expB.

Satisfy all parameters by

negotiating on minimal (not

desired) values.

Table 5.3 The Maxcsl Heuristic

Conditions Within BCA’s expB Exceed BCA’s expB

all QoS parameters are

satisfied

If deadline condition is urgent, agree.

Otherwise decreases the least

preference parameter to decrease

expB.

Decreases the value of parameters,

which are better than expected to

decrease price.

137

Not all QoS are satisfied Satisfy all parameters and increases

expB.

Increases expB.

After selecting the best offer, the broker needs to decide how to deal with the selected best offer.

One of three actions can be adopted: accept, reject or generate counter offer according to

negotiation heuristics. We design two broker negotiation heuristics (mincost heuristic and maxcsl

heuristic) to decide which action to take according to different objectives.

In these two heuristics (Table 5.2 and 5.3), cost and other Issue values are calculated using

negotiation strategy functions, where the most desired and the minimal acceptable values for

each Issue are considered for the broker.

In both decision making heuristics, two criteria is used to evaluate the offer: 1) weather offer is

within BCA’s expected budget: whether the service price offered by provider pricep is less than

the broker’s expected budget expB, and 2) whether all QoS parameters are satisfied.

The above two criteria generate four combined conditions. For each condition, the decision

making heuristics guide the broker to make different decisions on which Issue requires

adjustment. There are two factors that require consideration when making adjustments. Firstly,

trade-off between cost and QoS parameters depends on the objective. Secondly, when the broker

must concede on QoS parameters, it always adjusts the least preferred parameter. After the

broker decides which Issue to adjust, the new value of the Issue is calculated. The time

complexity of these heuristics is O(CPI) depending on the number of customers (C), the number

of providers (P) and the number of Issues (I).

5.6.2 Provider

Table 5.4 Provider’s Decision Making Heuristic

Conditions Within BCA’s expB Exceed BCA’s expB

All QoS parameters are

satisfied

If deadline condition is urgent, agree.

Otherwise decrease the least preference

parameter to decrease expB.

If expB is less than actual budget,

increase expB.

Otherwise decrease the QoS value.

Not all QoS are

satisfied

Satisfy all parameters and increase price. Increase price.

138

The provider’s objective is to maximize profit by accepting as many requests as possible.

Therefore, the provider does not reject requests but continues to negotiate with each broker until

negotiations have ended. Table 5.4 shows the provider’s decision making heuristic.

5.7 Negotiation Strategy

The negotiation strategy underpins the counter offer generation process using various strategy

functions which guide to what degree the agent concedes or bargains considering time and

market factors.

The strategy functions control whether an agent concedes on certain Issues, or in the alternative,

negotiates very hard in each negotiation until the deadline is reached.

The new value
i

aanewv proposed by agent a (e.g. broker) to opponent ^a (e.g. provider) for

Issue i depends on the current value of Issue i proposed by the opponent agent
i

acv , the best

expected value
i
abestv and a strategy function.

))(...,(21
i

a
i
an

i
a

i
a

i
aa cvbestvcvnewv (5.11)

The strategy function)...,(21 n
i
a guides the speed of adjustment, where n indicates different

factors (such as time, market related factors), which will be explained below.

Opportunity: At time t, the probability that an agent is ranked as the most preferred candidate is

defined using the condition of opportunity Co (ct, pt). At time t, ct indicates the number of

competitors, and pt indicates the number of partners[157].

Co (ct, pt) =
 (5.12)

Competition: At time t, the competition Cc (ct, pt) in the market depends on the demand and

supply ratio (equation 5.13). At time t, ct indicates the number of customers, and pt indicates the

number of providers. The resource/market competition has the largest effect on the equilibrium

price [157].

 Cc (ct, pt)= (5.13)

tp

t

t

c

c
)

1
(1

t

t

p

c

139

Time: At time t the negotiation deadline condition Cdl(t) of an agent depends on the deadline tnd

and negotiation start time tns.

 Cdl(t) =

nstndt

nstt

 (5.14)

The negotiation period is the variation between negotiation start time tns and negotiation deadline

tnd. As deadline is a time-based condition, the well-adopted time-dependent result of functions,

such as Linear (L), Boulware (B) or Conceder (C) are generally used to model how an agent

varies its offer with time. These time-based functions are often used in negotiation systems

because of their simplicity [153][154]. In this chapter, we use a similar model and consider time,

market (opportunity and competition) conditions to design new strategy functions for negotiation.

For the broker, we propose the strategy function for a particular issue by considering

opportunity, competition and time constraints in equation 5.15:

kepct
t

p
t

ccC

t
p

t
coC

d l tC

tt ln),,,(
))((

)
),(

),(
(

 (5.15)

For the provider, we propose strategy function for a particular issue by considering opportunity,

competition and time constraints in equation 5.16:

kepct
t

p
t

ccC

t
p

t
coC

dl tC

tt ln),,(
))((

)
),(

),(
(

 (5.16)

In equations 5.15 and 5.16, the function α(.) varies from 0 to 1 and guides the changes in the

values of an Issue in the subsequent counter offers from its current value to the maximum

allowable value within the negotiation deadline. The k determines the initial offer.

In equation 5.15, indicates the preference of the Issue considered by the customer. The degree

of compensation depends on a parameter β and reflects the conceding nature of the broker. The

higher value of β (>1) results in a steeper curve, i.e., faster increment in α with time indicating a

more conceding attitude of the negotiating party. The lower value of β (<1) represents the

restrictive or boulware attitude. The reason for us to design our strategy using exponential and

not polynomial models, is because the polynomial concedes faster at the beginning than the

exponential one, even though both behave similarly on a whole level. For a small value of β the

exponential waits longer than the polynomial model before it starts conceding. The objective of

broker is to maximize profit by waiting as long as possible to start conceding.

140

5.8 Performance Evaluation

We present the performance results obtained from an extensive set of experiments by comparing

our proposed heuristics with the most recently proposed heuristic (referred as base) [152]. The

performance of each proposed heuristic depends on three factors: time, cost and market

constraints. Therefore, to analyse how these heuristic can achieve customer, broker and

provider’s objectives, the following experimental scenarios are considered

 Impact of negotiation deadline (time factor): The impact of 4 sets of negotiation timeframes

from the customer’s perspective is observed; we use number 1 to 4 to represent the variation

from ‘very urgent’ to ‘very relaxed’.

 Impact of broker expected margin (cost factor): The impact of 4 sets of initial broker

expected margins (varying from 20% to 50% over budget), are observed.

 Impact of market factor: The impact of 4 sets of market factors (varying the ratio in relation

to the number of providers and customers from less than 10%, 30%, 70%, and more than

90%), are observed. Numbers 1 to 4 are used to represent each set.

5.8.1 Reference Heuristic

For comparing our proposed heuristics, we used the most recent work related to our context on

automated negotiation proposed by Zulkernine and Martin [9], who developed a time-based

Sigmond function in their negotiation process for generating counter offers. We however,

consider both time and market functions in Clouds. To compare their negotiation strategy, we

have implemented their heuristics and Sigmond function with the objective of cost minimization.

5.8.2 Experimental Methodology

We implemented a prototype of the framework considering both time and market factors using

real data shared with us by cloud provider CA Technologies. CA Technologies offers a number

of enterprise software solutions to customers delivered as SaaS. The data provided included the

response, refresh and processing times of an enterprise solution hosted on VMs, as measured by

the quality assurance team. Availability data is collected from CloudHarmony benchmarking

system [156], which provides real data from Cloud providers. These data are collected over 4

days including weekdays, weekends and Easter public holiday.

 Availability: Varies from 98.654% (Colosseum) to 100% (Amazon EC2) as derived from

Cloud Harmony.

 Process Time: The mean 5.243 (2.043) s.

141

 Refresh Time: The mean 1.581 (1.383) s.

 Cost: Cost is considered similar to Windows VMs from 3rd party IaaS providers, which

varies from $0.34 per hour (VCloud Express) to $0.46 per hour (Amazon EC2).

We conducted experiments considering 50 concurrent users based on the CA provided data,

which is designed according to their customer historic data. The summary of customer data is:

 Availability: uniformly distributed and varies from 99.95% to 100%.

 Process Time: normally distributed mean 1.5 (±1) s.

 Refresh Time: normally distributed mean 2 (± 1) s.

Software service set: consists of 3 editions.

 The expected discount percentage: normally distributed with mean value 30% (variation ±

20%).

 The preference level of each QoS parameter: uniformly distributed between 0 and 1.

 Budget: normally distributed with mean $40 (± $10).

5.8.3 Result Analysis

The following performance metrics are considered for evaluation based on the objectives of the

negotiating parties:

 Average broker’s profit: The broker’s average profit from accepted customers.

 CSL improvement: The average CSL improvement over base.

 Average provider’s profit: The average provider's profit for accepting customers.

 Average round of negotiation: The average number of negotiations conducted during the

negotiation process to reach mutual agreement.

 Number of successful negotiations: The number of successful negotiations reaching mutual

agreement.

142

 (a). Average Broker Prof.($) (b). Avg Provider Prof.($)

 (c). Avg Round of Nego. (d). # of Success. Neg.

 Figure 5.4 Impact of Deadline Variation

Variation of negotiation deadline

The experiment is designed to evaluate mincost and maxcsl during negotiation deadline

variations.

The bar chart in Figure 5.4a represents average broker profit while the line chart represents

the CLS improvement over base heuristic. For all the negotiation deadline variations, mincost

generates the highest profit (up to 400%) for the broker over maxcsl and base. The reason for

such a trend is that the broker concedes less or bargains harder for more profit. In terms of

CSL improvement, maxcsl results in the highest improvement (up to 15%) over base, since it

is designed to sacrifice profit for a higher CSL.

From the providers' perspective (Figure 5.4b), on average maxcsl generates more profit for

providers, because the maxcsl aims at satisfying all Issues within the broker’s budget, which

leaves more profit for providers.

0

5

10

15

20

25

30

35

40

45

50

0

20

40

60

80

100

120

140

160

1 2 3 4

A
v
g

.
B

ro
k

e
r

P
ro

f.
 (

$
)

Variation in Deadline

Base MinCost MaxCSL MaxCSL mincost

0

20

40

60

80

100

120

140

160

1 2 3 4

A
v
g

.
P

ro
v
id

e
r

P
ro

f.
 (

$
)

Variation in Deadline

Base MinCost MaxCSL

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

A
v
g

.
R

o
u

n
d

 o
f

N
e
g

o
.

Variation in Deadline

Base MinCost MaxCSL

0

5

10

15

20

25

30

35

40

1 2 3 4#
 o

f
S

u
c
c
e
s
s
.

N
e
g

o
.

Variation in Deadline

Base MinCost MaxCSL

143

Figure 5.4c shows the average negotiation round for base increases dramatically when

deadlines are varied (as base is only time dependent), whereas our proposed heuristics

increases slightly (less than 2 rounds), as market factors also impact on the negotiation

process. In terms of the number of successful negotiations (Figure 5.4d), when the deadline

becomes relaxed, our proposed heuristic performs better and increases in trend, as there is

more bargening time.

In summary, mincost generates more broker profit while maxcsl generates improved CSL

and increased provider profit by increasing the number of successful negotiations with

similar negotiation rounds.

 (a). Average Broker Prof.($) (b). Avg Provider Prof.($)

 (c). Avg Round of Nego. (d). # of Success. Neg.

 Figure 5.5 Impact of Variation in Expected Margin

Variation of initial expected margin

As increase in expected margin leads to reduced initial broker budget (cost), the experiment

is designed to evaluate mincost and maxcsl heuristics during the varition of broker costs. The

expected margin varies from 20% to 50%, since after 50% the observed trend is similar.

0

5

10

15

20

25

30

35

40

45

50

0

20

40

60

80

100

120

140

160

20% 30% 40% 50%

A
v
g

.
B

ro
k
e

r
P

ro
f.

 (
$
)

Variation in Expected Margin

Base MinCost MaxCSL MaxCSL mincost

0

20

40

60

80

100

120

140

160

20% 30% 40% 50%

A
v
g

.
P

ro
v
id

e
r

P
ro

f.
 (

$
)

Variation in Expected Margin

Base MinCost MaxCSL

0

0.5

1

1.5

2

2.5

20% 30% 40% 50%

A
v

g
.
R

o
u

n
d

 o
f

N
e

g
o

.

Variation in Expected Margin

Base MinCost MaxCSL

0

5

10

15

20

25

30

35

20% 30% 40% 50%#
 o

f
S

u
c

c
e

s
s

.
N

e
g

o
.

Variation in Expected Margin

Base MinCost MaxCSL

144

Figure 5.5a bar chart depicts that the mincost generates the highest profit for the broker,

which is up to 200% more than the base. The line chart shows that the maxcsl has improved

CSL by up to 15% over the mincost.

Figure 5.5b shows that the maxcsl generates a higher profit for providers when the broker

negotiates for higher levels of CSL.

Generally, the average round of negotiations increases for all heuristics when the expected

margin increases (Figure 5.5c), because when time and market factors are constant, the

broker is required to negotiate more rounds with less budget to achieve the objectives and

reach agreement.

In summary, during expected margin variations, the mincost generates more profit for the

broker, whereas maxcls achieves more profit for the provider as the broker sacrifices cost for

securing improved CSL.

Variation of the market factor

The experiment is conducted to evaluate the proposed heuristics during the variation of

market factors. When market factors vary from 1 to 4, which represents an increase in market

competition, the mincost generates up to twice the profit than the base (Figure 5.6a bar chart)

and the maxcsl improves up to 4 times more CSL compare to mincost (Figure 5.6a line

chart). The broker’s profit generated by base only changes slightly during market factor

variations, as base does not consider market conditions.

Figure 5.6b illustrates that the provider’s profit decreases due to an increase in market

competition. The maxcsl generates more profit for providers than mincost and base, as

maxcsl considers the CSL as the highest priority, which leaves more profit for providers.

When competition increases, more negotiation rounds are required to reach agreement

(Figure 5.6c), as participants bargain harder and the number of opportunities to reach

agreement increases (Figure 5.6d).

To conclude, the experiment demostrates that mincost produces more profit while the maxcsl

achives better CSL for the broker and more profit for providers.

145

 (a). Average Broker Prof.($) (b). Avg Provider Prof.($)

 (c). Avg Round of Nego. (d). # of Success. Neg.

 Figure 5.6 Impact of Market Factor Variation

5.9 Related Works

With the advancement of web technology, various approaches of resource allocation have been

developed for distributed systems [160]. Current literature indicates that research focusing on

resource allocation is rapidly growing. However questions remain as to whether multi-agent

systems can be adopted in the domain of resource allocation. In this context several multi-agent

approaches were developed to leverage the wide applicability and efficient adoption of multi-

agent systems for the heterogeneous domain [161]. However, these approaches have some

limitations when applied to Cloud. For example, most popular strategies such as Game theory

[162], Reinforcement Learning [163] and Markov Decision Process (MDP) [164] require either

expensive storage of each status or that every agent is required to expose tactics to opponents.

Therefore, these approaches are not applicable for Cloud where private information such as the

number of utilized resources is not advertised.

0

2

4

6

8

10

12

14

16

0

50

100

150

200

250

300

350

1 2 3 4

A
v
g

.
B

ro
k

e
r

P
ro

f.
 (

$
)

Variation in Market Factor

Base MinCost MaxCSL MaxCSL mincost

0

20

40

60

80

100

120

140

160

1 2 3 4

A
v
g

.
P

ro
v
id

e
r

P
ro

f.
 (

$
)

Variation in Market Factor

Base MinCost MaxCSL

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

1 2 3 4

A
v
g

.
R

o
u

n
d

 o
f

N
e
g

o
.

Variation in Market Factor

Base MinCost MaxCSL

0

5

10

15

20

25

30

35

1 2 3 4

#
 o

f
S

u
c
c
e
s
s
.

N
e
g

o
.

Variation in Market Factor

Base MinCost MaxCSL

146

Faratin et al. presented a formal model of negotiation between autonomous agents in service-

oriented environments [146]. Chhetri, et al. proposed an agent-based negotiation architecture for

coordinated negotiation in service composition [147]. Comuzzi and Pernici proposed a negotiation

broker framework to support semi-automated or fully automated negotiation of QoS for service

selection [153]. Similarly, Zulkernine et al. proposed a policy based negotiation broker

middleware framework for automated negotiation of SLA’s [152]. Dastjerdi and Buyya proposed

negotiation strategies for Infrastructure layer in Cloud which depends on provider resource

capabilities [166]. These approaches have not considered elements such as CSL objectives,

broker's profit, and market factors in their algorithms.

5.10 Summary

In Cloud computing, the SLA is a legal contract between the consumer and provider to guarantee

the QoS. Negotiation is essential for both participants to feel comfortable about meeting their

objectives prior to SLA finalization. In this chapter, we proposed a novel negotiation framework

which included strategies and decision making heuristics by considering factors such as time,

market constraints, and trade-offs.

Our two proposed heuristics have been evaluated by using real data from a cloud-hosted enterprise

software solution provided by CA Technologies. Results showed that our proposed heuristics

minimize cost or maximize CSL in comparison to the most recently proposed base heuristic.

Up to now we have demonstrated the efficiency of our algorithms through extensive simulation

studies. In the next chapter, we develop a prototype of the system considered and show how our

proposed strategies can be used in practical scenarios.

147

6 An SLA-based Resource Management System

for SaaS Providers

To demonstrate the usefulness of key algorithms and techniques proposed in this thesis, we

implemented a software prototype system, called SLA-based Resource Management System

(SLARMS). This chapter presents SLARMS for adapting dynamic customer demands using

cloud infrastructure resources. It covers the system architecture, and implementation are

described. It concludes with a case study in enterprise software applications.

6.1 Motivation and Requirements

With the advancement of Cloud technologies, a large number of applications are delivered

through software as a service (SaaS) model in Cloud computing environments. Although several

existing works (noted in Chapter 2) have explored SaaS model, capabilities such as support for

adapting dynamic customer demands using Cloud resources to achieve business objectives are

required by many SaaS providers.

In addition, to meet requirements of SLA-based resource provisioning of Cloud applications (in

Chapter 1), future efforts should focus on design, development, and implementation of software

systems based on novel SLA-based resource allocation models exclusively designed for data

centres.

The resource provisioning within these Cloud data centres will be driven by market-oriented

principles for efficient resource management depending on customer QoS targets. In the case of a

Cloud data centre as a commercial offering to enable crucial business operations of companies,

there are many critical QoS parameters to consider in a service request, such as response times.

In particular, QoS requirements cannot be static and need to be dynamically updated over time

due to continuing changes in business operations and operational environments. In short, there

148

should be greater importance on customers since they pay for accessing services in data canters.

Therefore, our thesis presented various SLA based customer requirements driven resource

management techniques for SaaS providers to achieve their objectives. In the following sections,

the realization of this vision about SLA-based resource management system is presented that

includes implementation of proposed customer driven resource management techniques with

evaluation of a prototype system in an operational data centre.

6.2 System Architecture

In order to fulfil the aforementioned requirements, a SaaS model for serving customers in Cloud

is shown in Figure 6.1. A customer sends a request for software services offered by a SaaS

provider, who uses three layers, namely application layer, platform layer and infrastructure layer,

to satisfy the customer’s request. The application layer manages all application services that are

offered to customers by the SaaS provider. In the platform layer, the request monitor is used to

monitor requests including new and upgrade requests. Whenever a customer changes QoS

requirements, the mapper and decision maker are invoked. The mapper is responsible for

translating the customer’s QoS requirements to infrastructure level parameters and the decision

maker is used to make decision on if the request can be accepted and where to schedule the

acceptable request. In addition, the resource allocator is responsible for initiating or allocating

Virtual Machines (VMs) to serve the request. Moreover, the SLA manager is used to track SLA

violations according to actual resource information. Based on SLA terms, the market manager

updates the final cost and profit accordingly. The infrastructure layer includes data centres where

VMs are hosted.

149

Figure 6.1 the SLA-based resource management system high level architecture

6.2.1 Details

In this section, we provide finer details related to fundamental classes of the SLA-based resource

allocation system, which are also the building blocks of the system. The overall Class, Sequence,

and States design diagrams are shown below.

Class Diagram

 The main components of class diagram are described below:

 (QoS) Request Monitor: When a customer submits a new request or changes an existing

request for the service, this class monitors changes and then invokes Mapper and

DecisionMaker classes to reschedule the request.

 Mapper: This class maps customer QoS requirements to a suitable type of resource by

method getVMTypebyServiceType(servType).

 SLA Service Setting: This class provides functions to access and operate the SaaS

provider’s predefined service characteristics. For example,

getServiceResponseTime(servType) is used to retrieve the predefined service response

time.

SaaS Provider

PaaS

IaaS

Application Layer

Software Service Software Service Software Service

Platform Layer

Mapper
Decision

Maker

Resource

Coordinator

Allocate Resource

Customer

Request Service

Mobile Tablet PC/Laptop Web Services

SLA

Manager

Market

Manager

Request

Monitor

Infrastructure Layer

Virtual Machines

(VMs)

Physical Machines

150

Figure 6.2 Class diagram

 Decision Maker: This class invokes the admission control and scheduling classes to

make decision on whether to admit the customer request and how to assign resource to

the customer.

o Admission Control: This class is used to interpret and analyse customers’ QoS

requirements and receive the pre-scheduling result from scheduler, and then it

uses admission control criteria to decide whether to accept or reject the request.

The ProfminVM and ProfPD algorithms are proposed in Chapter 3.

o Scheduler: This class is responsible for pre-scheduling the request with

scheduling strategies and returning where the request can be scheduled. The

ProfminVio and ProfminVmMinAvaiSpace are algorithms proposed in Chapter

4.

 SLA Manager: SLA Manager is the class that keeps track of SLAs fulfilment between

customers and service providers. It also detects the penalty delay and updates the market

manager.

 Market Manager: It is responsible for calculating and updating the cost and profit

according to the actual resource usage. When there is a SLA violation, penalty cost is

calculated and final profit is adjusted by the market manager.

 Data Centre: Characteristics and related functions of data centres are represented in this

class.

DecisionMaker

DataCenter

VM

AdmissionControl Scheduler

VMInitiator VMAssigner

RequestMonitor

SLAServiceSetting VMSetting

SLAManager

MarketManager

Mapper

ResourceCoordinator

ProfminVio ProfminVmMinAvaiSpaceProfminVM ProfPD

151

 VM: This class represents actual VMs and includes their related data, such as VM

initiation time.

 VM Setting: This class includes characteristics of VMs, which are average values based

on history records.

 Resource Coordinator: This class assigns existing resource or initiating new resources

for customer requests according to the decision. It includes VM Initiator, VM Assigner,

VM Monitor, and VM Cleaner.

o VM Initiator: It takes the responsibility of creating, deploying and configuring

VMs using VM templates in an appropriate data centre.

o VM Assigner: It is responsible for configuring software on the appropriate VM.

Sequence Diagram

Internal process among system entities: When the system receives a request from a customer,

the QoS request monitor invokes the class mapper’s function called

getVMTypebyServType(servType), which returns a suitable VM type. Following this, the

QoS request monitor invokes the function MakeDecision() in class DecisionMaker to get

decision whether this request can be accepted. Next, the DecisionMaker class invokes the

function AdmissionControlProcess() in class AdmissionControl, which includes two stages:

the first stage AdmissionControlAnalysis() calls the scheduler’s SchedulingAnalysis()

function, which checks current resource availability and capability using scheduling

strategies and returns where the request can be scheduled. The second stage,

AdmissionControlDecisionMaking(), checks if the request can be accepted regarding to the

admission control criteria and returns the result to Decision Maker. Finally, the request

monitor receives the decision.

Internal process on resource level: The resource coordinator detects the decision made by the

decision maker. If the decision result is accept and scheduling result is initiateNewVM, then

the request state goes into provisioning and resource coordinator calls the initiateVM()

function in VMInitiator class to create and deploy a suitable VM image. If the scheduling

result is Wait or Insert, then the resource coordinator calls the assignRequest() function in

class VMAssigner to assign the request to an appropriate existing VM by configuring the

software service. The status of the request becomes inserting or waiting. Following that, the

monitorVMIni() function in class VMMonitor detects the actual VM initiation time and then

updates the VMinitiation time by calling the updateVM() function in the class VM. When all

152

requests are finished on a VM, the VMCleaner invokes function PowerOff() to power off the

VM.

Figure 6.3 Sequence diagram among entities

States Diagram

Figure 6.5 illustrates diverse states that a customer QoS request can experience during its

lifetime. When a request is submitted to the system, the new request goes to the new state and

the upgrade request goes to the upgrade state. Both new and upgrade requests can go to the

rejected state if a SaaS provider cannot gain the expected profit. If service start deadline is

achievable with available resources, the request goes to the inserting state. If there is no

resource available immediately but some existing requests will finish before the service start

deadline, then the request goes to the waiting state. When the Scheduler detects that a new

resource needs to be initiated for the request, either because there is no existing resource

available before the service start deadline, but new resource can be initiated for the request,

then the request goes to the provisioning state. For inserting, waiting and provisioning

requests, after the request has been assigned to the VM, the states goes to the running state,

which means a customer starts to use the service for enterprise software as a service or a task

153

starts to execute for bag of task service. Also, changes in state may happen every time a

request contract expires and then the resource capability is recalculated.

Figure 6.4 Sequence diagram among resource level entities

For both new and upgrade requests, the finished state is reached in three different situations:

(i) contract expires; (ii) system failure; and (iii) the customer cancelled the request.

6.3 System Implementation Technologies

The SLARMS has been implemented by leveraging the following key technologies using C#

on .Net platform: (1) SharePoint 2010, which is a secure, manageable, and web-based platform

supporting application development. (2) PowerShell for creating, managing, and configuring

VMs hosted on private and public cloud (such as Azure).

154

Figure 6.5 States diagram of requests in the SLARA system

6.3.1 Design Considerations

The design considerations of the SLARMS are the following:

 Support for dynamic customer requests: When there is a customer updating the

request, the request monitor will be triggered to detect request changes and go through

the decision making process.

 Support for scalable infrastructure resources: To allow easy utilization of using

different types of Cloud infrastructures, SLARMS is designed to use C# in .Net platform

to execute PowerShell command on remote VMs. PowerShell has been chosen because

the most popular private VM infrastructure provision technology, VMWare, has a

PowerShell based API (PowerCML). In addition, two of the most popular public

infrastructure providers - Azure and Amazon, support PowerShell VM provision and

configuration.

 Fault tolerance: SLARMS can handle failures at two stages: during decision making,

and during resource provisioning. Failures during resource provisioning (initiation or

allocation) can occur due to various reasons, such as network problems. In this case, the

failed resource will be re-provisioned in the next resource allocation cycle.

submitted

New Upgrade

Rejected Accepted

Provisioning Waiting Inserting

Finished Running

155

 Scalability: Most of the SLARMS’s components work independently and interact

through a database, which facilitates the scalable implementation of SLARMS as each

component can be distributed across different servers accessing a shared database.

6.3.2 Implementation Details

The implementation of each component is described as below:

Figure 6.6 Implementation Technologies

The design followed the three layer design pattern containing data layer, business logic layer and

presentation layer.

The main system entities are implemented using the following technologies:

PowerShell

VM Initiator

VM Allocator

VM Cleaner

Data Centres

Business Logic Layer

Data Access Layer

Presentation Layer

Custom Web Parts

Workflow Event Receiver

Timer Job

Linq CAML

.Net 3.5

Windows
Workflow

Foundation

SQL Server
2008

IIS 7.0

Security. Claims. Identity
Windows
Identity

Foundation

ADO.Net
Data

Services

Platform Layer

Infrastructure Layer

Web Pages

VMs VMs VMs

Request Monitor

Workflow Event Receiver

VM Monitor

Decision Maker

Class Admission Control

Scheduler

156

 Custom web parts and web pages: In the presentation layer, custom web parts and web

pages are used to provide an easy to use portal for customers to add or update their

requests.

 Workflow: Workflow technology in SharePoint is used to implement QoS Request

Monitor. The workflow can be triggered when there is a new request or any field of an

existed request is updated. The background technology to support SharePoint workflow

is the .Net workflow foundation.

 Event Handler/Event Receiver: SharePoint Event Handler/ Event Receiver technology

is used to implement VMMonitor. Whenever there is any change happens on VM, such

as actual VM initiation time is updated in the list, then the event handler will detect the

change and invokes the SLA manager to calculate the penalty delay.

 Class: Standard C# classes are used to implement other components, such as main

components decision maker, which includes admission control and scheduler.

 Timer job: SharePoint timer job is used to implement VMCleaner. The timer job runs

every minute to detect if any VM does not have requests allocated and then the VM will

be powered off in one hour.

 PowerShell: is used for most of resource coordinator related operations, such as VM

initiation, because PowerCLI (based on PowerShell) is the easiest API to operate

VMware Vsphere virtualized Cloud infrastructures (and for the extension of future work

it is the common way to access Azure and Amazon EC2). In addition, for guest OS

operation, the PowerShell is one of the most powerful technologies to configure the guest

OS and install the software.

 Linq and CAML (Collaborative Application Markup Language): To implement the

Data Access Layer, both Linq and CAML data access technologies are used because of

some issues with Linq. For example, when disposing the data context, there is an error

which is a known issue. Therefore, traditional CAML is used for insert operation and

keep Linq for the rest data access operations.

 All data tables are presented using SharePoint Column and List technologies, which are

more readable and friendly ways to structure the information, and all table structures and

data are stored in SQL Server 2008.

 Internet Information Services (IIS): IIS for Windows® Server is a flexible, secure, and

manageable Web server for hosting anything on the Web. From media streaming to web

applications, IIS's scalable and open architecture is ready to handle the most demanding

tasks.

157

6.4 Case Study: CA (Computer Associates) Directory

This section describes how the SLARMS prototype is implemented using a private enterprise

Cloud. This private Cloud is within an enterprise without affecting the productivity of their users,

hence, it increases the amount of computing resources available within an enterprise to accelerate

application performance.

6.4.1 System Details

Customer related

Customer: Request CA Directory services. This component is constituted by a simple Web

Service client that generates all resource requests to SLARMS with the following QoS:

 Request Type (reqType): It defines the customer request type, which is ‘new’ or

‘upgrade service’. A ‘new’ request will get one hour free service usage, while an

‘upgrade service’ is for an existing customer, who wants to upgrade from a lower service

edition to an upper service edition (According to the customer usage, there maybe a

customer loyalty level).

 Product Type (proType): The software products offered to customers. It can be

Standard, Silver, and Gold service. The Standard product includes CA Director. The

Silver service package contains all functions of Standard plus JExplorer component. The

Gold service includes all features of Silver plus dxgrid component.

 Account # (accNum): It constrains the maximum number of concurrent users from the

same organization can use the software service.

 Contract Length (conLen): How long the software service is legally available for a

customer to use (minimum is one hour).

 Records storage (recNum): The maximum storage capability for each DSA period and

it will impact the data transfer time during the service upgrade (The value of this

parameter is predefined in SLA).

 Response Time (respTime): It represents the elapsed time between the end of a demand

on a software service and the beginning of a service. Violation occurs when actual

elapsed time is longer than the pre-defined response time in the SLA.

SaaS provider related

Application Layer: provides CA Directory services. The CA directory provides a high-

performance directory foundation for online applications. It allows customer organizations to

158

meet the needs of new and future dynamic business applications and improve operational

efficiency by consolidating islands of data into a single information backbone.

Platform Layer: SharePoint 2010 platform and PowerShell are two main technologies used

in this layer. SharePoint is used to implement most platform layer components except the

resource allocator, which is implemented in PowerShell. The SharePoint platform and

PowerShell scripts are integrated with C# language on .Net platform. Details are described in

section 6.4.

Infrastructure Layer: In CA Lab, the internal operable Cloud infrastructure is built using

VMware VSphere, which is the industry leading virtualization platform. This layer can be

extended into public clouds.

The platform layer of a SaaS provider uses VM images to create instances according to the

mapping (Table 6.1) and decision. (In Table 6.1, m is 5, n is 10). Therefore, it is important to

identify the following properties for resource allocation mechanisms to ensure that the SLA

is adequately drafted:

• VM types (l): How many types of VM can be used and what they are. For example, there

are three types of VM, which are large, medium, and small. The capacity of one large VM

equals to that of two medium VMs or four small VMs.

• VM Service Initiation Time (iniTimeSev): How long it takes to initiate a VM, which is

deployed with the service appliance.

• VM Price (PriVM): How much it costs to a SaaS provider for using a VM to serve the

customer request per time unit. It includes the physical equipment, power, network, and

administration price.

Table 6.1 Mapper Details

VM Type Service Account # Storage VM Price CPU Memory Storage

Small Standard [0, m] [0, n] $0.085 1 core 1G 50G

Medium Silver [m+1,2m] [n+1,2n] $0.34 2 cores 2G 50G

Large Gold [2m+1,5m] [2n+1,5n] $0.68 4 cores 4G 50G

Decision Making

The decision making process includes two main components: scheduling and admission

control, in this case study, we implemented the algorithms introduced in Chapters 3 and 4.

159

6.5 Performance Evaluation

6.5.1 Experiment Setup

The evaluation of mechanisms of SLARMS, described in the previous section, has been carried

out entirely in CA Lab VMware Vsphere Cloud infrastructure environment.

The experimental setup consists of three types of dynamic resources: small instance (1 GB of

memory, 1 CPU core, 50G of local instance storage, Windows OS); medium instance (2 GB of

memory, 2 CPU core, 50G of local instance storage, Windows OS); and large instance (4 GB of

memory, 4 CPU core, 50G of local instance storage, Windows OS). An enterprise application CA

directory is used for experiments. SLA is defined in terms of response times. The experiment

evaluation is designed based on the CA CloudMinder test strategy and plan. CloudMinder is an

online application that uses CA Directory as the directory foundation. In this set of experiments

the total profit, number of accepted users and number of SLA violations are evaluated as follows

during the variation of request arrival rate from 20 to 200 requests per second. Up to 200

concurrent user requests are considered because 1) The test strategy provided by CA is designed

using 200 user requests, which has been analysed through their customer usage data and 2) The

capability of the private data centre allocated to this research work is limited, which does not

allow a very large number of user requests.

6.5.2 Scheduling algorithms evaluate

The evaluation is designed to test our proposed algorithms in Chapter 3 and 4. As expected, the

algorithms perform the similar trend as the simulation results in the prototype implementation

environment. In this set of experiment the total cost, SLA violations are evaluated in this section

during the variation of request upgrade proportion varies from very low to very high.

It can be seen from Figure 6.7, in average the algorithm ProfminVMminAvaiSpace reduces about

50% cost compared with ProfminVio. As Figure 6.7b shows, during the arrival rate variation, the

number of SLA violations caused by ProfminVMminAvaiSpace is less than the ProfminVio

because the ProfminVio has more risk to cause VM initiation delay due to network-related issues.

Therefore, during the variation of arrival rate, the ProfminVMminAvaiSpace performs better and

minimize the SLA violations in the context of resource sharing, where it is impossible to avoid

SLA violations.

160

 (a) Total cost($) (b) SLA violation

Figure 6.7 Variation in Request Arrival Rate

6.5.3 Admission control algorithms evaluate

The evaluation is designed to test our proposed algorithms in Chapters 3 and 4. The evaluation

results show that the algorithms performs similar trend in the prototype environment. In this set

of experiment total profit and number of accepted users are evaluated during the variation of user

request number from 10(small) to 100(very large).

Figure 6.8 shows that the ProfPD achieves (17%) more profit over ProfminVM by accepting

(15%) more user requests, when number of users changes from “small” to “very large”. When the

number of users is increased from “medium” to “large”, the profit difference between ProfPD

and ProfminVM became larger. This is because when the number of requests increases, the

number of users being accepted increases by utilizing initiated VMs. Therefore, a SaaS provider

should use ProfPD to maximize profit.

 (a). Total profit($) (b). User accepted($)

Figure 6.8 Variation in User Request Number

0

200

400

600

800

1000

1200

1400

1600

1800

very small small medium large

T
o

ta
l
C

o
s
t

($
)

Variation in Request Arrival Rate

ProfMinVio ProfminVMMinAvaiSpace

0

20

40

60

80

100

120

140

very small small medium large

S
L

A
 V

io
la

ti
o

n

Variation in Request Arrival Rate

ProfMinVio ProfminVMMinAvaiSpace

0

500

1000

1500

2000

2500

small medium large very large

T
o

ta
l
P

ro
fi

t
($

)

Variation in User Request Number

ProfminVM profpd

0

50

100

150

200

250

small medium large very large

U
s
e
r

A
c
c
e
p

te
d

 (
$
)

Variation in User Request Number

ProfminVM profpd

161

6.6 Related Work

There are several previous approaches for resource management with respect to SLA. Control-

theory approach has been proposed to dynamically adjust resource allocation to maintain the

service differentiation [172]. CPU cycles of single servers are main concerns of other approaches,

which share resources among multiple customer requests or applications [168][170]. For

example, the Shift adjusts how much and when CPU resources should be allocated to a VM

[173]. In contrast, SLARMS focuses on sharing at the granularity of whole VMs and the

management of a whole farm of servers. IcorpMaker provides isolation via virtual private

networks rather than VM[169]. Océano attempts to modify the computing environment (e.g. by

installing an operating system) to satisfy the allocation. Finally, the Galaxy project [171] focuses

on providing tools to build Windows-NT clusters. It does not consider SLA monitoring.

SLARMS provides a unique and more comprehensive combination of technologies to address a

number of issues ignored by these approaches and focused on SLA-based customer requirement

driven resource provisioning.

6.7 Summary

To meet requirements of SLA-based resource management of Cloud services (in Chapter 1), this

chapter focused on the design, development, and implementation of a software systems based on

novel SLA-based resource management algorithms exclusively designed for SaaS. Through this

prototype implementation, called SLA-based Resource Management System (SLARMS), we also

demonstrated the usefulness of key algorithms and techniques proposed in this thesis. The

architecture and implementation of SLARMS is comprehensively described and evaluated. Two

sets of experiments performed to test algorithms proposed in Chapter 3 and 4. In the experiments,

the total cost, SLA violations were evaluated and the experimental results show trend similar to

simulation results.

162

163

7 Conclusions and Future Directions

This chapter summarizes our objectives and work carried out on this thesis. Our main findings and

lessons learned are discussed along with their significance. This chapter also concludes with a

discussion on the future research direction that emerged during this research.

7.1 Summary

Cloud computing is a solution for addressing challenges such as licensing, distribution,

configuration, and operation of enterprise applications associated with the traditional IT

infrastructure, software sales and deployment models. Migrating from a traditional model to the

Cloud model reduces the maintenance complexity and cost for enterprise customers, and provides

on-going revenue for Software as a Service (SaaS) providers. Clients and SaaS providers need to

establish a Service Level Agreement (SLA) to define the Quality of Service (QoS). The main

objectives of SaaS providers are to optimize resource provisioning for maximizingthe utilization

of underline Cloud system in order to maximize profit and enlarge market share.

To achieve these objectives, the thesis started with a comprehensive survey on SLA and their

creation, management and usage in utility computing environments. It discussed existing use cases

in Grid and Cloud computing environments to identify the level of SLA realization in state-of-art

systems and emerging challenges for future research. The survey identified that most works

manage resources with the aim of minimizing cost without sufficiently considering the customers’

needs. Thus, to achieve the SaaS providers’ objectives, SaaS providers can manage resources in a

way to 1) accept more profitable requests with guaranteed QoS and 2) improve the QoS for

customers, since in general it costs much more to attract new customers than it does to keep an

existing one.

164

There are several challenges to achieve the objectives in SLA-based resource provisioning for

management of Cloud-based software as service applications for SaaS providers. First, the SaaS

provider uses shared infrastructure and different types of requests loads that lead to dynamic

variation in availability and capacity of resources. Second, there is possibility for existing

customers to change their requirements, such as upgrade services, which may lead to resource

reallocation. Third, the SaaS provider requires flexible SLA establishment processes to cater for

individual customers and considering market competition among other providers. Therefore, three

sub objectives of thesis are identified to overcome these challenges:

 To design SLA-based admission control and scheduling algorithms that differentiate

customer requests based on the dynamic resource performance and capabilities to

minimize cost and SLA violations by accepting more profitable requests.

 To investigate adaptive SLA-based resource provisioning algorithms according to the

changes in customer requirements by considering more customer factors that provide

personalized attention to customers and understanding their specific needs.

 To investigate the architectural model for automated SLA negotiation to establish SLAs

between SaaS and customers, whose requirements are not covered by existing SaaS

predefined static SLAs.

The first objective is achieved in Chapter 3, which proposed innovative cost-effective admission

control and scheduling algorithms. Our proposed solutions are able to accept more profitable

requests and minimize SLA violations through the efficient placement of requests on VMs leased

from multiple IaaS providers. Our solution takes into account various customer’s QoS

requirements (such as deadline, budget, penalty rate) and infrastructure heterogeneity (such as

different types of VM, service initiation time and price). Simulation results showed that our

proposed algorithms provide substantial improvement (up to 40% cost saving) over reference ones

across all ranges of variation in QoS parameters.

The thesis accomplished the second objective in Chapter 4 by designing customer requirements

driven resource provisioning algorithms to maximize profit by minimizing resource and penalty

cost. These algorithms also improve CSL by SLA violations minimization and service quality

improvement. These algorithms consider customer profiles and providers’ quality parameters (e.g.

response time) to handle customer requirements changes and infrastructure level heterogeneity

for enterprise systems. Customer-side parameters (such as the proportion of upgrade requests),

and infrastructure-level parameters (such as the service initiation time) are considered to compare

proposed algorithms. Simulation results showed that the proposed algorithms reduce the total

165

cost up to 54% and the number of SLA violations up to 45%, compared with the previously

proposed best algorithm.

In order to enlarge customer base, SaaS providers have to attract customers with special

requirements. Chapter 5 proposed a novel automated negotiation framework to establish SLAs

with these special QoS requirements. The framework also considers the SaaS Broker as the one-

stop-shop for customers to efficiently secure the required services. The framework also included

negotiation policies, protocols, and strategies to perform adaptive and intelligent bilateral

bargaining of SLAs between the SaaS provider and the SaaS broker. It designed decision-making

heuristics considering time, market constraints, and trade-off between different issues. These

negotiation heuristics are evaluated by extensive experimental study of our prototype framework

using data from a real Cloud.

Chapter 6 introduced a prototype of SLA-based resource management system, which is

implemented to prove the usefulness of the proposed algorithms using real Cloud resources.

7.2 Lessons Learned and Significance

Chapter 2 contained a comprehensive survey of how SLAs are created, managed and used with

use cases in both academy and industry with major emphasis on the SLA-based resource

management systems. This survey not only assists researchers to understand primary design

factors and issues that are still outstanding and crucial, but also provides insights for extending

and reusing components of existing Resource Management Systems (RMSs). Therefore, the

survey can help in the design and implementation of more practical and enhanced SLA-based

resource management systems in Cloud.

The admission control and scheduling algorithms proposed in Chapter 3 can be used by SaaS

providers like Animoto. All proposed algorithms in this thesis can be used by SaaS providers

who rent 3
rd

 party resources or/and use in house hosted resources. Resources we considered are

VMs, which are hosted in physical data centres. SaaS providers may not have knowledge of the

configuration and capabilities of these physical resources. Moreover, SaaS providers are sharing

physical resources with other SaaS providers, whose software usage and requests arrival rate may

impact the performance of hosted software service. Proposed algorithms assist in identifying

which request is more profitable and should be accepted and reduce the probability of SLA

violations given the dynamic nature of Cloud resources.

166

Once a request is accepted by the SaaS provider, there is a possibility for customers to change

their existing requirements (such as add more accounts or upgrade service package). Thus, SaaS

is expected to be scaled up and out dynamically according to the customers’ QoS requirements.

When the customer changes his/her requirements, the SaaS provider has to dynamically relocate

resources on-demand. Moreover, while allocating/reallocating resources, the SaaS provider has to

minimize impact on existing customers while satisfying change requests. Customer requirements

driven resource provisioning algorithms proposed in Chapter 4 can help in adapting to changes in

the requirements. It takes into account more customer factors that provide personalized attention

to the customer (such as customer profiles) and also is able to understand specific needs of

customers by taking into consideration the customer’s historical data.

These algorithms can be used by any enterprise software as service providers, who lease

packaged enterprise software to customers with a fixed price. In addition, the scenario can also be

applied to High Performance Computing and scientific applications by mapping VM capabilities

and QoS requirements. The upgrade service package scenario may not be required by them,

which simplifies the scenario compared to enterprise applications. Therefore algorithms and

techniques proposed in this thesis can be applied to a wide range of applications from many

domains.

As SaaS providers want to enlarge market share, they need to provide more flexibility in terms of

services to cater to variations associated with an individual customer. This is generally done by a

negotiation process between customers and service providers. However, while undertaking this

negotiation process, the service provider needs to take into consideration not only what they can

provide to customers but also the competition with other SaaS providers. Thus, Chapter 5

proposed that new negotiation frameworks are needed for the SaaS provider that considers

dynamism in Cloud environment with time and market factors to make the best possible

decisions for negotiation. The proposed negotiation framework can be used for the SaaS provider

and the SaaS broker model.

To prove the usefulness of our proposed strategies, in Chapter 6, a prototype of the customer

requirements driven SLA-based resource management system is implemented taking care of the

changes in customer requirements and resource side heterogeneity using SharePoint platform

and .NET technologies. The resource used in this prototype is a private Cloud, hosted by

167

Computer Associates, who is a Cloud software solution provider. The case study used CA

Directory as a service because of the availability of the software. However, SaaS providers can

offer any software as a service using our algorithms accordingly. This prototype can be plugged

in with different resource management strategies to achieve different objectives. SaaS providers

can scale out to use multiple resource providers including 3
rd

 party resource providers with

different resource APIs.

7.3 Future Directions

We have carried out detailed investigations in SLA-based resource provisioning for management

of Cloud-based SaaS applications using dynamic resources in Cloud to maximize profit and

market share for SaaS providers. However, there are still open issues that can serve as a starting

point for future research.

7.3.1 Providing Services with Different Pricing Models

SaaS providers can design different dynamic pricing policies to maximize profit and increase

market. For example, when customers buy laptops, there is self-service way for customers to

customize their machines by paying different price according to the hardware configurations.

SaaS providers can employ the similar functionality allows self-service feature for customers to

customize software packages according to their needs in a more flexible and profitable way for

SLA-based resource management strategies to achieve their objectives. Therefore, to design the

resource management strategies, it is required to understand 1) what software components can be

offered; 2) how resources consumption will vary during the variation of these components; and 3)

how to design the price policy among the variation of these components.

7.3.2 Using Resources with Different Pricing Models

The SaaS provider can use resources with various price policies to satisfy customer requirements

and reduce costs. For example, Amazon [13] has two types of pricing models; a) fixed pricing

and b) spot pricing. Each of these models gives some advantages and disadvantages to consumers.

For instance, the spot pricing can be exploited to maximise the consumer’s profit but it reduces

the chances of requests being executed successfully. In such environments, not only the current

but also future status of resources needs to be considered to reduce the consumer’s violation of

SLA and spending. Hence, there is a need to understand the effect of using different pricing

models on SLA-based resource management, and design novel resource management strategies

to handle such varieties.

168

7.3.3 Resource Provisioning for Multi-tier Applications

In our scenarios, various kinds of applications are considered as a standalone package including

the application and data. However, there are some enterprises using combination of single tier

and multiple-tier structures for applications. For example, enterprises host both SharePoint and

SQL-Server database in a single VM for development and testing environments, whereas host

SharePoint and SQL-Server database in different VMs for staging and production environments.

Therefore, the exploration of resource provisioning for multi-tier applications is a critical topic in

the future.

7.3.4 Resource Provisioning for Network and Data-Aware Application

In Clouds, there are several applications that require petabytes of data from various repositories

distributed across various nations. The resource provisioning process for these applications

competing for compute and storage resources can be very challenging due to the highly dynamic

nature of network. Moreover, computation should be ideally located near to storage, thus

decreasing the delays in the execution. If the scheduling decisions are made just on the basis of

either data size or computation time, the resultant schedule can lead to resource wastage in terms

of network bandwidth, and performance degradation due to large execution delays. Therefore,

approaches that consider both monetary execution costs and reconcile the competing storage,

network and computation demand of users are required.

7.3.5 Customer Usage Model for Customer Driven Resource Management

We proposed user profile and using history-based method for predicting the transaction-based

enterprise system usage to calculate the credit level. However, resource usage patterns and usage

prediction is actually another area that has been studied intensely. The future research could

explore more sophisticated credit level calculation based on the usage pattern and usage

prediction technologies for SLA-based resource management strategies.

169

References

[1] Kleinrock, L. A. (2005). Vision for the Internet. ST Journal of Research, 2(1), (pp. 4-5).

[2] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud

Computing and Emerging IT Platforms: Vision, Hype, and Reality for Delivering

Computing as the 5th Utility. Future Generation Computer Systems, 25(6), (pp. 599-

616).

[3] Buyya, R., and Vazhkudai, S. (2001). Compute Power Market: Towards a Market-

Oriented Grid. Proceedings of the 1st International Symposium on Cluster Computing

and the Grid, Brisbane, Australia.

[4] Buyya, R., Broberg, J., and Goscinski, A. (eds). (2011). Cloud Computing: Principles

and Paradigms. ISBN-13: 978-0470887998, Wiley Press, USA, Feb. 2011.

[5] Patterson, D. A. (2008). The Data Center Is The Computer. Communications of the

ACM, (pp. 105). NY, USA.

[6] Buyya, R., Garg, S. K., and Calheiros, R. N. (2011). SLA-Oriented Resource

Provisioning for Cloud Computing: Challenges, Architecture, and Solutions. Proceedings

of the 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011,

IEEE Press, USA), Hong Kong, China, Dec. 12-14, 2011.

[7] Broberg, J., Venugopal, S., and Buyya, R. (2008). Market-Oriented Grids and Utility

Computing: The State-of-the-Art and Future Directions. Journal of Grid Computing,

6(3), (pp. 255-276).

[8] Hardin. G. (1968). The Tragedy of the Commons. Science, 162(3859), (pp. 1243-1248).

[9] Yeo, C. S., and Buyya, R. (2007). Integrated Risk Analysis for a Commercial Computing

Service. Proceedings of the 21st IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2007), (pp. 51). CA, USA.

[10] Schneider, B., and White, S. S. (2004). Service Quality: Research Perspectives. Sage

Publications, Thousand Oaks, CA, USA.

[11] Van Looy, B., Gemmel, P., and Van Dierdonck, R., editors. (2003). Services

Management: An Integrated Approach. Financial Times Prentice Hall, Harlow, England,

second edition, 2003.

[12] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,

Rofrano, J., Tuecke, S., and Xu, M. (2007). Web Services Agreement Specification. OGF

Proposed Recommendation (GFD.107).

[13] AWS EC2 Service Level Agreement. Retrieved 28 March 2010, from AWS:

http://aws.amazon.com/ec2-sla/.

[14] AWS S3 Service Level Agreement. (n.d.). Retrieved 28 March 2010, from AWS:

http://aws.amazon.com/s3-sla/.

[15] Battre’, D., Hovestadt, M., Kao, O., Keller, A., and Voss, K. (2007). Planning-based

Scheduling for SLA-Awareness and Grid Integration. PlanSIG, (pp. 1).

[16] Blythe, J., Deelman, E., and Gil, Y. (2004). Automatically Composed Workflows for Grid

Environments. IEEE Intelligent Systems, (pp. 16-23).

http://aws.amazon.com/ec2-sla/

170

[17] Bonell, M. (1996). The UNIDROIT Principles of International Commercial Contracts and

the Principles of European Contract Law: Similar Rules for the Same Purpose. Uniform

Law Review, (pp. 229-246).

[18] Boniface, M., Phillips, S., Sanchez-Macian, A., and Surridge, M. (2009). Dynamic

Service Provisioning Using GRIA SLAs. Service-Oriented Computing-ICSOC 2007

Workshops, (pp. 56-67). Vienna, Austria.

[19] Brandic, I., Venugopa S., Mattess, M., and Buyya, R. (2008). Towards a Meta-negotiation

Architecture for SLA-aware Grid Services. International Workshop on Service-Oriented

Engineering and Optimization, (pp. 17). Bangalore, India.

[20] Brandic, I., Music, D., and Dustdar, S. (2009). Service Mediation and Negotiation

Bootstrapping as First Achievements towards Self-adaptable Grid and Cloud Services. In

Grids and Service-Oriented Architectures for Service Level Agreements. P. Wieder, R.

Yahyapour, and W. Ziegler (eds.), Springer, New York, USA.

[21] Buco, M. J., Chang, R. N., Luan, L. Z., Ward, C., Wolf, J. L., and Yu, P. S. (2004). Utility

Computing SLA Management based upon Business Objectives. IBM Systems Journal,

43(1), (pp. 159-178).

[22] Buyya, R., and Alexida. D. (2001). A Case for Economy Grid Architecture for Service

Oriented Grid Computing. Proceedings of the 10th International Heterogeneous

Computing Workshop (HCW), San Francisco, CA.

[23] Buyya, R., Pandey, S., and Vecchiola, C. (2009). Cloudbus Toolkit for Market-Oriented

Cloud Computing. Proceedings of the 1st International Conference on Cloud Computing

(CloudCom 2009, Springer, Germany), Beijing, China.

[24] Buyya, R., Ranjan, R., and Calheiros R. N. (2009). Modelling and Simulation of Scalable

Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities.

Proceedings of the 7th High Performance Computing and Simulation Conference (HPCS

2009, ISBN: 978-1-4244-4907-1, IEEE Press, New York, USA), Leipzig, Germany.

[25] Chu, X., Nadiminti, K., Jin, Ch., Venugopal, S., and Buyya, R. (2002). Aneka: Next-

Generation Enterprise Grid Platform for E-Science and E-Business Applications.

Proceedings of the 3rd IEEE International Conference on E-Science and Grid Computing,

(pp. 10-13). Bangalore, India.

[26] Dan, A., Ludwig, H., and Kearney, R. (2004). CREMONA: An Architecture and Library

for Creation and Monitoring of WS-Agreements. Proceedings of the 2nd International

Conference on Service-Oriented Computing, (pp. 65-74). NY, USA.

[27] Dinesh, V. (2004). Supporting Service Level Agreements on IP Networks. Proceedings of

IEEE/IFIP Network Operations and Management Symposium, 92(9), (pp. 1382-1388).

NY, USA.

[28] Fitzgerald, S., Foster, I., and Kesselman, C. (1997). A Directory Service for Configuring

High-performance Distributed Computations. Proceedings of the 6th IEEE Symposium on

High-performance Distributed Computing. (pp. 365-375).

[29] Foster, A. K. (2003). The Grid 2: Blueprint for a New Computing Infrastructure. San

Francisco, CA: Morgan Kaufmann.

[30] Frey, N. (2000). A Guide to Successful SLA Development and Management. Stamford,

CT: Gartner Group Research, Strategic Analysis Report.

[31] Frolund, S., and Koistinen, J. O. (1998). A Language for Quality of Service Specification.

HP Labs Technical Report, California, USA.

http://www.cloudbus.org/papers/Cloudbus-Keynote2009.pdf
http://www.cloudbus.org/papers/Cloudbus-Keynote2009.pdf
http://www.cloudbus.org/papers/CloudSim-HPCS2009.pdf
http://www.cloudbus.org/papers/CloudSim-HPCS2009.pdf

171

[32] Gong, Y. L., Dong, F. P., Li, W., and Xu, Z. W. (2003). VEGA Infrastructure for

Resource Discovery in Grids. Journal of Computer Science and Technology, 18(4), (pp.

413-422).

[33] Hiles, A. (1999/2000). The Complete IT Guide to Service Level Agreements-Matching

Service Quality of Business Needs. Oxford, UK: Elsevier Advanced Technology.

[34] Hudert, S., Wirtz, G., and Eymann, T. (2009). BabelNeg-A Protocol Description

Language for Automated SLA Negotiations. Proceedings of the IEEE Conference on

Commerce and Enterprise Computing, (pp. 162-169). ShangHai, China.

[35] Iamnitchi, A., and Foster, I. (2001). On Fully Decentralized Resource Discovery in Grid

Environments. Proceedings of the 2nd International Workshop on Grid Computing, (pp.

51-62). Denver, Colorado.

[36] Jin, L. J., and Machiraju, V. A. (June 2002). Analysis on Service Level Agreement of

Web Services. Technical Report HPL-2002-180, Software Technology Laboratories, HP

Laboratories.

[37] Joita, L., Rana, O. F., Chacn, P., Chao, I., and Ardaiz, O. (2005). Application Deployment

Using Catallactic Grid Middleware. Proceedings of the 3rd International Workshop on

Middleware for Grid Computing. (pp. 6). Grenoble, France.

[38] Karaenke, P., and Kirn, St. (2010). Towards Model Checking and Simulation of a Multi-

Tier Negotiation Protocol for Service Chains. Proceedings of the 9th International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto,

Canada, May 10-14, 2010.

[39] Keller, A., Kar, G., Ludwig, H., Dan, A., and Hellerstein, J. L. (2002). Managing

Dynamic Services: A Contract based Approach to a Conceptual Architecture. Proceedings

of the 8th IEEE/IFIP Network Operations and Management Symposium, (pp. 513-528).

Florence, Italy, April 15-19, 2002.

[40] Keller, A., and Ludwig, H. (2003). The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services. Network and Systems Management Special

Limitation on E-Business Management, 11(1), (pp. 57-81). USA.

[41] Kuo, D., Parkin, M., and Brooke, J. (2006). A Framework and Negotiation Protocol for

Service Contract. Proceedings of the 2006 IEEE International Conference on Services

Computing (SCC 2006), (pp. 253-256). Chicago, USA.

[42] Lee, Y. C., Wang, C., Zomaya, A. Y., and Zhou B. B. (2010). Profit-driven Service

Request Scheduling in Clouds. Proceedings of the International Symposium on Cluster

Computing and the Grid (CCGRID). Melbourne, Australia.

[43] Loyall, J. P., Schantz, R. E., Zinky, J. A., and Bakken, D. E. (1998). Specifying and

Measuring Quality of Service in Distributed Object Systems. Proceedings of the 1st

International Symposium on Object Oriented Real-Time Distributed Computing, (pp. 43-

54). Kyoto, Japan.

[44] Ludwig, A., and Franczyk, B. (2006). SLA Lifecycle Management in Services Grid-

requirements and Current Efforts Analysis. Proceedings of the 4th International

Conference on Grid Services Engineering and Management (GSEM), (pp. 219-246).

LeipZig, Germany.

[45] Marilly, E., Martinot, O., Papini, H., and Goderis, D. (2002). Service Level Agreements:

A Main Challenge for Next Generation Networks. Proceedings of the 2nd European

Conference on Universal Multiservice Networks, (pp. 297-304). Toulouse, France.

172

[46] Mobach, D. G. A., Overeinder, B. J., and Brazier, F. M. T. (2006). A WS-Agreement

based Resource Negotiation Framework for Mobile Agents. Scalable Computing: Practice

and Experience, 7(1), (pp. 23-26). March 2006.

[47] Philipp, W., Jan, S., Oliver, Z., Wolfgang, Z., and Ramin, Y. (2005). Using SLA for

Resource Management and Scheduling. Grid Middleware and Services-Challenges and

Solutions, 8(1), (pp.281-291).

[48] Rana, O. F., Warnier, M., Quillinan, T. B., Brazier, F., and Cojocarasu, D. (2008).

Managing Violations in Service Level Agreements. Proceedings of the 5th International

Workshop on Grid Economics and Business Models (GenCon), (pp. 349-358). Gran

Canaris, Spain.

[49] Rashid, A. A., Hafid, A., Rana, A., and Walker, D. (2004). An Approach for Quality of

Service Adaptation in Service-oriented Grids. Concurrency and Computation: Practice

and Experience, 16(819), (pp.401-412).

[50] Rick, L. (2002). IT Services Management Description of Service Level Agreements. RL

Consulting.

[51] Ron, S., and Aliko, P. (2001). Service Level Agreements. Internet NG. Internet NG

project (1999-2001) http://ing.ctit.utwente.nl/WU2/

[52] Sahai, A., Graupner, S., Machiraju, V., and Van Moorsel, A. (2003). Specifying and

Monitoring Guarantees in Commercial Grids through SLA. Proceedings of the 3rd IEEE

International Symposium on Cluster Computing and the Grid, (pp. 292). Tokyo, Japan.

[53] Sakellariou, R., and Yarmolenko, V. (2005). On the Fexibility of WS-Agreement for Job

Submission. Proceedings of the 3rd International Workshop on Middleware for Grid

Computing (MGC05), (pp. 6). Grenoble, France.

[54] Service Level Agreement in the Data Centre. (April 2002). Retrieved 28 March 2010,

from Sun Microsystems: http://www.sun.com/blueprints.

[55] Skene, J., Lamanna, D. D., and Emmerich, W. (2004). Precise Service Level Agreements.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04), (pp.

179-188). Bugzilla. May 23-28, 2004.

[56] Venugopal, S., Chu, X., and Buyya, R. A Negotiation Mechanism for Advance Resource

Reservation Using the Alternate Offers Protocol. Proceedings of the 16th International

Workshop on Quality of Service (IWQoS 2008, IEEE Communications Society Press,

New York, USA), June 2-4, 2008, Twente, The Netherlands.

[57] Rosenberg, I., and Juan, A. (2009). The BEinGRID SLA framework, Report available at

http://www. gridipedia. eu/slawhitechapter.html

[58] Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., and Ma, W. (2005). Management

Applications of the Web Service Offerings Language (wsol). Web Services, E-Business,

and the Semantic Web, (pp.564-586). Galway, Ireland.

[59] Wieder, P., Seidel, J., Yahyapour, R., Waldrich, O., and Ziegler, W. (2008). Using SLA

for Resource Management and Schedurling-A Survey. GRID Middleware and Services, 4,

(pp. 335-347).

[60] Windows Azure Service Level Agreement. Retrieved 28 March 2010, from

http://www.microsoft.com/windowsazure/sla/.

[61] Wurman, P. R., Wellman, M. P., and Walsh, W. E. (1998). The Michigan Internet

Auctionbot: A Configurable Auction Server for Human and Software Agents. Proceedings

http://portal.acm.org/citation.cfm?id=999422&dl=GUIDE&coll=GUIDE&CFID=101787531&CFTOKEN=88559836
http://www.springerlink.com/content/978-0-387-78445-8/

173

of the 2nd International Conference on Autonomous Agents, (pp.301-308). Irsee,

Germany.

[62] Yeo, C. S., and Buyya, R. (2006). A Taxonomy of Market-based Resource Management

Systems for Utility-driven Cluster Computing. Software: Practice and Experience (SPE),

36 (13), (pp.1381-1419). Jan. 2006.

[63] Yeo, C. S., DeAssuncao, M. D., Yu, J., Sulistio, A., Venugopal, S., Placek, M., and Buyya,

R. (2006). Utility Computing on Global Grids. In H. Bidgoli (Ed), Handbook of Computer

Networks. ISBN: 978-0-471-78461-6, John Wiley and Sons, New York, USA.

[64] Yeo, C. S., and Buyya, R. (2007). Pricing for Utility-driven Resource Management and

Allocation in Clusters. International Journal of High Performance Computing

Applications, 21(4):405-418. Nov. 2007.

[65] Yeo, C. S., and Buyya, R. (2005). Service Level Agreement based Allocation of Cluster

Resources: Handling Penalty to Enhance Utility. Proceedings of the 7th IEEE

International Conference on Cluster Computing (Cluster 2005), (pp. 1-10). Bostan, MA,

USA.

[66] Youseff, L., Butrico, M., and Da Silva, D. (2008). Toward a Unified Ontology of Cloud

Computing. Grid Computing Environments Workshop, (pp.1-10). Austin, Texas, USA.

[67] Jaideep, D. N., and Varma, M. V. (2010). Learning based Opportunistic Admission

Control Algorithms for Map Reduce as a Service. Proceedings of the 3rd India Software

Engineering Conference (ISEC 2010), Mysore, India.

[68] Irwin, D. E. and Grit, L. E. and Chase, J. S. (2004). Balancing Risk and Reward in a

Market-based Task Service. Proceedings of the 13th International Symposium on High

Performance Distributed Computing (HPDC 2004), Honolulu, HI, USA.

[69] Yemini, Y. (1981). Selfish Optimization in Computer Networks Processing. In Proceeding

of the 20th IEEE Conference on Decision and Control including the Symposium on

Adaptive Processes, San Diego, USA.

[70] Popovici, I., and Wiles, J. (2005). Profitable Services in an Uncertain World. Proceedings

of the 18th Conference on Supercomputing (SC 2005), Seattle, WA.

[71] Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lindner, M. (2009). A Break in the

Clouds: towards a Cloud Definition. ACM SIGCOMM Computer Communication

Review, 39(1), (pp.50-55).

[72] Parkhill, D. (1966). The Challenge of the Computer Utility, Addison-Wesley, USA.

[73] Vouk, M. A. (2008). Cloud Computing-Issues, Research and Implementation. Proceedings

of the 30th International Conference on Information Technology Interfaces (ITI 2008),

Dubrovnik, Croatia.

[74] Bichler, M., and Setzer, T. (2007). Admission Control for Media on Demand Services.

Service Oriented Computing and Application. Proceedings of IEEE International

Conference on Service Oriented Computing and Applications (SOCA 2007), Newport

Beach, California, USA.

[75] Chun, N. B., and Culler, D. E. (2002). User-centric Performance Analysis of Market-

based Cluster Batch Schedulers. Proceedings of the 2nd IEEE/ACM International

Symposium on Cluster and Grid Computing (CCGrid 2002), Berlin, Germany.

[76] Coleman, K., Norris, J., Candea, G., and Fox, A. (2004). OnCall: Defeating Spikes with a

Free-market Application Cluster. Proceedings of the 1st International Conference on

Autonomic Computing, New York, USA.

http://www.ourglocal.com/?c=28%2C1%2Cus%2CSan+Diego
http://www.ourglocal.com/?c=15%2Cus

174

[77] Buyya, R., Ranjan, R., and Calheiros, R. N. (2010). InterCloud: Utility-Oriented

Federation of Cloud Computing Environments for Scaling of Application Services.

Proceedings of the 10th International Conference on Algorithms and Architectures for

Parallel Processing (ICA3PP 2010), Busan, South Korea.

[78] Rochwerger, B., et al. (2009). The Reservoir Model and Architecture for Open Federated

Cloud Computing. IBM Systems Journal, 4(53), (pp.1-11).

[79] Keahey, K., Matsunaga, A., and Fortes, J. (2009). Sky Computing. IEEE Internet

Computing, 13(5), (pp. 43–51).

[80] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya, R. (2011).

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments

and Evaluation of Resource Provisioning Algorithms. Software: Practice and Experience,

1(41), (pp. 23-50), ISSN: 0038-0644, Wiley Press, New York, USA.

[81] Nudd, G. R., Kerbyson, D. J., Papaefstathiou, E., Perry, S. C., Harper, J. S., and Wilcox, D.

V. (2000). Pace-A Toolset for the Performance Prediction of Parallel and Distributed

Systems. International Journal of High Performance Computing Applications, 14(3), (pp.

228–-51).

[82] Smith, W., Foster, I., and Taylor, V. (1998). Predicting Application Run Times Using

Historical Information. Proceedings of IPPS/SPDP Workshop on Job Scheduling

Strategies for Parallel Processing (JSSPP 1998), Florida, USA.

[83] Liu, Z., Squillante, M. S., and Wolf, J. L. (2001). On Maximizing Service-Level-

Agreement Profits. Proceedings of the 3rd ACM conference on Electronic Commerce (EC

01), Tampa, Florida, USA.

[84] Menasce, D. A., Almeida, V. A. F., Fonseca, R., and Mendes, M. A. (1999). A

Methodology for Workload Characterization of E-Commerce Sites. Proceedings of the

1999 ACM Conference on Electronic Commerce (EC 1999), Denver, CO, USA.

[85] Chen, Y., Iyer, S., Liu, X., Milojicic, D., and Sahai, A. (2007). SLA Decomposition:

Translating Service Level Objectives to System Level Thresholds. Proceedings of the 4th

IEEE International Conference on Autonomic Computing, Florida, USA.

[86] Reig, G., Alonso, J., and Guitart, J. (2010). Deadline Constrained Prediction of Job

Resource Requirements to Manage High-level SLAs for SaaS Cloud Providers. Tech. Rep.

UPC-DAC-RR, Dept. d’Arquitectura de Computadors, University Polit’ecnica de

Catalunya, Barcelona, Spain.

[87] Xiong, K., and Perros, H. (2008). SLA-based Resource Allocation in Cluster Computing

Systems. Proceedings of the 17th IEEE International Symposium on Parallel and

Distributed Processing (IPDPS 2008), Alaska, USA.

[88] Netto, M., and Buyya, R. (2009). Offer-based Scheduling of Deadline-constrained Bag-of-

Tasks Applications for Utility Computing Systems. Proceedings of the 18th International

Heterogeneity in Computing Workshop (HCW 2009), in conjunction with the 23rd IEEE

International Parallel and Distributed Processing Symposium (IPDPS 2009), Roma, Italy.

[89] Garg, S. K., Buyya, R., and Siegel, H. J. (2010). Time and Cost Trade-off Management

for Scheduling Parallel Applications on Utility Grids. Future Generation Computer

Systems, 26(8), (pp. 1344-1355).

[90] Islam, M., Balaji, P., Sadayappan, P., and Panda, D. K. QoPS: A QoS Based Scheme for

Parallel Job Scheduling. Proceedings of the 9th International Workshop on Job

Scheduling Strategies for Parallel Processing (JSSPP 2003), Seattle, USA.

http://www.cloudbus.org/papers/CloudSim2010.pdf
http://www.cloudbus.org/papers/CloudSim2010.pdf
http://www.cloudbus.org/papers/Offers-based_Scheduling-HCW2009.pdf
http://www.cloudbus.org/papers/Offers-based_Scheduling-HCW2009.pdf
http://dx.doi.org/10.1016/j.future.2009.07.003
http://dx.doi.org/10.1016/j.future.2009.07.003

175

[91] Islam, M., Sadayappan, P., and Panda, D. K. (2004). Towards Provision of Quality of

Service Guarantees in Job Scheduling. Proceedings of the 6th IEEE International

Conference on Cluster Computing (Cluster 2004), San Diego, USA.

[92] Varia, J. (2010). Architecting Applications for the Amazon Cloud. Cloud Computing:

Principles and Paradigms, Buyya, R., Broberg, J., Goscinski, A. (eds), ISBN-13: 978-

0470887998, Wiley Press, New York, USA. Web - http://aws.amazon.com

[93] CIO, retrieved 10 Sep 2010: http://www.cio.com.au.

[94] GoGorid, retrieved on 10 Sep 2010: http://www.gogrid.com.

[95] RackSpace, retrieved on 10 Sep 2010: http://www.rackspacecloud.com.

[96] Microsoft Azure, retrieved on 10 Sep 2010: http://www.microsoft.com/windowsazure/.

[97] IBM, retrieved on 10 Sep 2010: http://www.ibm.com/ibm/cloud/ibm_cloud/.

[98] Ostermann, S., Iosup, A., Yigitbasi, M. N., Prodan, R., Fahringer, T., and Epema, D.

(2009). An Early Performance Analysis of Cloud Computing Services for Scientific

Computing. Proceedings of the 1st International Conference on Cloud Computing

(CloudCom 2009), Beijing, China.

[99] Kumar, S., Dutta, K., Mookeriee, V. (2009). Maximizing Business Value by Optimal

Assignment of Jobs to Resources in Grid Computing, European Journal of Operational

Research, 194(3).

[100] McManus, M. L., Long, M. C., Copper, A., and Litavak, E. (2004). Queuing Theory

Accurately Models the Need for Critical Care Resources. Anesthesiology, 100(5), (pp.

1271-1276), Lippincott Williams and Wilkins; ISBN (0003-3022), USA.

[101] Wolff, R.W. (1982). Poisson Arrivals See Time Averages. Operations Research, 30(2),

(pp. 223-231).

[102] Saleforce.com, retrieved on 10 Sep 2010: http://www.salesforce.com/au/.

[103] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., and Epema, D.

(2009). A Performance Analysis of EC2 Cloud Computing Services for Scientific

Computing. Proceedings of the 1st International Conference on Cloud Computing

(CloudComp), Munich, Germany.

[104] Popovici, I., and Wiles, J. Proitable Services in an Uncertain World. Proceedings of

the18th Conference on Supercomputing (SC 2005), Seattle, WA.

[105] Reig, G., Alonso, J., and Guitart, J. (2010). Prediction of Job Resource Requirements for

Deadline Schedulers to Manage High-level SLAs on the Cloud. Proceedings of the 9th

IEEE International Symposium on Network Computing and Applications (NCA 2010),

Massachusetts, USA.

[106] Vecchiola, C., Chu, X. C., Mattess, M., and Buyya, R. (2011). Aneka-Integration of

Private and Public Clouds. Cloud Computing Principles and Paradigms, Willy, USA.

[107] salesforce.com, retrieved on 06 Dec 2010: http://www.salesforce.com.

[108] Computer Associates Pty Ltd, retrieved on 06 Dec 2010: http://www.ca.com.

[109] Compiere ERP on Cloud, retrieved on 06 Dec 2010: http://www.compiere.com/.

[110] Yang, E. F., Zhang, Y., Wu, L., Liu, Y. L., and Liu, S. J. (2011). A Hybrid Approach to

Placement of Tenants for Service-Based Multi-tenant SaaS Application. Proceedings of

the 6th IEEE Asia-Pacific Services Computing Conference, Korea.

http://aws.amazon.com/
http://www.cio.com.au/
http://www.rackspacecloud.com/
http://www.microsoft.com/windowsazure/
http://www.ibm.com/ibm/cloud/ibm_cloud/
http://www.salesforce.com/au/
http://www.springerlink.com/content/?Author=Simon+Ostermann
http://www.springerlink.com/content/?Author=Alexandria+Iosup
http://www.springerlink.com/content/?Author=Nezih+Yigitbasi
http://www.springerlink.com/content/?Author=Radu+Prodan
http://www.springerlink.com/content/?Author=Thomas+Fahringer
http://www.springerlink.com/content/?Author=Dick+Epema
http://www.salesforce.com/
http://www.ca.com/
http://www.compiere.com/

176

[111] Gad, T. (2010). Why Traditional Enterprise Software Sales Fail.

http://www.sandhill.com/opinion/editorial_print.php?id=307. Referenced on March 6

2010.

[112] Fu, Y., and Vahdat, A. (2010). SLA Based Distributed Resource Allocation for Streaming

Hosting Systems. Retrived on 06 Dec 2010: http://issg.cs.duke.edu.

[113] Yarmolenko, V., and Sakellariou, R. (2006). An Evaluation of Heuristics for SLA Based

Parallel Job Scheduling. Proceedings of the 3rd High Performance Grid Computing

Workshop (in conjunction with IPDPS 2006). Rhodes, Greece.

[114] Wu, L., Garg, S. K., and Buyya, R. (2011). SLA-based Resource Allocation for Software

as a Service Provider (SaaS) in Cloud Computing Environments. Proceedings of the 11th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid

2011), Los Angeles, USA.

[115] Mensce, D., and Almeida, V. (2002). Capacity Planning for Web Performance: Metrics,

Models and Methods. Prentice-Hall, Upper Sadale River, NJ.

[116] Hamscher, V., Schwiegelshohn, U., Streit, A., and Yahyapour, R. (2000). Evaluation of

Job-Scheduling Strategies for Grid Computing. Proceedings of the 9th IEEE International

Conference on Grid Computing (GRID 2000), Tsukuba, Japan.

[117] Gomoluch, J., and Schroeder, M. (2003). Market-based Resource Allocation for Grid

Computing: A model and simulation. Proceedings of the 1st International Workshop on

Middleware for Grid Computing (MGC 2003), Rio de Janeiro, Brazil.

[118] Pacifici, G., Spretzer, M., Tantawi, A. (2003). Performance Management of Cluster

BasedWeb Services. Proceedings of the 11th IEEE/IFIP Symposium on Integrated

Management, 2003, Colorado Springs, USA.

[119] Waldspurger, C. (2002). Memory Resource Management in VMware ESX Server.

Proceedings of the 5th Symposium on Operating Systems Design and Implementation,

2002, Boston, USA.

[120] Alvarez, G., Borowsky, E., Go, S., Romer, T., Becker-Szendy, R., Golding, R., Merchant,

A., Spasojevic, M., Veitch, A., and Wilkes, J. (2001). Minerva: An Automated Resource

Provisioning Tool for Large-Scale Storage Systems. ACM Transactions on Computer

Systems, 1(19), (pp. 483-518), November, 2001.

[121] Kimbre, T., Schieber, B., and Svirdenko, M. (2004). Minimizing Migrations in Fair

Multiprocessor Scheuling of Persistent Tasks. Proceedings of Annual ACM-SIAM

Symposium on Discrete Algorithms, 2004, New Orleans, USA.

[122] Khanna, G., Beaty, K., Kochut, A., and Kar, G. (2006). Dynamic Application

Management to Address SLAs in a Virtulized Server Environment. Proceedings of the

10th IEEE/IFIP Network Operations and Management Symposium, 2006, Vancouver,

Canada.

[123] Grit, L., Irwin, D., Yumerefendi, A., and Chase, J. (2006). Virtual Machine Hosting for

Networked Clusters: Building the Foundations for Autonomic Orchestration. In

Proceeding of the 2nd IEEE International Workshop on Virtualization Technology in

Distributed Computing, 2006, Tampa, USA

[124] Van, H. N., Tran, F. D., and Menaud, J.-M. (2009). SLA-aware Virtual Resource

Management for Cloud Infrastructures. In Proceeding of 9th IEEE International

Conference on Computer and Information Technology, 2009, Xiamen, China.

http://www.sandhill.com/opinion/editorial_print.php?id=307
http://issg.cs.duke.edu/

177

[125] Hermenier, F., Lorca, X., and Menaud, J.-M. (2009). Entropy: A Consolidation Manager

for Clusters. In Proceeding of ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments (VEE), 2009, Hamilton Crowne Plaza, Washington.

[126] Bobroff, N., Kochut, A., and Beaty, K. (2007). Dynamic Placement of Virtual Machines

for Managing SLA Violations. In Proceeding of the 10th IFIP/IEEE International

Symposium on Integrated Network Management (IM), 2007, Munich, Germany.

[127] Chaisiri, S., Lee, B., and Niyato, D. (2011). Optimization of Resource Provisioning Cost

in Cloud Computing. IEEE Transactions on Services Computing, preprint, Feb. 2011,

DOI: http://doi.ieeecomputersociety.org/10.1109

[128] He, X. S., Sun, X. H., and Von Laszewski, G. (2003). QoS Guided Min-min Heuristic for

Grid Task Scheduling. Journal of Computer Science and Technology, 18(4), (pp. 442-451),

July 2003.

[129] Bryant, A., and Colledge, B. (2002). Trust in Electronic Commerce Business

Relationships. Journal of Electronic Commerce Research, 3(2), (pp. 32-39).

[130] Crago, S., Dunn, K., Eads, P., Hochstein, L., Dong-In, K., Mikyung, K., Modium, D.,

Sigh, K., Woo, S. J., Walters. J. P. (2011). Heterogeneous Cloud Computing. In

Proceeding of the IEEE International Conference on Cluster Computing (CLUSTER).

Austin, Taxas.

[131] Sumit, A., Driscoll, J., Gabaix X., and Laibson, D. (2009). The Age of Reason: Financial

Decisions over the Life-Cycle with Implications for Regulation. Brooking Chapters on

Economic Activity Fall 2009, (pp. 51-117).

[132] Garey, M. R., and Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness, W.H. Freeman, San Francisco, USA.

[133] Chen, Y., Das, A., Qin, W., Sivasubrammaniam, A., Wang, Q., and Gautam, N. (2005).

Managing Server Energy and Operational Costs in Hosting Centers. ACM Sigmetrics

Performance Evaluation Review 22(1), (pp. 303-314).

[134] Martello, S., and Toth, P. (1981). An Algorithm for the Generalized Assignment Problem,

Operational Research 81, (pp. 589-603).

[135] Goolgle App Engine, retrieved on 06 June 2012:

http://www.google.com/enterprise/apps/business.

[136] Micorosoft, Hyper-V, http://www.microsoft.com/en-us/server-cloud/hyper-v-

server/default.aspx. Accessed on 06 June 2010:

[137] VMWare, retrieved on 06 June 2012: http://www.vmware.com/.

[138] Wu, L. L., Garg, S. K., and Buyya, R. (2012). SLA-based Admission Control for a

Software-as-a-Service Provider in Cloud Computing Environments. Journal of Computer

and System Sciences, 78(5), (pp. 1280-1299), Sep. 2012.

[139] Cooley, R. (2003). The Use of Web Structures and Content to Identify Subjectively

Interesting Web Usage Patterns. ACM Transactions on Internet Technology 3(2), (pp.

93-116).

[140] Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N. (2000). Web Usage Mining:

Discovery and Applications of Usage Patterns from Web Data. ACM SIGKDD

Explorations Newsletter, 1(2), Jan. 2000.

[141] Brian, D. D. (2004). Learning Web request patterns. In A. Poulovassilis and M. Levene

(eds), Web Dynamics: Adapting to Change in Content, Size, Topology and Use, (pp.

435-460). Springer.

http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.cloudbus.org/papers/AdmissionControlInClouds-JCSS.pdf
http://www.cloudbus.org/papers/AdmissionControlInClouds-JCSS.pdf

178

[142] Su, Z., Yang, Q., Lu, Y., Zhang, H. (2000). WhatNext: A Prediction System for Web

Requests Using N-gram Sequence Models. Proceedings of the 1st International

Conference on Web Information Systems Engineering (WISE'00), 1, (pp. 214), June 19-

20, 2000.

[143] Kurian, H. (2008). A Markov Model for Web Request Prediction. Master's thesis, Kansas

State University, Department of Computing and Information Sciences, Kansas, USA.

[144] Chao, K., Anane, R., Chen, J. H., Gatward, R. (2002). Negotiating Agents in a Market-

oriented Grid. Proceedings of the 2nd IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGRID 2002), Berlin, Germany.

[145] Sim, K. M. (2006). A Survey of Bargaining Models for Grid Resource Allocation. ACM

SIGECOM: E-Commerce Exchange, 5(5), (pp. 22–32).

[146] Faratin, P., Sierra, C., Jennings, N. R. (1998). Negotiation Decision Functions for

Autonomous Agents, Robotics and Autonomous System, 24(3-4), (pp. 159-182).

[147] Chhetri, M., et. al. (2006). A Coordinated Architecture for the Agent-based Service

Level Agreement Negotiation of Web Service Composition. Proceedings of Australian

Software Engineering Conference. (ASWEC), Washington,

[148] Comuzzi, M., and Pernici, B. (2005). An Architecture for Flexible Web Service QoS

Negotiation. Proceedings of the 9th IEEE International Enterprise Computing

Conference, Enschede, The Netherlands.

[149] Zulkernine, F. et al. (2009). In a Policy-based Middleware for Web Services SLA

Negotiation. IEEE International Conference on Web Serivce (ICWS), (pp. 1043-1050).

[150] Akhani, J., Chaudhary, S., and Somani, G. (2011). Negotiation for Resource Allocation

in IaaS Cloud. Proceedings of the 4th Annual ACM Bangalore Conference, Banglore,

India.

[151] Brzostowski, J., and Kowalczy, R. (2006). Adaptive Negotiation with On-line Prediction

of Opponent Behaviour in Agent-based Negotiations. Proceedings of the IEEE/WIC

International Conference on Intelligent Agent Technology, HongKong, China.

[152] Zukernine, F., and Martin, P. (2011). An Adaptive and Intelligent SLA Negotiation

System for Web Services. IEEE Transactions of Service Computing, 4(1), (pp. 31-43).

[153] Shell. M., Comuzzi, M., and Pernici, B. (2007). An Architecture for Flexible Web

Service QoS Negotiation. Proceedings of the 1st IEEE International Enterprise

Distributed Object Computing (EDOC) Conference, Maryland, USA.

[154] Li, H., Su, S., and Lam, H. (2006). On Automated E-Business Negotiations: Goal, Policy,

Strategy and Plans of Decision and Action. Journal of Organizational Computing and

Electronic Commerce, 13(1), (pp. 1-29).

[155] Retrieved on 10 April 2012: http://vitlive.com.

[156] Retrieved on 06 April 2012: http://www.cloudharmony.com.

[157] Comuzzi, M., and Pernici, B. (2009). A Framework for the QoS-based Web Service

Contracting. ACM Transaction on the Web, 3(3), (pp. 1-10).

[158] Retrieved on 10 April 2012:

http://sites.google.com/site/gistcloudresearchgroup/automated-sla-negotiation.

[159] Garg, S. K., Vecchiola, C., and Buyya, R. (2012). Mandi: A Market Exchange for

Trading Utility and Cloud Computing Services. The Journal of Supercomputing, Volume

179

64, No. 3, Pages: 1153-1174, ISSN: 0920-8542, Springer Science+Business Media,

Berlin, Germany, June 2013.

[160] Czajkowski, K., Foster, I., and Kesselman, C. (1999). Resource Co-allocation in

Computational Grids. Proceedings of the 8th IEEE Symposium on High Performance

Distributed Computing.

[161] Cao, J. W., Spooner, D. P., and Nudd, G. R. (2002). Agent-based Resource Management

for Grid Computing. Proceedings of the 2nd International Symposium on Cluster

Computing and the Grid, Germany

[162] Binmore, K., and Vulkan, N. (1997). Applying Game Theory to Automated Negotiation.

Chapter prepared for DIMACS Workshop on Economics, Game Theory and the Internet.

[163] Arai, S., Sycara, K., and Payne, T. (2000). Experience-learning in based Reinforcement

Learning to Acquire Multi-Agent Domain. Proceedings the Sixth Pacific Rim

International Conference on Artificial Intelligence, Springer-Verlag.

[164] Teuteberg, F., and Kurbel, K. (2002). Anticipating Agents' Negotiation Strategies in an

E-marketplace Using Belief Models. Proceedings of the 5th International Conference on

Business Information System, Poland.

[165] Faratin, P., et. al. (2000). Using Similarity Criteria to Make Negotiation Trade-offs.

Proceedings of the 4th International Conference on Multi-Agent Systems, Boston, USA.

[166] Dastjerdi, A. V., and Buyya, R. (2012). An Autonomous Reliability-Aware Negotiation

Strategy for Cloud Computing Environments. Proceedings of the 12th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing (CCGrid), Ottawa,

Canada.

[167] Retrieved on 10 April 2012: http://www.cordys.com/cordys-for-cloud-brokers.

[168] Reumann, J., Mehra, A., Shin, K.G., and Kandlur, D (2000). Virtual Services: A New

Abstraction for Server Consolidation, Proceedings of the 2000 USENIX Annual

Technical Conference (USENIX ATC), San Diego, CA.

[169] Rooney, S (2000). The IcorpMaker: A Dynamic Framework for Application-Service

Providers, Proceedings of the IEEE Workshop on IP-oriented Operations and

Management, Cracow, Poland.

[170] Bruno, J., Gabber, E., Ozden B., and Silberschatz A. (1998). The Eclipse Operating

System: Providing Quality of Service via Reservation Domains, Proceedings of the 1998

USENIX Annual Technical Conference (USENIX ATC), New Orleans, LA.

[171] Vogels, W., and Dumitriu, D.M. (2000). An Overview of the Galaxy Management

Framework for Scalable Enterprise Cluster Computing, Proceedings of the IEEE

International Conference on Cluster Computing (Cluster), Chemnitz, Germany.

[172] Padala, P. et. al. (2009). Automated Control of Multiple Virtualized Resources.

Proceedings of the IEEE 4
th

 EuroSys Conference, Nuremberg, Germany.

[173] Sukwong, O., Sangpetch, A., and Kim, H.S. (2012). SageShift: Managing SLAs for

Highly Consolidated Cloud, Proceedings of the 31
st
 IEEE INFOCOM, Orlando, FL.

[174] Appleby, K et. al., Océano – SLA Based Management of a Computing Utility (2001).

Proceedings of the 7th IFIP/IEEE International Symposium on Integrated Network

Management, Dublin, Ireland.

[175] Rajkumar, R., Lee, C., Lehoczky, J., and Siewiorek, D. (1998). Practical solutions for

QoS-based resource allocation problems. Proceedings of the 19
th
 IEEE Real-Time

Systems Symposium (RTSS), Madrid, Spain.

http://www.cordys.com/cordys-for-cloud-brokers

180

[176] Telefónica I + D, Claudia Platform, 2013. URL http://claudia.morfeoproject.org/.

[177] The OPTIMIS Consortium, OPTIMIS: optimized infrastructure services, 2013.

 URL http://www.optimis-project.eu/.

[178] The 4CaaSt Consortium, Building the PaaS cloud of the future, 2013. URL

 http://4caast.morfeo-project.org/.

[179] The BonFIRE Consortium, Building service test beds on FIRE, 2013. URL

 http://www.bonfire-project.eu/

[180] The Cloud-TM Consortium, Cloud-TM: a novel programming paradigm for cloud

computing, 2013. URL http://www.cloudtm.eu/.

[181] The PaaSage Consortium, PaaSage: model based cloud platform upperware, 2013. URL

http://www.paasage.eu/.

[182] The SLA@SOI, 2014. URL http://sla-at-soi.eu/

[183] Cloud Security Alliance (CSA), Security guidance for critical areas of focuses in cloud

 computing v3.0, https://cloudsecurityalliance.org/. Accessed on 10 July 2014.

http://claudia.morfeoproject.org/
http://www.optimis-project.eu/
http://4caast.morfeo-project.org/
http://www.bonfire-project.eu/
http://www.cloudtm.eu/
http://sla-at-soi.eu/

