

Crossbow Technology, Inc., 41 Daggett Dr., San Jose, CA 95134
Tel: 408-965-3300, Fax: 408-324-4840

email: info@xbow.com, website: www.xbow.com

TinyOS Getting Started Guide

Rev. A, October 2003

Document 7430-0022-03

©2002-2003 Crossbow Technology, Inc. All rights reserved.
Information in this document is subject to change without notice.

Crossbow and SoftSensor are registered trademarks and DMU is a
trademark of Crossbow Technology, Inc. Other product and trade names
are trademarks or registered trademarks of their respective holders.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 1

1 Introduction...3
1.1 Installing TinyOS development tools ..3
1.2 Platforms ...5
1.3 Device Addressing..5
1.4 Programming Boards..5
1.5 Radio Frequency ...6
1.6 Sensor Boards..7
1.7 Setting the Group ID and Node ID for the Mote Network7

2 System and Hardware Verification......................................9
2.1 TinyOS PC Tools Verification: ..9
2.2 Mote Hardware Verification:..9
2.3 Hardware Verification Using MicaHWVerify11

2.3.1 Mote Radio Verification:...13
2.4 Hardware Verification Using Mote-Test...13

2.4.1 Loading in MICA2/MICA2DOT Test Firmware.............................14
2.4.2 Setting Up Mote-Test to Verify the Motes14
2.4.3 Confirming that the Mote Hardware is Working16

3 Introduction to TinyOS and NesC......................................18
3.1 An Example Application: Blink ...19

3.1.1 The Blink.nc Configuration ...20
3.1.2 The BlinkM.nc Module ..22

3.2 Compiling the Blink Application ...25
3.3 Programming a Mote and Running Blink...25
3.4 Generating the Component Structure Documentation....................26

4 Component Composition and Radio Communication........28
4.1 Sending Messages with CntToLedsAndRfm...................................28
4.2 Receiving Messages with RfmToLeds..28

5 Displaying data on the PC..29

 TinyOS Getting Started Guide

Page 2 Doc. # 7430-0022-03 Rev. A

5.1 The Oscilloscope application..29
5.2 The ‘listen’ Tool: Displaying Raw Packet Data30
5.3 The SerialForwarder Program...32
5.4 Starting the Oscilloscope GUI ..33
5.5 Transmitting Sensor Data Over the Radio to Serial Port34

6 Multihop Routing...37
6.1 Surge Demo ..37
6.2 Learning More About Multi-hop Protocols39
6.3 Learning More About TinyOS..39

7 Warranty and Support Information...................................40
7.1 Customer Service ..40
7.2 Contact Directory ..40
7.3 Return Procedure...40

7.3.1 Authorization ...40
7.3.2 Identification and Protection...41
7.3.3 Sealing the Container ..41
7.3.4 Marking...41
7.3.5 Return Shipping Address...41

7.4 Warranty...41

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 3

1 Introduction

This guide walks you through the installation, verification, compilation and
running the TinyOS 1.x application on Windows based PC. There are
several key steps to getting up and running with TinyOS.

1.1 Installing TinyOS development tools

X NOTE The installation instructions for TinyOS 1.1.0 are found in
“Readme.htm” found on the CD. If you have a previous version of TinyOS
on your system, you must uninstall it. Instructions for this are found in the
“Uninstalling TinyOS.htm” on the CD. This must be completed before
proceeding any further.

You must install with Administrator privileges. If you don’t, the setup will
eventually abort but it could leave unwanted files and program registries
behind.

The TinyOS 1.1.0 InstallShield Wizard setup offers the following software
packages:
- TinyOS
- TinyOS Tools
- NesC
- Cygwin
- Support Tools
- Java 1.4 JDK & Java COMM 2.0
- Graphviz
- AVR Tools
 - avr-binutils
 - avr-libc
 - avr-gcc
 - avarice
 - avr-insight

Choose between “COMPLETE” and “CUSTOM” install. A custom install
allows the user to choose the features that are installed. A “COMPLETE”
install includes all of the above features (recommended). The user chooses
the destination directory. Any chosen features are installed under that
destination directory. Hereafter the destination directory is referred to
as <install dir>.

JDK. If the user choose to install the JDK module, a dialog asking if the user
has read Sun's terms and conditions appears. If the user selects ‘No’, then
setup is ended. If the user selects ‘Yes,’ then the setup continues. Verify the

 TinyOS Getting Started Guide

Page 4 Doc. # 7430-0022-03 Rev. A

install directory and setup type; click on “Next” proceed or “Back” to make
changes.

Cygwin and Necessary RPMs. If the user chooses to install cygwin and any
necessary RPMs by clicking on the “Continue” button, the 1.1.0 cygwin
package tree is copied over to a directory called <install
dir>/cygwin-installation files. setup.exe is called to perform
automatic installation of those files in <install dir>/cygwin. This is
the most lengthy step. On some PCs it takes at least 30 minutes. You are
done after this step completes!

TinyOS. All the TinyOS apps, contrib, doc, tools, and tos folders are
located under <install dir>/cygwin/opt/tinyos-1.x. In addition
the “Makefile” is in this folder. The environment variables for TOSROOT
is set to <install dir>/tinyos-1.x. The TinyOS Tutorial is located
under <install dir>/cygwin/opt/tinyos-1.x/doc/tutorial

Setting Aliases

Once you have successfully installed TinyOS, it is recommended that you
setup aliases to commonly used commands and accessed directories.
Aliases are to be edited in the profile file which is located in <install
dir>/tinyos/cygwin/etc.

• These aliases are useful for quickly changing the TinyOS-1.x and
java tools directories.
alias cdtinyos=“cd c:/<install dir>/tinyos/cygwin/opt/tinyos-
1.x”

alias cdjava=“cd c:/<install dir>/tinyos/cygwin/opt/tinyos-
1.x/tools/java”

X NOTE If the <install dir> is the folder “Program Files,” then you

must enter in the text “Program\ Files” to correctly handle the space
between the two words.

• This is a useful alias for users who program with the MIB510.

alias mib510=“MIB510=/dev/ttyS<n>”

where <n> is the serial port number (0 for COM1, 1 for COM2, etc.) where
the MIB510 is attached.

These and other alias can be setup to make changing directories and other
commands easier. To make your own use the format as shown in the
examples above.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 5

1.2 Platforms

The new release of TinyOS supports the MICA2 and MICA2DOT
platforms using a new frequency tunable FM radio with improved range.
Application code is built for these platforms by invoking (in a cygwin
window):

make mica2

make mica2dot

make mica

1.3 Device Addressing

The programming tools also include a method of programming unique node
addresses without having to edit the TinyOS source code directly. To set
the node address during program load, use the following install syntax:

make (re)install.<addr> <platform>

where <addr> is the desired device address and <platform> is the target
platform. Do not use the reserved values TOS_BCAST_ADDR (0xFFFF) or
TOS_UART_ADDR (0x007E).

install - compiles the application for the target platform, set the address
and programs the device (mote).

Reinstall - sets the address and programs the (mote) ONLY and does not
recompile . This option is significantly faster.

1.4 Programming Boards

The TinyOS development environment supports a variety of programming
tools. The supported programmers include:

• The MIB500 (Crossbow’s) parallel port programmer board with
serial output.

• The MIB510 (Crossbow’s) serial port programming board.

• The Atmel AVRISP

• The Ethernet PRogramming Board (EPRB)

The standard programming software used in TinyOS is the µ In-System
Programmer or uisp. This program, which comes as a part of the TinyOS
release, takes various arguments according to the programmer hardware and
the particular programming action desired (erase, verify, program, etc.). To
simplify using this tool, the TinyOS environment invokes uisp for you with

 TinyOS Getting Started Guide

Page 6 Doc. # 7430-0022-03 Rev. A

the correct arguments whenever you issue an “install” or
“reinstall”. You only need specify the type of device you are using and
how to communicate with it. This is done using environment variables.

MIB500/Parallel Port Programmers

This is the default programmer device. No additional command
line parameters need to be specified when using this programmer.

MIB510/Serial Port Programmers

Define: MIB510=<dev> where <dev> is the name of the serial
port where the device is attached (e.g. /dev/ttyS0).

example:
 bash% MIB510=/dev/ttyS0 make install mica

where S0 is for COM1, S1 for COM2, etc.

X NOTE If your computer does not have a DB9 serial port and are
using a USB to DB9 serial port converter, you must know what port (COM)
number your computer has assigned to the USB port . Use that COM port
number when doing the above command. However, there are cases where
your computer will issue a COM port number but is not what cygwin will
communicate through. That is, by trial and error you will have to try
different numbers for ttyS#.
AVRISP

Define: AVRISP=<dev> where <dev> is the name of the serial
port where the device is attached (i.e. /dev/ttyS0).

example:
 bash% AVRISP=/dev/ttyS0 make install mica

EPRB

Define: EPRB=<host> where <host> is the DNS name or IP
address of the EPRB device.

example:
 bash% EPRB=123.45.67.89 make install mica

1.5 Radio Frequency

The new FM radios support multiple frequencies. Units are delivered either
at base frequencies of 315 MHz, 433 MHz, or 916 MHz. Within each
frequency band multiple channels can be programmed. All of the

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 7

coefficients for radio tuning are contained in the TinyOS file
/tos/platform/mica2/CC1000Const.h

Users must compile in the correct base radio frequency otherwise radio
communication will fail. The correct frequency is selected by modifying the
line 213 in the CC1000Const.h file:

[212] #ifndef CC1K_DEF_PRESET
[213] #define CC1K_DEF_PRESET (CC1K_<freq>_MHZ)
[214] #endif

Change the <freq> to one of the values listed in the table below that
matches your motes frequency

For motes running at… …use these values for <freq>
315 MHz 315_778

433_002
433 MHz (choose one) 434_845

914_077
915 MHz (choose one) 915_998

These numbers correspond to the first six digits of the radio’s frequency.
For example, 433_002 is for a mote with radio set at 433,002,000 Hz.

1.6 Sensor Boards

Multiple sensor boards are supported in this release. These sensor boards
are invoked by modifying the “SENSORBOARD=” statement in the local
Makefile (in the application directory). Remember to set the
SENSORBOARD option to either micasb, micawb, or basicsb depending
on the type of sensor board you have. For example, to use the MICA2DOT
weatherboard sensor, the Makefile in the

/apps/MicaWBVerify/TestHumidity directory contains:

COMPONENT=TestHumidity

SENSORBOARD=micawb
include ../../Makerules

1.7 Setting the Group ID and Node ID for the Mote Network

TinyOS messages contain a “group ID” in the header, which allows
multiple distinct groups of motes to share the same radio channel. If you
have multiple groups of motes in your environment, you should set the
group ID to a unique 8-bit value to avoid receiving messages for other
groups. The default group ID is 0x7d (hex) . You can set the group ID by

 TinyOS Getting Started Guide

Page 8 Doc. # 7430-0022-03 Rev. A

defining the preprocessor symbol DEFAULT_LOCAL_GROUP in Makerules
file found under /apps.

DEFAULT_LOCAL_GROUP = 0x42 # for example.

In addition, the message header carries the destination node number, which
is a 16-bit value.

Setting the node ID will become more clear in Section 5 and is included
here for reference. The node ID or local address of your mote is done when
you download the application into the mote by using the command

make mica install.<n>

where <n> is the local node ID in decimal that you wish to program into the
mote. For example,

make mica install.38

programs the mote with ID 38.

X NOTE The latest TinyOS code is available on Sourceforge
(http://sourceforge.net/projects/tinyos/). Source code should be updated as
new releases and bug fixes are checked into Sourceforge.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 9

2 System and Hardware Verification

When working with embedded devices, it is very difficult to debug
applications. Because of this, you want to make sure that the tools you are
using are working properly and that the hardware is functioning correctly.
This will save you countless hours of searching for bugs in your application
when the real problem is in the tools. This section will show you how to
check your system and the hardware.

2.1 TinyOS PC Tools Verification:

A TinyOS development environment requires the use of the avr gcc
compiler, perl, flex, cygwin (if you use windows operation system), and the
JDK 1.4.x or above. First, we will check that the tools have been installed
correctly and that the environment variables are set. The “toscheck” is a
script that will perform these functions.

• Run the cygwin application by double-clicking the icon that can be
found on your desktop.

• Change into the /tools/scripts directory and type “toscheck”.

The last line of the output should be “toscheck completed without
error”. If any errors are reported, make sure to fix the problem.

2.2 Mote Hardware Verification:

The mote hardware functionality can be tested in two different ways:

• MicaHWVerify application contained in the TinyOS distribution.

• Mote-Test GUI provided by Crossbow.

X NOTE Users are strongly advised to use a Crossbow
MIB500/MIB510 interface board with an external wall mounted power
supply (5-7 VDC). If using batteries, check the battery voltage. If the
battery voltage is less than 3.0 V the flash memory may not reprogrammed
correctly. This can also cause the ATmega128 fuses to be set incorrectly
which will defeat any further reprogramming. There have been numerous
reported difficulties with programming motes. These include program
failure, flash verification errors, and dead motes.

If you still get flash verification errors, please refer to the suggestions
provided in the application note:
http://www.xbow.com/Support/Support_pdf_files/UISPHELP.pdf. Also,
rebooting your PC, power cycling the MIB500/MIB510, and hitting the
RESET switch on the MIB may also work.

 TinyOS Getting Started Guide

Page 10 Doc. # 7430-0022-03 Rev. A

Fig. 2-1. MIB510 interface board pictured with a MICA2 and a
MICA2DOT

Fig. 2-2. MICA/MICA2 plugged into
top-side of an MIB510

Fig. 2-3. MICA2DOT plugged
into bottom-side of an MIB510

M WARNING When programming a MICA2 with the
MIB500/MIB510, turn of the battery switch. For a MICA2DOT, remove
the battery before inserting into the MIB500/MIB510. The MICA2s and
MICA2DOTs do not have switching diodes to switch between external and
battery power.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 11

2.3 Hardware Verification Using MicaHWVerify

To test the hardware, we have provided the MicaHWVerify application. It
is designed for the purpose of verifying MICA/MICA2/MICA2DOT mote
hardware only. If you have a different hardware platform, this application is
not suitable.

• If necessary set the radio frequency for the MICA2/MICA2DOT as
described in Section 1.5.

• Change to the /apps/MicaHWVerify directory

• For a MICA platform type “make mica”

• For a MICA2 or MICA2DOT platform type “PFLAGS=-
DCC1K_MANUAL_FREQ=<freq> make <mica2|mica2dot>”,
respectively.

The compilation process should complete without any errors.

• Place a mote into a programming board and power it with either
batteries or an AC wall power adaptor. (The red LED on the
programming board should light.)

• Connect the programming board to the parallel port of your computer
if you have an MIB500. Or if you have an MIB510, connect it to the
serial port of your computer.

• Load the application on to the device. If programming the mote with
an MIB500 (parallel port programmer), type

make reinstall <mica|mica2|mica2dot>

Or if programming the mote with an MIB510 (serial port
programmer), type

MIB510=/dev/ttyS# make reinstall
<mica|mica2|mica2dot>

Where # is 0, 1, 2, etc. for COM1, COM2, COM3 assuming that the
numbering begins with zero. See Section 1.4 for installation
instructions for other programmers.

A typical output when programming with an MIB510 looks like

$ mib510 make reinstall mica2
 installing mica2 binary
uisp -dprog=mib510 -dserial=/dev/ttyS0 -dpart=ATmega128 --
wr_fuse_e=ff --erase --upload if=build/mica2/main.srec
Firmware Version: 2.1
Atmel AVR ATmega128 is found.
Uploading: flash
Fuse Extended Byte set to 0xff

 TinyOS Getting Started Guide

Page 12 Doc. # 7430-0022-03 Rev. A

Now you know that the programming tools and the computer’s parallel port
are working.

The next step is to verify the mote hardware. First, confirm that the LEDs
are blinking like a binary counter. Next, connect the programming board to
the serial port of the computer. The MicaHWVerify application will send
data over the UART that contains it status. To read from the serial port, we
provide a java tool called hardware_check.java. It is located in the
same directory. Build and run this tool. The commands are shown below
assuming you are using COM1 at 57600 baud to connect to the
programming board.

X NOTE If you are using the MIB510, please be sure to turn the SW2
switch to OFF position before using it to read the data from the Serial Port.
If SW2 is set to ON position, this will disable mote’s Tx line making it not
transmit any data.

• Type “make -f jmakefile”. The output from this command
should look like

$ make -f jmakefile
mig java -java-classname=DiagMsg MicaHWVerify.nc DiagMsg
-o DiagMsg.java
mig java -java-classname=RxTestMsg MicaHWVerify.nc
RxTestMsg -o RxTestMsg.java
javac -sourcepath . hardware_check.java

• Then type “MOTECOM=serial@COM1:57600 java
hardware_check” The output on the PC should be something like

hardware_check started
Hardware verification successful.
Node Serial ID: 1 60 48 fb 6 0 0 1d

This program checks the serial ID of the mote (except on the MICA2DOT),
the flash connectivity, the UART functionality and the external clock. If all
status checks are positive, the hardware verification successful message will
be printed on your PC screen.

X NOTE Since MICA2DOTs don’t have a Serial ID, when you build the
MicaHWVerify application, a warning message appears saying that “Serial
ID not supported on mica2dot platform”. However the application still
builds and installs . If you run the hardware_check on MICA2DOT, it
performs hardware verification, but the serial ID displayed is simply all
0xFF.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 13

2.3.1 Mote Radio Verification:

To verify radio, you need two nodes. Use the second node (that has passed
the hardware check up to this point) to act as a radio gateway to the first
node. Install it with the application TOSBase.

• Change directory to the /apps/TOSBase directory

• Compile the TOSBase application by typing “PFLAGS=-
DCC1K_MANUAL_FREQ=<freq> make <mica2|mica2dot>”

• Install the program into the mote via MIB500 or MIB510. Leave this
mote in the programming board and place the other node next to it.

• Run the hardware_check java application by typing
“MOTECOM=serial@COM1:57600 java hardware_check”. The
output should be the same as shown in the previous section (but will
display the serial ID of the remote mote). The indication of a working
radio system is, again, something like:

hardware_check started
Hardware verification successful.
Node Serial ID: 1 60 48 fb 6 0 0 1e

If the remote mote is turned off or not functioning, it will return a message
“Node transmission failure”.

If your system and hardware pass all the above tests, you are all set for
having some fun with TinyOS. Congratulations.

2.4 Hardware Verification Using Mote-TestTo test the hardware, we
have provided the application Mote-Test. Its purpose is to provide a quick
way to check you’re your MICA2 and MICA 2DOT motes are working.

• Install Mote-Test from the CD by running setup.exe found under
/Crossbow Software/Mote-Test folder. This would also install
LabVIEW run time engine.

• Copy the folders MICA2_TEST_315, MICA2_TEST_433,
MICA2_TEST_916, MICA2DOT_TEST_315,
MICA2DOT_TEST_433, and MICA2DOT_TEST_916 from the CD
folder /Crossbow Software/Mote Firmware to your /apps
directory.

• Power the MIB500/MIB510 programming board with the AC wall-
power adaptor.

• Connect the MIB500/MIB510 to a PCs serial port with a DB9
(female)/DB9 (male) serial cable.

• For MIB500 users only: Connect the MIB500 to a PCs parallel port
with a DB25 (female)/DB25 (male) parallel port printer cable.

 TinyOS Getting Started Guide

Page 14 Doc. # 7430-0022-03 Rev. A

Your MICA units are shipped from the factory with the hardware test
firmware already installed. In the event you require confirmation that the
hardware is still fully functional after altering the firmware, you may
compile and reinstall the test firmware with the procedure described in
Section 2.4.1. Of course, you need to have TinyOS installed into your PC.
Otherwise, proceed to Section 2.4.2.

2.4.1 Loading in MICA2/MICA2DOT Test Firmware

• From a cygwin window, go to the folder for MICA2_TEST_XXX or
MICA2DOT_TEST_XXX (where XXX is the frequency of your unit)

• Type “make mica2 reinstall” for each mote you wish to test.
This will install the test firmware in your MICA2 or MICA2DOT
mote(s).

X NOTE It is important to note that the command used for this chapter
to install the mote test firmware into the motes is “make mica2
reinstall” and not “make mica2 install.”

If successfully installed, upon pressing the hardware RESET button on the
programming board (marked as SW1), you should see the LEDs blink for a
MICA2. This verifies that the programming tools and computer’s parallel
port are working correctly.

2.4.2 Setting Up Mote-Test to Verify the Motes

• If not already done, connect the MIB500/MIB510 programming
board to the serial port of the PC.

• Next, run the Mote-Test.exe application from the Start
Menu>Programs>Mote-Test.

The opening screen (Fig 2-4) will have button options to select various
functions.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 15

Fig 2-4. Mote-Test main window. Note: the PACKETS, GRAPH, and

DATALOGGER buttons do not perform any function

Select the CONFIGURE button, and one of the two pop-up screens will
appear (Fig. 2-5):

Fig 2-5. COMM Setup windows for the MICA2 (left) and MICA2DOT

(right)

Make sure that the correct port is selected for your computer. The MICA2
firmware is configured to run at baud rate of 57600 and the MICA2DOT at
19200. The default packet size should be 36, and UART CRC should not

 TinyOS Getting Started Guide

Page 16 Doc. # 7430-0022-03 Rev. A

be enabled. Once the configuration is properly entered, push the SET NOW
button. The main screen will now reappear.

2.4.3 Confirming that the Mote Hardware is Working

Mote-Test enables you to use either a MICA2 or a MICA2DOT in the
MIB500/MIB510 to create a base station or serial gateway to a PC. This
feature is unlike most TinyOS applications. This was done to test and
demonstrate that two-way radio communications between two motes. These
tests also verify that the mote hardware and the computer’s serial port are
working correctly.

• Supply a mote (MICA2 or MICA2DOT) (pre)programmed with
MICA2_TEST_XXX or MICA2DOT_TEST_XXX firmware with batteries.
This mote becomes the remote unit to test the radio functions.

• Connect either a MICA2 or MICA2DOT (pre)programmed with the
MICA2_TEST_XXX or MICA2DOT_TEST_XXX firmware on the MIB
programming board in which “XXX” is the same frequency as the
remote unit.

• If not already done, connect the MIB500/MIB510 programming
board to the serial port of the PC.

• Press the SELF TEST button. A pop-up screen (see Fig. 2-6) will ask
“Which unit to test?” Choose either MICA2 or MICA2DOT
depending on what you have plugged into the MIB board.

Fig 2-6. Unit selection pop-up screen

• A second pop-up (Fig. 2-7) will appear with instructions for
configuring the test, click “OK.” Place the remote unit 2 feet or more
from the base.

Fig 2-7. An example instruction screen for placing motes

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 17

One of two Mote-Test Hardware Verify (Fig. 2-8) screens will appear:

Fig 2-8. Mote-Test Hardware Verify screens for the MICA2 DOT (left) and

MICA2 (right).

The MICA2DOT does not have a ID number and so this test is not done.
Instead it reports back the on-board temperature reading (in °C)

• To run either the MICA2 or MICA2DOT hardware verify test, press
the START TEST button.

For the MICA2 observe the status lights for the Memory, Battery, RSSI
Test’s, and the ID NUMBER in the Serial ID test. For the MICA2DOT
observe the Memory, Battery, Temp, and RSSI Tests status lights. If all
hardware components are functional, the PASS indicator will be lit. All
these hardware tests are performed for the Base Station Mote except the
RSSI.

The RSSI dbm has two boxes: the left one shows what the remote unit
measured from the base stations unit. If the RSSI value is less than -80.00,
you will get a FAIL indicator. This does not necessarily mean that your
mote’s radio has failed. If you have placed the remote MICA2 or
MICA2DOT far away, the radio signals are too attenuated. The solution is
to place your mote closer to the base station. If the remote unit is a
MICA2DOT, be sure to use fresh 3 V coin cells.

Individual tests on each interface can be performed separately by selecting
the appropriate test button. This verifies that the mote hardware is working
correctly. When the test is completed, press the EXIT button. The main
screen will reappear. You can continue checking other motes or end the
program and continue on with other applications.

 TinyOS Getting Started Guide

Page 18 Doc. # 7430-0022-03 Rev. A

3 Introduction to TinyOS and NesC

The TinyOS operating system, libraries, and applications are all written in
nesC, a new structured component-based language. The nesC language is
primarily intended for embedded systems such as sensor networks. nesC
has a C-like syntax, but supports the TinyOS concurrency model, as well as
mechanisms for structuring, naming, and linking together software
components into robust network embedded systems. The principal goal is to
allow application designers to build components that can be easily
composed into complete, concurrent systems, and yet perform extensive
checking at compile time.

TinyOS also defines a number of important concepts that are expressed in
nesC. First, nesC applications are built out of components with well-
defined, bidirectional interfaces . Second, nesC defines a concurrency
model, based on tasks and hardware event handlers , and detects data
races at compile time.

Components

Specification
A nesC application consists of one or more components linked
together to form an executable. A component provides and uses
interfaces. These interfaces are the only point of access to the
component and are bi-directional. An interface declares a set of
functions called commands that the interface provider must
implement and another set of functions called events that the
interface user must implement. For a component to call the
commands in an interface, it must implement the events of that
interface. A single component may use or provide multiple
interfaces and multiple instances of the same interface.

Implementation
There are two types of components in nesC: modules and
configurations . Modules provide application code, implementing
one or more interface. Configurations are used to assemble other
components together, connecting interfaces used by components to
interfaces provided by others. This is called wiring . Every nesC
application is described by a top-level configuration that wires
together the components inside.

When looking at the files in an application directory, you can identify the
nesC files because it uses the extension “.nc” for all source files—
interfaces, modules, and configurations.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 19

Concurrency Model
TinyOS executes only one program consis ting of selected system
components and custom components needed for a single application. There
are two threads of execution: tasks and hardware event handlers . Tasks
are functions whose execution is deferred. Once scheduled, they run to
completion and do not preempt one another. Hardware event handlers are
executed in response to a hardware interrupt and also runs to completion,
but may preempt the execution of a task or other hardware event handler.
Commands and events that are executed as part of a hardware event handler
must be declared with the async keyword.

Because tasks and hardware event handlers may be preempted by other
asynchronous code, nesC programs are susceptible to certain race
conditions. Races are avoided either by accessing shared data exclusively
within tasks, or by having all accesses within atomic statements. The nesC
compiler reports potential data races to the programmer at compile -time. It
is possible the compiler may report a false positive. In this case a variable
can be declared with the norace keyword. The norace keyword should be
used with extreme caution.

3.1 An Example Application: Blink

So far this is all fairly abstract—let’s look at a concrete example: the simple
test program “Blink” found in /apps/Blink in the TinyOS tree. This
application simply causes the red LED on the mote to turn on and off at 1
Hz.

Blink consists of two components: a module, called “BlinkM.nc”, and a
configuration, called “Blink.nc”. Remember that all applications require a
single top-level configuration, which is typically named after the
application itself. In this case Blink.nc is the configuration for the Blink
application and the source file that the NesC compiler uses to generate the
executable for the mote. BlinkM.nc, on the other hand, actually provides
the implementation of the Blink application. As you might guess,
Blink.nc is used to wire the BlinkM.nc module to other components that
the Blink application requires.

The reason for the distinction between modules and configurations is to
allow a system designer to quickly “snap together” applications. For
example, a designer could provide a configuration that simply wires
together one or more modules, none of which she actually designed.
Likewise, another developer can provide a new set of “library” modules
that can be used in a range of applications.

 TinyOS Getting Started Guide

Page 20 Doc. # 7430-0022-03 Rev. A

Sometimes (as is the case with Blink and BlinkM) you will have a
configuration and a module that go together. When this is the case, the
convention used in the TinyOS tree is that Foo.nc represents a
configuration and FooM.nc represents the corresponding module. While
you could name an application’s implementation module and associated
top-level configuration anything (ncc uses the ‘COMPONENT’ definition
in the application’s Makefile to find the top-level configuration), to keep
things simple we suggest that you adopt this convention in your own code.
There are several other naming conventions used in TinyOS code.

3.1.1 The Blink.nc Configuration

The nesC compiler, ncc, compiles a nesC application when given the file
containing the top-level configuration. Typical TinyOS applications come
with a standard Makefile that allows platform selection and invokes ncc
with appropriate options on the application's top-level configuration.

Let's look first at the module Blink.nc:

Blink.nc

configuration Blink {
}
implementation {
 components Main, BlinkM, SingleTimer, LedsC;
 Main.StdControl -> BlinkM.StdControl;
 Main.StdControl -> SingleTimer.StdControl;
 BlinkM.Timer -> SingleTimer.Timer;
 BlinkM.Leds -> LedsC;
}

The first thing to notice is the key word configuration, which indicates
that this is a configuration file. The first two lines,

 configuration Blink {
 }

simply state that this is a configuration called Blink . Within the empty
braces here it is possible to specify uses and provides clauses, as with a
module. This is important to keep in mind: a configuration can use and
provide interfaces!

The actual configuration is implemented within the pair of curly bracket
following key word implementation. The components line specifies the
set of components that this configuration references, in this case Main,
BlinkM, SingleTimer, and LedsC. The remainder of the implementation

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 21

consists of connecting interfaces used by components to interfaces provided
by others.

Main is a component that is executed first in a TinyOS application. To be
precise, the Main.StdControl.init() command is the first command
executed in TinyOS followed by Main.StdControl.start(). Therefore,
a TinyOS application must have Main component in its configuration.
StdControl is a common interface used to initialize and start TinyOS
components.

Let us have a look at /tos/interfaces/StdControl.nc:

StdControl.nc

interface StdControl {

 command result_t init();

 command result_t start();

 command result_t stop();

}

We see that StdControl.nc defines three commands: init(), start(),
and stop(). init() is called when a component is first initia lized, and
start() when it is started, that is, actually executed for the first time.
stop() is called when the component is stopped, for example, in order to
power off the device that it is controlling. init() can be called multiple
times, but will never be called after either start() or stop are called.
Specifically, the valid call patterns of StdControl.nc are init* (start
| stop)*. All three of these commands have “deep” semantics; calling
init() on a component will make it call init() on all of its
subcomponents.

The following two lines in Blink configuration

 Main.StdControl -> SingleTimer.StdControl;
 Main.StdControl -> BlinkM.StdControl;

wire the StdControl interface in Main to the StdControl interface in
both BlinkM and SingleTimer.StdControl.init() and
BlinkM.StdControl.init() will be called by
Main.StdControl.init(). The same rule applies to the start() and
stop() commands.

Concerning used interfaces, it is important to note that subcomponent
initialization functions must be exp licitly called by the using component.

 TinyOS Getting Started Guide

Page 22 Doc. # 7430-0022-03 Rev. A

For example, the BlinkM module uses the interface Leds, so
Leds.init() is called explicitly in BlinkM.init().

nesC uses arrows to determine relationships between interfaces. Think of
the right arrow (->) as “binds to.” The left side of the arrow binds an
interface to an implementation on the right side. In other words, the
component that uses an interface is on the left, and the component provides
the interface is on the right.

The line

 BlinkM.Timer -> SingleTimer.Timer;

is used to wire the Timer interface used by BlinkM to the Timer interface
provided by SingleTimer. BlinkM.Timer on the left side of the arrow is
referring to the interface called Timer (/tos/interfaces/Timer.nc),
whereas SingleTimer.Timer on the right side of the arrow is refering to
the implementation of Timer (/tos/lib/SingleTimer.nc). Remember
that the arrow always binds interfaces (on the left) to implementations (on
the right).

nesC supports multiple implementations of the same interface. The Timer
interface is such a example. The SingleTimer component implements a
single Timer interface while another component, TimerC, implements
multiple timers using timer id as a parameter.

Wirings can also be implicit. For example,

BlinkM.Leds -> LedsC;

is really shorthand for

BlinkM.Leds -> LedsC.Leds;

If no interface name is given on the right side of the arrow, the nesC
compiler by default tries to bind to the same interface as on the left side of
the arrow.

3.1.2 The BlinkM.nc Module

Now let's look at the module BlinkM.nc.

BlinkM.nc

module BlinkM {
 provides {
 interface StdControl;
 }
 uses {
 interface Timer;

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 23

 interface Leds;
 }
}
// Continued below...

The first part of the code states that this is a module called BlinkM and
declares the interfaces it provides and uses. The BlinkM module provides
the interface StdControl. This means that BlinkM implements the
StdControl interface. As explained above, this is necessary to get the
Blink component initialized and started. The BlinkM module also uses two
interfaces: Leds and Timer. This means that BlinkM may call any
command declared in the interfaces it uses and must also implement any
events declared in those interfaces.

The Leds interface defines several commands like redOn(), redOff(),
and so forth, which turn the different LEDs (red, green, or yellow) on the
mote on and off. Because BlinkM uses the Leds interface, it can invoke
any of these commands. Keep in mind, however, that Leds is just an
interface: the implementation is specified in the Blink.nc configuration file.

Timer.nc is a little more interesting:

Timer.nc

interface Timer {
 command result_t start(char type, uint32_t
interval);
 command result_t stop();
 event result_t fired();
}

Here we see that Timer interface defines the start() and stop()
commands, and the fired() event.

The start() command is used to specify the type of the timer and the
interval at which the timer will expire. The unit of the interval argument is
millisecond. The valid types are TIMER_REPEAT and TIMER_ONE_SHOT. A
one-shot timer ends after the specified interval, while a repeat timer goes on
and on until it is stopped by the stop() command.

How does an application know that its timer has expired? The answer is
when it receives an event. The Timer interface provides an event:

event result_t fired();

 TinyOS Getting Started Guide

Page 24 Doc. # 7430-0022-03 Rev. A

An event is a function that the implementation of an interface will signal
when a certain event takes place. In this case, the fired() event is
signaled when the specified interval has passed. This is an example of a bi -
directional interface : an interface not only provides commands that can
be called by users of the interface, but also signals events that call handlers
in the user. Think of an event as a callback function that the implementation
of an interface will invoke. A module that uses an interface must implement
the events that this interface uses.

Let's look at the rest of BlinkM.nc to see how this all fits together:

BlinkM.nc, continued

implementation {

 command result_t StdControl.init() {
 call Leds.init();
 return SUCCESS;
 }

 command result_t StdControl.start() {
 return call Timer.start(TIMER_REPEAT, 1000) ;
 }

 command result_t StdControl.stop() {
 return call Timer.stop();
 }

 event result_t Timer.fired()
 {
 call Leds.redToggle();
 return SUCCESS;
 }
}

This is simple enough. As we see the BlinkM module implements the
StdControl.init(), StdControl.start(), and
StdControl.stop() commands, since it provides the StdControl
interface. It also imple ments the Timer.fired() event, which is
necessary since BlinkM must implement any event from an interface it
uses.

The init() command in the implemented StdControl interface simply
initializes the Leds subcomponent with the call to Leds.init(). The
start() command invokes Timer.start() to create a repeat timer that

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 25

expires every 1000 ms. stop() terminates the timer. Each time
Timer.fired() event is triggered, the Leds.redToggle() toggles the
red LED.

3.2 Compiling the Blink Application

TinyOS supports multiple platforms. Each platform has its own directory in
the /tos/platform directory. In this section, we will use the MICA2
platform as an example.

Run the cygwin application by double-clicking the icon that can be found
on your desktop.

• Enter the /apps/Blink directory using your shell (cygwin under
Windows); it is a good application to make sure that the most basic
hardware is working.

• Type “make mica2” in a cygwin window. This should complete
successfully and create a binary image of your program for the
motes.

• All objects, generated includes and executables are place in the bin
directory for the specific platform, e.g., /build/mica2

You should, of course, observe errors and warnings that arise in building
your application. This example should not have any. At the very end, the
Make shows you a piece of the load map that tells you whether your
application fits.

3.3 Programming a Mote and Running Blink

To download an application into the MICA2 mote, connect the 51-pin male
connector of the MICA2 into the 51-pin female connector of on the MIB
programming board. To download into a MICA2DOT, connect the female
connectors of the MICA2DOT to the female connectors of the MIB’s
MICA2DOT programming bay located on the “underside” of the MIB
programming board.

• You can either supply a 3 V supply to the connector on the
programming board or power the node directly. The red LED labeled
D2 on the programming board will be on when power is supplied.

• If you have MIB500CA, p lug the 25-pin connector into the parallel
port of a laptop configured with the TOS tools, or connect use a
standard DB-25 parallel port cable.

• Type “make mica2 install”. If you are using windows and the
install doesn’t work, you make need to fiddle with the port specified

 TinyOS Getting Started Guide

Page 26 Doc. # 7430-0022-03 Rev. A

to uisp; depending on the hardware, cygwin can map parallel ports to
widely different names (use the -dlpt=# option, where # may be 1,
2, or 3).

• If you are using an IBM ThinkPad, it may be necessary to tell the
tools to use a different parallel port. You can do this by adding the
line

HOST = THINKPAD before the include statement in
/apps/Blink/Makefile

You should see the upload take place (this may take several seconds) and
the red LED should light up every second.

3.4 Generating the Component Structure Documentation

You can view a graphical representation of the component relationships
within an application. TinyOS source files include metadata within
comment blocks that ncc, the nesC compiler, uses to automatically generate
html -formatted documentation.

To generate the documentation, type make <platform> docs from the
application directory. The resulting documentation is located in
docs/nesdoc/<platform>.docs/nesdoc/<platform>/index.html
is the main index to all documented applications.

To generate the documentation, go to the /tinyos-1.x/apps/Blink
directory and type “make <platform> docs”. The html documentation
will have the filename be generated in the /
docs/nesdoc/<platform>.docs/nesdoc/<platform>/index.html
is the main index to all documented applications.

X NOTE If the install is located on the drives other than C: you must
check the expansion of the $TOSROOT variable. If you get any errors during
“make mica2 docs”, then do the following (assuming the TinyOS was
installed on D: drive)

Open the file Makerules from tinyos-1.x/apps and under “Rules for
documentation generation” section, replace the line,
“NCC := $(NCC) -docdir=$(DOCDIR)/$(PLATFORM) -fnesc-is-app”

with
“NCC := $(NCC) -docdir=$(DOCDIR)/$(PLATFORM) -topdir=/cygdrive/d/tinyos-
1.x -fnesc-is-app”

The directory index takes you to an html file that looks like the figure
below.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 27

Apps Components Interfaces All Files Source Tree

App: Blink

Component Graph (text version, help)

Browsing through the graphical representation of the component wiring
using your mouse is really helpful to understand the overall structure of
TinyOS.

For more details on different component modules please refer to Lesson 1
in the Tutorial.

 TinyOS Getting Started Guide

Page 28 Doc. # 7430-0022-03 Rev. A

4 Component Composition and Radio
Communication

This chapter introduces two concepts: hierarchical decomposition of
component graphs, and using radio communication. The applications that
we will consider are CntToLedsAndRfm and RfmToLeds.
CntToLedsAndRfm is a variant of Blink that outputs the current counter
value to multiple output interfaces: both the LEDs, and the radio
communication stack. RfmToLeds receives data from the radio and displays
it on the LEDs. Programming one mote with CntToLedsAndRfm will cause
it to transmit its counter value over the radio; programming another with
RfmToLeds causes it to display the received counter on its LEDs—your
first distributed application!

If you’re using MICA2 or MICA2DOT motes, you will need to ensure that
you've selected a radio frequency compatible with your motes. Refer back
to section 1.5 on how to set the radio frequency.

4.1 Sending Messages with CntToLedsAndRfm

Assuming you are using a MICA2 mote, after it is installed you should see
a 3-bit binary counter on the mote’s LEDs. And while it is not apparent, it
is, of course, transmitting the value over the radio.

• Build and install the application by typing “MIB510=/dev/ttyS0
make mica2 install”, assuming you are programming with the
MIB510 serial port programming interface board on COM1.

4.2 Receiving Messages with RfmToLeds

• In a similar manner p rogram another mote with RfmToLeds.

When you turn on CntToLedsAndRfm, you should see the count displayed
on the RfmToLeds device. If you turn the transmitter mote off, you will see
that the LED counting stops on both motes.

Congratulations! You are doing wireless networking.

For more details on different component modules please refer to Lesson 4
in the Tutorial.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 29

5 Displaying data on the PC

The goal of this section is to integrate the sensor network with a PC,
allowing us to display sensor readings on the PC as well as to communicate
from the PC back to the motes. First, we'll introduce the basic tools used to
read sensor network data on a desktop over the serial port. Next we will
demonstrate a Java application that displays sensor readings graphically.
Finally, we will close the communication loop by showing how to send data
back to the motes.

5.1 The Oscilloscope application

The Oscilloscope application is found in /apps/Oscilloscope. It
consists of a single module that reads data from the photo sensor. For each
10 sensor readings, the module sends a packet to the serial port containing
those readings. The mote only sends the packets over the serial port, but it
can be easily extended to have it send the data over the radio instead.

• Set the SENSORBOARD option in /apps/Oscilloscope/Makefile
to either micasb or basicsb depending on the type of sensor board
you have.

• Compile and install the Oscilloscope application on a mote.

• Connect a sensor board (51-pin female) to the underside of the
programming interface board (51-pin male) to get the light readings.
See Fig 2a for proper connection of the sensor board to the
programming interface board.

• Connect the programming board with mote and sensor board to the
serial port of your computer. See Fig. 2b for the proper stack of the
mote, interface board, and sensor board (top to bottom).

When the Oscilloscope application is running, the red LED lights when
the sensor reading is over some threshold, set to 0x0300 (hex), by default in
the code. (You might want to change this to a higher value if it never seems
to go off in the dark.) The yellow LED is toggled whenever a packet is sent
to the serial port.

X NOTE The MICA2 UART runs at 57600 baud and MICA and
MICA2DOTs run at 19200 baud.

 TinyOS Getting Started Guide

Page 30 Doc. # 7430-0022-03 Rev. A

Fig 5-1. Sensor board plugged into the bottom side of the MIB510

Fig 5-2. MICA2 plugged into the top side and the MTS310 sensor board

plugged into the bottom side of the MIB510. Also shown are the serial
cable and AC power wall adaptor connected to the MIB510.

5.2 The ‘listen’ Tool: Displaying Raw Packet Data

The first step to establishing communication between the PC and the mote
is to connect up your serial port cable to the programming board, and to
make sure that you have Java and the javax.comm package installed. After
programming your mote with the Oscilloscope code, cd to the
/tools/java directory, and type

 make

export MOTECOM=serial@serialport:baudrate

The environment variable MOTECOM tells the java Listen tool (and most
other tools too) which packets it should listen to. Here
serial@serialport:baudrate says to listen to a mote connected to a
serial port, where serialport is the serial port that you have connected

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 31

the programming board to, and baudrate is the specific baud rate of the
mote. For the MICA and MICA2DOT motes, the baud rate is 19200, for the
MICA2 it is 57600 baud. You can also use a mote name as the baud rate (in
which case that motes baud rate is selected). So you could do any of:

export MOTECOM=serial@COM1:19200 # MICA baud rate
export MOTECOM=serial@COM1:mica # MICA baud rate, again
export MOTECOM=serial@COM2:mica2 # the MICA2 baud rate,
on a different serial port
export MOTECOM=serial@COM3:57600 # explicit MICA2 baud
rate

• Set MOTECOM appropriately

• Run java net.tinyos.tools.Listen

You should see some output resembling the following:

% java net.tinyos.tools.Listen

serial@COM1:19200: resynchronising
7e 00 0a 7d 1a 01 00 0a 00 01 00 46 03 8e 03 96 03 96 03 96 03
97 03 97 03 97 03 97 03 97 03
7e 00 0a 7d 1a 01 00 14 00 01 00 96 03 97 03 97 03 98 03 97 03
96 03 97 03 96 03 96 03 96 03
7e 00 0a 7d 1a 01 00 1e 00 01 00 98 03 98 03 96 03 97 03 97 03
98 03 96 03 97 03 97 03 97 03

The program is simply printing the raw data of each packet received from
the serial port. Each data packet that comes out of the mote contains several
fields of data. Some of these fields are generic Active Message fields, and
are defined in /tos/system/AM.h. The data payload of the message,
which is defined by the application, is defined in
/tos/lib/OscopeMsg.h. The overall message format for the
Oscilloscope application is as follows:

• Destination address (2 bytes)
• Active Message handler ID (1 byte)
• Group ID (1 byte)
• Message length (1 byte)
• Payload (up to 29 bytes):

o source mote ID (2 bytes)
o sample counter (2 bytes)
o ADC channel (2 bytes)
o ADC data readings (10 readings of 2 bytes each)

Before continuing, execute unset MOTECOM to avoid forcing all java
applications to use the serial port to get packets

 TinyOS Getting Started Guide

Page 32 Doc. # 7430-0022-03 Rev. A

5.3 The SerialForwarder Program

The Listen program is the most basic way of communicating with the
mote; it directly opens the serial port and just dumps packets to the screen.
Obviously it is not easy to visualize the sensor data using this program.
What we'd really like is a better way of retrieving and observing data
coming from the sensor network.

The SerialForwarder program is used to read packet data from a serial
port and forward it over an Internet connection, so that other programs can
be written to communicate with the sensor network over the Internet. To
run the serial forwarder, go to tools/java and run the program by typing

 java net.tinyos.sf.SerialForwarder -comm
serial@COM1:<baud rate>

where <baud rate> is the baud rate of your serial port (it will typically be
either 19200 or 57600) The -comm argument tells SerialForwarder to
communicate over serial port COM1 . The -comm argument specifies where
the packets SerialForwarder should forward come from, using the same
syntax as the MOTECOM environment variable you saw above (you can run
“java net.tinyos.packet.BuildSource” to get a list of valid
sources). Unlike most other programs, SerialForwarder does not pay
attention to the MOTECOM environment variable; you must use the -comm
argument to specify the packet source (The rationale is that you would
typically set MOTECOM to specify a serial forwarder which in turn should
talk to, e.g., a serial port. You wouldn’t want the SerialForwarder to
talk to itself...).

The <baud rate> argument tells SerialForwarder to communicate at
specified baud rate.

This will open up a GUI window that looks similar to the following:

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 33

Fig. 5-3. Screen shot of java application SerialForwarder when it is

properly running

SerialForwarder does not display the packet data itself, but rather
updates the packet counters in the lower-right hand corner of the window.
Once running, the serial forwarder listens for network client connections on
a given TCP port (9001 is the default), and simply forwards TinyOS
messages from the serial port to the network client connection, and vice
versa. Note that multiple applications can connect to the serial forwarder at
once, and all of them will receive a copy of the messages from the sensor
network.

As packets arrive from the mote connected to the serial port, you will see
the "Pckts Read:" field in the lower right corner begin to increment.

5.4 Starting the Oscilloscope GUI

It is now time to graphically display the data coming from the motes.
Leaving the serial forwarder running, execute the command

 java net.tinyos.oscope.oscilloscope

This will pop up a window containing a graphical display of the sensor
readings from the mote. It connects to the serial forwarder over the network
and retrieves packet data, parses the sensor readings from each packet, and
draws it on the graph:

 TinyOS Getting Started Guide

Page 34 Doc. # 7430-0022-03 Rev. A

Fig. 5-4. Example screen shot from java application Oscilloscope

The x-axis of the graph is the packet counter number and the y-axis is the
sensor light reading. If the mote has been running for a while, its packet
counter might be quite large, so the readings might not appear on the graph;
just power-cycle the mote to reset its packet counter to 0. If you don’t see
any light readings on the display, be sure that you have not zoomed in on
the display.

5.5 Transmitting Sensor Data Over the Radio to Serial Port

The Oscilloscope mote application is written to use the serial port and
the light sensor. Instead, look at /apps/OscillosopeRF, which transmits
the sensor readings over the radio. In order to use this application, you need
to provide a bridge that receives data packets over the radio and transmits
them over the serial port. The /apps/TOSBase is an application that does
this; it simply forwards packets between the radio and the UART (in both
directions).

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 35

X NOTE The Oscilloscope GUI is already capable of displaying
sensor readings from multiple motes. You have to ensure that those
readings are correctly transmitted and received over the network. This setup
would look like the following diagram.

Fig. 5-5. Illustration of how OscilloscopeRF works

For this exercise you will need at least 3 motes.

• Program the two motes with the OscilloscopeRF application, setting
their nodeid’s to 1, 2, etc. using command

make mica2 install.<nodeid>

where, <nodeid> is the ID you wish to program into the mote.

• Program the other mote with the TOSBase application.

• With the TOSBase mote plugged into the programming board and
connected to the serial port, spread around the rest of motes (with the
OscilloscopeRF application with sensor boards connected (See Fig.
3).

• Repeat Steps 5.3 and 5.4 to invoke the SerialForwarder and
Oscilloscope GUI. You should see the following GUI with specific
Mote IDs displaying the light sensor data. If you cover the light sensor
with the hand you should see the data from that particular mote change.

 TinyOS Getting Started Guide

Page 36 Doc. # 7430-0022-03 Rev. A

Fig. 5-6 A battery-powered MICA2 mote with an MTS310 sensor board

used in the OscilloscopeRF application

X NOTE For MICA2DOT users, it is highly recommended that they use
MICA2 as a base station, because the MICA2DOT UART is not stable as a
base-station.

Fig. 5-7. Screen shot of the java GUI for OscilloscopeRF. Two motes’

sensor data displayed in two different colors is visible in this example

For more details on different component modules please refer to Lesson 6
in the tutorial.

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 37

6 Multihop Routing

The TinyOS-1.1 release and later include library components that provide
ad-hoc multi-hop routing for sensor network applications. The
implementation uses a shortest-path-first algorithm with a single destination
node (the root) and active two-way link estimation. The data movement and
route decision engines are split into separate components with a single
interface between them to permit other route-decision schemes to be easily
integrated in the future. Use the multi-hop router is essentially transparent
to applications (provided they correctly use the interface).

Use of the multi-hop library component is mostly transparent to the
application. Any application that uses the Send interface can be connected
to this component to achieve multi-hop functionality. One limitation of
multi-hop, however, is the aggregate data rate. Applications should
maintain average message frequency at or below one message every two
seconds. Higher rates can lead to congestion and or overflow of the
communication queue.

6.1 Surge Demo

The Surge application, in the /apps/Surge, is a simple example of a
mutlihop application. Surge takes light sensor readings and sends them
over the mesh to the base node (nodeid 0). Accompanying this application
is a Java program that can be used to visualize the logical network topology
and the sensor readings. Users are encouraged to review the application,
SurgeM.nc, and it’s configuration, Surge.nc, to better understand how to
use the multi-hop tools.

• Build the application Surge: cd to the /apps/Surge directory and
type a “make mica2”.

• Build the java tools: cd to the /tools/java/net/tinyos/surge
directory and type “make”.

• Install the application onto the target nodes, giving each node a
unique node ID by typing “MIB510=/dev/ttyS0 make
reinstall.<nodeid> mica2” assuming you are programming
through the MIB510 connect to serial port COM1. Remember, the
base station mote must be installed with node ID of 0. This node
should be connected to a PC via a serial or network link.

Next run the java applications.

• First start SerialForwarder to link the base node and the PC (e.g.,
typing “java net.tinyos.sf.SerialForwarder –comm
serial@COM1:mica2” in the java directory).

 TinyOS Getting Started Guide

Page 38 Doc. # 7430-0022-03 Rev. A

• Next start the GUI for the Sensor Network Topology from the
/tools/java directory by typing “java
net.tinyos.surge.MainClass <Groupid>”, where
<Groupid> is the AM group ID number (in decimal) used when
compiling the mote application (e.g., the default group ID of hex
0x7d is decimal 125).

When the application starts, you should immediately see the base node
reporting sensor values. After about 1 minute, other nodes should appear as
the network topology builds.

Fig. 6-1. Network topology GUI in Surge

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 39

If you cover the light sensor with the hand, that particular mote should get
dark on the screen. You can make a particular mote disappear from the
screen by powering it off or move it farther away. The solid green lines
indicate the active data transmission link and the red line represents
previously active communication links, which has now become inactive,
because the node found a better transmission path.

X NOTE The location of the node IDs on the screen does not represent
the physical location of the nodes in the neighborhood of the PC.

6.2 Learning More About Multi-hop Protocols

Multi-hop protocols for ad-hoc networks is an active area of research. The
nature ad-hoc networks makes them very different than fixed-powered and
even cellular networks. Ad-hoc networks are characteristically not reliable
over the long term. Nodes may suddenly stop working or may physically
move out of range. Multi-hop allows for these dynamic changes in network
topology.

Ad-hoc networks also are designed to minimize the use of energy to so it
can work off of batteries for at least many months to a few years. Powered
networks by contrast can afford to expend a lot more energy to manage
links. One of the challenges to ad-hoc networks is that broadcasting is
energy and time inefficient. So a multi-hop protocol must be able to
dynamically determine which nodes (motes) would be the better or the best
parent to a transmitting mote.

There have been several multi-hop protocols designed specially for
TinyOS. The application in this section, Surge, is one of the oldest and was
developed at the University of California, Berkeley. It is a useful
demonstration of multi-hopping but does not include power management.
Another protocol is DSDV (located in contrib/hsn/tos/lib),
developed as Intel-Berkeley Labs. It has power management features. One
of the latest and perhaps most promising to date is Blast by Alec Woo of
UC, Berkeley. Blast is reported to benefit from the extensive use of
estimators and uses advanced power management. These files are located in
contrib/hsn/tos/lib/route

6.3 Learning More About TinyOS

Now that you have TinyOS working, you can start learning about it and
writing your own programs. In the tinyos-1.x/doc/tutorial there is a
comprehensive tutorial for learning TinyOS. Read and follow the
instructions in different Lessons.

 TinyOS Getting Started Guide

Page 40 Doc. # 7430-0022-03 Rev. A

7 Warranty and Support Information

7.1 Customer Service

As a Crossbow Technology customer you have access to product support
services, which include:

• Single -point return service

• Web-based support service

• Same day troubleshooting assistance

• Worldwide Crossbow representation

• Onsite and factory training available

• Preventative maintenance and repair programs

• Installation assistance available

7.2 Contact Directory

United States: Phone: 1-408-965-3300 (7 AM to 7 PM PST)

 Fax: 1-408-324-4840 (24 hours)

 Email: techsupport@xbow.com

Non-U.S.: refer to website www.xbow.com

7.3 Return Procedure

7.3.1 Authorization

Before returning any equipment, please contact Crossbow to obtain a
Returned Material Authorization number (RMA).

Be ready to provide the following information when requesting a RMA:

• Name

• Address

• Telephone, Fax, Email

• Equipment Model Number

• Equipment Serial Number

• Installation Date

TinyOS Getting Started Guide

Doc. # 7430-0022-03 Rev. A Page 41

• Failure Date

• Fault Description

7.3.2 Identification and Protection

If the equipment is to be shipped to Crossbow for service or repair, please
attach a tag TO THE EQUIPMENT, as well as the shipping container(s),
identifying the owner. Also indicate the service or repair required, the
problems encountered, and other information considered valuable to the
service facility such as the list of information provided to request the RMA
number.

Place the equipment in the original shipping container(s), making sure there
is adequate packing around all sides of the equipment. If the original
shipping containers were discarded, use heavy boxes with adequate padding
and protection.

7.3.3 Sealing the Container

Seal the shipping container(s) with heavy tape or metal bands strong
enough to handle the weight of the equipment and the container.

7.3.4 Marking

Please write the words, “FRAGILE, DELICATE INSTRUMENT” in
several places on the outside of the shipping container(s). In all
correspondence, please refer to the equipment by the model number, the
serial number, and the RMA number.

7.3.5 Return Shipping Address

Use the following address for all returned products:

Crossbow Technology, Inc.
41 Daggett Drive
San Jose, CA 95134
Attn: RMA Number (XXXXXX)

7.4 Warranty

The Crossbow product warranty is one year from date of shipment.

Crossbow Technology, Inc.
41 Daggett Drive
San Jose, CA 95134
Phone: 408.965.3300
Fax: 408.324.4840
Email: info@xbow.com
Website: www.xbow.com

