TinyOS Getting Started Guide

Rev. A, October 2003
Document 7430-0022-03

Crossb@w

Crossbow Technology, Inc., 41 Daggett Dr., San Jose, CA 95134
Tel: 408-965-3300, Fax: 408-324-4840

email: info@xbow.com, website: www.xbow.com

©2002-2003 Crossbow Technology, Inc. All rights reserved.
Information in this document is subject to change without notice.

Crossbow and SoftSensor are registered trademarks and DMU isa
trademark of Crossbow Technology, Inc. Other product and trade names
are trademarks or registered trademarks of their respective holders.

TinyOS Getting Started Guide Crossbew

1 INErOdUCHION....c.ciiiiiiiiei e 3
1.1 Installing TinyOS devel opment tOOIScccuruverereerereneeerenesenereseenens 3
1.2 PlafOMMIS oot 5
1.3 DeViCe AdArESSING. ..ot seaees 5
1.4 Programming BOArds............cccverreerereeneeenieeeneeensiennssesesseessesessesesseaees 5
1.5 RaAdiO FIEOUENCYccvieerieeieerirersrerseee et sseaes 6
1.6 SENSOr BOBIUS. ..ottt 7
1.7 Setting the Group ID and Node ID for the Mote Network 7

2 System and Hardware Verification.........cccccoceeeiieeiiieennnen. 9
2.1 TinyOSPC ToolS VErifiCation:cccocovureriririnenerinerenisiseseseseseseseseseens 9
2.2 Mote Hardware VerifiCation:ccceenerneenernernernesseseeseeeneesensessennes 9
2.3 Hardware Verification Using MicaHWVerifycocoevvevcvvencncnnn, 11

231 Mote Radio VErifiCation: ...t 13
2.4 Hardware Verification Using Mote-TeSt......cccovvrnrvrreneeerenennenenns 13
24.1 Loading in MICA2/MICA2DOT Test Firmware........cccoovecvnenenes 14
24.2 Setting Up Mote Test to Verify the MOtes ... 14
24.3 Confirming that the Mote Hardware isWorking............cccoceeveenee 16

3 Introduction to TinyOSand NesC.........ccoccveeeiiiiieeeininennn. 18

3.1 AnExample Application: BIiNKcccooeoevveivcnvencsnsereeeseseeens 19
311 The Blink.nC Configurationcooeeerreeierneenseeeseseeieees 20
312 The BIINKM.NC MOQUIE ..o 22

3.2 Compiling the Blink AppliCationcccovvvererererenesseresesesesesesesesens 25

3.3 Programming a Mote and Running Blink...........ccccccovevenvrnceccnnnne 25

3.4 Generating the Component Structure Documentation.................... 26

4 Component Composition and Radio Communication........ 28
4.1 Sending Messages with CntToLedsAndRfM........ccccceeeevervencecrnnnen. 28
4.2 Receiving Messages with RfmToLeds........c.ccoovecnneneenenenecrennn, 28

5 DisplayingdataonthePC..........ccccoociviiiiiiiee e, 29

Doc. # 7430-0022-03 Rev. A Page 1

Crosshew TinyOS Getting Started Guide

51 The OscCilloscope appliCation..........cowereeereeeeneeemnereenessesersesesseessesenns 29
5.2 The'listen’ Tool: Displaying Raw Packet Data...........coovcereeereennn. 30
5.3 The SerialForwarder Program............ccveneeneeeneremnessmnessesesnesesneenns 32
54 Starting the OsCilloSCOPE GUIcooieveeirneecrneeenerenereerseserseesneeens 33
55 Transmitting Sensor Data Over the Radio to Serial Port A

6 MuUltinop ROULING........eeiiiiiiiiiieeee e 37
6.1 SUMGEDEMO ... s 37
6.2 Learning More About Multi-hop Protocols..........cccovveeineccienne 39
6.3 Learning More About TiNYOS..........corrnnneeneeneseessseseeneenees 39
7 Warranty and Support Information...........ccccceeevveeniieennne 40
7.1 CUSLOMES SEIVICE ...ouereririeirreseeseesesseesese s sss s sss e essssssens 40
7.2 CONtaCt DIFECIONY ...cucueeececerecece ettt 40
7.3 REUM PrOCEUAUNE.......coieeeceeree e 40
731 AULNOTTZALION ... 40
7.3.2 Identification and ProteCtion...........c.coveerneeeenneeeneseeeseneenenens 41
7.3.3 Sealing the CONtAINESccoeiiireere e 41
734 MAIKING .. .viietiiieecteeeees ettt sre s 41
7.35 Return Shipping AQAreSS.........cvireeeiirneeeeseeeseee e 41

T4 WEAITANY ..o 41

Page 2 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

1 Introduction

This guide walks you through the installation, verification, compilation and
running the TinyOS 1.x application on Windows based PC. There are
several key stepsto getting up and running with TinyOS.

1.1 Installing TinyOS development tools

4 NOTE Theinstallation instructions for Ti nyOS 1.1.0 are found in

“Readme.htn{ found on the CD. If you have a previous version of TinyOS
on your system, you must uninstall it. Instructions for this are found inthe
“Uninstalling TinyOS.htn¥ on the CD. This must be completed before
proceeding any further.

Y ou must install with Administrator privileges. If you don't, the setup will
eventually abort but it could |eave unwanted files and program registries
behind.

The TinyOS 1.1.0 Install Shield Wizard setup offers the following software
packages:
- TinyOS
- TinyOS Tools
-NesC
- Cygwin
- Support Tools
-Javal.4 DK & Java COMM 2.0
- Graphviz
-AVR Todls
- avr-binutils
-avr-libc
- avr-gcc
- avarice
- avr-insight

Choose between “COMPLETE” and “CUSTOM” install. A custom install
allows the user to choose the features that are installed. A “COMPLETE”
install includes all of the above features (recommended). The user chooses
the destination directory. Any chosen features are installed under that
destination directory. Her eafter the destination directory isreferred to
as<install dir>.

JDK. If the user choose to install the JDK module, adialog asking if the user
has read Sun's terms and conditions appears. If the user selects‘No’, then
setup isended. If the user selects‘Yes,” then the setup continues. Verify the

Doc. # 7430-0022-03 Rev. A Page 3

Crosshew TinyOS Getting Started Guide

install directory and setup type; click on “Next” proceed or “Back” to make
changes.

Cygwin and Necessary RPMs. If the user choosesto install cygwin and any
necessary RPMshy clicking on the “ Continue™ button, the 1.1.0 cygwin
package tree is copied over to adirectory called<i nst al |

dir>/cygw n-installationfiles. set up. exe iscalled to perform
automatic installation of thosefilesin<i nstal | dir>/cygw n. Thisis
the most lengthy step. On some PCsiit takes at |east 30 minutes. You are
done after this step compl etes!

TinyOS. All the TinyOS apps, contri b,doc, t ool s, andt os foldersare
located under <i nstal | dir>/cygw n/opt/tinyos-1. x.In addition
the“Makefi | e” isinthisfolder. The environment variables for TOSROOT
issetto<install dir>/tinyos-1.x. TheTinyOS Tutorial islocated
under <i nstal |l dir>/cygw n/opt/tinyos-1.x/doc/tutorial

Setting Aliases

Once you have successfully installed TinyOS, it is recommended that you
setup aliases to commonly used commands and accessed directories.
Aliasesareto be edited inthepr of i | e filewhich islocated in<i nst al |
dir>/tinyos/cygw n/etc.

These aliases are useful for quickly changing the TinyOS-1.x and
javatoolsdirectories.

alias cdtinyos=“cd c:/<install dir>/tinyos/cygw n/opt/tinyos-
1.x"

alias cdjava="cd c:/<install dir>/tinyos/cygw n/opt/tinyos-
1. x/tool s/java”

4 NOTE ifthe<i nstal I dir > isthefolder “Program Files,” then you

must enter in thetext “Program\ Fi | es” to correctly handle the space
between the two words.

Thisisauseful aias for users who program with the MIB510.
alias m b510="M B510=/dev/ttyS<n>"

where <n> is the serial port number (0 for COM1, 1for COM2, etc.) where
the MIB510 is attached.

These and other alias can be setup to make changing directories and other
commands easier. To make your own use the format as shown in the
examples above.

Page 4 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

1.2 Platforms

The new release of TinyOS supportsthe MICA2 and MICA2DOT
platforms using a new frequency tunable FM radio with improved range.
Application codeis built for these platforms by invoking (in acygwin
window):

make m ca2
make m ca2dot

make m ca

1.3 Device Addressing

The programming tools also include a method of programming unique node
addresses without having to edit the TinyOS source code directly. To set
the node address during program load, use the following install syntax:

make (re)install.<addr> <platfornp

where <addr > is the desired device address and <pl at f or n» is the target
platform. Do not use the reserved valuesTOS_BCAST_ADDR (OxFFFF) or
TOS_UART_ADDR (0x007E).

i nstal |l - compiles the application for the target platform, set the address
and programs the device (mote).

Rei nst al | - sets the address and programs the (mote) ONLY and does not
recompile. Thisoptionissignificantly faster.
1.4 Programming Boards

The TinyOS development environment supports a variety of programming
tools. The supported programmers include:

The MIB500 (Crossbow's) parallel port programmer board with
serial output.

The MIB510 (Crossbow’ s) seria port programming board.
The Atmel AVRISP
The Ethernet PRogramming Board (EPRB)

The standard programming software used in TinyOSisthe p In-System
Programmer or ui sp. This program, which comes as a part of the TinyOS
release, takes various arguments according to the programnmer hardware and
the particular programming action desired (erase, verify, program, etc.). To
simplify using thistool, the TinyOS environment invokes uisp for you with

Doc. # 7430-0022-03 Rev. A Page 5

Crosshew TinyOS Getting Started Guide

the correct arguments whenever you issuean“i nstal | ” or
“reinstal | ”. Youonly need specify the type of device you are using and
how to communicate with it. Thisis done using environment variables.

MI1B500/Parallel Port Programmers

Thisisthe default programmer device. No additional command
line parameters need to be specified when using this programmer.

MIB510/Serial Port Programmers

Define: M B510=<dev> where <dev> isthe name of the serial
port where the device is attached (e.g. /dev/tty SO).

example:
bash% M B510=/dev/ttySO nmake install mca

where SO isfor COM1, S1 for COM2, etc.

{ NOTE it your computer does not have aDB9 serial port and are
using aUSB to DB9 serial port converter, you must know what port (COM)
number your computer has assigned to the USB port. Use that COM port
number when doing the above command. However, there are cases where
your computer will issue a COM port number but is not what cygwin will
communicate through. That is, by trial and error you will have to try
different numbersfor t t yS#.

AVRISP

Define: AVRI SP=<dev> where <dev> is the name of the serial
port wherethe deviceis attached (i.e. /dev/tty S0).

example:
bash% AVRI SP=/ dev/ttyS0 nake install mca

EPRB

Define: EPRB=<host > where <host >isthe DNS nameor |P
address of the EPRB device.

example:
bash% EPRB=123. 45. 67. 89 nake install nica

1.5 Radio Frequency

The new FM radios support multiple frequencies. Units are delivered either
at base frequencies of 315 MHz, 433 M Hz, or 916 MHz. Within each
frequency band multiple channels can be programmed. All of the

Page 6 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

coefficients for radio tuning are contained in the TinyOS file
/tos/platform m ca2/ CCLO0O0Const . h

Users must compile in the correct base radio frequency otherwise radio
communication will fail. The correct frequency is selected by modifying the
line 213 in the CC1000Const.h file:

[212] #i fndef CClK_DEF_PRESET
[213] #define CCLK _DEF_PRESET (CCLK <freq>_MiZ)
[214] #endif

Change the <f r eq> to one of the values listed in the table bel ow that
matches your motes frequency

For motesrunning at... ...usethesevaluesfor <f r eq>
315MHz 315_778
433002
433 MHz (choose one) 34 845
915 MHz (choose one) gig—g;;

These numbers correspond to the first six digits of the radio’ s frequency.
For example, 433_002 is for a mote with radio set at 433,002,000 Hz.

1.6 Sensor Boards

Multiple sensor boards are supported in this release. These sensor boards
are invoked by modifying the “ SENSORBOARD=" statement in the local
Makef i | e (inthe application directory). Remember to set the
SENSORBQOARD option to either i cashb, m cawb, or basi csb depending
on the type of sensor board you have. For example, to use the MICA2DOT
weatherboard sensor, the Makef i | e in the

/ apps/ M caWBVer i fy/ Test Huni di t y directory contains:
COVPONENT=Test Humi di ty

SENSORBQARD=n cawb
include ../../Mkerul es

1.7 Setting the Group ID and Node ID for the Mote Network

TinyOS messages contain a“group ID” in the header, which allows
multiple distinct groups of motes to share the same radio channel. If you
have multiple groups of motesin your environment, you should set the
group I1D to aunique 8-hit value to avoid receiving messages for other
groups. The default group ID isOx7d (hex). You can set the group 1D by

Doc. # 7430-0022-03 Rev. A Page 7

Crosshew TinyOS Getting Started Guide

defining the preprocessor symbol DEFAULT_LOCAL_GROUP in Maker ul es
file found under / apps.

DEFAULT_LOCAL_GROUP = 0x42 # for exanple.

In addition, the message header carries the destination node number, which
isal6-bit value.

Setting the node ID will become more clear in Section 5 and is included
here for reference. The node ID or local address of your mote is done when
you download the application into the mote by using the command

make mica install.<n>

where <n> isthe local node ID in decimal that you wish to program into the
mote. For example,

make mica install. 38

programs the mote with 1D 38.

4 NOTE Thelatest Ti nyOS code is available on Sourceforge

(http://sourceforge.net/projects/tinyos/). Source code should be updated as
new releases and bug fixes are checked into Sourceforge.

Page 8 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

2 System and Hardware Verification

When working with embedded devices, it is very difficult to debug
applications. Because of this, you want to make sure that the tools you are
using are working properly and that the hardware is functioning correctly.
Thiswill save you countless hours of searching for bugsin your application
when the real problem isin the tools. This section will show you how to
check your system and the hardware.

2.1 TinyOS PC Tools Verification:

A TinyOS devel opment environment requires the use of the avr gcc
compiler, perl, flex, cygwin (if you use windows operation system), and the
JDK 1.4.x or above. First, we will check that the tools have been installed
correctly and that the environment variables are set. The “t oscheck” isa
script that will perform these functions.

Run the cygwin application by double-clicking the icon that can be
found on your desktop.

Changeintothe/ t ool s/ scri pt s directory and type “t oscheck”.
Thelast line of the output should be“t oscheck conpl et ed wi t hout
error”. If any errors are reported, make sureto fix the problem.

2.2 Mote Hardware Verification:

The mote hardware functionality can be tested intwo different ways:
M caHWer i f y application contained in the TinyOS distribution.
Mot e- Test GUI provided by Crossbow.

4{ NOTE usersare strongly advised to use a Crossbow

MIB500/MIB510 interface board with an external wall mounted power
supply (5-7 VDC). If using batteries, check the battery voltage. If the
battery voltage islessthan 3.0 V the flash memory may not reprogrammed
correctly. This can also cause the ATmegal28 fuses to be set incorrectly
which will defeat any further reprogramming. There have been nurmrerous
reported difficulties with programming motes. These include program
failure, flash verification errors, and dead motes.

If you still get flash verification errors, please refer to the suggestions
provided in the application note:
http://www.xbow.com/Support/Support_pdf_filessUISPHEL P.pdf. Also,
rebooting your PC, power cycling the MIB500/M1B510, and hitting the
RESET switch on the MIB may also work.

Doc. # 7430-0022-03 Rev. A Page 9

Crossbew TinyOS Getting Started Guide

Fig. 2-1. MIB510 interface board pictured with a MICA2 and a
MICA2DOT

Fig. 2-2. MICAMICA2 plugged into Fig. 2-3. MICA2DOT plugged
top-side of an MIB510 into bottom-side of an MIB510

& WARNING when programming a MICA2 with the
MIB500/M1B510, turn of the battery switch. For aMICA2DOT, remove
the battery before inserting into the M1B500/M1B510. The MICA2s and
MICA2DOTs do not have switching diodes to switch between external and
battery power.

Page 10 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

2.3 Hardware Verification Using MicaHWVerify

To test the hardware, we have providedthe M caHW/er i fy application. It
is designed for the purpose of verifying MICA/MICA 2/MICA2DOT mote
hardware only. If you have adifferent hardware platform, this application is
not suitable.

If necessary set the radio frequency for the M ICA 2/MICA2DOT as
described in Section 1.5.

Change to the /apps/MicaHWV erify directory
For aMICA platform type “make mica’

ForaMICA2 or MICA2DOT platform type “ PFLAGS=-
DCC1K_MANUAL_FREQ=<freq> nake <m ca2| m ca2dot >",
respectively.

The compilation process should complete without any errors.

Place a moteinto a programming board and power it with either
batteries or an AC wall power adaptor. (The red LED on the
programming board should light.)

Connect the programming board to the parallel port of your computer
if you have an MIB500. Or if you have an MIB510, connect it to the
serial port of your computer.

Load the application on to the device. If programming the mote with
an MIB500 (parallel port programmer), type

make reinstall <m ca|m ca2| m ca2dot >

Or if programming the mote with an MI1B510 (serial port
programmer), type

M B510=/ dev/ttyS# make reinstall
<m ca| m ca2| m ca2dot >

Where #is0, 1, 2, etc. for COM1, COM2, COM3 assuming that the
numbering begins with zero. See Section 1.4 for installation
instructions for other programmers.

A typical output when programming with an MIB510100ks like

$ nib510 nake reinstall nica2

installing nica2 binary
ui sp - dprog=m b510 -dseri al =/ dev/ttySO - dpart=ATnegal28 --
w_fuse_e=ff --erase --upload if=build/ mca2/ main.srec
Firmnare Version: 2.1
Atnel AVR ATmegal2?8 is found.
Upl oadi ng: flash

Fuse Extended Byte set to Oxff

Doc. # 7430-0022-03 Rev. A Page 11

Crosshew TinyOS Getting Started Guide

Now you know that the programming tools and the computer's parallel port
areworking.

The next step isto verify the mote hardware. First, confirm that the LEDs
are blinking like a binary counter. Next, connect the programming board to
the serial port of the computer. TheM caHWer i fy application will send
data over the UART that containsit status. To read from the serial port, we
provide ajavatool calledhar dwar e_check. j ava. It islocated in the
same directory. Build and run this tool. The commands are shown below
assuming you are using COML at 57600 baud to connect to the
programming board.

{ NOTE If you are using the MIB510, please be sure to turn the SW2

switch to OFF position before using it to read the data from the Serial Port.
If SW2 isset to ON position, thiswill disable mote's T line making it not
transmit any data.

Type“make -f jnmakefile”. The output from this command
should look like

$ make -f jmakefile

m g java -j ava-cl assname=D agMsg M caHWerify.nc D agMsg
-0 D agMsg.j ava

m g java -j ava-cl assname=RxTest Msg M caHWerify. nc
RxTest Msg - 0 RxTest Msg. j ava

javac -sourcepath . hardware_check. java

Then type“MOTECOM=serial @COM1:57600 java
hardware_check” The output on the PC should be something like
har dwar e_check started

Har dwar e verification successful.
Node Serial ID 1 60 48 fb 6 0 0 1d

This program checks the serial 1D of the mote (except on the MICA2DOT),
the flash connectivity, the UART functionality and the external clock. If all
status checks are positive, the hardware verification successful message will
be printed on your PC screen.

4 NOTE since MICA2DOTs don’t have a Serial 1D, when you build the
MicaHWV erify application, a warning message appears saying that “ Serial
ID not supported on mica2dot platform”. However the application still
buildsand installs. If you run the hardware _check on MICA2DOT, it

performs hardware verification, but the serial 1D displayed issimply al
OxFF.

Page 12 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

2.3.1 Mote Radio Verification:

To verify radio, you need two nodes. Use the second node (that has passed
the hardware check up to this point) to act as aradio gateway to the first
node. Install it with the application TCSBase.

Change directory tothe/ apps/ TOSBase directory

Compilethe TOSBase application by typing “ PFLAGS=-
DCC1K_MANUAL_FREQ=<freg> make <mica2|mica2dot>"

Install the program into the mote viaMIB500 or MIB510. Leave this
mote in the programming board and place the other node next to it.

Run the har dwar e_check java application by typing
“MOTECOMEser i al @COML: 57600 j ava har dwar e_check”. The
output should be the same as shown in the previous section (but will
display the serial 1D of the remote mote). The indication of aworking
radio system is, again, something like:

har dwar e_check started

Har dwar e verification successful.
Node Serial ID 1 60 48 fb 6 0 0 le

If the remote mote is turned off or not functioning, it will return a message
“Node transm ssion failure”.

If your system and hardware pass all the above tests, you are al set for
having some fun with TinyOS. Congratul ations.

2.4 Hardware Verification Using Mote-TestTo test the hardware, we
have provided the application Mot e- Test . Its purpose isto provide a quick
way to check you’'re your MICA2 and M ICA 2DOT motes are working.
Install Mote-Test from the CD by running setup.exe found under
/ Cr ossbow Sof t war e/ Mot e- Test folder. Thiswould also install
LabVIEW run time engine.
Copy thefolders MICA2 TEST_315 MICA2 TEST 433,
MICA2 TEST_916, MICA2DOT_TEST_315,
MICA2DOT_TEST_433, and MICA2DOT_TEST_916 from the CD
folder / Cr ossbow Sof t war e/ Mot e Fi r maar e to your / apps
directory.

Power the M1B500/M1B510 programming board with the AC wall-
power adaptor.

Connect the MIB500/M1B510to a PCs serial port witha DB9
(female)/DB9 (male) serial cable.

For M1B500 usersonly: Connect the MIB500 to a PCs parallel port
with aDB25 (female)/DB25 (male) parallel port printer cable.

Doc. # 7430-0022-03 Rev. A Page 13

Crosshew TinyOS Getting Started Guide

Y our MICA units are shipped from the factory with the hardware test
firmware aready installed. In the event you require confirmationthat the
hardware is still fully functional after altering the firmware, you may
compile andreinstall the test firmware with the procedure described in
Section 2.4.1. Of course, you need to have TinyOS installed into your PC.
Otherwise, proceed to Section 2.4.2.

2.4.1 Loading in MICA2/MICA2DOT Test Firmware

From a cygwin window, go to the folder for M CA2_TEST_XXX or
M CA2DOT_TEST_XXX (wher e XXX isthe frequency of your unit)

Type“make mica2 reinstall” for each mote you wish to test.
Thiswill install the test firmwarein your MICA 2 or MICA2DOT
mote(s).

4 NOTE 1tisi mportant to note that the command used for this chapter

to install the mote test firmware into the motesis“make mi ca2
reinstal |l ” andnot “nake m ca2 install.”

If successfully installed, upon pressing the hardware RESET button on the
programming board (marked as SW1), you should see the LEDsblink for a
MICA 2. This verifies that the programming tools and computer’s parallel
port are working correctly.

2.4.2 Setting Up Mote-Test to Verify the Motes

If not already done, connect the MIB500/M1B510 programming
board to theserial port of the PC.

Next, run the Mot e- Test . exe application from the Start
Menu>Programs>Mote-Test.

The opening screen (Fig 2-4) will have button options to select various
functions.

Page 14 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

Crossbar T howkogy
MDauq':tt::rm- cmm
San dags, O G513
Pt e, L0 FIOTE-TEST
03-855-3300
COAFLSRE RESET s =
Loed] [ocd [oed |
PAErs GRamd DaTAcEER |
[ocd [od [od |
' o o |
I _EI:F-\..i__E.I ._Pal.ﬁ..'\. — {
[x] @
| sERLAL 1D
|
=TATA

Fig 2-4. Mote-Test main window. Note: the PACKETS, GRAPH, and
DATALOGGER buttons do not perform any function

Select the CONFIGURE button, and one of the two pop-up screens will
appear (Fig. 2-5):

MOTE-TEST SET HOW MOTE-TEST SET HOW
COMM SETUP COMM SETUP
PORT GROLP D PORT GROLP ID

. g I‘E'—" A — o F. pye—
-J/COM 1 6 IE! cjlcom 1 eHl1s
BaUD RATE LJART CRC _BALD RATE UART CRC
}/57600 EMAELE +J\19200
pacKET 5z ERCENABLED FACKETSIZE CRC EMABLED
i g -
3).%*38 il ’T}ﬁ

Fig 2-5. COMM Setup windows for the MICA2 (left) and MICA2DOT
(right)
Make sure that the correct port is selected for your computer. The MICA2
firmware is configured to run at baud rate of 57600 and the MICA2DOT at
19200. The default packet size should be 36, and UART CRC should not

Doc. # 7430-0022-03 Rev. A Page 15

Crosshew TinyOS Getting Started Guide

be enabled. Once the configuration is properly entered, push the SET NOW
button. The main screen will now reappear.

2.4.3 Confirming that the Mote Hardware is Working

Mot e- Test enablesyou to use either aMICA2 or aMICA2DOT in the
MIB500/M1B510 to create a base station or serial gateway to a PC. This
feature is unlike most TinyOS applications. Thiswas done to test and
demonstrate that two-way radio communications betweentwo motes. These
tests also verify that the mote hardware and the computer’ s serial port are
working correctly.

Supply amote (MICA2 or MICA2DOT) (pre)programmed with

M CA2_TEST_XXXor M CA2DOT_TEST_XXX firmware with batteries.
This mote becomes the remote unit to test the radio functions.
Connect either aMICA2 or MICA2DOT (pre)programmed with the
M CA2_TEST XXX or M CA2DOT_TEST_XXX firmware on the MIB
programming board in which “XXX" is the same frequency as the
remote unit.

If not already done, connect the MIB500/M1B510 programming
board to the serial port of the PC.

Pressthe SELF TEST button. A pop-up screen (see Fig. 2-6) will ask
“Which unit to test?” Chooseeither MICA2 or MICA2DOT
depending on what you have plugged into the MIB board.

s x|
eich Lk, b et

HICAZOOT

Fig 2-6. Unit selection pop-up screen
A second pop-up (Fig. 2-7) will appear with instructions for
configuring the test, click “OK.” Place the remote unit 2 feet or more
from the base.
x|
[reert MICAZ programmed mith mica?_best_xxx: i the programming board,

Setup aremote MICAZ0OT programieed with micafdol_best oo
This kest wdll werfy the Funchons on bhs remote HCAE00T,

Fig 2-7. An exampleinstruction screen for placing motes

Page 16 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

One of two Mote-Test Hardware Verify (Fig. 2-8) screens will appear:

MOTE-TEST MIOTE-TEST
HARDWARE YERIFY HARDWARE YERIFY
ATART TEIT PSS FaIL START TEST PASS FalL |
Dk'l "] @ E‘E:ITI Ei @] |E>CITi
Moy Test REMICE SoepTest SER e | Merery Tesk WEM OF Smep Test SLEED OF
@ T | L o ' "] ELEEPj >
Battery Test WILTAGE ucﬂux UJR?WT Bsttery Test WOLTWSE WOLT 0K and
i e el
ok o0.0m | Il CLAREMT
[] ® [ee] ¢ =
Terg Task E:TE___ TEh;ﬂk lpis_:r_:st Fssld:m -
RSE] et ?55[dbi FSSTOH ml 1i:|-uh i *
----- s Sarial 1L PLIAEER
[Lox foor o "] r
=i = [ocd |

Fig 2-8. Mote-Test Hardware Verify screens for the MICA2 DOT (left) and
MICAZ (right).

The MICA2DOT does not have a ID number and so this test is not done.
Instead it reports back the on-board temperature reading (in °C)

To run either the MICA2 or MICA2DOT hardware verify test, press
the START TEST button.

For the MICA2 observe the status lights for the Memory, Battery, RSSI
Test’s, and the ID NUMBER in the Serial ID test. For the MICA2DOT
observe the Memory, Battery, Temp, and RSSI Tests statuslights. If all
hardware components are functional, the PASS indicator will belit. All
these hardware tests are performed for the Base Station Mote except the
RSSI.

The RSSI dbm has two boxes: the |eft one shows what the remote unit
measured from the base stations unit. If the RSSI value is less than -80.00,
you will get aFAIL indicator. This does nhot necessarily mean that your
mote' sradio hasfailed. If you have placed the remote MICA2 or
MICA2DOT far away, the radio signalsare too attenuated. The solution is
to place your mote closer to the base station. If the remote unitisa
MICA2DOT, be sureto use fresh 3V coin cells.

Individual tests on each interface can be performed separately by selecting
the appropriate test button. This verifies that the mote hardware is working
correctly. When the test is completed, pressthe EXIT button. The main
screen will reappear. Y ou can continue checking other motes or end the
program and continue on with other applications.

Doc. # 7430-0022-03 Rev. A Page 17

Crosshew TinyOS Getting Started Guide

3 Introduction to TinyOS and NesC

The TinyOS operating system, libraries, and applications are all writtenin
nesC, anew structured component-based language. The nesC languageis
primarily intended for embedded systems such as sensor networks. nesC
has a C-like syntax, but supports the TinyOS concurrency model, as well as
mechanisms for structuring, naming, and linking together software
components into robust network embedded systems. The principal goal isto
allow application designers to build components that can be easily
composed into complete, concurrent systems, and yet perform extensive
checking at compiletime.

TinyOS also defines a number of important concepts that are expressed in
nesC. First, nesCapplications are built out of components with well-
defined, bidirectional interfaces. Second, nesC defines aconcurrency
model, based ontasks and hardwar e event handlers, and detectsdata
races at compile time.

Components
Specification

A nesC application consists of one or more components linked
together to form an executable. A component provides and uses
interfaces. These interfaces are the only point of accessto the
component and are bi-directional. Aninterface declares a set of
functions called commands that the interface provider must
implement and another set of functions called events that the
interface user must implement. For a component to call the
commands in an interface, it must implement the events of that
interface. A single component may use or provide multiple
interfaces and multiple instances of the same interface.

Implementation
There are two types of componentsin nesC: modules and
configurations. Modules provide application code, implementing
one or more interface. Configurations are used to assembl e other
components together, connecting interfaces used by components to
interfaces provided by others. Thisis called wiring. Every nesC
application is described by atop-level configuration that wires
together the components inside.

When looking at the files in an application directory, you can identify the
nesC files because it usesthe extension “. nc” for all source files—
interfaces, modules, and configurations.

Page 18 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

Concurrency Model

TinyOS executes only one program consisting of selected system
components and custom components needed for a single application. There
are two threads of execution: tasks and hardwar e event handlers. Tasks
are functions whose execution is deferred. Once scheduled, they run to
completion and do not preempt one another. Hardware event handlers are
executed in response to a hardware interrupt and also runs to completion,
but may preempt the execution of atask or other hardware event handler.
Commands and events that are executed as part of a hardware event handler
must be declared with the async keyword.

Because tasks and hardware event handlers may be preempted by other
asynchronous code, nesC programs are susceptible to certain race
conditions. Races are avoided either by accessing shared data exclusively
within tasks, or by having all accesses within atomic statements. The nesC
compiler reports potential data races to the programmer at compile-time. It
is possible the compiler may report afalse positive. In this case avariable
can be declared with the nor ace keyword. The norace keyword should be
used with extreme caution.

3.1 An Example Application: Blink

So far thisis all fairly abstract—Iet’s look at a concrete example: the simple
test program “ Bl i nk” found in/ apps/ Bl i nk inthe TinyOS tree. This
application simply causes the red LED on the mote to turn on and off at 1
Hz.

Blink consists of two components: amodule, called “Bl i nkM nc”, and a
configuration, called “Bl i nk. nc”. Remember that all applicationsrequire a
singletop-level configuration, which istypically named after the
application itself. In thiscase Bl i nk. nc isthe configuration for the Bl i nk
application and the source file that the NesC compiler uses to generate the
executable for the mote. Bl i nkM nc, on the other hand, actually provides
the implementation of the Blink application. Asyou might guess,

Bl i nk. nc isused towirethe Bl i nkM nc module to other components that
the Bl i nk application requires.

The reason for the distinction between modules and configurationsisto
allow asystem designer to quickly “snap together” applications. For
example, adesigner could provide a configuration that simply wires
together one or more modules, none of which she actually designed.
Likewise, another developer can provide a new set of “library” modules
that can be used in arange of applications.

Doc. # 7430-0022-03 Rev. A Page 19

Crosshew TinyOS Getting Started Guide

Sometimes (asisthe case with Bl i nk and Bl i nkM you will have a
configuration and a module that go together. When thisisthe case, the
convention used in the TinyOS tree isthat Foo. nc represents a
configuration and FooM nc represents the corresponding module. While
you could name an application’ s implementation module and associated
top-level configuration anything (ncc uses the * COMPONENT’ definition
in the application’s Makef i | e to find the top-level configuration), to keep
things simple we suggest that you adopt this convention in your own code.
There are several other naming conventions used in TinyOS code.

3.1.1 The Blink.nc Configuration

The nesC compiler, ncc, compiles a nesC application when given thefile
containing the top-level configuration. Typical TinyOS applications come
with astandard Makefile that allows platform selection and invokes ncc
with appropriate options on the application’s top-level configuration.

Let'slook first at the module Bl i nk. nc:

Blink.nc

configuration Blink {

}

i mpl ement ation {
conponents Main, BlinkM SingleTinmer, LedsC
Mai n. StdControl -> BlinkM StdControl ;
Mai n. StdControl -> SingleTiner.StdControl;
Bl i nkM Ti ner -> SingleTinmer. Ti mer;
Bl i nkM Leds -> LedsC,

Thefirst thing to notice isthe key wordconf i gur at i on, which indicates
that thisisaconfiguration file. The first two lines,

configuration Blink {

}

simply state that thisis aconfiguration called Bl i nk. Within the empty
braces hereit is possible to specify uses and pr ovi des clauses, aswith a
module. Thisisimportant to keep in mind: a configuration can use and
provide interfaces!

The actual configuration isimplemented within the pair of curly bracket
following key wordi npl emrent ati on. Theconponent s line specifiesthe
set of componentsthat this configuration references, in this case Mai n,

Bl i nkM, Si ngl eTi mer , and LedsC. The remainder of the implementation

Page 20 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

consists of connecting interfaces used by components to interfaces provided
by others.

Mai n isacomponent that is executed first in a TinyOS application. To be
precise, the Mai n. St dCont rol . i nit () command isthe first command
executed in TinyOS followed by Main. St dCont rol . st art (). Therefore,
aTinyOS application must have Main component in its configuration.

St dCont r ol isacommon interface used to initialize and start TinyOS
components.

Let ushavealook at/ t os/interfaces/ StdControl.nc:

StdControl.nc

interface StdControl {
command result_t init();
conmand result_t start();
command result_t stop();

}

We see that St dCont r ol . nc definesthree commands:init(),start(),
and st op() . i nit() iscalled when acomponentisfirstinitialized, and
start () whenitisstarted, that is, actually executed for thefirst time.

st op() iscalled when the component is stopped, for example, in order to
power off the devicethat it iscontrolling. i ni t () can be called multiple
times, but will never be called after eitherst art () or st op arecalled.
Specifically, thevalid call patternsof St dCont rol .ncarei nit* (start
| stop)*.All three of these commands have “deep” semantics; calling

i nit() onacomponentwill makeitcalli nit () onall of its
subcomponents.

The following two lines in Blink configuration

Mai n. St dControl -> SingleTinmer.StdControl;
Mai n. StdControl -> BlinkM StdControl ;

wirethe St dCont r ol interface in Mai n tothe St dCont r ol interface in
both Bl i nkMand Si ngl eTi mer . StdControl .init() and

Bl i nkM StdControl.init() will becalled by

Mai n. St dControl .init(). Thesameruleappliestothestart () and
st op() commands.

Concerning used interfaces, it isimportant to note that subcomponent
initialization functions must be explicitly called by the using component.

Doc. # 7430-0022-03 Rev. A Page 21

Crosshew TinyOS Getting Started Guide

For example, the Bl i nkMmodule uses the interface Leds, so
Leds.init() iscaledexplicitlyinBlinkMinit().

nesC uses arrows to determine relationships between interfaces. Think of
theright arrow (- >) as“bindsto.” The left side of the arrow binds an
interface to an implementation on the right side. In other words, the
component that uses an interface is on the left, and the component provides
theinterface is on theright.

Theline

Bl i nkM Ti mer -> Singl eTi ner. Ti ner;

isused towirethe Ti mer interface used by Bl i nkMto the Ti ner interface

provided by Si ngl eTi ner. Bl i nkM Ti ner on the left side of the arrow is
referring to theinterface called Ti mer (/tos/interfaces/Tinmer.nc),
whereas Si ngl eTi mer . Ti mer on theright side of the arrow isrefering to
the implementation of Ti ner (/tos/1i b/ Si ngl eTi mer . nc) . Remember
that the arrow always binds interfaces (on the left) to implementations (on

theright).

nesC supports multiple implementations of the same interface. The Ti ner
interfaceis such aexample. The Si ngl eTi mer component implements a
single Ti ner interface while another component, Ti ner C, implements
multiple timers using timer id as a parameter.

Wirings can also be implicit. For example,
Bl i nkM Leds -> LedsC,

isreally shorthand for
Bl i nkM Leds -> LedsC. Leds;

If nointerface nameis given on the right side of the arrow, the nesC
compiler by default triesto bind to the same interface as on the left side of
the arrow.

3.1.2 The BlinkM.nc Module
Now let'slook at the module Bl i nkM nc.

BlinkM.nc

nodul e Bl i nkM {
provides {
interface StdControl;
}
uses {
interface Tiner;

Page 22 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

i nterface Leds;

}
}
/1 Continued bel ow. ..

Thefirst part of the code states that thisisamodule called Bl i nkMand
declarestheinterfacesit provides and uses. The Bl i nkM module provides
theinterface St dCont r ol . This means that Bl i nkMimplements the

St dCont r ol interface. Asexplained above, thisis necessary to get the
Blink component initialized and started. The Bl i nkM module also uses two
interfaces. Leds and Ti mer. This means that Bl i nkMmay call any
command declared in the interfaces it uses and must also implement any
events declared in those interfaces.

The Leds interface defines several commands liker edOn() , reddf f () ,
and so forth, which turn the different LEDs (red, green, or yellow) on the
mote on and off. Because Bl i nkMuses the Leds interface, it can invoke
any of these commands. Keep in mind, however, that Leds isjust an
interface: the implementation is specified in the Blink.nc configuration file.

Ti mer . nc isalittle more interesting:

Timer.nc

interface Tinmer {

comand result_t start(char type, uint32_t
interval);

command result _t stop();

event result_t fired();

}

Here we see that Ti ner interface definesthest art () andst op()
commands, and thefired() event.

Thest art () command is used to specify the type of the timer and the
interval at which the timer will expire. The unit of the interval argument is

millisecond. Thevalid typesare TI MER_REPEAT and TI MER_ONE_SHOT. A
one-shot timer ends after the specified interval, while arepeat timer goes on
and on until it is stopped by the st op() command.

How does an application know that its timer has expired? The answer is
when it receives an event. The Ti ner interface provides an event:

event result_t fired();

Doc. # 7430-0022-03 Rev. A Page 23

Crosshew TinyOS Getting Started Guide

An event isafunction that the implementation of an interface will signal
when a certain event takes place. In thiscase, thef i red() eventis
signaled when the specified interval has passed. Thisis an example of a bi-
directional interface: an interface not only providescommands that can
be called by users of the interface, but also signalsevents that call handlers
inthe user. Think of an event as a callback function that the implementation
of an interface will invoke. A module that uses an interface must implement
the events that thisinterface uses.

Let'slook at therest of Bl i nkM nc to see how thisall fitstogether:

BlinkM .nc, continued

i mpl ement ation {

command result_t StdControl.init() {
call Leds.init();
return SUCCESS;

}

comand result_t StdControl.start() {
return call Tiner.start (Tl MER REPEAT, 1000)
}

conmand result_t StdControl.stop() {
return call Tiner.stop();

}

event result_t Tinmer.fired()

)

call Leds.redToggl e();
return SUCCESS;

}
}

Thisissimple enough. Aswe see the Bl i nkMmodule implements the
StdControl.init(),StdControl.start(), and

St dControl . st op() commands, sinceit providesthe St dCont r ol
interface. It also implementsthe Ti ner. fired() event, whichis

necessary since Bl i nkMmust implement any event from an interface it
uses.

Thei ni t () command inthe implemented St dCont r ol interface simply
initializes the Leds subcomponent with thecall toLeds. i ni t (). The

start () commandinvokesTi mer. start () tocreate arepeat timer that

Page 24 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

expires every 1000 ms. st op() terminatesthe timer. Each time
Timer.fired() eventistriggered, theLeds. redToggl e() togglesthe
red LED.

3.2 Compiling the Blink Application

TinyOS supports multiple platforms. Each platform has its own directory in
the/ t os/ pl at f or mdirectory. In this section, we will use the MICA2
platform as an example.

Run the cygwin application by double-clicking theicon that can be found
on your desktop.

Enter the/ apps/ Bl i nk directory using your shell (cygwin under
Windows); it isagood application to make sure that the most basic
hardware is working.

Type“make ni ca2” inacygwinwindow. Thisshould complete
successfully and create a binary image of your program for the
motes.

All objects, generated includes and executables are place in the bin
directory for the specific platform, e.g., / bui | d/ ni ca2

Y ou should, of course, observe errors and warnings that arise in building
your application. This example should not have any. At the very end, the
Make shows you a piece of the load map that tells you whether your
application fits.

3. 3 Programming a Mote and Running Blink

To download an application into the MICA2 mote, connect the 51-pin male
connector of the MICAZ2 into the 51-pin female connector of on the MIB
programming board. To download into aMICA2DOT, connect the female
connectors of the MICA2DOT to the femal e connectors of the MIB’s
MICA2DOT programming bay located on the “underside” of the MIB
programming board.

Y ou can either supply a3V supply to the connector on the
programming board or power the node directly. The red LED labeled
D2 on the programming board will be on when power is supplied.

If you have MIB500CA, plug the 25-pin connector into the parallel
port of alaptop configured with the TOS tools, or connect use a
standard DB-25 parallel port cable.

Type“make mica2 install”. If youareusing windows and the
install doesn’t work, you make need to fiddle with the port specified

Doc. # 7430-0022-03 Rev. A Page 25

Crosshew TinyOS Getting Started Guide

to uisp; depending on the hardware, cygwin can map parallel portsto
widely different names (use the - dI pt =# option, where # may be 1,
2, or 3).

If you are using an IBM ThinkPad, it may be necessary to tell the
toolsto use adifferent parallel port. Y ou can do this by adding the
line

HOST = THI NKPADbeforethei ncl ude statement in
/ apps/ Bl i nk/ Makefil e

Y ou should see the upload take place (this may take several seconds) and
the red LED should light up every second.

3.4 Generating the Component Structure Documentation

Y ou can view agraphical representation of the component relationships
within an application. TinyOS source files include metadata within
comment blocks that ncc, the nesC compiler, usesto automatically generate
html -formatted documentation.

To generate the documentation, type make <pl at f or m> docs from the

application directory. The resulting documentation is located in
docs/ nesdoc/ <pl at f or n>. docs/ nesdoc/ <pl at f or n®»/ i ndex. ht m

isthe main index to all documented applications.

To generate the documentation, gotothe/ti nyos- 1. x/ apps/ Bl i nk
directory and type “make <pl at f or > docs”. The html documentation

will have the filename be generated in the/
docs/ nesdoc/ <pl at f or m>. docs/ nesdoc/ <pl at f or n»/ i ndex. ht m

isthe main index to all documented applications.

4 NOTE If theinstall islocated on the drives other than C: you must

check the expansion of the $TCSROOT variable. If you get any errors during

“make nmica2 docs”, then do the following (assuming the TinyOS was
installed on D: drive)

Openthefile Maker ul es from ti nyos- 1. x/ apps and under “Rules for
documentation generation” section, replace theline,
“NCC := $(NCO) -docdir=$(DOCDI R)/ $(PLATFORM) -fnesc-is-app”’

with
“NCC : = $(NCC) - docdi r =$(DOCDI R) / $(PLATFORM) -t opdi r =/ cygdri ve/ d/ ti nyos-

1.x -fnesc-is-app"

The directory index takes you to an html file that looks like the figure
below.

Page 26 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

Apps Components |Interfaces All Files SourceTree

App: Blink

Component Graph (text version, help) ‘

StdControl

Browsing through the graphical representation of the component wiring
using your mouse isreally helpful to understand the overall structure of
TinyOS.

For more details on different component modules please refer to Lesson 1
in the Tutorial.

Doc. # 7430-0022-03 Rev. A Page 27

Crosshew TinyOS Getting Started Guide

4 Component Composition and Radio
Communication

This chapter introduces two concepts: hierarchical decomposition of
component graphs, and using radio communication. The applications that
we will consider are Cnt ToLedsAndRf mand Rf nToLeds.

Cnt ToLedsAndRf misavariant of Bl i nk that outputs the current counter
value to multiple output interfaces: both the LEDs, and the radio
communication stack. Rf nifoLeds receives datafrom the radio and displays
it on the LEDs. Programming one mote with Cnt ToLeds AndRf mwill cause
it to transmit its counter value over the radio; programming another with

Rf nifoLeds causesit to display the received counter on its LEDs—your
first distributed application!

If you're using MICA2 or MICA2DOT motes, you will need to ensure that
you've selected aradio frequency compatible with your motes. Refer back
to section 1.5 on how to set the radio frequency.

4.1 Sending Messages with CntToLedsAndRfm

Assuming you are using aMICA2 mote, after it isinstalled you should see
a3-bit binary counter on the mote’s LEDs. And while it is not apparent, it
is, of course, transmitting the value over the radio.

Build and install the application by typing “M B510=/ dev/ttyS0
make mica2 install”, assumingyou are programming with the
MIB510 serial port programming interface board on COM1.

4.2 Receiving Messages with RfmTolLeds

In asimilar manner program another mote with Rf nToLeds .

When you turn on Cnt ToLedsAndRf m you should see the count displayed
on the Rf nfoLeds device. If you turn the transmitter mote off, you will see
that the LED counting stops on both motes.

Congratulations! Y ou are doing wireless networking.

For more details on different component modules please refer to Lesson 4
in the Tutorial.

Page 28 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

5 Displaying data on the PC

The goal of this section isto integrate the sensor network with aPC,
allowing usto display sensor readings on the PC aswell asto communicate
from the PC back to the motes. First, we'll introduce the basic tools used to
read sensor network data on a desktop over the serial port. Next we will
demonstrate a Java application that displays sensor readings graphically.
Finally, we will close the communication loop by showing how to send data
back to the motes.

5.1 The Oscilloscope application

The Oscilloscope application isfound in/ apps/ Osci | | oscope. It
consists of asingle module that reads data from the photo sensor. For each
10 sensor readings, the modul e sends a packet to the serial port containing
those readings. The mote only sends the packets over the serial port, but it
can be easily extended to have it send the data over the radio instead.

Set the SENSORBOARD option in/ apps/ Gsci | | oscope/ Makefil e
to either mi casb or basi csb depending on the type of sensor board
you have.

Compile and install the Osci | | oscope application on amote.

Connect a sensor board (51-pin female) to the underside of the
programming interface board (51-pin male) to get the light readings.
See Fig 2afor proper connection of the sensor board to the
programming interface board.

Connect the programming board with mote and sensor board to the
serial port of your computer. See Fig. 2b for the proper stack of the
mote, interface board, and sensor board (top to bottom).

When the Gsci | | oscope application isrunning, the red LED lights when
the sensor reading is over some threshold, set to 0x0300 (heX), by default in
the code. (You might want to change this to a higher value if it never seems
to go off inthedark.) The yellow LED istoggled whenever a packet is sent
to the serial port.

4 NOTE TheMICA 2 UART runs at 57600 baud and M ICA and
MICA 2DOTsrun at 19200 baud.

Doc. # 7430-0022-03 Rev. A Page 29

Crossbew TinyOS Getting Started Guide

AT

T e

Fig 5-2. MICA2 plugged into the top side and the MTS310 sensor board
plugged into the bottom side of the MIB510. Also shown are the serial
cable and AC power wall adaptor connected to the MIB510.

5.2 The ‘listen’ Tool: Displaying Raw Packet Data

Thefirst step to establishing communication between the PC and the mote
isto connect up your serial port cable to the programming board, and to
make sure that you have Javaand thej avax. commpackage installed. After
programming your mote with the Gsci | | oscope code, cd to the

/tool s/ j ava directory, and type

nmake

export MOTECOMEseri al @eri al port: baudrate
The environment variable MOTECOMLtells the java Listen tool (and most
other tools too) which packetsit should listen to. Here

seri al @eri al port: baudrat e saysto listen to amote connected to a
seria port, where seri al port isthe serial port that you have connected

Page 30 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

the programming board to, and baudr at e is the specific baud rate of the
mote. For the MICA and MICA2DOT motes, the baud rate is 19200, for the
MICAZ2 it is 57600 baud. Y ou can also use a mote name as the baud rate (in
which case that motes baud rate is selected). So you could do any of:

export MOTECOMEseri al @OML: 19200 # M CA baud rate

export MOTECOMEserial @OML:mica # M CA baud rate, again
export MOTECOMFserial @OM: m ca2 # the M CA2 baud rate,
on a different serial port

export MOTECOMEseri al @OVB: 57600 # explicit M CA2 baud
rate

Set MOTECOM appropriately
Runj ava net.tinyos.tools.Listen

Y ou should see some output resembling the following:
% java net.tinyos.tools.Listen

seri al @OML: 19200: resynchroni sing

7e 00 Oa 7d 1la 01 00 Oa 00 01 00 46 03 8e 03 96 03 96 03 96 03
97 03 97 03 97 03 97 03 97 03

7e 00 Oa 7d 1a 01 00 14 00 01 00 96 03 97 03 97 03 98 03 97 03
96 03 97 03 96 03 96 03 96 03

7e 00 Oa 7d 1a 01 00 1le 00 01 00 98 03 98 03 96 03 97 03 97 03
98 03 96 03 97 03 97 03 97 03

The program is simply printing the raw data of each packet received from
the serial port. Each data packet that comes out of the mote contains several
fields of data. Some of these fields are generic Active Message fields, and
are defined in/ t os/ syst em AM h. The data payload of the message,
which is defined by the application, is defined in

/tos/libl OscopeMsg. h. The overall message format for the

Gsci | | oscope application isasfollows:

Destination address (2 bytes)
Active Message handler ID (1 byte)
Group ID (1 byte)
Message length (1 byte)
Payload (up to 29 bytes):
0 source mote D (2 bytes)
sampl e counter (2 bytes)

0
0 ADC channel (2 bytes)
0 ADC datareadings (10 readings of 2 bytes each)

Before continuing, execute unset MOTECOMto avoid forcing all java
applicationsto use the serial port to get packets

Doc. # 7430-0022-03 Rev. A Page 31

Crosshew TinyOS Getting Started Guide

5.3 The SerialForwarder Program

TheLi st en program isthe most basic way of communicating with the
mote; it directly opensthe serial port and just dumps packets to the screen.
Obviously it is not easy to visualize the sensor data using this program.
What we'd really like is a better way of retrieving and observing data
coming from the sensor network.

The Seri al Forwar der program is used to read packet datafrom a serial
port and forward it over an Internet connection, so that other programs can
be written to communicate with the sensor network over the Internet. To
run the serial forwarder, gotot ool s/ j ava and run the program by typing

java net.tinyos.sf. Serial Forwarder -conm
seri al @OML: <baud r at e>

where<baud r at e> isthe baud rate of your serial port (it will typically be
either 19200 or 57600) The - conmargument tellsSer i al For war der to
communicate over serial port COML. The - commargument specifies where
the packetsSer i al For war der should forward come from, using the same
syntax as the MOTECOMenvironment variable you saw above (you can run
“java net.tinyos. packet. Buil dSour ce” toget alist of valid
sources). Unlike most other programs, Serial Forwarder does not pay
attention to the MOTECOMenvironment variable; you must use the - comm
argument to specify the packet source (The rationale is that you would
typically set MOTECOMto specify a serial forwarder whichin turn should
talk to, e.g., aseria port. You wouldn’'t want the Ser i al For war der to
talk to itself...).

The<baud rat e> argument tellsSer i al For war der to communicate at
specified baud rate.

Thiswill open up a GUI window that looks similar to the following:

Page 32 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

o ST 1
i senalEonvarder = L]l

Listening to serial@COM1: 57600 :l’ Main |
zerial BCOML: 57600: resynchronising

Server Port:

Listening for client connections oh port 9001 |QDD1 |

hote Communications:
[serial@oom 57800

Stop Server |
E ‘erbose Modea
Pckts Read: 2
Pokts Witn: O
Hum Clients: 0
[Help |
[GQuit |

-

Fig. 5-3. Screen shot of java application SerialForwarder when it is
properly running

Seri al For war der does not display the packet dataitself, but rather
updates the packet countersin the lower-right hand corner of the window.
Once running, the serial forwarder listens for network client connections on
agiven TCP port (9001 is the default), and simply forwards TinyOS
messages from the serial port to the network client connection, and vice
versa. Note that multiple applications can connect to the serial forwarder at
once, and all of them will receive a copy of the messages from the sensor
network.

As packets arrive from the mote connected to the serial port, you will see
the " Pckts Read:" field in the lower right corner begin to increment.

5.4 Starting the Oscilloscope GUI

It isnow timeto graphically display the data coming from the motes.
Leaving the serial forwarder running, execute the command

java net.tinyos.oscope.oscill oscope

Thiswill pop up awindow containing agraphical display of the sensor
readings from the mote. It connects to the serial forwarder over the network
and retrieves packet data, parses the sensor readings from each packet, and
drawsit on the graph:

Doc. # 7430-0022-03 Rev. A Page 33

Crosshaw TinyOS Getting Started Guide

- |0IX]

Zoomiin X Zoom In ¥
- : [hea ¥ 2aig
Zom DL Zoom Ot i
Ahalre e il 1 Boronng
Fave Dala Load Data |l:4 | Regst| * [@
Edit Legend | k¢ Bhow Legeantd i
———— e AT Commal Fanel

Clear Dataset | B Gonnect Dabapninia

Fig. 5-4. Example screen shot from java application Oscilloscope

The x-axis of the graph is the packet counter number and the y-axis is the
sensor light reading. If the mote has been running for awhile, its packet
counter might be quite large, so the readings might not appear on the graph;
just power-cycle the mote to reset its packet counter to 0. If you don’t see
any light readings on the display, be sure that you have not zoomed in on
thedisplay.

5.5 Transmitting Sensor Data Over the Radio to Serial Port

TheGsci | | oscope mote application iswritten to use the serial port and
the light sensor. Instead, look at/ apps/ Csci | | osopeRF, which transmits
the sensor readings over the radio. In order to use this application, you need
to provide abridge that receives data packets over the radio and transmits
them over the serial port. The/ apps/ TOSBase is an application that does
this; it simply forwards packets between the radio and the UART (in both
directions).

Page 34 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

{ NOTE Theoscill oscope GUI is aready capable of displaying
sensor readings from multiple motes. Y ou have to ensure that those

readings are correctly transmitted and received over the network. This setup
would look like the following diagram.

PC

. ; GLI
i
_ kit SerlalForvarder
F SF. Stub

-
- ‘\ /ﬂ
‘__.-f" ; e el

§.4

Remote PC /
APP

Fig. 5-5. lllustration of how OscilloscopeRF works

For this exercise you will need at least 3 motes.
Program the two motes with the Gsci | | oscopeRF application, setting
their nodeid’sto 1, 2, etc. using command

make mca2 install.<nodei d>
where, <nodei d> isthe ID you wish to program into the mote.
Program the other mote with the TOSBase application.

With the TOSBase mote plugged into the programming board and
connected to the serial port, spread around the rest of motes (withthe

Gsci | | oscopeRF application with sensor boards connected (See Fig.
3.

Repeat Steps 5.3 and 5.4 to invoke the Ser i al For war der and

Gsci | | oscope GUI. You should see the following GUI with specific
Mote | Ds displaying the light sensor data. If you cover the light sensor
with the hand you should see the data from that particular mote change.

Doc. # 7430-0022-03 Rev. A Page 35

Crosshaw

TinyOS Getting Started Guide

Fig. 5-6 A battery-powered MICA2 mote with an MTS310 sensor board
used in the OscilloscopeRF application

4 NOTE For MICA2DOT users, it is highly recommended that they use
MICA 2 as a base station, because the M ICA2DOT UART isnot stable asa
basestation.

Zoearin i

Zagm in’t | i
Zoam Carl ¥ Zoom Dl Y = Bl
samdan | Loadgan | -] Fesat] .| = @
EdtiLapard | Shorw Lagand ¥

Chaer Datagaat | [+ Can it Datapoinis —

Canial Panid |

Fig. 5-7. Screen shot of the java GUI for OscilloscopeRF. Two motes’
sensor data displayed in two different colors is visible in this example

For more details on different component modul es please refer to Lesson 6
inthetutorial.

Page 36

Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

6 Multihop Routing

The TinyOS-1.1 release and later include library components that provide
ad-hoc multi-hop routing for sensor network applications. The
implementation uses a shortest-path-first algorithm with a single destination
node (the root) and active two-way link estimation. The data movement and
route decision engines are split into separate components with asingle
interface between them to permit other route-decision schemesto be easily
integrated in the future. Use the multi-hop router is essentially transparent
to applications (provided they correctly use theinterface).

Use of the multi-hop library component is mostly transparent to the
application. Any application that uses the Send interface can be connected
to this component to achieve multi-hop functionality. One limitation of
multi-hop, however, isthe aggregate datarate. Applications should
maintain average message frequency at or below one message every two
seconds. Higher rates can lead to congestion and or overflow of the
communication queue.

6.1 Surge Demo

The Surge application, inthe/ apps/ Sur ge, isasimple example of a
mutlihop application. Surge takes light sensor readings and sends them
over the mesh to the base node (nodeid 0). Accompanying this application
isaJavaprogram that can be used to visualize the logical network topology
and the sensor readings. Users are encouraged to review the application,

Sur geM nc, and it’s configuration, Sur ge. nc, to better understand how to
use the multi-hop tools.

Build the application Sur ge: cd to the/ apps/ Sur ge directory and
typea“make m ca2”.

Build thejavatools. cd tothe/t ool s/j ava/ net/ti nyos/ surge
directory and type “nake”.

Install the application onto the target nodes, giving each node a
unique node ID by typing “M B510=/ dev/ttyS0O nake
reinstall.<nodei d> mi ca2” assuming you are programming
through the MIB510 connect to serial port COM1 Remember, the
base station mote must be installed with node ID of 0. This node
should be connected to a PC viaa serial or network link.

Next run the java applications.

First start Seri al For war der to link the base node and the PC (e.g.,
typing “j ava net.tinyos. sf. Seri al Forwarder —conm
seri al @OML: m ca2” inthejavadirectory).

Doc. # 7430-0022-03 Rev. A Page 37

Crosshaw TinyOS Getting Started Guide

Next start the GUI for the Sensor Net wor k Topol ogy from the
/ tool s/ java directory by typing “j ava

net.tinyos. surge. Mai nC ass <G oupi d>", where

<@ oupi d> isthe AM group ID number (in decimal) used when
compiling the mote application (e.g., the default group ID of hex
0x7d is decimal 125).

When the application starts, you should immediately see the base node
reporting sensor values. After about 1 minute, other nodes should appear as
the network topology builds.

ol x|
|j Cebug IE Statu:

ﬁ Sensor Network Topology

|l—:it to screen |

Send wakeup || Canssl tacus

Start root beacan | Contral Panel | Send sleap |

3

amsgs (0.2967 msgsisec)

————Quality O
———ield O

34 msgs (0506 msgsisec)

C————Quality 0
C————ield 0506

Fig. 6-1. Network topology GUIl in Surge

Page 38 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

If you cover the light sensor with the hand, that particular mote should get
dark on the screen. Y ou can make a particular mote disappear from the
screen by powering it off or moveit farther away. The solid green lines
indicate the active data transmission link and the red line represents
previously active communication links, which has now become inactive,
because the node found a better transmission path.

4 NOT E Thelocation of the node IDs on the screen does not represent
the physical location of the nodes in the neighborhood of the PC.

6.2 Learning More About Multi-hop Protocols

Multi-hop protocols for ad-hoc networks is an active area of research. The
nature ad-hoc networks makes them very different than fixed-powered and
even cellular networks. Ad-hoc networks are characteristically not reliable
over the long term. Nodes may suddenly stop working or may physically
move out of range. Multi-hop allows for these dynamic changes in network
topology.

Ad-hoc networks also are designed to minimize the use of energy to so it
can work off of batteriesfor at least many months to afew years. Powered
networks by contrast can afford to expend alot more energy to manage
links. One of the challenges to ad-hoc networks is that broadcasting is
energy and time inefficient. So a multi-hop protocol must be able to
dynamically determine which nodes (motes) would be the better or the best
parent to atransmitting mote.

There have been several multi-hop protocols designed specially for

TinyOS. The application in this section, Sur ge, is one of the oldest and was
developed at the University of California, Berkeley. It is a useful
demonstration of multi-hopping but does not include power management.
Another protocol isDSDV (located incont ri b/ hsn/tos/ 1 b),
developed as Intel-Berkeley Labs. It has power management features. One
of the latest and perhaps most promising to dateis Bl ast by Alec Woo of
UC, Berkeley. Bl ast is reported to benefit from the extensive use of
estimators and uses advanced power management. These files are located in
contrib/hsn/tos/lib/route

6.3 Learning More About TinyOS

Now that you have TinyOS working, you can start learning about it and
writing your own programs. Intheti nyos- 1. x/ doc/ tutori al thereisa
comprehensive tutoria for learning TinyOS. Read and follow the
instructions in different Lessons.

Doc. # 7430-0022-03 Rev. A Page 39

Crosshew TinyOS Getting Started Guide

7 Warranty and Support Information

7.1 Customer Service

AsaCrossbow Technology customer you have access to product support
services, which include:

Single-point return service

Web-based support service

Same day troubleshooting assistance
Worldwide Crossbow representation

Onsite and factory training available
Preventative maintenance and repair programs

Installation assistance available

7.2 Contact Directory
United States: Phone: 1-408-965-3300 (7 AM to 7 PM PST)
Fax: 1-408-324-4840 (24 hours)
Email: techsupport@xbow.com

Non-U.S.: refer towebsite www.xbow.com

7.3 Return Procedure
7.3.1 Authorization

Before returning any equipment, please contact Crossbow to obtain a
Returned Material Authorization number (RMA).

Be ready to provide the following information when requesting a RMA:
Name
Address
Telephone, Fax, Email
Equipment Model Number
Equipment Serial Number
Installation Date

Page 40 Doc. # 7430-0022-03 Rev. A

TinyOS Getting Started Guide Crossbew

Failure Date

Fault Description

7.3.2 Identification and Protection

If the equipment is to be shipped to Crossbow for service or repair, please
attach atag TO THE EQUIPMENT, aswell as the shipping container(s),
identifying the owner. Also indicate the service or repair required, the
problems encountered, and other information considered valuable to the
service facility such asthelist of information provided to request the RMA
number.

Place the equipment in the original shipping container(s), making sure there
is adequate packing around all sides of the equipment. If the original
shipping containers were discarded, use heavy boxes with adequate padding
and protection.

7.3.3 Sealing the Container

Seal the shipping container(s) with heavy tape or metal bands strong
enough to handle the weight of the equipment and the container.

7.3.4 Marking

Please write the words, “FRAGILE, DELICATE INSTRUMENT” in
several places on the outside of the shipping container(s). In all
correspondence, please refer to the equipment by the model number, the
serial number, and the RMA nurrber.

7.3.5 Return Shipping Address
Usethe following address for all returned products:

Crosshow Technology, Inc.
41 Daggett Drive
San Jose, CA 95134
Attn: RMA Number (XXXXXX)

7.4 Warranty

The Crossbow product warranty is one year from date of shipment.

Doc. # 7430-0022-03 Rev. A Page 41

Crossb_éw

Crossbow Technology, Inc.
41 Daggett Drive

San Jose, CA 95134
Phone: 408.965.3300

Fax: 408.324.4840

Email: info@xbow.com
Website: www.xbow.com

