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Abstract

Data Grids are an emerging new technology for managing largeamounts of distributed
data. This technology is highly-anticipated by scientific communities, such as in the area
of astronomy, protein simulation and high energy physics. This is because experiments in
these fields generate massive amount of data which need to be shared and analysed. Since it
is not possible to test many different usage scenarios on real Data Grid testbeds, it is easier
to use simulation as a means of studying complex scenarios.

In this paper, we present our work on a Data Grid simulation infrastructure as an exten-
sion to GridSim, a well-known Computational Grid simulator. The extension that we have
developed provides essential building blocks for simulating Data Grid scenarios. It provides
the ability to define resources with heterogeneous storage components, and the flexibility
to implement various data management strategies. It also allows authorized users to share,
remove and copy files to resources. Moreover, users and/or resources are able to query to
a Replica Catalogue about the location of a particular file. The Replica Catalogue (RC), a
core entity of Data Grids, is an information service which provides registry and look up
service. Therefore, our work provides the possibility to organize RC entities in different
ways, such as in centralized or hierarchical model.
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1 Introduction

Grid computing is an emerging new technology, which focuseson sharing dis-
persed heterogeneous resources among their collaborators, and aggregating them
for solving large-scale parallel applications in science,engineering and commerce [15].
Initially, the Grid community focused on compute-intensive applications that con-
tain many parallel and independent tasks. Projects such as Legion [19], Globus [14],
Nimrod-G [6], Apples [8], SETI@home [1], and Condor-G [16] are mainly concen-
trated on development of technologies for Computational Grids. However, in recent
years, applications are targeting on the use of shared and distributed data to be an-
alyzed among collaborators. In addition, these applications can produce large data
sets in the order of Gigabytes (GB) and possibly Terabytes (TB) or Petabytes (PB).
Many of these applications are in the area of astronomy [2], protein simulation [4],
and high energy physics [12]. Hence, Data Grids are becomingan important re-
search area [22].

Data Grids are Grids that provide a scalable storage and access to data sets in dif-
ferent locations [9]. The data sets must eventually be evaluated and analyzed by
scientists and other collaborators from different research groups, who may be lo-
cated around the globe. Hence, efficient, reliable and secure access to the data sets
and their replication across several sites are primary concerns in Data Grids.

Different scenarios need to be evaluated to ensure the effectiveness of access and
replication strategies. Given the inherent heterogeneityof a Grid environment, it is
difficult to produce performance evaluation in arepeatableandcontrolledmanner.
In addition, Grid testbeds are limited and creating an adequately-sized testbed is
expensive and time consuming. Therefore, it is easier to usesimulation as a means
of studying complex scenarios.

To address the above issues, we have developed a Data Grid simulation infrastruc-
ture, as an extension to GridSim [29]. We opted to work on GridSim because it
has a complete set of features for simulating realistic Gridtestbeds. Such features
are modelling heterogeneous computational resources of variable performance, dif-
ferentiated network service, and workload trace-based simulation from a real su-
percomputer. More importantly, GridSim allows the flexibility and extensibility to
incorporate new components into its existing infrastructure.

In this work, GridSim has been extended with the ability to handle: (1) replication
of data to several sites; (2) query for location of the replicated data; (3) access to
the replicated data; and (4) make complex queries about dataattributes. With these
new features, GridSim users will be able to do integrated studies of on demand
replication strategies with jobs scheduling on available resources.

The rest of this paper is organized as follows: Section 2 discusses related work.
Section 3 mentions the GridSim architecture. Section 4 describes an overview of the
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Table 1
Listing of functionalities and features for each grid simulator

Functionalities GridSim OptorSim Monarc ChicSim SimGrid MicroGrid

data replication yes yes yes yes no no

disk I/O overheads yes no yes no no yes

complex file filtering yes no no no no no

or data query

scheduling user jobs yes no yes yes yes yes

CPU reservation of yes no no no no no

a resource

workload trace-based yes no no yes no no

simulation

overall network features good simple good good good best

differentiated network QoS yes no no no no no

generate background yes yes no no yes yes

network traffic

model, whereas Section 5 explains some of the Data Grid operations incorporated
into GridSim. Section 6 describes a construction of a complex simulation using
the basic building blocks in GridSim. Finally, Section 7 concludes the paper and
suggests further work.

2 Related Work

There are some tools available, apart from GridSim, for application scheduling
simulation in Grid computing environments, such as OptorSim [3], Monarc [11].
ChicSim [10], SimGrid [20], and MicroGrid [25]. We evaluatethese simulation
tools based on three criteria: (1) the ability to handle basic Data Grid functional-
ities; (2) the ability to schedule compute- and/or data-intensive jobs; and (3) the
underlying network infrastructure. Differences among these simulators based on
these criteria are summarized in Table 1.

From Table 1, it is shown that SimGrid and MicroGrid are mainly targeted as a
general-purpose grid simulator for Computational Grids. Hence, they lack features
that are core to Data Grids, such as data replication and query for the location of a
replica.
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OptorSim has been developed as part of the EU DataGrid project [13]. It aims to
study the effectiveness of data replication strategies. Inaddition, it incorporates
some auction protocols and economic models for replica optimization. In Optor-
Sim, only data transfers are currently being simulated, whereas GridSim is able to
run both compute- and data-intensive jobs.

Monarc and ChicSim are grid simulators designed specifically to study different
scheduling, replication and performance issues in Data Grid environment. Hence,
they provide a general and extensible framework, to implement and evaluate these
issues. However, they lack one important feature, i.e. the ability to generate back-
ground network traffic. This feature is important because inreal-life, networks are
shared among users and resources. Hence, congested networks can greatly affect
the overall replication and performance issue.

Other features in GridSim that these grid simulators do not have are complex file
filtering or data query (will be discussed further in Section5), CPU reservation and
differentiated network Quality of Service (QoS). With network QoS, high priority
packets are transferred faster than normal ones under a heavy load [17,29]. There-
fore, network QoS is well-suited for applications that require low latency and faster
delivery of data generated by scientific instruments, such as in fire or earthquake
detection and brain activity analysis application.

3 GridSim Architecture

GridSim is based on SimJava2 [24], a general purpose discrete-event simulation
package implemented in Java. We designed GridSim as a multi-layer architecture
for extensibility. This allows new components or layers to be added and integrated
into GridSim easily. In addition, the GridSim layer archicture captures the model
of grid computing environment. The GridSim architecture with the new DataGrid
layer can be shown in Figure 1.

The first layer at the bottom of Figure 1 is managed by SimJava2for handling the
interaction or events among GridSim components. The secondlayer is dealt with
the GridSim infrastructure components, such as network andresource hardware.
The third and fourth layer are concerned with modelling and simulation of Com-
putational Grids and Data Grids respectively. GridSim components such as Grid
Information Service and Job Management are extended from the third layer to in-
corporate new requirements of running Data Grids. The fifth and sixth layer are
allocated to users wanting to write their own code in GridSim.
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4 Description of the DataGrid Model

A high-level overview of Data Grid is shown in Figure 2. A scientific instrument
(a satellite dish in this example), generates large data sets which are stored in the
Data Center. The Data Center then notifies a Replica Catalogue about the list of
available data sets in the center. This approach allows resources to request for file
copies of the data sets when a user submits his/her jobs.

To model realistic Data Grid scenarios like in the above description, new compo-
nents such as Replica Catalogue, and concepts like data setsand file copies are

5



introduced into GridSim.

A data set is typically grouped into one or more files. Therefore, we define a file
as a basic unit of information in GridSim. In addition, GridSim supports a feature
calleddata replication. With data replication, it is possible to make several copies
of the same file on different resources. This approach enhances fault tolerance char-
acteristics of the system and improves access to the file [27].

In GridSim, there are two types of file: master and replica. Amaster fileis an
original instance of the file, whereas all other copies of thefile are categorized as
replicafiles. This distinction is introduced to identify the purpose of a file copy. The
master file is usually generated by a user’s program or by a scientific instrument,
hence it should not automatically be deleted by resources. On the other hand, a
replica file can be created and removed dynamically by a resource based on storage
constraints and/or access demands.

In GridSim,File class represents the physical (master or replica) file, and each file
has aFileAttribute class representing the information regarding this file. The
information stored in theFileAttribute class can be the owner name, check-
sum, file size and last modified time. The information contained in theFileAttribute
object is the one being sent by a resource to a Replica Catalogue.

4.1 Replica Catalogue

Replica Catalogue (RC) is a core component of every Data Gridsystem. The func-
tion of a RC is to store the information (metadata) about filesand to provide map-
ping between a filename and its physical location(s).

The RC does not have to be a single entity in a Data Grid system.It can also be
composed of several distributed components, which, by switching the information
among them, provide a transparent service to the users and resources. Currently,
GridSim allows two possible catalogue models as described below.

4.1.1 Centralized Model

This model is the most simple solution, as there is only one RCcomponent in a
Data Grid system that handles all registrations and queriessent by resources and
users. Hence, the RC maps a filename to a list of resources thatstores this file. An
example of a system that follows this model is Napster [23], apeer-to-peer (P2P)
music sharing program.

This model is typically used in smaller systems, where queries to the RC are lim-
ited. However, as the number of resources and users grows, the RC becomes a
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bottleneck since there are too many queries to be processed [27]. In this case, dif-
ferent types of catalogue models are needed. One solution isto use a hierarchical
model.

4.1.2 Hierarchical Model

The hierarchical RC model is constructed as a catalogue tree, as depicted in Fig-
ure 3. In this model, some information are stored in the root of the catalogue tree,
and the rest in the leaves. This approach enables the leaf RCsto process some of
the queries from users and resources, thus reducing the loadof the root RC.

In our implementation, we follow an approach described in [27] and used by the EU
DataGrid project [13]. In this model, the root RC only storesthe mapping between
a filename and a list of leaf RCs. Each leaf RC in turn stores themapping between
the filename and a list of resources that store this file. Table2 shows an example of
how information are indexed for the hierarchical model in Figure 3.

4.1.3 Implementing a New Model

The hierarchical model described previously deals with improving the performance
issue of the RC. However, some issues are not considered, such as reliability or fault
tolerance and availability. With the hierarchical model, the root RC can become a
single point of failure to the whole system.

As GridSim is designed to be a research tool, researchers or analysts wishing to
test new ideas can easily extend the current component and implement more ad-
vanced RC models. By using this approach, new RC models, suchas P2P model
can be compared to the existing ones. The P2P model offers better reliability and
scalability than the hierarchical model as mentioned in [7].

In GridSim, common functionalities of a RC is encapsulated in AbstractRC, an
abstract parent class for bothTopRegionalRCandRegionalRC. TheTopRegionalRC
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Table 2
An example of a filename mapping in a hierarchical model

TopRegionalRC

Filename Location

file1 RegionalRC 1, LocalRC

file2 LocalRC, RegionalRC 2

file3 RegionalRC 1, RegionalRC 2

LocalRC

Filename Location

file1 Resource A

file2 Resource A

RegionalRC 1

Filename Location

file1 Resource B, Resource C

file3 Resource B

RegionalRC 2

Filename Location

file2 Resource D

file3 Resource D

class acts as a centralized RC or a root RC in a hierarchical model. In constrast, the
RegionalRC class represents a local RC and/or a leaf RC in a hierarchicalmodel.
Therefore, creating a new RC model can be done by extending theAbstractRC
class and implementing some core functionalities, such as

• adding / deleting a master file or replica(s);
• getting the location / attribute of a file; and
• filtering files based on certain criteria (described in Section 5).

With the above approach, the RC model and its structure becomes transparent to
users and resources. Hence, they are just aware of the RC location, but not the type,
to which they communicate.

4.2 Resource

A resource for Data Grids enables users to run their jobs as well as to gain access
to available data sets.

A resource has the following components:

• Storage. A resource can have one or more different storage elements, such as
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harddisks or tape drives. An individual storage is responsible for storing, retriev-
ing and deleting files. GridSim models physical characteristics of a real storage
device, such as read and write access delays.

• Replica Manager. This component is responsible for handling and managing
incoming requests about data sets in a resource for one or more storage elements.
It also performs registrations of files stored in the resource to a designated RC.

• Local Replica Catalogue. This component is an optional part of a resource. The
Local RC is responsible for indexing available files on the resource only. It also
handles users’ queries. However, the Local RC does not serveas a catalogue
server to other resources. This should be done by a leaf or regional RC.

• Allocation Policy. This component is responsible for executing user jobs to one
or more available nodes in a resource. GridSim currently hastwo policies, i.e.
Space-Shared using a First Come First Serve (FCFS) approachwith/without ad-
vanced reservation [28] and Time-Shared using a Round Robinapproach.

All the resource’s components can be extended to implement new ideas and features
of the grid. In the next section, we will focus on the extension of the RM, since it
is responsible for dealing with the most important functionality of the Data Grid.

4.2.1 Extending Replica Manager

In GridSim, a Replica Manager (RM) is represented as an abstract classReplicaManager.
Currently, a concrete implementation of the RM is captured in theSimpleReplicaManager
class, the functionality of which is described in more detail in Section 5. However,
like the RC, the RM also can be extended to test new ideas and approaches to solv-
ing various problems that arise in Data Grids. In order to implement a new resource
manager, the following user requests have to be handled:

• adding / deleting a master file and replica; and
• sending a file to the user.

Furthermore, the RM has to register and deregister files fromthe RC when neces-
sary.
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public class User extends DataGridUser {

public User(String name, Link l) throws Exception {
super(name, l);

}

public void body() {
// first get a location of a file
int loc = super.getReplicaLocation("testFile1");

// second, request the file from the specified
// location and make a replica to resource_1
if (loc != -1) {

int resId = GridSim.getEntityId("resource_1");
File file = getFile("testFile1", loc);
super.replicateFile(file, resId);

}

// shut down I/O ports
super.shutdownUserEntity();
super.terminateIOEntities();

}
} // end class

Fig. 5. A simple example on how to create a new data grid user

4.3 User

In GridSim, a user can be modelled as an application or a broker performing on
behalf of the user, by extending from aDataGridUser class. The user, then, can
query and request files located on different resources. However, to simulate various
user scenarios during an experiment, this class must be extended and its behaviour
must also be specified.

Figure 5 shows a simple implementation of a Data Grid user. When the simulation
starts, this user simply transfers the filetestFile1, replicates it toresource 1,
and then terminates. As it can be seen many different usage scenarios can easily be
implemented in this way.

5 Data Grid Operations in GridSim

In the previous section, we defined the entities in GridSim. In this section, we de-
scribe in more detail how the most common operations are currently implemented.
We use a hierarchical RC model as an example for describing these operations.
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5.1 Adding a Master File

The operation for adding a master file in GridSim requires a four-way approach
as summarized in Figure 6. ATopRegionalRC entity is responsible for generat-
ing a unique ID. This ID is created to ensure that two different files with the same
name are treated differently. Then, the ID is appended at theend of the original file-
name, e.g.file with ID is 1 becomesfile1. This filename changing procedure
is reflected not only in theTopRegionalRC, but also in theRegionalRC and
ReplicaManager. Furthermore, a tuple<filenameID, RegionalRC> is
saved to the mapping for future user requests in theTopRegionalRC.

The unique ID is incremented every time theTopRegionalRC receives a request
for a master file addition by its regional or leaf RCs. The combination of filename
and its unique ID is sometimes referred to as alogical file name (lfn)[27]. This
lfn is a key to query theTopRegionalRC and other regional RCs for other Data
Grid operations, such as adding a replica or getting locations of a file.

5.2 Adding a Replica

The operation for adding a replica in GridSim is summarized in Figure 7. It is
important to note that a replica can only be registered when its master file has
already been mapped by theTopRegionalRC. Otherwise, the replica registration
would be denied by bothTopRegionalRC andRegionalRC entities.
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5.3 Getting Locations of a File

The operation for getting locations of a file in GridSim is summarized in Figure 8.
In this figure, we use two regional RCs as an example. When a lfndoes not exist
in RegionalRC1, then this RC will contactTopRegionalRC for a list of RC
name that map this lfn. This allows theRegionalRC1 to request a file location
on other RCs, such asRegionalRC2.

5.4 Filtering a File

File filtering is a mechanism that allows a user to perform complex data queries to a
regional RC. This regional RC will then pass this request to theTopRegionalRC.
Therefore, the user can find list of available files in the DataGrid system that match
certain criteria, such as a combination of filename, size andowner name. This fil-
tering function can be done by extending aFilter class and implementing its
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public interface Filter {
public boolean match(FileAttribute attr);

} // end class

// create a new custom filter
public class CustomFilter implements Filter {

private int size;
private String name;

public CustomFilter(int s, String lfn) {
size = s;
name = lfn;

}

// select a file based on its attributes
public boolean match(FileAttribute attr) {

if (attr.getSize() >= size &&
attr.getName().startsWith(name))

{
return true;

}
else {

return false;
}

}
} // end class

Fig. 9. A customized filter example

method, which evaluates allFileAttributeobjects listed in theTopRegionalRC.
An example on how to find files based on their file size and partial file name is
demonstrated in Figure 9.

5.5 Deleting a Master File or Replica

The user sends a delete request to a resource. If the resourcehas the specified file in
one of its storage elements, a request for file deregistration will be sent to the RC.
If the operation is successful, the file will then be deleted from the storage and an
acknowledgment message will be sent to the user. Note that a master file can only
be deleted if no replicas exist in the Grid.

6 Constructing a Complex Simulation

In this section, we demonstrate how to construct a data grid simulation using the
building blocks described in the previous two sections. In addition, we show on
how to build complex scenarios and we illustrate the types ofexperiments that can
be simulated on GridSim.
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6.1 Simulation framework

In this simulation, we introduce data-intensive jobs in order to show how a demand-
driven replication strategy works in a Data Grid. GridSim already has the ability
to schedule compute-intensive jobs, which are representedby aGridlet class.
Therefore, we extended this class and implemented aDataGridlet class to rep-
resent a data-intensive job. As a result, each data-intensive job has a certain execu-
tion size (expressed in Millions Instructions – MI) and requires a list of files that
are needed for execution.

To handle the running of aDataGridlet on a resource, we modified a resource’s
RM to find and to transfer required files of the job before its execution. The follow-
ing section gives an explanation on how the RM provides the required files to the
DataGridlet.

6.1.1 Managing a Data-intensive Job

After receiving an incoming job orDataGridlet, the RM checks a list of re-
quired files for executing this job. If all the files are currently available on a re-
source’s local storage, theDataGridlet is sent to a resource’s scheduler (Allo-
cation Policy) for execution. Otherwise, the RM sends a request for obtaining the
needed files from other resources. When all the requested files have been trans-
ferred and stored on the local storage, then theDataGridlet is executed by the
scheduler.
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Table 3
Resource specifications

Resource Name (Location)Storage (TB) # Nodes CPU Rating Policy # Users

RAL (UK) 2.75 41 49,000 Space-Shared 24

Imperial College (UK) 1.80 52 62,000 Space-Shared 32

NorduGrid (Norway) 1.00 17 20,000 Space-Shared 8

NIKHEF (Netherlands) 0.50 18 21,000 Space-Shared 16

Lyon (France) 1.35 12 14,000 Space-Shared 24

CERN (Switzerland) 2.50 59 70,000 Space-Shared 48

Milano (Italy) 0.35 5 7,000 Space-Shared 8

Torino (Italy) 0.10 2 3,000 Time-Shared 4

Rome (Italy) 0.25 5 6,000 Space-Shared 8

Padova (Italy) 0.05 1 1,000 Time-Shared 4

Bologna (Italy) 5.00 67 80,000 Space-Shared 24

6.2 Simulation Aims

We created an experiment based on EU DataGrid TestBed 1 [13],which has been
used for evaluation of various data replication strategiesin [3]. The network topol-
ogy of the testbed is shown in Figure 10. In the LHC experiment, for which the EU
DataGrid has been constructed, most of the data is read-only. Therefore, to model a
realistic experiment, we make these files to be read-only. Furthermore, we assume
the atomicity of the files, i.e. a file is a non-splittble unit of information, to simulate
the already processed raw data of the LHC experiment.

In this experiment, we are trying to look at:

• how a hierarchical RC model can reduce the load of a single (centralized) RC;
• how data replication improves the execution time of data-intensive jobs; and
• how existing GridSim features, such as job allocation policy and the simulation

of realistic workloads can be utilized to make this experiment more comprehen-
sive.

6.3 Simulation Setups

6.3.0.1 Resource Setups. Table 3 summarizes all the resource relevant infor-
mation. In GridSim, total processing capability of a resource’s CPU is modelled in
the form of MIPS (Million Instructions Per Second) as devised by Standard Perfor-
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mance Evaluation Corporation (SPEC) [26].

The resource settings were obtained from the current characteristics of the real
LHC testbed [21]. We took the data about the resources and scaled them down. The
computing capacities were scaled down by 10 and the storage capacities by 20. The
scaling was done primarily for two reasons:

• real storage capacities are very big, hence these resourcescould store all replicas
of files that the jobs require. Since we are trying to demonstrate how a replication
strategy works, which deletes some files to make space for newones, we made
the storage capacities smaller;

• the simulation of the real computing capacities is not possible because of mem-
ory limitation of the computer we ran the simulation on. The complete simulation
would require more than 2GB of memory.

Some parameters are identical for all network links, i.e. the Maximum Transmis-
sion Unit (MTU) is 1,500 bytes and the latency of links is 10 milliseconds.

6.3.0.2 Files Setups. For this experiment we defined 2000 files. The average
file size is 1GB and the file size follows a power-law (Pareto) distribution, which is
reported to model a realistic file size distribution [18].

At the beginning of the experiment all master files are placedon the CERN storage.
Then copies of the files will be replicated among resources asrequired during run-
time.

6.3.0.3 Data-intensive Jobs. For this experiment, we created 500 types of data-
intensive jobs. Each job requires between 2 and 9 files to be executed. To model a
realistic access the required files are chosen with another power-law distribution, a
Zipf-like distribution [5]. This means that thei-th most popular file is chosen with
a probability of

1

iα
,

in our caseα = 0.6. The execution size for each job is approximately 84000 kMI
± 30%, which is around 20 minutes if it is run on the CERN resource.

6.3.0.4 Replication Strategy. In this simulation, each Replica Manager (RM)
of a resource uses the same strategy, i.e. to delete the least-frequently used replicas
when the storage limit capacity for storing new ones is full.However, master files
on CERN can not be deleted nor modified during the experiment.This is due to
insufficient storage size in other resources to store all of these replicas.
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6.3.0.5 Users. We simulated 200 users in total, where each resource is assigned
a certain number of users as depicted in Table 3. The users arrive with a Poisson
distribution; four random users start to submit their jobs every approx. 5 minutes.
Each user has between 20 and 40 jobs.

6.3.0.6 Realistic Workload simulation Grid resources are shared by other (i.e.
non-grid) types of application and jobs. To include this factor into our simulation,
we added a simulation of a realistic workload on a subset of resources. Grid-
Sim makes it possible to simulate realistic workloads, which are given as input
in Standard Workload format. We took 3 workload logs from theParallel Work-
load Archive [30] of the DAS2 5-Cluster Grid. Since the workload logs are several
months long, we took only one day from each log and simulated it on CERN, RAL
and Bologna.

6.4 Simulation Results

6.4.0.7 Replica Catalogue Model Test. In this test, we compare how well a
centralized RC model performs in comparison to a hierarchical one. We use the
same configuration as mentioned earlier with the only difference is the RC model.

In a case of a hierarchical RC model, three regional RC entities are introduced,
i.e.RegionalRC1, RegionalRC2, andRegionalRC3. RegionalRC1is responsible for
mapping master file locations and communicating with CERN, Lyon and NIKHEF.
RegionalRC2is responsible for NorduGrid, RAL and Imperial College, andRe-
gionalRC3is responsible for Padova, Bologna, Rome, Torino and Milano. Finally,
TopRCoversees all three regional RCs.

Figure 11 shows the number of requests that have to be served by each RC entity.

17



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

BolognaRomeMilanoCERNLyonNIKHEFNorduGridImperialRAL

A
vg

. c
om

pl
et

io
n 

tim
e 

(h
ou

r)

User jobs at each resource

Fig. 12. Average execution time for user jobs on each resource - excluding Padova and
Torino

We can see that there is a significant reduction in requests (around 60%), when
comparingTopRCto CentralRCfrom a centralized model.

Therefore, the hierarchical model decreases the load of thecentralized Replica Cat-
alogue and it is a good solution for grids with many queries. However, further im-
provements can be made, such as periodically update and cache replica locations
from other regional RCs or increase the number of regional RCs in proportion to
number of resources and users.

6.4.0.8 Execution Time Test The average execution time for jobs on each re-
source is depicted in Figure 12. Because of the Time-shared allocation policy, low
bandwidth and low CPU power, Padova and Torino have a substantially larger av-
erage execution time (80 and 15 hours respectively) and are left out of this figure.

Since the simulated jobs are data-intensive, but they also require a lot of computing
power, many parameters influence the speed of job execution.We can see that Im-
perial has the fastest job execution, since it has a lot of computing power and also a
large bandwidth to CERN where it gets the needed files. The most surprising result
is that CERN has a very high computing power and all the data available, but the
average execution time is very high. The reason for this is that CERN is running
many compute-intensive jobs (defined by the realistic workload) so the jobs have
to wait for the execution.

6.4.0.9 Data Availability Test To demonstrate how the availability of data can
be monitored on each resource we measured how much time does ajob require to
obtain a unit of data when getting the needed files. This measure will tell us how
“close” the resource is to the required data. More precisely, the availability of data
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Fig. 13. Average availability in time for three resources

for job i on resourcej is computed as

availij =
tij

di

,

wheredi is the amount of data required by jobi (e.g. in MB) andtij is the time
needed for jobi to get all data on the resourcej (e.g. in seconds).

The “quality” of a resource to execute data-intensive jobs can be defined as the
average availability over all jobs that were executed on theresource. This can be
written as

avgAvailj =

∑
i∈Jobsj

availij

|Jobsj |
,

whereJobsj is the set of jobs executed on resourcej.

However, because of data replication and different conditions of the network, data
availability changes over time. Figure 13 shows the availability change during the
simulation on three different resources: Lyon, NIKHEF, andBologna. Because the
behaviour is similar on other resources we omitted them fromthe figure. In the first
minutes we have no information about the data availability,since it is calculated
when a job retrieves all the required files. The availabilitygets initially worse on
some nodes, since the jobs that finish first have obviously a better access to data.
After this increase, the availability starts to improve significantly because of the
replication strategy.

7 Conclusion and Further Work

In this work, we present a Data Grid simulation infrastructure as an extension to
GridSim, a well-known Computational Grid simulator. With the addition of this
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extension, GridSim has the ability to handle core Data Grid functionalities, such as
replication of data to several sites, query for location of the replicated data, access
to the replicated data and make complex queries about data attributes.

Furthermore, we demonstrate how these building blocks can be used to construct
complex simulation scenarios, such as the simulation of data-intensive jobs and
evaluation of demand-driven replication strategies.

We also show how GridSim can be used to simulate a comprehensive Data Grid
platform. The conducted experiment has shown how a hierarchical model for Replica
Catalogue (RC) provides a better scalability than a centralized one. In addition, we
tested the average execution times on different resources and the data availability
which improved substantially because of a simple data replication strategy.

The results shown in these experiments are not very surprising, but the described
simulation was used as an example of different functionalities of the our simula-
tor. We believe this simulation infrastructure can help researchers make important
findings and help resolve problems arising in Data Grids.

In the future, we are planning to incorporate new functionalities of Data Grids, such
as reservation of storage to store future data requests and automatic synchroniza-
tion of data sets among resources. We also intend to add various replica catalogue
models into the framework.
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