
A Time Optimization Algorithm for Scheduling Bag-of-Task
Applications in Auction-based Proportional Share Systems

Anthony Sulistio and Rajkumar Buyya
Grid Computing andDistributedSystems (GRIDS) Laboratory,

Department of Computer Science and Software Engineering,
The University of Melbourne, Australia

ICT Building, 111 Barry Street, Carlton, VIC 3053
{anthony, raj}@cs.mu.oz.au

Abstract

Grid and peer-to-peer (P2P) network technologies
enable aggregation of distributed resources for solv-
ing large-scale and computationally-intensive applica-
tions. These technologies are well-suited for Bag-of-Tasks
(BoT) applications, because each application con-
sists of many parallel and independent tasks. With multiple
users competing for the same resources, the key chal-
lenge is to finish a user application within a specified
deadline.

In this paper, we propose a time optimization algorithm
that schedules a user application on auction-based resource
allocation systems. These allocation systems, which are
based on proportional share, allow users to bid higher in
order to gain more resource shares. Therefore, this algo-
rithm adjusts a user bid periodically on these systems in or-
der to finish the application on time.

1. Introduction

Grid [7] and peer-to-peer(P2P) [11] network tech-
nologies enable aggregation of distributed resources for
solving large-scale and computationally-intensive applica-
tions. These technologies are well-suited for Bag-of-Tasks
(BoT) applications [5], because each application con-
sists of many parallel and independent tasks. Some projects
such as Nimrod-G [2], SETI@home [1] and MyGrid [6] uti-
lize these technologies to schedule parameter-sweep or
compute-intensive applications to available resources.

Resource allocation is a key challenge in a grid environ-
ment because resources can be part of one or more virtual
organizations (VOs). The concept of a VO allows users and
institutions to gain access to their accumulated pool of re-
sources to run applications from a specific field [8], such

as high-energy physics or aerospace design. As a result,
users from different VOs are competing to use the same re-
sources.

Maximizing utilization and ensuring fairness among
users are two major issues in resource allocation. A system
that uses a Proportional Share (PS) algorithm [13, 12], cal-
culates a user share (percentage) of a resource based on a
user weight in relation to the total weight of all users in the
system. However, a PS allocation system does not check
the validity of each user weight. This will lead to incor-
rect priority when one user gives a low-priority task the
same weight as high-priority tasks of another users.

Combining a PS system with an auction model prevents
the above problem, because the system allocates a resource
share to users based on their bids, not weights. Therefore,
users with a tight deadline will bid higher in order to gain
more resource shares. In effect, this combination enforces
users to disclose the importance of their task to the system.

The main drawback of the above approach is that users
have to adjust their bidding price manually on each re-
source. A broker, who is acting on behalf of a user,
can reduce a significant burden on the user by interact-
ing with these resources automatically. Therefore, the user
only needs to specify a Quality of Service (QoS) parame-
ter such as deadline or budget to the broker.

The contribution of this paper is a time optimization al-
gorithm of a broker in scheduling a BoT application in
auction-based PS allocation systems. The aim of this algo-
rithm is to minimize the total run time of a user applica-
tion in order to meet a given deadline. The second objec-
tive is to reduce the total cost spent, only if the deadline can
be reached.

We propose two variants of the time optimization algo-
rithm. The first one considers submitting tasks to all avail-
able resources, including in other VO domains. On the other
hand, the second variant of the algorithm submits tasks to
local resources initially. As the deadline approaches, this

algorithm then schedule the remaining tasks to resources in
other VO domains. In this paper, we set the policy of each
resource to earn a surcharge fee for accepting user tasks
from other VO domains. Therefore, submitting tasks to lo-
cal resources are cheaper than the global ones.

The rest of this paper is organized as follows: Sec-
tion 2 mentions related work whereas Section 3 describes
an overview of the model. Section 4 explains the two varia-
tions of the time optimization algorithm. These algorithms
are then evaluated in Section 5. Finally, Section 6 concludes
the paper and suggests some further work to be done.

2. Related Work

There are many systems that support proportional share
(PS) allocation with an economy model, such as Spawn [15]
and REXEC [4]. However, these systems are mainly for
cluster computing environments. Tycoon [9], on the other
hand, is intended to work on a grid environment. Therefore,
our model follows a similar approach described in Tycoon
and extends it to support multiple VO domains.

From a broker or user scheduling perspective, a Nimrod-
G broker [2] and a Tycoon agent [9, 10] are somewhat sim-
ilar to what we propose in this paper.

In Nimrod-G, a user specifies QoS parameters, such as
deadline and budget to a broker. Then, the broker sched-
ules user tasks to resources with different allocation sys-
tems, which may not necessarily use a PS scheduler. How-
ever, the broker is not able to perform any bidding to these
systems in order to gain more resource shares.

In Tycoon, a user specifies his/her preference of each re-
source by giving a weight to it manually. Then, the agent
selects which resource to bid on based on the user weight
and total bid of other users for each resource. The main ob-
jective of our work is to minimize the completion time of
a user application. Therefore, a user does not need to spec-
ify a weight on each resource. In addition, our work is pri-
marily focused on scheduling BoT applications across mul-
tiple VO domains. The Tycoon’s agent does not recognize
resources that are part of a VO domain.

3. Description of the Model

The model used in our evaluation is depicted in Figure 1,
where one VO domain consists of a Grid Information Ser-
vice (GIS) and one or more resources and users. Figure 1
also shows the interaction between relevant components in
our model. The explanation of these interaction steps are ex-
plained below:

1. User 0 sends to a broker his/her tasks and an initial
fund with a specified deadline time. The same applies
to User 1. In this model, the money is represented in
Grid dollars (G$).

Virtual Organization A

Virtual Organization B

Resource n-1

Auctioneer

Auctioneer

Resource k-1

Broker

Auctioneer

Resource 0
Task

Task

Broker

GIS B

G$

(4)

(2)

(3)

G$

Task

G$

User 1

(1)

Task

G$
(4)

(2)

(3)

GIS A

Task

G$

User 0

(1)
Task

G$

(5)

(5)

(5)

Figure 1. An overview of the model for two VO
domains. Resource 0 is part of VO domain A
and B.

2. Each resource advertises its availability to a designated
GIS. In Figure 1, Resource 0 is part of VO domain A
and B. Hence, this resource registers to both GIS of do-
main A and B.

3. The broker queries a list of available resources to the
GIS. In Figure 1, the broker of User 0 queries to the
GIS of domain A, because it is running an application
specific to domain A only. Likewise for User 1 running
an application in domain B.

4. The broker submits tasks to these resources. In addi-
tion, the broker sends a periodic bid to each resource
to increase / decrease a user share.

5. A resource re-computes each user share based
on his/her bid at every bidding interval (see Sec-
tion 3.2 for more details).

As mentioned previously, this model follows a similar
approach described in Tycoon [9]. However, we extend the
Tycoon’s model into it to support multiple VO domains.
The functionality of each component mentioned in Figure 1
is briefly described below. Detailed explanations of the Ty-
coon model can be found in [9] and [10].

3.1. Grid Information Service (GIS)

Each VO domain has a GIS that is responsible for storing
information of available resources. The information given

by a resource consists of a name, location, hardware spec-
ification, and a threshold for minimum and maximum bid-
ding price. In multiple VO domains, a resource that belongs
to a particular VO domain, will register to the relevant GIS.
Hence, if a resource is part ofn VO domains, then it will
have to register ton GIS components.

In this model, a resource advertises to a GIS only once,
unless the resource changes its information or decides not
to be part of this domain anymore. Users contact the re-
source directly to find the latest update. This aims to reduce
the communication overhead incurred by the GIS.

Users contact their GIS if they want to know the location
and availability of local resources. A local resource meansit
is part of the same VO domain as the user. To find out infor-
mation of global resources, the GIS will then contact other
GIS components for their list of local resources. If the re-
sources are registered in both local and other VO domains,
then the GIS will omit them from the global resource list.

3.2. Resource

A resourcer has an Auctioneer, which is responsible in
accepting users bid and allocating CPU cycles to users ac-
cording to their bids. At every periodP , the Auctioneer re-
calculates each user share and cost onr.

We use the same formula as mentioned in [9] for grant-
ing resource shareS to each useri over some periodP ,
which is

Si =
Bi

∑n−1

k=0
Bk

Cr (1)

and

Bi =
lbi

tmi

, Bi ∈ [minBr, maxBr] (2)

whereBi is the bidding price ofi, lbi is the local balance of
i, tmi is the bidding interval time ofi, minBr is the min.
bidding price ofr, maxBr is the max. bidding price ofr,
andCr is the total processing capability ofr.

For example, according to Figure 1, User 0 and User 1
send their tasks to Resource 0. User 0 bids G$10 for 20
minutes, whereas User 1 bids G$6 for 20 minutes as well.
Hence, according to eq. (1), Resource 0 allocates approxi-
mately 62.5% resource share to User 0 and 37.5% share to
User 1.

Eq. (1) allows users to bid higher in order to gain more
resource share. However, to prevent a race condition, where
users continually out-bid each other at each periodP , a con-
straint on minimum and maximum user bidding is imposed
by r in eq. (2). Hence, this constraint prevents users from
completely dominating resource shares or from manipulat-
ing the cost, such that it becomes too expensive.

The Auctioneer then calculates the cost for each useri,
according to [9]

costi = min

(

qi

Si

, 1

)

Bi (3)

whereqi is the amount of the resource thati actually con-
sumes duringP . This equation guarantees that if a user task
consumes less thanP , the Auctioneer only charges the time
actually used, and not the whole period, to useri.

With our model, a resource has the following policies:

• the Auctioneer only allocates CPU cycles in a Time-
Shared system.

• the Auctioneer does not share a user bid information to
other users, nor to different Auctioneers.

• the Auctioneer keeps usingBi until it is modified or
cancelled by useri.

• the Auctioneer charges users after all their tasks have
been completed.

• a user can only run one task at a time. Other user tasks
will be put into a queue by the Auctioneer.

• a task cannot be pre-empted once it is in execution.

• the resource accepts tasks from other VO domains with
an additional surcharge fee.

• if a different user bid arrives after a resource bidding
intervalPn, then the Auctioneer will use it onPn+1.

3.3. User

Each user has a broker that is responsible in monitor-
ing the progress of a BoT application and managing on how
much to bid on each resource. A user can be part of many
VO domains. However, in this model, we restrict the user to
only run one application of a specific VO domain. In addi-
tion, each user receives a fixed amount of money at a regu-
lar interval time.

We developed two variants of a time optimization algo-
rithm of a broker, which aim to minimize the total run time
of a user application in order to meet a given deadline. The
detailed explanations of these algorithms are mentioned in
the next section.

4. A Time Optimization Algorithm

In this section, two variants of a time optimization al-
gorithm are illustrated. Before an experiment starts, each
useri must specify to a broker a deadlineDi on how long a
user application is expected to take to complete, and an ini-
tial fund. In addition, each useri must specify a time pe-
riod Pi to enable the broker to adjust the user bid on a re-
sourcer based on its share. This allows users with a tight
deadline to bid more frequently.

Let R be a set ofn grid resources, andT be a set ofm
independent tasks, where each task has a variable lengthl.
In case of a parameter-sweep application, all tasks have the
same length.

4.1. A Global Domain Policy

The aim of this policy is to run a user application be-
fore the deadlineD on all available resources, not only
the ones from a local VO domain. Hence, for every pe-
riod P time, this policy tries to make sure tasks on each
resource can be completed before the deadline. The de-
tailed explanation of this policy is described below.

4.1.1. Resource Discovery

A broker, who is acting on behalf of a user, con-
tacts a GIS to get a list of available local and global
resources. On each resourcer, the broker gets the infor-
mation of〈minBidr, maxBidr, Cr, PEr〉, whereminBr

is the min. bidding price ofr, maxBr is the max. bid-
ding price of r, Cr is the total processing capability
of r, and PEr is the total number of Processing Ele-
ment (PE) or CPU onr.

4.1.2. Initial Bidding Price

The broker finds the slowest resource∃rslowest ∈ R
by comparing itsC to other resources. Then, the bro-
ker tries to estimate on how longT would run onR. As-
sumingC has a unit of MIPS (Millions Instructions Per
Second), hence, a task lengthl has a unit of MI (Mil-
lions Instructions).

Assuming for a worst case scenario, where some tasks
are executed to only one PE inrslowest, then the initial esti-
mated completion time would be

est time =
avgLength× PEslowest

Cslowest

with an average length ofm submitted tasks to be

avgLength =

∑m

k=1
lk

m

Next, the broker opens a new account on∀r ∈ R. This
account is needed byr to keep track of a current user bid-
ding price, cost and total balance. Afterwards, the broker
performs an initial bidding onr for the duration ofP time

bid(r, P) =







maxBidr ∗ P, if est time > D

avgBidr ∗ P, otherwise
(4)

where avgBidr is the average bidding price ofr.
From equation (4),est time can be seen as an indica-
tor of whether a user has a tight deadline or not.

4.1.3. Tasks Submission

Each task t ∈ T is submitted to all available re-
sources. Moreover, smaller tasks are sent to less powerfull
resources. If all tasks have the same lengthl, then these re-
sources will receive a smaller quantity. Then, the remaining
tasks are randomly submitted to other resources by using a
uniform distribution. If a resource fails, then tasks are mi-
grated to different resources.

4.1.4. Bidding Performance

For every periodP time, the broker queries the cur-
rent user progress on∀r ∈ R. Each resourcer gives
the broker information that contains〈Sr, Br, Ltotal〉,
whereSr is the current user share in MI,Br is the cur-
rent user bidding price, andLtotal is the remaining total
task length (including for all user tasks that are in the re-
source queue).

With the above information, the broker then calculates
the task completion time onr, which is

finish time =
Ltotal

Sr

(5)

We definetime to be the remaining experiment time,
which is time = (D + start time) − now, where
start time andnow representing the experiment start and
current time respectively. The broker then face with 3 pos-
sible cases:

1. (time / 2) < finish time < time : keep using the
sameBr, because tasks will be completed beforeD.

2. finish time ≤ (time / 2) : decreaseBr, because
tasks will be completed much earlier thanD.

3. finish time ≥ time : increaseBr, because tasks will
be finished later than the specifiedD.

For case (2) and (3), how much a new bidding price
Br new the broker is willing to increase / decrease fromBr,
is decided by

Br new =











finish time

time
Br, if time > 0

maxBidr, if D has passed

(6)

with a constraint ofBr new ∈ [minBidr, maxBidr].
Therefore, a broker submits a new bid to a resourcer over

a periodP of time, with

bid(r, P) =







Br ∗ P, for case (1)

Br new ∗ P, for case (2) and (3)

4.2. A Local Domain Policy

The aim of this policy is to run a user application before
the deadlineD time preferably on local resources only, be-
cause they do not incur a surcharge fee. Hence, for everyP
period of time, this policy tries to make sure tasks on each
local resource can be completed before the deadline time.
If D is approaching soon, then the remaining tasks may be
submitted to global resources if necessary.

This policy has a similar approach to the Global Domain
(GD) Policy discussed previously. Hence, differences of the
two variants are highlighted below.

Let Rl be a set ofu local resources, andRg be a set ofv
global resources from other VO domains. The broker sub-
mits κ number of tasks randomly to each resourcer ∈ Rl

using a uniform distribution. We defineκ = m ÷ n, where
m is the total number of tasks, andn is the total number
of resources (including local and global ones). Then the re-
maining tasks are stored intoList.

For everyP period of time, the broker queries the cur-
rent user progress on∀r ∈ R. Global resources that do not
schedule users tasks are ignored for the time being.

Identical to the GD policy, the broker determines
finish time, time, Br new , and bid(r, P) on a re-
sourcer. However, this policy will also try to submit one
or more remaining taskst ∈ List to r if there is a suffi-
cient time.

We defineLtask to be the sum of tasks length that can be
scheduled onr, andLtask ≥ 0. As a result, equation (5) is
modified to

finish time =
Ltotal + Ltask

Sr

Finally, if there are still taskst ∈ List and the cur-
rent progress is more than half ofD, then submit all tasks
to best available resources by using a uniform distribution.
Available resources in this context means local or global re-
sources that currently have none or low number of user tasks
stored in the queue.

5. Performance Evaluation

In this section, we evaluate the two policies discussed
earlier to determine their effectiveness in scheduling a user
application with a given deadline. A No Optimization (No-
Opt) policy is also introduced in the comparison.

A user with No-Opt policy submits tasks uniformly to
all available resources and bids only once in the beginning.

Name Location Resource TypesPE C

R0 GRIDS Lab, dual Intel 4 1050
Univ. of Melbourne Xeon 2.6 Ghz

R1 Dept. of Physics, dual Intel 4 1050
Univ. of Sydney Xeon 2.6 Ghz

R2 Dept. of Computer Sc., dual Intel 4 1050
Univ. of Adelaide Xeon 2.6 Ghz

R3 Australia National dual Intel 4 1050
Univ., Canberra Xeon 2.6 Ghz

R4 Dept. of Physics, PC with Intel 1 684
Univ. of Melbourne P4 2.0 Ghz

Table 1. Australian Belle Analysis Data Grid
testbed resources simulated using GridSim.

With this policy, the resources earns an amount equal to the
user bid.

We carried out the performance evaluation of these poli-
cies by using simulation. Therefore, we implemented the
model described in Section 3 using the GridSim [3] simula-
tion toolkit. This allows us to consider different administra-
tion policies at each resource that would otherwise be diffi-
cult to implement in real Grid testbeds.

5.1. Simulation Setup

The simulated grid environment consists of five re-
sources{R0, R1, ..., R4} as summarized in Table 1. These
resources are part of Belle Analysis Data Grid (BADG)
testbed in Australia to analyze high-energy physics experi-
ment data [16]. Therefore, this experiment resembles a real
grid environment.

In GridSim, total processing capability of a resourceC is
modeled in the form of MIPS (Million Instructions Per Sec-
ond) as devised by Standard Performance Evaluation Cor-
poration (SPEC) [14]. Hence, a task length is measured in
Millions Instructions (MI) unit.

An auction-based proportional share (PS) scheduler is
used by all resources, with a bidding interval of every 60
seconds. The slowest resource, i.e.R4 as described in Ta-
ble 1, charges users [1 ... 100] cents per minute. Other re-
sources, which are more powerful, cost [5 ... 500] cents per
minute. In addition, a resource charges an extra 20% of a
user bid for users that are from other VO domains.

The following simulation setups are also carried out:

• 10 created users{U0, U1, ..., U9}, where
U2 andU7 use a broker with a Global Domain (global)
policy. U3 andU8 use a broker with a Local Domain
(local) policy. The rest uses a broker with a No-Opt
policy.

User VO Start Bid Price Opt.
Name Domain Time (min) (cents / min) Policy

U0 A 1 20 No-Opt
U1 A 1 20 No-Opt
U2 B 3 varies global
U3 B 3 varies local
U4 B 3 40 No-Opt
U5 B 5 50 No-Opt
U6 A 8 40 No-Opt
U7 B 10 varies global
U8 A 10 varies local
U9 A 10 23 No-Opt

Table 2. Users participating in two VO do-
mains.

• each user has an initial fund of G$100 with a deadline
time of 10 hours.

• each user has the same bidding intervalP of 10 min-
utes.

• each user runs an application that is part of one VO do-
main only.

• each user has a BoT application that consists of 50
tasks, where a task lengthl is uniformly distributed in
[700,000 ... 800,000] Millions Instructions (MI) unit.

5.2. Scenario

In this experiment, there are two VO domains: A and B,
where resourcesR1 andR3 are part of domain A andR0,
R2 andR4 are part of domain B. Table 2 shows which VO
domain the users run their application. In addition, each user
starting time, bid price and policy are also shown. Users
with a No-Opt policy perform static bidding, i.e. putting the
same bid price throughout the whole time for all resources.

5.3. Analysis and Result

Due to space constraints, we only discuss the bidding
cost and allocated resource shares of resourcesR1 andR4.
In addition, usersU0, U6 andU9 are omitted in these fig-
ures because their bids are similar toU1 andU4.

Figure 2 displays the bidding cost on resourceR1 for
usersU2, U3, U7, andU8. They are selected because they
vary their bid over time. In Figure 2, userU8 puts a max-
imum bid of 500 cents per minute from time 49 to 120
(in simulation minutes). As a result,U8 gets the most re-
source share as shown in Figure 3. However,U8’s share
drops whenU7 submits tasks at time 77. With a bidding
price equal to that ofU2, U7 gets an equal resource share.

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300 350 400 450 500

B
id

di
ng

 C
os

t (
ce

nt
s

/ m
in

)

Time (minutes)

U2
U3
U7
U8

Figure 2. Bidding cost on R1 of domain A.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

T
ot

al
 R

es
ou

rc
e

S
ha

re
 (

in
 %

)

Time (minutes)

U1
U2
U3
U4
U5
U7
U8

Figure 3. A percentage of total resource
share on R1 of domain A.

This scenario demonstrates how PS scheduler with an auc-
tion model works. A similar pattern is also displayed onR4

in Figure 5 and 4, from time 0 to 200.
In Figure 5, userU3’s tasks are still executing on re-

sourceR4 at time 400. However, the deadline forU3 comes
at around time 800. With many remaining tasks needing to
be completed,U3 of domain B schedules them to all avail-
able local and global resources. Some of these tasks are sent
to R1 of domain A later at time 426, as shown in Figure 3.
This scenario demonstrates how a local policy of time op-
timization algorithm used byU3 works if a deadline is ap-
proaching soon with many remaining tasks.

The impact of userU3 submitting tasks to resourceR1

makes the resource share ofU8 drops significantly as shown
in Figure 3. This is because at time 420,U3 puts the max.

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800

B
id

di
ng

 C
os

t (
ce

nt
s

/ m
in

)

Time (minutes)

U2
U3
U7
U8

Figure 4. Bidding cost on R4 of domain B.

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

T
ot

al
 R

es
ou

rc
e

S
ha

re
 (

in
 %

)

Time (minutes)

U1
U2
U3
U4
U5
U7
U8

Figure 5. A percentage of total resource
share on R4 of domain B.

bid, whereasU8’s bid is near to the min. bid as depicted in
Figure 2. After that,U8 increases their bid, whereas,U3 de-
creases their bid to conserve money since only a few re-
source shares are needed to complete the tasks before the
deadline time. This scenario demonstrates how a time opti-
mization algorithm for both local and global policy dynam-
ically adjusts a user bid based on resource share and dead-
line accordingly.

Figure 6 shows the total run time for each user with a
deadline of 10 hours. As expected, users with a time op-
timization algorithm (local or global) manage to complete
their applications much faster than users with No-Opt pol-
icy.

Only userU3, that use a local policy, is unable to finish
before the given deadline because there are many tasks from
other users competing on the slowest resourceR4 in VO do-
main B, as depicted in Figure 5. In contrast,U8 never sub-
mits toR4 because the user is in VO domain A. Hence,U8

is able to complete much faster thanU2 andU7.

 6

 8

 10

 12

 14

 16

 18

 20

U9U8U7U6U5U4U3U2U1U0

T
ot

al
 R

un
 T

im
e

(h
ou

r)

Users

No-Opt Policy
Global Policy
Local Policy

Deadline

Figure 6. Total runtime for each user (lower is
better).

 40

 60

 80

 100

 120

 140

U9U8U7U6U5U4U3U2U1U0

T
ot

al
 C

os
t (

G
$)

Users

No-Opt Policy
Global Policy
Local Policy
Initial Fund

Figure 7. Total cost for each user (lower is
better).

Figure 7 shows the total cost for each user. As expected,
users with a No-Opt policy have cheaper total cost. Also,
userU8, that uses local policy, has much lower costs than
U2 andU7 costs that use global policy. This is because all
of U8’s tasks are executed on local resources only. As men-
tioned previously, submitting tasks to global resources will
incur a 20% surcharge fee on top of a user bid.

UserU8 also has a cost lower thanU4 andU5 becauseU8

manages to finish much faster than these users. In addition,
U4 andU5 submit some of their tasks to global resources.
Therefore, a combination of high bidding price for a short
period of time in a local VO domain costs significantly less
than a low bidding price for a longer duration.

UserU3 performs much worse thanU8, although both
users use the same local policy. This is becauseU3 puts a
max. bid on resourceR4 throughout the whole period of
time, as depicted in Figure 4, which is necessary to com-
plete the tasks on time. In addition,U3 submits remaining
tasks toR1 in other VO domain that incurs a higher charge,

as shown in Figure 3. These two factors contribute to the
high total cost ofU3.

6. Conclusion and Further Work

In this paper, we have proposed a time optimization al-
gorithm that aims to minimize the completion time of a user
application within a specified deadline. In particular, we
consider bag-of-task (BoT) applications, where each appli-
cation consists of parallel and independent tasks. Moreover,
we choose a scenario where users and resources can be part
of one or more Virtual Organization (VO) domains. There-
fore, we have two variants of this algorithm, one that con-
siders multiple VOs (global policy), and the other one con-
siders only one VO (local policy).

A global policy of the time optimization algorithm sub-
mits user tasks to all resources, regardless of their VO do-
mains. Therefore, users with this policy are able to finish
their applications within a specified deadline. However, the
cost to execute these applications are high, because global
resources will charge a surcharge fee.

A local policy of the time optimization algorithm ini-
tially submits user tasks to resources that belongs to the
same VO as the user. If deadline is approaching soon, it
then send remaining tasks to all available resources, includ-
ing those in other VO domains. The main incentive of this
policy is to minimize cost.

The effectiveness of this policy is mixed. If resources of
a VO domain have faster computing power, then local users
are able to finish their applications much faster and cheaper
than users with a global policy, because they do not need
to use global resources. In contrast, a slow resource will
make local users send their tasks to other resources if dead-
line is near. Hence, the total cost of execution is similar to
users with a global policy. However, this slow resource may
cause tasks to be completed longer. As a result, the users
may miss their specified deadline.

In the future, we are planning to incorporate task pre-
emption into resource allocation. This allows users to move
some tasks on a busy or slow resource to other resources. In
addition, we are considering another policy that tries to fin-
ish a user application within a fixed budget.

Acknowledgement

We thank Uros Cibej and Wolfram Schiffmann for their dis-
cussions on the paper. We also thank Chee Shin Yeo and
Hussein Gibbins for their comments.

References

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: an experiment in public-

resource computing.Commun. ACM, 45(11):56–61, 2002.
[2] R. Buyya, D. Abramson, and J. Giddy. Nimrod-G: An archi-

tecture for a resource management and scheduling system in
a global computational grid. InProc. of the 4th Intl. Confer-
ence & Exhibition on High Performance Computing in Asia-
Pacific Region (HPC Asia’00), Beijing, China, May 2000.

[3] R. Buyya and M. Murshed. GridSim: A toolkit for the mod-
eling and simulation of distributed management and schedul-
ing for grid computing. The Journal of Concurrency and
Computation: Practice and Experience, 14:13–15, 2002.

[4] B. N. Chun and D. E. Culler. REXEC: a decentralized, se-
cure remote execution environment for clusters. InProc. of
the 4th Workshop on Communication, Architecture, and Ap-
plications for Network-based Parallel Computing, Toulouse,
France, January 2000.

[5] W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D. Paranhos,
E. Santos-Neto, and R. Medeiros. Grid computing for bag of
tasks applications. InProc. of the 3rd IFIP Conference on E-
Commerce, E-Business and E-Goverment, September 2003.

[6] L. B. Costa, L. Feitosa, E. Araujo, G. Mendes, R. Coelho,
W. Cirne, and D. Fireman. MyGrid: A complete solution
for running bag-of-tasks applications. InProc. of the SBRC
2004 – Salao de Ferramentas (22nd Brazilian Symposium on
Computer Networks – III Special Tools Session), May 2004.

[7] I. Foster and C. Kesselman, editors.The Grid: Blueprint for
a Future Computing Infrastructure. Morgan Kaufmann Pub-
lishers, 1999.

[8] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations.The Interna-
tional Journal of Supercomputer Applications, 15(3), 2001.

[9] K. Lai, B. A. Huberman, and L. Fine. Tycoon: A Distributed
Market-based Resource Allocation System. Technical Re-
port arXiv:cs.DC/0404013, HP Labs, USA, Apr. 2004.

[10] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and
B. A. Huberman. Tycoon: an Implemention of a Distributed
Market-Based Resource Allocation System. Technical Re-
port arXiv:cs.DC/0412038, HP Labs, USA, Dec. 2004.

[11] A. Oram, editor.Peer-to-peer: Harnessing the Power of Dis-
ruptive Technologies. O’Reilly Press, 2001.

[12] J. Regehr. Some guidelines for proportional share CPU
scheduling in general-purpose operating systems. InWork in
progress session of the 22nd IEEE Real-Time Systems Sym-
posium (RTSS 2001), London, UK, Dec. 2001.

[13] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems.In
IEEE Real-Time Systems Symposium, December 1996.

[14] Standard Performance Evaluation Corporation
http://www.spec.org/.

[15] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A distributed computational
economy.Software Engineering, 18(2):103–117, 1992.

[16] L. Winton. Data grids and high energy physics: A mel-
bourne perspective.Space Science Reviews, 107(1–2):523–
540, 2003.

