
A SLA-Oriented WSRF Container Architecture

Christoph Reich1, Kris Bubendorfer2, Matthias Banholzer1, Rajkumar Buyya3

1 Department of Computer Science
Hochschule Furtwangen University, Germany

reich@hs-furtwangen.de
2 School of Mathematics, Statistics and Computer Science

Victoria University of Wellington, New Zealand
kris@mcs.vuw.ac.nz

3 Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
raj@csse.unimelb.edu.au

Abstract. Service-Oriented Architectures provide integration of and in-
teroptablity for independent and loosely coupled services. Web services
and the WSRF standards are frequently used to realise such Service-
Oriented Architectures. In such systems, autonomic principles of self-
configuration, self-optimisation, self-healing and self-adapting are desir-
able to ease management and improve robustness. In this paper we focus
on the extension of the self management and autonomic behaviour of a
WSRF container to monitor and rectify its QoS to satisfy its SLAs. The
SLA plays an important role during two distinct phases in the lifecycle of
a WSRF container. Firstly during service deployment when services are
assigned to containers in such a way as to minimise the threat of SLA vi-
olations, and secondly during maintenance when violations are detected
and services are migrated to other containers to preserve QoS. In addi-
tion, as the architecture has been designed and built using standardised
modern technologies and with high levels of transparency, conventional
webservices can be deployed with the addition of a SLA specification.

1 Introduction

Webservices and the associated Web Services Resource Framework (WSRF) [1]
standards are the predominant choice for implementing Service Oriented Archi-
tectures (SOA). Management of large SOAs is difficult, and autonomic principles
of self-configuration, self-optimisation, self-healing and self-adapting [2][3][4] can
be usefully applied to ease management and improve resilience and overall sys-
tem performance. In addition, quality of service (QoS) needs to be expressed in
such SOAs and can only be met if specific service level agreements (SLAs) are
defined and adhered to. To this end we have developed an autonomic WSRF con-
tainer that utilises MAPE (Monitor, Analyse, Plan and Execute) [5] to manage
its internal functionality, detect SLA violations and trigger corrective actions.
The containers themselves are connected in via a P2P (peer to peer) overlay to

achieve a wide distribution of workload, decentralised management, and failure
tolerance.

The contributions that we make in this paper are: we have (1) developed an
overall health metric for the WSRF container that is a single easily compara-
ble value and is normalised to provide for heterogeneous resources, (2) provided
differentiated service level domains (green, red and gold) in our SLAs, and (3) de-
veloped a decentralised migration algorithm that redistributes services between
containers to meet agreed QoS using the health metric and service level domains.
In addition the P2P overlay architecture is decentralised, highly distributed and
scalable. We have implemented the architecture using standard modern tech-
nologies and with high levels of transparency, indeed, conventional webservices
can be deployed with the addition of a SLA specification.

The rest of the paper is organised as follows. In section 2 we outline the basics
of the autonomic WSRF container and we describe the general architecture of
the system. Section 3 lays the foundation for the determination of the health of
a WSRF container, section 4 presents the migration algorithms, section 5 details
our experimental results that validate our approach, section 6 explores related
work, and finally section 7 concludes this paper.

2 WSRF Container Architecture

In this paper we focus on the role of SLAs in the assignment and migration of
services between WSRF containers and therefore we will only provide a brief
outline of the WSRF service Container itself, see Figure 1. The WSRF container
is embedded within a Geronimo [6] application server, the WSRF services are de-
ployed in Axis2 [7] running in Tomcat [8]. JSR-77 [9]provided by JMX [10] is used
to monitor the WSRF services inside the service container (e.g. request counter,
processing time, etc.). MAPE [5] is implemented using Geronimo’s GBeans [11],
provides autonomic management and utilises SLAs and performance metrics to
trigger self managing operations such as service migration. Using GBeans pro-
vides access to Geronimo’s advanced features, such as, Inversion-of-Control [12].

Individual WSRF containers are interconnected via a modified version of the
Pastry [13] structured P2P overlay network. Each WSRF container contributes
to the autonomic management of the overlay network and there are no specialised
or static management roles. This architecture provides robustness and permits a
wide distribution of workload. A container’s pastry node stores an index for the
service, and resolves this to the actual container on which the service is hosted.

2.1 WSRF Container Operation
The SLA plays an important role during two distinct phases in the lifecycle
of a WSRF container. Firstly during service deployment when services are as-
signed to containers in such a way as to minimise the threat of SLA violations,
and secondly during maintenance when violations are detected and services are
migrated to other containers to preserve QoS. Each container monitors its per-
formance requirements, and if it is unable to resolve the SLA violation internally,
it will generate a help message indicating which resource is causing the problem.

Muse

WSRF
Service

WSRF
Service

Axis
Tomcat

MBean MBean MBean MBean

Service
Container
configure

MBean Server

RMI

Adapter AC Sensor
AC

Sensor

AC Effector

AC
Effector

Monitor

Analyser

Executer

Plan

Knowledge

Web
Service

AC Sensor/
Effector

MBean

Virtual
WSRF
Container
RMI

Client

Geronimo

Virtual WSRFContainer
SOAP

Fig. 1. Internal structure of the WSRF container

Each recipient of this help message will generate a response health status metric
(H-metric). A H-metric is a simple approximation indicating the overall health
status of the WSRF container, and is weighted to highlight the resource respon-
sible for the SLA violation. Essentially, each monitored resource is normalised,
then all of the resources are summed and renormalised. This allows the state of
the responding machine to be summarised in a single comparable number, but
permits the resource of interest to carry more weight when selecting a destination
for migration. The H-metric is specific to each help request. Two simultaneous
requests with different violating resources, will ideally result in two different
H-metrics from the same container. Section 3 presents the H-metric in detail.

2.2 Example: Service Deployment
We distinguish two types of services: constrained services have specific loca-
tion dependencies, while unconstrained services have no special location require-
ments. During the deployment of services, constrained services are prioritised
over unconstrained services. For the initial deployment of services during con-
tainer initialisation, this means placing all of the constrained services before the
unconstrained services. For deployment of a new service into an existing con-
tainer network, if the new service is unconstrained then it is simply deployed
to the best container using a bounded depth H-metric query in the container
overlay. If the new service is constrained, then we have no choice but to attempt
to deploy it to the desired container. If that deployment results in an SLA vio-
lation, we then attempt to migrate unconstrained services from that container.
Figure 2 shows an example of a service deployment.

In this example the service deployer asks its local WSRF container to deploy
a service. The WSRF container picks a random ID, resolves this to the nearest
container, and initiates a two level H-metric query from this root. The H-metric
query in this case results in H = 0.7 from container P10 and H = 0.6 and
H = 0.2 from its computed children P3 and P12 respectively. If this search fails
to return a suitable destination for the deployment, we increase the depth by

client

Proxy

1

2

2

H=0.7

H=0.6

H=0.2

P3

P10

P12

0

Fig. 2. Service deployment in a WSRF container

one and reissue the query. It is worth pointing out that if the container being
queried has an unresolved SLA violation of its own, it will return an H-metric
of H = 100 signalling that it is unavailable for inward service migrations.

3 Health Status Metric (H-metric) of a WSRF Container

As stated earlier, the H-metric gives an overview of a container’s health. The
SLA specifies a set of resource conditions that must be satisfied. All containers
within the overlay network need to have their resources scaled to deal with
heterogeneous hosts, otherwise the H-metrics of the various containers cannot be
compared. This scaling information is exchanged when each container joins the
container overlay network. If a new container advises that it has more memory
or a higher MIPS performance than the current maximums, then its values
are selected as the new maximums for normalisation and are propagated to
all containers in the network. Each SLA resource condition is therefore scaled
proportionally to the minimum and maximum values for the container overlay
network and will not need to be changed if a service is subsequently migrated to
another container. After scaling, the parameter is normalized (value ∈ [0.0, 1.0])
using a piecewise linear function (see Equations 1,2,3,4,5). The primary reasons
for using this normalistion function is it allows us to adjust individual resources
which behave in a non-linear way, e.g. memory usage, and because, pragmatically
speaking, a server is fully loaded at about 80% to 90%.

Hmetric() = fmetric(x, x10, h10, x90, h90) (1)

Hmetric() =

0.0, if x <= SLAmin

f10(), if SLAmin < x <=
SLAmin + x10 ∗ SLAmax

f10−90(), if SLAmin + x10 ∗ SLAmax < x <=
SLAmin + x90 ∗ SLAmax

f90(), x < SLAmin + x90 ∗ SLAmax

1.0, otherwise

(2)

x := measured metric value; x =∈ [SLAmin, SLAmax]; x10 ∈ [0.1, x90]; x10 :=
10% metric default value; h10 := 10% H default value; x90 ∈ [x10, 0.9] x90 :=
90% metric default value; h90 := 90% H default value;

f10() =
h10x

x10SLAmax
− h10SLAmin

x10SLAmax
(3)

f10−90() =
(h90 − h10)x

SLAmax(x90 − x10)
+ h10 −

(h90 − h10)(SLAmin + x10SLAmax)
SLAmax(x90 − x10)

(4)

f90() = − (1.0− h90)x
SLAmax − SLAmin − x90SLAmax

+ 1.0 +

(1.0− h90)SLAmax

SLAmax − SLAmin − x90SLAmax
(5)

Figure 3 illustrates the normalisation function for a memory metric: SLAmin =
0MB; SLAmax = 300MB; h10 = 0.1; h90 = 0.9 and by sweeping x = [0, 300]MB
and x10 = [0.1, 0.5] with the constraint: x90 = 1.0− x10.

 0 50 100 150 200 250 300
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

H metric
normalizeFunction

memory [MBytes]

x

H metric

Fig. 3. Normalisation function for memory.

To calculate the overall health status of a container the normalised parameter
values are combined and normalized again (see Equation 6).

H =
1
2
∗

∑b=n
b=1 wb ∗Hmetric()b∑b=n

b=1 wb

+
1
2
∗ hmachine (6)

With b := machine hosting the WSRF Container and w := weights to emphasise
particular differentiated SLAs. The w := weights represent SLA service level
domains: gold w = 4, red w = 2, green w = 1. Gold services are the most
important and are least likely to be migrated, green services can be thought of
as best-effort services, while red services fall between gold and green services in
priority and importance.

The machine specific health status (hmachine) is set relative to other contain-
ers. This permits the H-metric of two different machines (e.g. different MIPS)
to be compared by considering the max values of all machines (see Equation 7).

hmachine =
wmem ∗Hmem() ∗ cmem + wcpu ∗Hcpu() ∗ ccpu

wmem ∗ cmem + wcpu ∗ ccpu
(7)

Weights wmem and wcpu are the same differentiated service level (gold, red and
green) weights. The correction factor for different machine resources R (e.g. cpu,
mem etc.) is:

cR =
Roverall−max

Rcontainer−max
(8)

4 Migration Algorithm

There are five occasions when our system may migrate services in response to a:
(1) constrained deployment, (2) new container joining the network, (3) container
having few services, (4) container leaves the network for maintenance, or (5) pre-
dicted or real SLA violation. Migration is similar to deployment, although in this
case the query starts with a violating container detecting it has a problem, and
then issuing a bounded H-metric query (see Figure 2) to locate a new container
to host the service that caused the (or is expected to cause a) violation.

Algorithm 1 gives the pseudo-code for a responding to a service violation
event. Firstly we stop registering SLA violations for this container, as subsequent
violations will have the same outcome - migrate a service off this container.
Secondly we stop accepting incoming service migrations. Next we pick a random
unconstrained service with a green SLA. If none is available we then try selecting
a service with a red SLA and then gold SLA.

Algorithm 2 gives the pseudo-code for the actual migration of the service
S identified in algorithm1. Here we construct a ’help’ message and append the
H-metric and SLA for S. Next we do a bounded depth H-metric query and find
the set of accepting containers A, from which we choose the minimum dest. The
service S is then migrated to container dest and the algorithm terminates.

Algorithm 1 Pseudo-code for service violation events
Input: violation
Output: success, failure
STOP registering violations
START refusing inbound service migrations
S ← pickunconstrained(green)
if no value for S then

S ← pickunconstrained(red)
if no value for S then

S ← pickunconstrained(gold)
else

failure
end if

end if
if migrate(S) then

START registering violations
STOP refusing inbound service migrations

else
failure

end if

Algorithm 2 Pseudo-code for migrate
Input: S
Output: success, failure
msghelp ← {Hmetriccontainer, SLAS}
H ← HmetricQuery(msghelp, n)
A← ∀h ∈ H | isAccepting(h)
dest← min(A)
return move(S, dest)

5 Prototype and Evaluation

We have implemented the autonomic WSRF-P2P container in a Geronimo [6]
application server. The P2P Node and the autonomic system manager are imple-
mented as Geronimo Beans (GBeans; [14]). The P2P functionality is provided
by an extension of freePastry [15], however it is not critical which structured
DHT package is used. The prototype has been deployed and tested on five ma-
chines. However, to properly test the performance of the architecture we ran the
deployable prototype code but used the freePastry overlay simulation mode to
scale the simulation to 100 containers.

5.1 Results

To simplify analysis the only SLA parameter we considered was response time.
The experimental configuration was 450 services deployed over 100 containers.
Each service had an expected response time of 10ms, with 75 gold, 150 red and

225 green level SLAs. To explore how our architecture responds to, and resolves
SLA violations, all services were initially deployed to containers at random. It
is worth pointing out however, that deployments are usually made much more
carefully using the same H-metric query as migration. Hence these experiments
show that the architecture can deal with a poor initial distribution and can
resolve the distribution of services to provide the QoS dictated by the differenti-
ated SLAs. The vast bulk of violations and subsequent rectification migrations
are finished in 15-25 seconds after initial deployment when using a query depth
of 3.

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Time (5 seconds per interval)

T
o

ta
l
N

u
m

b
e
r

o
f

S
L
A

 V
io

la
ti

o
n

s

Query Depth 1 Query Depth 2 Query Depth 3

Fig. 4. Total number of SLA violations for bounded H-metric queries.

Figure 4 shows how quickly the system manages to stabilise at the agreed QoS
after the initial random deployments. The slowest to stabilise on the agreed QoS
was when the destination was selected using a query depth of 1 (random), with
depth 2 and 3 improving things respectively. There are some single violations
long after the bulk of the migrations have finished, and this is due to the same
destination being chosen by two offloading containers (it is a fully decentralised
algorithm). The deeper the query depth, the faster the system provides the
agreed QoS to the vast majority of hosted services.

Figure 5 shows the number of gold, red and green service violations after
initial deployment for a H-metric query depth of 2. The results for level 1 and
level 3 both show similar decay curves but differ in the rate at which they
stabilise on the agreed QoS (as in Figure 4). It is worth remembering that in
response to any of these violations, a green (then red if no green, then gold)
service is chosen to migrate from the host. Each of these violations results in a
service migration, however the vast bulk of the migrated services are green, with
few reds and minimal gold services migrating. Finally Figure 6 shows the total
number of violations for each query depth and service level domain. Here the
reduction in the number total of violations as more effort is put into finding the

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Time (5 seconds per interval)

N
u

m
b

e
r

o
f

S
L
A

 V
io

la
ti

o
n

s

Green Red Gold

Fig. 5. SLA violations shown by service level for a H-metric query depth of 2.

best destination is clear, although the improvement due to the query depth is
subject to diminishing returns.

0

10

20

30

40

50

60

70

80

90

100

1 2 3

Query Depth

T
o

ta
l
M

ig
ra

ti
o

n
s

Green Red Gold

Fig. 6. Total number of violations for each service level for bounded H-metric queries.

6 Related Work

There have been a number of projects focusing on autonomic behaviour for
managing web services, in particular Ecosystem [4] analyses and reconFigures
a service-based system (with MAPE) to satisfy Service Level Agreements with
minimal resource consumption. They conclude that migration is a heavy-weight
exercise and should be avoided whenever possible and that migrating services
to satisfy the minimal resource consumption can lead to unnecessary overhead.

Like our approach, the principle is to migrate only when resource bottlenecks
occur. Hao [16] carries out migration of weblets, specialized Web services, that
can be migrated, according to the round trip time, message size, data location
and load of the weblet containers.

Other projects have attempted to address scalability issues for, such as that
by El-Darieby and Krishnamurthy [17], which partitions resources into individ-
ual, cluster and grid resources. Dowlatshahi et. al [18] have developed an ar-
chitecture that uses a hierarchical tree structure for participating nodes distant
from the Internet backbone, and uses a single peer-to-peer structure for service
discovery at the root layer of the underlying tree structures. The key character-
istics of their architecture are optimal search for both distant and close services,
minimal overhead traffic, scalability, robustness, and easier QoS support. A self-
organizing P2P network of resource pools managed by CONDOR [19] has been
implemented by Butt et. al [20]. Each resource manager periodically transmits a
list of resources that it is willing to share to resource managers that are in close
proximity. If a manager has insufficient resources to handle their jobs, they can
forward some of their jobs to the advertising resource manager.

Kang et. al [21] divide SLAs into function domains (low, medium and high
function domains). The 95-percentile response time of the real server is used as
base for determining whether to allocate more computing resources to clients de-
manding a high level of service. They do not consider service migration to meet
the QoS targets. Lee and Lee[22] discuss how to integrate a service provider in a
negotiation framework. An important aspect is the need for a quality measure-
ment like the h-value developed in this paper. Mikic-Rakic et. al. [23] present
an applied self-reconfiguration approach to support disconnected operations by
allowing the system to monitor and automatically redeploy itself.

Berenbrink et. al [24] introduce a game-theoretic mechanism which they use
to find suitable allocations. Each task is associated with a “selfish agent”, and
requires each agent to select a resource, with the cost of a resource being the
number of agents to select it. Agents would then be expected to migrate from
overloaded to under loaded resources, until the allocation becomes balanced.
This system is unlikely to scale well, as the resource discovery is centralised.
The research of Zeid and Gurguis [25] aims at proving that with autonomic Web
services, computing systems will be able to manage themselves as well as their
relationships with each other. To achieve this objective, the research proposes
a system that implements the concept of autonomic Web services but without
service migration.

The closest work to ours is that of P2PWeb [26], which uses a P2P struc-
tured DHT, to deliver a SOA middleware platform. However, although we share
many of the high level goals such as scalability, transparency and fault tolerance,
there are many significant differences in the architecture itself. Load balancing
in P2PWeb is an exercise in selecting a replica, that is, P2PWeb does not deploy
or migrate services to satisfy QoS requirements.

7 Conclusions

In this paper we have presented a novel architecture that combines the principles
of autonomic management, service oriented architecture, web services and service
level agreements. We use the decentralised, fault tolerant and dynamic properties
of a structured P2P DHT to create a scalable decentralised autonomic web
service middleware that complies with service level agreements and strives to
deliver QoS in response to client SLA specifications.

We have demonstrated that our autonomic SLA aware containers, that mon-
itor their SLA compliance and migrate excess services to other containers with
spare capacity, can react to dynamic to runtime conditions. The rate at which
the system is capable of redistributing services to find a QoS preserving distri-
bution is very fast, and improves further as the H-metric query depth increases.
We have also provided differentiated service level domains (green, red and gold)
in our SLAs, and using the health metric and service level domains we have de-
veloped a decentralised migration algorithm that redistributes services between
containers to meet agreed QoS. This is done in a distributed, scalable and robust
way.

Finally, we have implemented the architecture using standard modern tech-
nologies and with high levels of transparency, indeed, conventional webservices
can be deployed with the addition of a SLA specification.

References

1. OASIS: Web services resource framework (wsrf). Home-Page: http://www.

oasis-open.org/

2. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: Service-
oriented computing: A research roadmap. In Cubera, F., Krämer, B.J., Papazoglou,
M.P., eds.: Service Oriented Computing (SOC). Number 05462 in Dagstuhl Sem-
inar Proceedings, Internationales Begegnungs- und Forschungszentrum fuer Infor-
matik (IBFI), Schloss Dagstuhl, Germany (2006)

3. Parashar, M., Hariri, S.: Autonomic computing: An overview. In et al., J.P.B.,
ed.: Unconventional Programming Paradigms. Volume 3566., Mont Saint-Michel,
France, Springer Verlag (2005) 247–259

4. Li, Y., Sun, K., Qiu, J., Chen, Y.: Self-reconfiguration of service-based systems: A
case study for service level agreements and resource optimization. In: ICWS ’05:
Proceedings of the IEEE International Conference on Web Services (ICWS’05),
Washington, DC, USA, IEEE Computer Society (2005) 266–273

5. IBM: An architectural blueprint for autonomic computing. IBM (2004) Home-
Page: http://www-3.ibm.com/autonomic/pdfs/ACwpFinal.pdf.

6. Apache: Geronimo Home-Page: http://geronimo.apache.org/.
7. Apache: Axis2/java Home-Page: http://ws.apache.org/axis2/.
8. Apache: Tomcat Home-Page: http://tomcat.apache.org/.
9. Sun: Jsr-77: J2ee management specification. Home-Page: http://jcp.org/en/

jsr/detail?id=77

10. Sun: Sun’s java management extensions (jmx) page Home-Page: http://java.
sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

11. Hanson, J.J.: Manage apache geronimo with jmx. (August 2006)
12. Fowler, M.: Inversion of control containers and the dependency injection pattern.

http://www.martinfowler.com/articles/injection.html (January 2004)
13. Rowstron, A., Druschel, P.: IFIP/ACM international conference on distributed

systems platforms (middleware). In: Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems., Heidelberg, Germany (Nov. 2001)
329–350

14. Apache: Geronimo user guide. Home-Page: http://cwiki.apache.org/

GMOxDOC11/apache-geronimo-v11-users-guide.html

15. Druschel, P., Rowstron, A.: freepastry software. http://freepastry.org/
16. Hao, W., Gao, T., Yen, I.L., Chen, Y., Paul, R.: An infrastructure for web

services migration for real-time applications. In: SOSE ’06: Proceedings of the
Second IEEE International Symposium on Service-Oriented System Engineering
(SOSE’06), Washington, DC, USA, IEEE Computer Society (2006) 41–48

17. El-Darieby, M., Krishnamurthy, D.: A scalable wide-area grid resource manage-
ment framework. In: ICNS ’06. International conference on Networking and Ser-
vices, 2006., Silicon Valley, USA, IEEE Computer Society Press (July 2006) 76 –
86

18. Dowlatshahi, M., MacLarty, G., Fry, M.: A scalable and efficient architecture for
service discovery. In: The 11th IEEE International Conference on Networks, 2003.
ICON2003. (September 2003) 51 – 56

19. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
condor experience. Concurrency - Practice and Experience 17(2-4) (2005) 323–
356

20. Butt, A., Zhang, R., Hu, Y.: A self-organizing flock of condors. In: Supercomputing,
2003 ACM/IEEE Conference, Purdue University, West Lafayette, IN, ACM Press
(Nov. 2003) 42–42

21. Kang, C., Park, K., Kim, S.: A differentiated service mechanism considering sla for
heterogeneous cluster web systems. In: Software Technologies for Future Embedded
and Ubiquitous Systems, 2006 and the 2006 Second International Workshop on
Collaborative Computing, Integration, and Assurance. SEUS 2006/WCCIA 2006.
The Fourth IEEE Workshop on. (27-28 April 2006) 6pp.

22. Lee, B.Y., Lee, G.H.: Service oriented architecture for sla management system.
In: Advanced Communication Technology, The 9th International Conference on.
Volume 2. (Feb. 2007) 1415–1418

23. Mikic-Rakic, M., Medvidovic, N.: Support for disconnected operation via archi-
tectural self-reconfiguration. In: ICAC ’04: Proceedings of the First International
Conference on Autonomic Computing (ICAC’04), Washington, DC, USA, IEEE
Computer Society (2004) 114–121

24. Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P., Hu, Z., Martin, R.:
Distributed selfish load balancing. In: SODA ’06: Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, New York, NY, USA, ACM
Press (2006) 354–363

25. Zeid, A., Gurguis, S.: Towards autonomic web services. In: The 3rd ACS/IEEE
International Conference on Computer Systems and Applications. (2005) 69

26. Mondejar, R., Garcia, P., Pairot, C., Gomez Skarmeta, A.: Enabling wide-area ser-
vice oriented architecture through the p2pweb model. In: 15th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises,
2006. WETICE ’06., Manchester, UK (June 2006) 89 – 94

