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Abstract—Service-oriented workflows in the scientific domain
are commonly composed as Directed Acyclic Graphs (DAGs),
formed from a collection of vertices and directed edges. When
orchestrating service-oriented DAGs, intermediate data are typ-
ically routed through a single centralised engine, which results
in unnecessary data transfer, increasing the execution time of
a workflow and causing the engine to become a performance
bottleneck.

This paper introduces an architecture for deploying and
executing service-oriented DAG-based workflows across a peer-
to-peer proxy network. A workflow is divided into a set of
vertices, disseminated to a group of proxies and executed without
centralised control over a peer-to-peer proxy network. Through a
Web services implementation, we demonstrate across PlanetLab
that by reducing intermediate data transfer, end-to-end work-
flows are sped up. Furthermore, our architecture is non-intrusive:
Web services owned and maintained by different institutions do
not have to be altered prior to execution.

I. INTRODUCTION

Service-oriented architectures are an architectural paradigm
for building software applications from a number of loosely
coupled distributed services. Although the concept of service-
oriented architectures is not novel, this paradigm has seen wide
spread adoption through the Web services approach, which has
a suite of simple standards (e.g., XML, WSDL and SOAP) to
facilitate interoperability.

These core standards however do not provide the rich
behavioural detail necessary to describe the role an individual
service plays as part of a larger, more complex collabora-
tion. Co-ordination of services is often achieved through the
use of workflow technologies. As defined by the Workflow
Management Coalition [13], a workflow is the automation
of a business process, in whole or part, during which doc-
uments, information or tasks are passed from one participant
(a resource, either human or machine) to another for action,
according to a set of procedural rules.

Workflows in the scientific community are commonly mod-
elled as Directed Acyclic Graphs (DAGs), formed from a
collection of vertices (units of computation) and directed
edges. The Genome Analysis and Database Update system
(GADU) [18], the Southern California Earthquake Centre
(SCEC) [11] CyberShake project, and the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [21] are examples of
High Performance Computing applications composed using
DAGs. DAGs present a dataflow view, here data is the primar-
ily concern, workflows are constructed from data processing

(vertices) and data transport (edges). In contrast, the Business
Process Execution Language (BPEL) [22] is a process-centric
language and is less well suited to modelling scientific sce-
narios [19].

Taverna [16] is an example of a popular graphical Web
service composition tool used in the life sciences community
in which workflows are represented as DAGs. Graph vertices
can be one of a set of service types: WSDL Web services,
BeanShell (lightweight scripting for Java) components, String
constants etc. Services are given input and output ports which
correspond to individual input and output variables. Edges
are then formed by connecting services together by mapping
output ports with input ports.

A. Motivating Scenario - Calculating Redshift

At this point, in order to put our motivation and prob-
lem statement into perspective, it is useful to consider an
illustrative scenario. The Redshift scenario is taken from
the AstroGrid [1] (UK e-Research project) science use-cases
and involves retrieving and analysing data from multiple
distributed resources. This scenario is representative of a class
of large-scale scientific workflows, where data and services are
made available through a Web service. It will be referenced
throughout the remainder of this paper.

Photometric Redshifts use broad-band photometry to mea-
sure the Redshifts of galaxies. While photometric Redshifts
have larger uncertainties than spectroscopic Redshifts, they are
the only way of determining the properties of large samples
of galaxies. This scenario describes the process of querying a
group of distributed databases containing astronomical images
in different bandwidths, extracting objects of interest and
calculating the relative Redshift of each object.

Fig. 1. AstroGrid scenario – Taverna representation. Workflow inputs are
the RA and DEC coordinates, services are represented as rectangles, links
correspond to the flow of data between services.

The scenario represents a workflow and begins with a scien-
tist inputting the RA (right ascension) and DEC (declination)



coordinates into the system, which define an area of sky. These
coordinates are used as input to three remote astronomical
databases; no single database has a complete view of the data
required by the scientist, as each database only stores images
of a certain waveband. At each of the three databases the query
is used to extract all images within the given coordinates which
are returned to the scientist. The images are concatenated and
sent to the SExtractor [5] tool for processing. SExtractor scans
each image in turn and uses an algorithm to extract all objects
of interest (positions of stars, galaxies etc.) and produces a
table for each of the wavebands containing all the data. A
cross matching tool is then used to scan all the images and
produce one table containing data about all the objects of
interest in the sky, in the five wavebands. This table is then
used as input to the HyperZ1 algorithm which computes the
photometric Redshifts and appends it to each value of the
table used as input. This final table consists of multi-band files
containing the requested position as well as a table containing
for each source all the output parameters from SExtrator and
HyperZ, including positions, magnitudes, stellar classification
and photometric Redshifts and confidence intervals; the final
table is returned to the user. Figure 1 is a representation of
the AstroGrid redshift scenario in Taverna.

B. Problem Statement

Although service-oriented workflows can be composed as
DAGs using a dataflow model, in reality they are orchestrated
from a single workflow engine, where intermediate data are
typically routed through a centralised engine.

Source SExtractor XMatcher HyperZEngine

FOR EACH SOURCE

retrieve(RA, DEC)

images

extractObjects (images)

VO_Tables: objects

XMatch (VO_Tables: objects)

VO_Table: combined

HyperZ (VO_Table: combined)

VO_Table: multi_band

concat (images)

Fig. 2. UML Sequence diagram: AstroGrid scenario.

Figure 2 is a UML Sequence diagram displaying how the
AstroGrid workflow is orchestrated. The initial RA and DEC
coordinates are used as input to each of the three source
databases: Radio, Infrared and XRay. Each source database
then returns a set of images to the workflow engine. These

1http://webast.ast.obs-mip.fr/hyperz/ [26/02/2010]

images are then combined and passed through the SExtractor,
XMatcher and HyperZ services. Finally, the HyperZ service
returns the Multiband table as output.

In the AstroGrid scenario, output from each of the source
databases and processing services passes via the workflow
engine, in order to be passed to the next service in the
workflow chain. When one is orchestrating Web services from
a tool such as Taverna, the workflow engine can become a
bottleneck to the performance of a workflow. Standard WSDL
Web services are designed with a request-response paradigm,
therefore all intermediate data are routed via the workflow
engine, which results in unnecessary data transfer, increasing
the execution time of a workflow and causing the engine to
become a bottleneck to the execution of an application.

Large-scale scientific applications (such as those described
in Section I) can use third-party data transfers to move
data between nodes in a workflow. However, nodes in these
environments are usually closely coupled clusters, which have
been specifically altered to support this kind of behaviour
and do not tend to use Web services technology as a way of
exposing application code. Choreography techniques describe
service interactions from a global perspective, meaning that
all participating services are treated equally, in a peer-to-
peer fashion. Choreography techniques and infrastructure that
supports third-party data transfers are discussed in relation to
our research in Section IV.

C. Paper Contributions and Structure

This paper proposes a novel architecture for accelerating
end-to-end workflows by deploying and executing a service-
oriented workflow (composed as a DAG) across a peer-to-peer
proxy network. Individual proxies are deployed at strategic
network locations in order to exploit connectivity to remote
Web services. By ‘strategic’ we could refer to one of many
factors including network distance, security, policy etc. Proxies
together form a proxy network which facilitate a number of
functions such as service invocation, routing of intermediate
data and data caching.

By breaking up a workflow and disseminating it across a
peer-to-peer network, workflow bottlenecks associated with
centralised orchestration are removed, intermediate data trans-
fer is reduced and applications composed of interoperating
Web services are sped up.

Importantly, our proposed architecture is a non-intrusive
solution, Web services do not have to be redeployed or altered
in any way prior to execution. Furthermore, a DAG-based
workflow defined using a visual composition tool (e.g., Tav-
erna) can be simply translated into our DAG-based workflow
syntax and automatically deployed across a peer-to-peer proxy
network.

A Java Web services implementation serves as the basis
for performance analysis experiments conducted over Planet-
Lab [8]. These experiments empirically demonstrate how our
proposed architecture can speed up the execution time of a
workflow when compared to standard orchestration. Although
this paper focuses on Web services, the concept is generic
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and can be applied to other classes of application, i.e., High
Performance Computing, Cloud Computing etc.

The remainder of this paper is structured as follows: Sec-
tion II introduces the architecture of an individual proxy and
multiple proxies which together form a proxy network. A
syntax is introduced for service-oriented DAG-based work-
flows and the algorithms which divide a workflow, assign
and enact a workflow across a proxy network are described.
A Java Web services implementation, which serves as a
platform for performance analysis is also discussed. Section III
describes the performance analysis experiments. Related work
is discussed in Section IV. Finally conclusions and future work
are addressed in Section V.

II. PROXY ARCHITECTURE

A proxy is a middleware component that is deployed at a
strategic location to a Web service or set of Web services. For
the purposes of this paper, by strategic we mean in terms of
network distance; as closely as possible to an enrolled service,
i.e., on the same Web server or within the same domain,
such that communication between a proxy and a Web service
takes place over a local, not Wide Area Network. Proxies
are considered to be volunteer nodes and can be arbitrarily
sprinkled across a network, importantly not interfering with
currently deployed infrastructure.

A proxy is generic and can concurrently execute any
workflow definition. In order for this to be possible, the
workflow definition is treated as an executable object which
is passed between proxies in a proxy network. Proxies invoke
Web services on behalf of the workflow engine, storing any
intermediate data at the proxy. Proxies form peer-to-peer proxy
networks and can route data directly to one another, avoiding
the bottleneck problems associated with passing intermediate
data through a single, centralised workflow engine.

Translation

WF Editor

W,V W,V

W,V

W,V

W,V

Scheduler

Fig. 3. Proxy architecture: Web services represented by clouds, proxies by
circles, the workflow definition and vertex (W,V) by a rounded rectangle.

Figure 3 shows a high level architectural diagram of a
proxy network. A user designs a service-oriented DAG-based
workflow using a visual workflow editor such as Taverna.

A scheduling service assigns workflow vertices to proxies,
the unique identifier of each proxy is then spliced into the
workflow definition. Each proxy is passed an entire copy
of the workflow definition. Once all proxies have received
the workflow definition, each proxy executes its assigned
set of vertices and passes any intermediate data directly to
one another according to the directed edge definition. Once
deployed a DAG-based workflow is executed without any
centralised control over a peer-to-peer proxy network.

The following subsections describe in detail how a user
designs a workflow, how the workflow definition is divided and
assigned to a set of proxies, deployed across a proxy network
and enacted.

A. Workflow Definition

A workflow is specified as a DAG according to the syntax
displayed in Figure 4. We have taken inspiration from the
Taverna SCUFL language [16], our syntax is a simplified
version which does not support the additional processor types
such as BeanShell etc.

Workflow ::= IDw, {Vertex}, {Edge}, IDs

Vertex ::= vertex(IDv , Processor)
Processor ::= WS | Input | Output
WS ::= s(Config(k), {Inport}, {Outport}, IDp)
Input ::= input(value, Outport)
Output ::= output(value, Inport)
Inport ::= in(IDin, Type, [digit])
Outport ::= out(IDout, Type)
ID ::= IDw | IDs | IDv | IDp | IDin | IDout

Type ::= XML RPC Types
Config ::= 〈name, value 〉
Edge ::= IDv:IDout → {IDv:IDin}

Fig. 4. Workflow definition syntax.

A workflow is labelled with a unique identifier IDw and
consists of a set of vertices {Vertex} and a set of edges
{Edge}. A vertex is given a globally unique identifier IDv

and can consist of one of a set of processor types. As this
paper focuses on service-oriented workflows, processors are
Web service definitions WS or input and output variables.

A Web service is defined firstly as a list of configuration
pairs Config(k) which are simply 〈name, value 〉 pairs and
define the information necessary to invoke an external Web
service: WSDL location, operation name etc. Secondly, a set of
input ports {Inport}; each inport is given a unique identifier
within a processor IDin and a Type definition, types map to
the standard set of XML RPC Types2. The final parameter
(optional) defines how many inputs are expected at a given
inport. A set of output ports {Outport}; each outport is
given a unique identifier within a processor IDout and a
Type definition. The final parameter of a processor is IDp,

2http://ws.apache.org/xmlrpc/types.html [26/02/2010]
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which represents the globally unique identifier (mapping to
an individual IP address) of a proxy which is executing a
given vertex; these are initially null and spliced in before
the workflow definition is disseminated to a set of proxies.
Proxy identifiers are included in the workflow definition so that
individual proxies can communicate with one another when
executing a workflow. IDs, the final parameter of a Workflow
definition is the location (IP address) of the scheduling service,
this is also spliced in before the workflow is disseminated so
that the final output from a workflow can be passed back to
the user.

The final processor types supported are Input (used as
input to a Web service) and Output variables (used as output
from a Web service). An Input variable is defined as a value,
which is the actual value assigned to the variable and an
outport definition. An Output variable is defined as a value,
which is initially a wildcard and an inport definition. The
Types supported are the same set of XML RPC types.

In order to complete the workflow, a set of directed edges
are formed which constitute a dataflow mapping from proces-
sor inports to processor outports. This is specified by providing
the following mapping: IDv:IDout → {IDv:IDin}. The
types of the outport to inport mappings must match and are
enforced by the workflow editor.

B. Example Definition

Figure 5 is a representation of the AstroGrid scenario
in the workflow definition syntax, Figure 6 is a corre-
sponding diagrammatic representation. With reference to
Figure 5, within the scope of the workflow identifier
calculate_redshift, eight vertices are defined: ra,
dec represent the workflow input parameters, the variables are
defined by the physical values which are transferred via the
outports ra_output and dec_output. As the workflow
output needs to be written back to a user’s desktop, the
vertex wf_o represents the final workflow output which will
eventually be written to the inport multi_band; this output
will then be passed back to the scheduling service which
initiated the workflow.

The remaining vertices are WS definitions, radio, infra
and xray are the distributed data sources, containing data
from each of the required wave lengths; tools represents
the co-located services SExtractor and XMatcher; finally
z is the HyperZ processing service. Each of the service
definitions contains typed inport and outport definitions; note
the 3 in the tools inport images states that 3 inputs
(which will be merged) are required, for simplicity config
represents the concrete details of individual Web services. The
wildcard at the end of each service definition is the unique
identifier of the proxy IDp which is spliced in before the
workflow definition is disseminated to a set of proxies. A
set of Edge definitions connect vertex outports with
vertex inports according to the flow of data in the
AstroGrid scenario.

calculate_redshift,

//RA, DEC and Output Vertices
{vertex(ra, input(100, {out(ra_output, String)})),
vertex(dec, input(50, {out(dec_output, String)})),
vertex(wf_o, output(_, {in(multi_band, Object[])})),

//Source Vertices
vertex(radio, s(config, {in(ra_input, String),
in(dec_input, String)}, {out(image_set, byte[])}, _)),
vertex(infra, s(config, {in(ra_input, String),
in(dec_input, String)}, {out(image_set, byte[])}, _)),
vertex(xray, s(config, {in(ra_input, String),
in(dec_input, String)}, {out(image_set, byte[])}, _)),

//Processing Vertices
vertex(tools, s(config, {in(images, byte[], 3)},
{out(combined, Object[])}, _)),
vertex(z, s(config, {in(combined, Object[])},
{out(multi_band, Object[])})), _},

//Edge definitions
{ra:ra_output -> radio:ra_input, infra:ra_input,
xray:ra_input,
dec:dec_output -> radio:dec_input, infra:dec_input,
xray:dec_input,
radio:image_set -> tools:images,
infra:image_set -> tools:images,
xray:image_set -> tools:images,
tools:combined -> z:combined,
z:multi_band -> wf_o:multi_band}, _

Fig. 5. AstroGrid scenario workflow definition.

Radio
Infra

XRay

ToolsHyperZ

radio
infra

xray

tools

RA DEC

WF_O

Z

Fig. 6. Possible proxy configuration for the AstroGrid scenario: Edges are
directed and show dataflow between proxies. Workflow inputs (RA, DEC)
and outputs (WF O) are also labelled. For simplicity, tools represents the co-
located services SExtractor and XMatcher. Workflow engine and scheduling
service not shown.



C. Web Services Implementation

The proxy architecture is available as an open-source toolkit
implemented using a combination of Java (version 1.6) and
Apache Axis (version 2) Web services [2], it consists of the
following core components:
• Registry service. When a proxy is deployed it is auto-

matically enrolled with the registry service, which contains
global knowledge of distributed proxies. The registry service
logs data of previous successful interactions and proxies are
polled to ensure availability.
• XML Syntax. The workflow syntax displayed in Figure 4

is encoded in XML, allowing the registry service to splice
in the proxy identifiers and proxies. Type checking between
outport and inport definitions is enforced at the syntax level.
• Translation. A translation component automatically con-

verts workflows defined in the Taverna SCUFL dataflow
language into our workflow specification syntax. Translations
from other languages are possible, we have chosen Taverna
SCUFL as it is a widely accepted platform, particularly in the
life sciences community.
• Scheduling service. Once a user has designed a workflow

and it has been translated, the scheduling service (a local
component) takes as input the workflow definition and consults
the registry service, splicing in a unique proxy identifier for
every vertex in a workflow definition. The scheduling service’s
IP address is spliced into the workflow definition, so that final
output can be sent back to the user.
• Proxy. Proxies are made available through a standard

WSDL interface, allowing them to be simply integrated into
any standard workflow tool. As discussed further in Sec-
tion II-E, a proxy has two remote methods: initiate
to instantiate a proxy with a workflow and a vertex, and
data, allowing proxies to pass data to one another, which
in our implementation is via SOAP messages over HTTP.
Proxies are simple to install and configure and can be dropped
into an AXIS container running on an application server, no
specialised programming needs to take place in order to exploit
the functionality.

D. Workflow Deployment and Vertex Assignment

For simplicity in the algorithm definition, we assume reli-
able message passing and service invocation, however, fault
tolerance has been built into the corresponding Web services
implementation. A proxy is generic and can concurrently
execute any vertex from any workflow definition. In order for
this to be possible, the workflow definition is treated as an
executable object, which is passed between proxies in a proxy
network. The workflow definition is passed to the scheduling
service which needs to assign proxies to vertices. This process
is formally defined by Algorithm 1.

All proxies are enrolled with the registry service, which
is a global directory of each proxy within the system. For
each IDv in {Vertex} a suitable proxy must be located, if
the processor type is a service definition, i.e., not an input or
output variable. In our existing implementation, the registry
service selects ‘suitable’ proxies which are deployed with the

Algorithm 1 Vertex assignment
1: for each Vertex IDv where IDv ∈ {Vertex} do
2: if (Processor = WS) then
3: IDp ← locate(IDv , WS)
4: WS.IDp ← IDp

5: {〈 IDv , IDp 〉} ← {〈 IDv , IDp 〉} + IDv , IDp

6: end if
7: end for
8: for each Vertex IDv where IDv ∈ {〈proxy, IDv 〉} do
9: initiate(Workflow, IDv)

10: end for

same network domain as the WS it will eventually invoke.
However, we are investigating optimisation techniques which
will be addressed by further work, discussed in more detail in
Section V.

This suitability matching is performed by the scheduling
service which in turn consults with the registry service. The
scheduling service invokes the locate method on the registry
service, which takes as input a vertex IDv and a WS definition
and returns the unique identifier of a proxy which will enact
a given vertex IDv . This identifier is then spliced into the
processor definition; before the assignment process begins all
IDp definitions are wildcards, each vertex (multiple vertices
can be assigned to the same proxy) is then assigned before the
workflow is disseminated. The proxy identifier is added so that
proxies can communicate throughout the system globally.

The proxy identifier along with the vertex identifier are
added to a set. Once the proxy assignment process is complete,
the workflow definition and vertex a proxy is to assume IDv is
sent to each proxy in the set {〈IDv, proxy 〉}. The remote
method initiate is invoked on each proxy.

E. Workflow Execution

A proxy can concurrently execute any vertex from any
workflow. With reference to Algorithm 2, in order to initiate
a workflow, the remote method initiate is invoked on
each proxy, given a workflow definition and IDv . The vertex
definition IDv is extracted from the workflow. If the vertex
relies on data from other vertices, it must wait until all inports
have been resolved. Therefore, each inport IDin in {Inport}
must be resolved before execution of IDv can begin. This is
achieved through the internal method resolve_in which
checks if data for a given inport has been received; if the
inport vertex definition is simply an input variable then the
corresponding value is retrieved.

Once all inport dependencies have been resolved, given
the unique workflow identifier IDw and IDv , the input
data set {input} is retrieved through the internal method
get_input. The proxy takes the WSDL location, operation
name and other parameters defined in {config} and dynam-
ically invokes the service using {input} as input to the Web
service. Results are then stored locally at the proxy.

In order to determine where (i.e., which proxy) to send
the output of a given service invocation, the {Edge} set is



Algorithm 2 Vertex enactment

1: initiate(Workflow, IDv)
2: for each Inport IDin where IDin ∈ {Inport} do
3: resolve_in(IDin)
4: end for
5: {input} ← get_input(IDw, IDv)
6: results ← invoke({config}, {input})
7: for each Outport IDout where IDout ∈ {Outport} do
8: {IDv:IDin} ← resolve_out(IDv:IDout, {Edge})
9: for each Vertex IDv where IDv ∈ {IDv:IDin} do

10: if (Processor = WS) then
11: IDp ← WS.IDp

12: data(IDw, IDin, results)
13: delete(results)
14: else if (Processor = Output) then
15: value ← results
16: data(IDw, IDs, results)
17: end if
18: end for
19: end for

inspected which contains mappings from a vertex outport to a
set of vertex inports. The set of inports which map to a corre-
sponding outport is returned by the internal resolve_out
method. In order to determine which proxy to send these data
to, each vertex in this set is traversed and the location of the
proxy, IDp is retrieved from the workflow definition.

The remote method data is invoked on the proxy IDp,
using the workflow identifier IDw, the inport identifier IDin

and the result data as input. Once received (confirmed by an
acknowledgement) by the recipient proxy, these data are stored
according to IDw and IDin and deleted from the sender proxy.
If the outport corresponds to a output, this variable is written
back to the scheduling service IDs, which is running on a
user’s desktop. This process is repeated for each outport.

III. PERFORMANCE EVALUATION

In order to validate the hypothesis that our architecture can
reduce intermediate data transfer and speed up the execution
time of a workflow, a set of performance analysis experiments
have been conducted. Our architecture has been evaluated
across Internet-scale networks on the PlanetLab framework.
PlanetLab is a highly configurable global research network
of distributed servers that supports the development of new
network services.

The AstroGrid scenario described throughout this paper
serves as the basis for our performance analysis. This scenario
is representative of a class of large-scale scientific workflows
and has been configured as follows:
• PlanetLab Deployment. Data sources are a Web service

which take as input an integer representing how much data the
service is to return; the service then returns a Byte array of
the size indicated in the input parameter. Analysis services are
simulated via a sleep and return a set of data representative

of the given input size. These data sources and analysis
services were deployed over the PlanetLab framework. The
exact domains are displayed in Table I, bold domains indicate
that multiple servers were selected from the same domain.
•Workflow engine. In order to benchmark our architecture

two configurations of the AstroGrid scenario were set up: the
first was executed on the completely centralised Taverna work-
flow (version 1.7.2) environment, the second was the same
representation executed across a peer-to-peer proxy network
according to the implementation described in Section II-C.
• Speedup. The mean speedup is calculated by dividing

the mean time taken to execute the workflow using standard
orchestration (i.e., non-proxy, fully centralised) and dividing
it by the mean time taken to execute the workflow using our
proxy architecture, e.g., a result of 1.5 means that the proxy
architecture executes 50% faster than standard orchestration.
• Proxy configurations. Three different proxy configura-

tions are shown: “same machine”, here a proxy is installed on
the same physical machine as the Web service it is invoking,
“same domain”, the proxy is installed on a different machine
within the same network domain, and “distributed” where a
proxy is installed on a node within the same country as the
Web service it is invoking. In each configuration one proxy is
responsible for one service.
• Graphs. Each configuration was executed 50 times across

the PlanetLab framework. In each graph, the x-axis displays
the mean speedup ratio (along with 95% confidence intervals
from each of the 50 runs per configuration) and the y-axis
displays the total volume of data flowing through the workflow.
The number of services involved is independent of the mean
speedup ratio as we have taken the mean ratio across a set of
scaling experiments: we have scaled the initial data sources
from 2 to 20 and repeated this while executing the AstroGrid
DAG in reverse order. To prevent the data processing from
influencing our evaluation, it has not been accounted for in
the performance analysis experiments.

TABLE I
PLANETLAB NODE SELECTION.

France Germany USA
inria.fr uni-goettingen.de mit.edu
inisa.fr uni-konstanz.de brown.edu
utt.fr uni-paderborn.de poly.edu

fraunhofer.de umd.edu
tu-darmstadt.de byu.edu

postel.org
iit-tech.net

A. Experiment 1

In this experiment, each of the data sources, analysis ser-
vices and the workflow engine were installed on separate Plan-
etLab nodes in the USA. As one can see from Figure 7(a) in
all configurations our architecture outperforms the centralised
workflow configuration. If one calculates the average across all
data points for each of the experiments, the “same machine”
configuration observes a speedup of 75%, the “same domain”
configuration 49% and the “distributed” configuration 30%.
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(c) Experiment 3 – Mean speedup.

Fig. 7. PlanetLab performance evaluation.

As the results demonstrate, the speedup is greatest when a
proxy is deployed as closely as possible to the back-end Web
service, i.e., on the same machine. The cost of the proxy to
service data movement increases as the proxy moves further
away from the service it is invoking, in the “same machine”
configuration, the input and output of a service invocation
is flowing over a LAN. However, in the most extreme case,
the “distributed” configuration an average speedup of 30% is
observed over all runs.

B. Experiment 2

In this configuration, each of the data sources and analysis
services were deployed on separate PlanetLab nodes across
the USA. However, the workflow engine was now even further
distributed from the services, running from a desktop machine
in Melbourne. As one can see from Figure 7(b), as the cost
(network distance) increases from the workflow engine to
the workflow services, the hop any intermediate data has
to make increases in cost. As the cost of intermediate data
transport increases, the benefit of using our architecture grows
as intermediate data transport is optimised. To quantify, this
speedup ranged from 68% to 153% speedup for the “same
domain” configuration and 51% to 125% for the “distributed”
configuration.

C. Experiment 3

In order to distribute the services further, the data sources
were deployed on PlanetLab nodes in the USA, the analysis
services deployed on nodes in Europe (France and Germany)
and the workflow engine was running from a desktop machine
in Melbourne. With reference to Figure 7(c), speedup ranged
from 34% to 85% for the “same domain” configuration and
30% to 58% for the “distributed” configuration. In this exper-
iment one can observe an increased cost in distributing the
workflow definition to each of the proxies prior to enactment,
demonstrated by the lack of increase in mean speedup at lower
data sizes.

Other experiments (not included in this paper due to space
limitations) demonstrate similar trends.

IV. RELATED WORK

A. Choreography Languages

The research proposed by this paper is focused on decen-
tralised orchestration rather than pure choreography: taking a
workflow specification that is typically enacted by a centralised
workflow engine, breaking it up and executing it through a set
of decentralised peers.

There are relatively few languages targeted specifically
at service choreography, the most prevalent being WS-CDL
[4], BPEL4Chor [10] and Let’s Dance [23]. There are even
fewer complete implementations of choreography languages,
this means that choreography techniques are rarely deployed
in practice. For example, there are only two documented
prototype implementations of the WS-CDL specification. WS-
CDL+, an extended specification [14] has been implemented
in prototype form, although only one version, version 0.1 has
been released. A further partial implementation [12] of the
WS-CDL specification is currently in the prototype phase.
The other widely known implementation is pi4soa3, an Eclipse
plugin that provides a graphical editor to compose WS-CDL
choreographies and generate from them compliant BPEL.

B. Techniques in Data Transfer Optimisation

Service Invocation Triggers [6] is an architecture for de-
centralised execution. Using the Triggers architecture, before
execution can begin the input workflow must be deconstructed
into sequential fragments, these fragments cannot contain
loops and must be installed at a trigger; this is a rigid and
limiting solution and is a barrier to entry for the use of proxy
technology. In contrast with our proxy approach nothing in the
workflow has to be altered prior to enactment.

The Flow-based Infrastructure for Composing Autonomous
Services or FICAS [15] is a distributed data-flow architecture
for composing software services. FICAS is intrusive to the
application code as each application that is to be deployed
needs to be wrapped with a FICAS interface.

In [7], an architecture for decentralised orchestration of
composite Web services defined in BPEL is proposed. Our
research deals with a set of challenges not addressed by

3http://sourceforge.net/projects/pi4soa [26/02/2010]
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this architecture: how to optimise service-oriented DAG-based
workflows, how to automatically deploy a workflow across
a set of volunteer proxy nodes given a workflow topology,
where to place proxies in relation to Web services, how these
concepts operate across Internet-scale networks.

In our previous work [3] we proposed Circulate, a proxy-
based architecture based on a centralised control flow, dis-
tributed data flow model. This paper has focused on exe-
cuting DAG-based workflows without centralised control and
explored a richer set of proxy functionality.

C. Third-party Data Transfers

This paper focuses primarily on optimising service-oriented
workflows, where services are: not equipped to handle third-
party transfers, owned and maintained by different organisa-
tions, and cannot be altered in anyway prior to enactment. For
completeness it is important to discuss engines that support
third-party transfers between nodes in task-based workflows.

Directed Acyclic Graph Manager (DAGMan) [9] submits
jobs represented as a DAG to a Condor pool of resources.
Intermediate data are not transferred via a workflow engine,
instead they are passed directly from vertex to vertex. DAG-
Man removes the workflow bottleneck as data are transferred
directly between vertices in a the DAG. Triana [20] is an open-
source problem solving environment. It is designed to define,
process, analyse, manage, execute and monitor workflows. Tri-
ana can distribute sections of a workflow to remote machines
through a connected peer-to-peer network.

V. CONCLUSIONS AND FURTHER WORK

Through a motivating scenario, this paper has introduced
an architecture for deploying and executing a service-oriented
workflow (composed as a DAG) across a peer-to-peer proxy
network. This architecture avoids workflow bottlenecks asso-
ciated with centralised orchestration and reduces intermediate
data transfer between interoperating services in a workflow.
Importantly our proposed architecture in non-intrusive, Web
services do not have to be altered in anyway prior to execution.
Furthermore, users can continue to work with popular service-
oriented DAG-based composition tools; our architecture trans-
lates DAG-based workflows (we have used Taverna SCUFL)
into our workflow specification syntax, vertices are assigned,
disseminated and enacted by an appropriate set of proxies.

A Web services implementation was introduced which
formed the basis of our performance analysis experiments con-
ducted over the PlanetLab framework. Performance analysis
demonstrated across various network configurations that by
reducing intermediate data transfer end-to-end workflows are
sped up, in the best case from 68% to 192%.

Further work includes the following research challenges:
• Expression of workflows. This paper has focused on

DAG-based workflows. Further work will address aligning the
architecture with business process notations.
• Peer-to-peer registry. The registry service is currently

centralised. Peer-to-peer techniques utilising Chord [17] are
being investigated, with the view to improving scalability.

• Security. Although our system is only a prototype, to al-
low live deployment, security issues will have to be addressed.
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