
Peer-to-Peer Tuple Space: A Novel Protocol for Coordinated

Resource Provisioning

Rajiv Ranjan, Aaron Harwood, Rajkumar Buyya
GRIDS Lab and P2P Group

Computer Science and Software Engineering Department
The University of Melbourne, Victoria, Australia
{rranjan,aharwood,raj}@csse.unimelb.edu.au

August 14, 2007

Abstract

Resource brokering services are the main components that control the way applications are scheduled,
managed and allocated in a decentralised, heterogeneous and dynamic Grid computing environment.
Existing Grid computing systems such as a resource broker, e-Science application work-flow scheduler
operate in tandem but still lack a coordination process that can lead to efficient application schedule across
distributed resources. Lack of coordination exacerbates the utilisation of various resources including
computing cycles and network bandwidth.

To overcome these shortcomings, we propose a mechanism to realise a decentralised coordination
process among grid application schedulers. Our dencentralised coordination process is based on a Peer-to-
Peer (P2P) resource discovery system. Resource discovery system utilises the publish/subscribe model to
convey coordination message among the participants. In the proposed scheme, all application schedulers
and resource providers facilitate the decentralised coordination process through exchange of resource
usage and application requirement information.

1 Introduction

Several research projects including Bellagio [3], Tycoon [11], NASA-Scheduler [22], OurGrid [2], Sharp [5],
Condor-Flock [5] and Grid-Federation [18] have proposed federated sharing of topologically distributed net-
worked computing resources to facilitate a cooperative and coordinated sharing environment. In a feder-
ated resource sharing environment, every participant gets access to a larger pool of resources and resource
providers get economic or bartering benefits depending upon the resource leasing policy. Distributed resource
sharing systems including Bellagio and Tycoon have been deployed and tested over PlanetLab environment,
while the Grid-Federation, NASA-Scheduler, Condor-Flock and OurGrid are targeted towards computational
grid environments.

However, the effectiveness of the federated resource sharing environments can not be optimally achieved
without a proper coordination mechanism between the schedulers (resource brokers in case of grids and slice
initiators in case of PlanetLab). The coordination mechanisms in NASA-Scheduler, OurGrid, and Condor-
Flock P2P are based on general broadcast and limited broadcast communication mechanisms respectively.
Hence, these approaches have the following limitations: (i) high network overhead; and (ii) scalability prob-
lems. Resource allocation coordination in Tycoon is based on decentralised isolated auction mechanism.
Every resource owner in the system runs its own auction on behalf of his local resources. In this case, a
scheduler might end-up bidding across a large number of auctions. On the other hand, resource allocation
in Bellagio system is based on the bid-based proportional resource sharing model. Bids for resources are
periodically cleared by a centralized auction coordinator. Clearly, the coordination mechanisms followed by
Bellagio and Tycoon are neither efficient nor scalable. Sharp architecture coordinates resource allocation
among various competing schedulers through pair-wise peering arrangement. For example, site A may grant

1

to site B a claim on its local resources in exchange for a claim that enables access to B resources. This
pair-wise approach may work well for a small system size, but can prove to be serious bottleneck as the
system scales.

One of the possible ways to solve this problem is to host a coordinator service on a centralised machine [10,
15, 25]. Every application scheduler is required to submit his demands to the coordinator (similar to Bellagio
system). Similarly, resource providers update their resource usage status periodically with the coordinator.
The centralised resource allocation coordinator performs system wide load-distribution primarily driven
by resource demand and availability. However, this approach has several design limitations including: (i)
single point of failure; (ii) lacks scalability; (iii) high network communication cost at links leading to the
coordinator (i.e. network bottleneck, congestion); and (iv) computational power required to serve a large
number of participants.

Another possible way to tackle this problem is to distribute the role of the centralised coordinator among a
set of machines based on a P2P network model. New generation P2P routing substrate such as DHTs [23, 20]
can be utilised for efficiently managing such decentralised coordination network. DHTs have been proven to
be self-organising, fault-tolerant and scalable.

We advocate organising Grid schedulers (and users in case of PlanetLab) and Grid resources based on
a DHT overlay. Application schedulers post their resource demands by injecting a Resource Claim object
into the decentralised coordination space, while resource providers update the resource supply by injecting
a Resource Ticket object (similar terminologies have been used by Sharp system). These objects are mapped
to the DHT-based coordination services using a spatial hashing technique. The details on spatial hashing
technique and object composition are discussed in Section 3. Decentralised coordination space is managed
by a software service (a component of Grid peer service) called coordination service. It undertakes activities
related to decentralised load-distribution, coordination space management etc.

A coordination service on a DHT overlay is made responsible for matching the published resource tickets
to subscribed resource claims such that the resource ticket issuers are not overloaded. Resource tickets and
resource claims are mapped to the coordination space based on distributed spatial hashing technique. Every
coordination service in the system owns a part of the coordination space governed by the overlay’s hashing
function (such as SHA-1). In this way, the responsibility of load-distribution and coordination is delegated
to a set machines instead of delegating it to one. The actual number of machines and their respective
coordination load is governed by the spatial index’s load-balancing capability. Note that, both resource
claim and resource ticket objects have their extent in d-dimensional space.

1-dimensional hashing provided by current implementation of DHTs are insufficient to manage complex
objects such as resource tickets and claims. DHTs generally hash a given unique value/identifier (e.g. a file
name) to a peer key space and hence they cannot support mapping and lookups for complex objects. Manage-
ment of those objects whose extents lie in d-dimensional space warrants embedding a logical index structure
in place of the 1-dimensional DHT key space. Spatial indices such as Space Filling Curves (SFC) [21], k-d
Tree [8], R-Tree [13], MX-CIF quadtree [24] can be utilised for managing such complex objects over a DHT
key space.

In this work, we utilise the P2P publish/subscribe based Grid resource discovery system, described in the
paper [19], for managing and indexing the resource claim and resource ticket objects. Decentralised resource
discovery system utilises a d-dimensional spatial index to maintain complex Grid resource look-up (resource
claim) and update queries (resource ticket). More details on the spatial index can be found in the paper [19]
and how we utilise it for distributed load-distribution and coordination among application schedulers can be
found in Section 3.3.

The rest of paper is organised as follows: in Section 2, we present the background information on shared-
spaces based coordinated communication. Section 3 discusses the P2P tuple space model that we propose
in this paper. In Section 3.2, we present details on the Grid resource sharing model that is utilised as the
case study for coordinated resource provisioning. In Section 4 and 5, we present the finer details on the
application scheduling and resource provisioning algorithms. Section 6 presents the P2P network simulation
model that we utilise for evaluating the performance of Grid resource discovery system. In Section 7, we
present various experiments and discuss our results. We end this paper with concluding remarks in Section 8.

2

2 Background and State of the Art

2.1 Shared-space Based Coordinated Communication

The idea of implementing globally accessible “data-space” or “coordination-space” for communication be-
tween distributed services goes back to the blackboard systems proposed by the Artificial Intelligence research
community in early 1970s. The blackboard system was utilised as a global slate by experts to collaborate
on solving the difficult problems. Experts would search the blackboard for problems of their expertise
and post the solutions. The idea of global slate was implemented in the systems including JavaSpaces [16],
TSpaces [15] and XMLSpaces [25]. These implementations were based on the centralised CS-model which has
limited scalability. Initially, the slates were utilised for coordinating parallel application execution between
a cluster of computers. Traditionally, these blackboard systems supported Read() and Write() primitive for
information coordination between services.

The shared-space based coordination approach or model was proposed by Linda [10] system, which defined
a centralised tuple space that provided abstraction of a shared message store for supporting generative
communication. Linda defines a tuple as an ordered sequence of typed fields and a tuple space as a shared
repository that includes a set of tuples which can be accessed by several distributed processes synchronously.
Linda system also defines separate tuple access primitives for reading, writing and destroying. Tuples are
written to the shared space through execution of out(t) primitive, read using the non-destructive primitive
rd(t), and extracted using the destructive primitive in(t).

2.2 State of the Art

In recent times, there have been proposals for organising a coordination space based on a decentralised
network model, the representative systems being Lime [17], PeerWare [7], PeerSpace [4] and Comet [12].
Systems including Lime and PeerWare support a global coordination space using a distributed index called
Global Virtual Data Structure (GVDS). The focus of Lime system is to provide coordination among par-
ticipants in mobile environments. The global data space is built by combining the local data spaces of
participating peers. The changes made in the local data space are reflected in the global data space. The
data structure managed by PeerWare is organised as a graph composed of nodes and documents which are
collectively referred to as items. Every peer in the system maintains a local graph structure, which are
superimposed on each other to form the GVDS. The management of such a global data structure in a highly
dynamic and large distributed system is not scalable.

The most related state of the art to this research is Comet System, that utilises DHTs as the basis for
organising the GVDS. The advantage of utilising the DHT is that updates, inserts and deletes on the local
tuples (keys) are not required to be communicated to the global tuple space. The changes to the tuple space
due to these operations (insert, delete, and update) are apparently handled by the logical mapping structure
that forms the basis for tuple space management. Hilbert SFC index, proposed in the work Squid [21], is
utilised as the mapping structure from the logical tuple space to the Chord identifier space. In contrast, our
mapping structure is based on the spatial publish/subscribe index whose details can be found in paper [19].

3 Peer-to-Peer Tuple Space Model

In this section we first describe the communication, coordination and indexing models which are utilised to
facilitate the P2P tuple space. Then we look at the composition of tuples, access primitives that form the
basis for coordinating the application schedules among the decentralised and distributed resource brokers.

3.1 Layered Design of the Coordination Space

Fig. 1 shows the layered design of the proposed P2P tuple space based coordination service. The OPeN
architecture proposed in the work [24] is utilised as the base model in architecting and implementing the
proposed service. The OPeN architecture consists of three layers: the Application layer, Core Services layer
and Connectivity layer. Grid Services such as resource brokers work at Application layer and insert objects
including Resource Lookup Query (RLQ) and Resource Update Query (RUQ) to the Core services layer.

3

E.g. Coordination Service

 Tuples/Objects are inserted/deleted/
queried.

Core Services Layer
Coordination Service

Resource Discovery Service
E.g. Indexing Logic
(such as publish/subscribe index)

Logical index space initialisation and
 management.

Application Layer
E.g. Brokering Service, Auction Service
Workflow Engine, MPI-G

RLQs and RUQs are inserted/deleted/
queried.

Connectivity Layer
E.g. Key-based Routing

Message routing between peers and
repl ica management.

Figure 1: A schematic overview of the Coordination service architecture.

We have implemented the Coordination service as a sub-layer of the Core services layer. The Coordina-
tion service accepts the application objects such as RLQs/ RUQs. These objects are then wrapped with some
additional logic to form a coordination tuple or object. The coordination logic, in this case the resource provi-
sioning logic, are executed by the Coordination service on these tuples or objects. However, the calls between
the Coordination service and Resource discovery service are done through the standard publish/subscribe
way. The Resource discovery service is responsible for managing the logical index space and communicating
with the Connectivity layer. The details on the workings of the Resource discovery service can be found in
the paper [19]. Note that, the proposed tuple space does not strictly follow the standard Linda primitive,
instead it exposes the APIs such as publish(ticket), subscribe(claim) and unsubscribe(claim) that suites
the requirements of the Application layer brokering service.

The Connectivity layer is responsible for undertaking key-Based routing in the DHT space such as Chord,
CAN, Pastry etc. The actual implementation protocol at this layer does not directly affect the operations of
the Core services layer. In principle, any DHT implementation at this layer could perform the desired task.
However, in this paper the simulation models the Chord substrate at the Connectivity layer. Chord hashes
the peers and objects (such as fileIds, logical indices etc) to the circular identifier space and guarantees that
an object in the network can be located in Θ(log n) steps with high probability. Each peer in the Chord
network is required to maintain the routing state of only Θ(log n) other peers, where n is the total network
size.

4

3.2 Grid Resource Sharing Model

In this paper, we consider a grid system model that aggregates distributed resource brokering and allocation
services [18] as part of a generalised resource sharing environment, which is referred to as the Grid-Federation.
The grid brokering model aggregates topologically and administratively separated computational grid re-
sources such as clusters, supercomputers, and desktops. Resource brokering, indexing and allocation in the
Grid-Federation is facilitated by a new Resource Management System (RMS) known as the Grid Federation
Agent (GFA). More details about general Grid-Federation brokering, and the resource owner’s local resource
allocation services can be found in the articles [18].

In general, a GFA service requires two basic types of queries: (i) an Resource Lookup Query (RLQ),
a query issued by a broker service to locate resources matching the user’s application requirements; and
(ii) an Resource Update Query (RUQ), is an update query sent to a resource discovery service by a Grid
site owner about the underlying resource conditions. Since, a Grid resource is identified by more than one
attribute, an RLQ or RUQ is always d-dimensional. Further, both of these queries can specify different
kinds of constraints on the attribute values. If a query specifies a fixed value for each attribute then it is
referred to as a d-dimensional Point Query (DPQ). However, in case the query specifies a range of values
for attributes, then it is referred to as a d-dimensional Window Query (DWQ) or a d-dimensional Range
Query (DRQ). In database literature, a DWQ or an DRQ is also referred to as a spatial range query.

Recall that, compute Grid resources have two types of attributes: (i) static attributes–such as the type
of operating system installed, network bandwidth (both Local Area Network (LAN) and Wide Area Net-
work (WAN) interconnection), processor speed and storage capacity (including physical and secondary mem-
ory); and (ii) dynamic attributes–such as processor utilization, physical memory utilization, free secondary
memory size, current usage price and network bandwidth utilization.

3.3 Coordination Tuples/Objects

This section gives details about the resource claim and ticket objects that form the basis for enabling de-
centralised coordination mechanism among the brokers/GFAs in a Grid system. These coordination objects
include:- Resource Claim and Resource Ticket. We start with the description of the components that form
the part of a Grid-Federation resource ticket object.

Resource Ticket

Every GFA in the federation publishes its resource ticket with the local Coordination service. A resource
ticket object Ui consists of a resource description Ri, for a cluster i. A Ri can include information about the
CPU architecture, number of processors, RAM size, secondary storage size, operating system type, resource
usage cost etc. In this work Ri = (pi, xi, µi, øi, ρi, ci), which includes the number of processors, pi, processor
architecture, xi, their speed, µi, their utilization, ρi, installed operating system type, øi, and a cost ci for
using that resource. A site owner charges ci per unit time or per unit of million instructions (MI) executed,
e.g. per 1000 MI. The ticket publication process can be based on time intervals or resource load triggers.
Recall from the paper [19] that a resource ticket object has similar semantics to the RUQ object.

Resource Ticket: Total-Processors= 100 && Processor-Arch= Pentium &&
Processor-Speed= 2 GHz && Operating-System = Linux && Utilization=0.80 && Acess-Cost=1 Dollar/min.

Resource Claim

A resource claim object encapsulates the resource configuration needs of a user’s job. In this work, we
focus on the job types whose needs are confined to computational grid or PlanetLab resources. Users submit
their application’s resource requirements to the local GFA. The GFA service is responsible for searching
the resources in the federated system. An user job in the Grid-Federation system is written as Ji,j,k, to
represent the i-th job from the j-th user of the k-th resource. A job consists of the number of processors
required, pi,j,k, processor architecture, xi,j,k, the job length, li,j,k (in terms of instructions), the budget,
bi,j,k, the deadline or maximum delay, di,j,k and operating system required, øi,jk. A GFA aggregates these
application characteristics including pi,j,k, xi,j,k, øi,j,k with constraint on maximum speed, cost and resource

5

Distributed 2-dimensional
 Tree Index

Index node i

Site s

Resource ticket Coordinator
 for index node i

GFA

GFA
GFA

GFA

Site u

Site p
Site l

 Resource Claim p

 Resource Ticket u

Chord Overlay

 Resource Claim l

Spatial Hash (index node i)

Figure 2: Resource allocation and application scheduling coordination across Grid sites.

utilization into a resource claim object, ri,j,k. Recall from the paper [19] that a resource claim object has
similar semantics as an RLQ object and is d-dimensional in composition.

Resource Claim: Total-Processors ≥ 70 && Processor-Arch= pentium && 2 GHz ≤ Processor-Speed ≤
5GHz && Operating-System = Solaris && 0.0 ≤ Utilization ≤ 0.90 && 0 Dollar/min ≤ Access-Cost ≤ 5
Dollar/min .

The resource ticket and claim objects are spatially hashed to an index cell i in the d-dimensional coordi-
nation space. Similarly, coordination services in the Grid network hash themselves into the space using the
overlay hashing function (SHA-1 in case of Chord and Pastry). The details on index cell mapping to the
coordination services is described in the paper [19]. In Fig. 2, resource claim objects issued by site p and
l are mapped to the index cell i, are currently hashed to the site s. In this case, site s is responsible for
coordinating the resource sharing among all the resource claims that are mapped to the cell i. Subsequently,
site u issues a resource ticket (shown as dot in the Fig. 2) which falls under the region of space currently
required by users at site p and l. In this case, the coordinator service of site s has to decide which of the sites
(i.e. either l or p or both) be allowed to claim the ticket issued by site u. This load-distribution decision is
based on the fact that it should not lead to over-provisioning of resources at site u.

In case a resource ticket matches with one or more resource claims, then a coordinator service sends no-
tification messages to the resource claimers such that it does not lead to the overloading of the concerned
resource ticket issuer. Thus, this mechanism prevents the resource brokers from overloading the same re-
source. In case of PlanetLab environment, it can prevent the users from instantiating slivers on the same set
of nodes. Once a scheduler receives notification that its resource claim has matched with an advertised re-
source ticket, the scheduler undertakes a Service Level Agreement (SLA) contract negotiation with the ticket
issuer site. In case agreement is reached, the scheduler can go ahead and deploy its application/experiment.
The GFAs have to reply as soon as the SLA enquiry arrives. In other words, we set the SLA timeout interval

6

Point object

publish (t icket)

subscribe (claim)
match ()

Notify ()

Submit (job)

publish (t icket)

publish (t icket)

Peer-to-Peer Space

Range object

GFA 1

GFA 3
GFA n

GFA 2

Figure 3: Scheduling and resource provisioning coordination through P2P tuple space.

as 0. We do this in order to study the effectiveness of coordination space with respect to decentralised
load-balancing. As excessive timeout interval can lead to deadlock kind of situation in the system, with
coordination service sending the notifications while the ticket issuer not accepting SLA contracts. In future
we intend to study how does varying degree of SLA timeouts can affect the system performance in terms of
load-balancing and provider’s economic benefit.

4 Distributed Application Scheduling Algorithm

In this section we provide detailed descriptions of the scheduling algorithm that is undertaken by a GFA in
the Grid-Federation system following the arrival of a job:

1. When a job arrives at a GFA, the GFA compiles a resource ticket object for that job. It then posts
this resource ticket object with the P2P tuple space though the Core services layer. The complete pseudo
code for this process is shown in the Fig. 1. In Fig. 3 GFA 1 is posting a resource claim on behalf of its local
user.

2. When a GFA receives a notification for resource ticket and resource claim match from the P2P co-
ordination space, then it undertakes SLA-based negotiation with the ticket issuer GFA. After successful
notification, the coordination service unsubscribes the resource claim for that job from the tuple space. In
Fig. 3 the match event occurs and GFA 1 is notified that it can place the job with GFA 3. Following this,
GFA 1 undertakes SLA negotiation with GFA 3, which is accepted and, finally GFA 1 migrates the locally
submitted job to the GFA 3.

3. If SLA negotiation is successful then the GFA sends the job to the remote GFA, otherwise it again
posts the resource claim object for that particular job to the coordination space.

7

PROCEDURE: GFA SCHEDULING0.1

begin0.2

begin0.3

Sub-Procedure: Event User Job Submit (Job Ji,j,k)0.4

encapsulate the claim object ri,j,k for job Ji,j,k0.5

call Post Resource Claim (ri,j,k).0.6

end0.7

begin0.8

Sub-Procedure: Post Resource Claim (Claim ri,j,k)0.9

call subscribe (ri,j,k).0.10

end0.11

begin0.12

Sub-Procedure: Event Resource Status Changed(Resource Ri)0.13

encapsulate the ticket object Ui for resource Ri0.14

call publish (Ui).0.15

end0.16

begin0.17

Sub-Procedure: Event Coordinator Reply (GFA gindexi)0.18

call SLA Bid (Ji,j,k, gindexi).0.19

end0.20

begin0.21

Sub-Procedure: SLA Bid (Job Ji,j,k, GFA gindexi)0.22

Send SLA bid for job Ji,j,k to the decentralised coordinator adviced GFA gindexi.0.23

end0.24

begin0.25

Sub-Procedure: Event SLA Bid Reply (Ji,j,k)0.26

if (SLA Contract Accepted) then0.27

Send the job Ji,j,k to accepting GFA.0.28

end0.29

else0.30

call SLA Bid Timeout (Ji,j,k).0.31

end0.32

end0.33

begin0.34

Sub-Procedure: SLA Bid Timeout(Ji,j,k)0.35

call Post Resource Claim (ri,j,k) .0.36

end0.37

end0.38

Algorithm 1: SLA-based GFA application scheduling algorithm.

8

5 Distributed Resource Provisioning Coordination Algorithm

In this section we present the details on the decentralised resource provisioning algorithm which is under-
taken by the coordination services across the P2P tuple space.

1. When a resource claim object arrives at a coordination service for future consideration, the coordina-
tion service queues it in the existing claim list as shown in the Fig. 2.

2. When a resource ticket object arrives at a coordination service, the coordination service calls the
auxiliary procedure match(ticket) (as shown in Fig. 2) to gather the list of resource claims that overlaps
with the submitted resource ticket object in the d-dimensional space. This initial resource claim match list
is passed to another auxiliary procedure Load Dist(matchList, ticket).

3. The Load dist() procedure notifies the resource claimers about the resource ticket match until the
ticket issuer is not over-provisioned. The Load Dist() procedure can utilise the resource parameters such
as number of available processors, threshold queue length etc as the over-provision indicator. And these
over-provision indicators are encapsulated with the resource ticket object by the GFAs. The GFAs can post
the resource ticket object to the tuple space either periodically or whenever the resource condition changes
such as a job completion event happens.

6 Simulation Model

In this section, we present simulation model for evaluating the performance of our P2P tuple space with
respect to coordinated resource provisioning. The proposed model is applicable to large networks of the
scale of the Internet. The simulation model considers the message queuing and processing delays at the
intermediate peers in the network. In a centralised system, the index look-up latency is essentially zero,
assuming the computation delay due to processing of local indices is negligible. For the P2P system, assuming
negligible computation delay for index processing logic at intermediate peers, the time to complete an RLQ
or RUQ is time for the query to reach all the cells (including both parent and child cells) that intersect with
the query region.

In our message queueing model, a Grid peer node (through its Chord routing service) is connected to an
outgoing message queue and an incoming link from the Internet (as shown in Fig. 4). The network messages
delivered through the incoming link (effectively coming from other Grid peers in the overlay) are processed
as soon as they arrive. Further, the Chord routing service receives messages from the local publish/subscribe
index service. Similarly, these messages are processed as soon as they arrive at the Chord routing service.
After processing, Chord routing service queues the message in the local outgoing queue. Basically, this queue
models the network latencies that a message encounters as it is transferred from one Chord routing service to
another on the overlay. Once a message leaves an outgoing queue it is directly delivered to a Chord routing
service through the incoming link. The distributions for the delays (including queueing and processing)
encountered in an outgoing queue are given by the M/M/1/K [1] queue steady state probabilities.

Our simulation model considers an interconnection network of n Grid peers whose overlay topology can
be considered as a graph in which each peer maintains connection to a O(log n) other Grid peers (i.e. the
Chord overlay graph). As shown in Fig. 4, every Grid peer is connected to a broker service that initiates
lookup and update queries on behalf of the users and site owner. We denote the rates for RLQ and RUQ by
λinl and λinu respectively. The queries are directly sent to the local index service which first processes them
and then forwards them to the local Chord routing service. Although, we consider a message queue for the
index service but we do not take into account the queuing and processing delays as it is in microseconds.
Index service also receives messages from the Chord routing service at a rate λinindex. The index messages
include the RLQs and RUQs that map to the control area currently owned by the Grid peer, and the
notification messages arriving from the the network.

9

PROCEDURE: Resource Provision1.1

begin1.2

list← φ1.3

begin1.4

Sub-Procedure: Event Resource Claim Submit (Claim ri,j,k)1.5

list ← list ∪ ri,j,k.1.6

end1.7

begin1.8

Sub-Procedure: Match (Ticket Ui)1.9

listm ← φ1.10

set index = 01.11

while (list[index] 6= null) do1.12

if (Overlap (list[index], Ui)) then1.13

listm ← listm ∪ list[index]1.14

end1.15

else1.16

continue1.17

end1.18

reset index = index + 11.19

end1.20

return listm .1.21

end1.22

begin1.23

Sub-Procedure: Overlap (Claim ri,j,k, Ticket Ui)1.24

if (ri,j,k ∩ Ui 6= null) then1.25

return true.1.26

end1.27

else1.28

return false.1.29

end1.30

end1.31

begin1.32

Sub-Procedure: Event Resource Ticket Submit (Ui)1.33

call Load Dist(Ui, Match(Ui)).1.34

end1.35

begin1.36

Sub-Procedure: Load Dist (Ui, listm)1.37

set index = 01.38

while (Ri is not over-provisioned) do1.39

send notification match event to resource claimer: listm [index]1.40

remove(listm [index])1.41

reset index = index + 1.1.42

end1.43

end1.44

end1.45

Algorithm 2: Resource provisioning algorithm for coordination service.

10

Broker
Service

Index msgs.
Reply

M/M/1/K

Chord
Service

to Grid peersmessages
Networkfrom other

Grid peers

Index
Service

PSfrag replacements

λinu

λinl

λout

from other Grid peers
µq

µnλin

λinindex

λina

µr

M/M/1/K

Figure 4: Network message queueing model at a Grid peer i.

7 Performance Evaluation

In this section, we validate the proposed P2P tuple space-based coordinated resource provisioning model
through the trace-based simulation. The simulated environment models the Grid-Federation resource sharing
environment presented in the paper [18].

7.1 Experimental Setup

We start by describing the test environment setup.

7.1.1 Broker Network Simulation:

Our simulation infrastructure includes two discrete event simulators namely GridSim [6], and PlanetSim [9].
We model the resource brokering service i.e. a GFA inside the GridSim that injects resource claims and
resource tickets on behalf of both, the users and the resource providers respectively. Every GFA connects
to Core services layer which also has implementations for Coordination service and publish/subscribe Index
service as sub-layers. At the Connectivity layer we utilised the Chord implementation provided with the
PlanetSim.

Experiment configuration:

• Network configuration: The experiments ran Chord overlay with 32 bit configuration i.e. number of
bits utilised to generate node and key ids. The network size n was fixed at 100 GFA/broker nodes.
The network queue message processing rate, µ, at a Grid peer was fixed at 500 messages per second.
The message queue size, K, was fixed at 104.

• Resource claim and resource ticket injection rate: The GFAs inject resource claim and resource ticket
objects based on the exponential inter-arrival time distribution. The value for resource claim inter-

11

arrival delay (1
λinl

) is distributed over the interval [5, 60] in step of 5 secs. While the inter-arrival

delay (1
λinu

) of resource claim object was fixed to 30 secs. The inter-arrival delay in claim/ticket injection

is considered same for all GFAs/brokers in the system. The spatial extent of both resource claims and
resource ticket objects lies in a 5-dimensional attribute space. The attribute dimension includes the
number of processors, pi, resource access cost, ci, processor speed, mi, processor architecture, xi, and
operating system type, φi. The distributions for these resource dimensions have been obtained from
the Top 500 supercomputer list1.

Note that, in our simulation we did not utilize resource utilization, ρi , as the GFA’s load indicator.
Instead GFAs encode the metric “number of available processors” at time t with the resource ticket
object Ui. Specifically, the information on the number of available processor is updated inside the
gindexi object and sent to the coordination service along with ticket object Ui. The coordination
service utilizes this metric as the indicator for the current load on the resource Ri. In other words, the
coordinator service would stop sending the notifications as the number of processors available with a
ticket issuer reaches zero.

• Publish/subscribe index configuration: The minimum division, fmin, of logical d-dimensional pub-
lish/subscribe index was set to 3, while the maximum height of the index tree, fmax, was also limited
to 3. This means we basically do not allow the partitioning of the P2P tuples space beyond fmin
level. In this case, a cell at a minimum division level does not undergo any further division. Hence, no
resource claim or resource ticket object is stored beyond the fmin level. The index space resembles a
Grid-like structure where each index cell is randomly hashed to a Grid peer based on its control point
value. The publish/subscribe Cartesian space had 6 dimensions including number of processors, pi,
resource access cost, ci, processor speed, mi, processor architecture, xi, and operating system type, φi.
Hence, this configuration resulted into 243 (35) Grid index cells at the fmin level. On an average, 2
index cells are hashed to a Grid peer in a network comprising of 100 Grid sites.

Indexed data distribution: We generated a resource type distribution using the resource configu-
ration obtained from the Top 500 Supercomputer list. We utilised the resource attributes including
processor architecture, its number, its speed, and installed an operating system from the Supercom-
puter list. The value for ci was fabricated. The values for ci were uniformly distributed over the
interval [0, 10].

Workload configuration: We generated the workload distributions across GFAs based on the model
given in the paper [14]. The workload model generates the job-mixes having the details on their run
times, sizes, and inter-arrival times. This model is statistically derived from existing workload traces
and incorporates correlations between job run times and job sizes and daytime cycles in job inter-arrival
times. The model calculates for each job its arrival time using 2-gamma distributions, number of nodes
using a two-stage-uniform distribution, and run time using the number of nodes and hyper-gamma dis-
tribution.

Mostly we utilised the default parameters already given by the model except for the number of pro-
cessors/machines. The processor count for a resource was fed to the workload model based on the
resource configuration obtained from the Top 500 list. The simulation environment models 25 jobs at
each GFA, and since there are 100 GFAs therefore total number of jobs in the system accounts to 2500.
Also note that, we simulated the supercomputing resources in space shared processor allocation mode.
More details on how the execution time for jobs are computed on space shared resource facilities can
be found in the paper [18].

7.2 Effect of Job Inter-Arrival Delay: Lightly-Constrained Workloads

The first set of experiments measured the performance of P2P tuple space in coordinating resource provi-
sioning with respect to the following metrics: average coordination delay, average response time and average

1Top 500 Supercomputer List, http://www.top500.org/

12

processing time for jobs. Further, it also quantifies the details about the job migration statistics in the
system i.e. number of jobs executed locally and number jobs executed remotely. In this experiment, the
resource claim injection rate is varied from 12 to 1 per minute while the resource ticket injection rate is fixed
to 2 per minute. This experiment simulates a lightly-constrained workload or job characteristic. In other
words, on an average the simulated jobs did not require large number of processors for execution. For this
experiment, the job characteristics were generated by configuring the minimum and maximum processor per
job as 2 and 26 respectively in the workload model.

Fig. 5 and Fig. 6 show the measurement for parameters coordination delay, response time, processing
time and job migration. The metric coordination delay sums up the latencies for: (i) resource claim to reach
the index cell; (ii) waiting time till a resource ticket matches with the claim; and (iii) notification delay from
coordination service to the relevant GFA. Processing time for a job is defined as the time the job takes to
actually execute on a processor or set of processors. Average response time for a job is the delay between
the submission and arrival of execution output. Effectively, the response time includes the latencies for
coordination and processing delays. Note that, these measurements were collected by averaging the values
obtained for each job in the system.

Fig. 5(a) depicts results for the average coordination delay in seconds with increasing job inter-arrival
delay. With increase in average job inter-arrival delay, we observed decrease in the average coordination
delay. The results show that at higher inter-arrival delays, resource claim objects experience less network
traffic and competing requests. Thus, this leads to an overall decrease in the coordination delay across the
system. The effect of this can also be seen in the response time metric for the jobs (refer to Fig. 5(b)), which
is also seen to improve with increase in inter-arrival delays.

job

 10

 12

 14

 16

 18

 20

 22

 10 20 30 40 50 60
 inter−arrival time (secs)

 c
oo

rd
in

at
io

n
de

la
y

(s
ec

s)

(a) average job inter-arrival delay (secs) vs average coor-
dination delay (secs).

 job

 106

 108

 110

 112

 114

 116

 118

 10 20 30 40 50 60
 inter−arrival time (secs)

 r
es

po
ns

e
ti

m
e

(s
ec

s)

(b) average job inter-arrival delay (secs) vs average re-
sponse time (secs).

Figure 5: Simulation: Effect of job inter-arrival delay: lightly-constrained.

Fig. 6(a) depicts results for the average job processing delay in secs with increasing job inter-arrival delay.
As expected, the processing delays do not change significantly with increase in the inter-arrival delay. This
is due to the availability of resources with similar or near similar processing capabilities in the Top 500 list.
Hence, allocation of jobs to any of the resource does not have significant effect on the overall processing
time. Further, the job-migration statistics also showed negligible or very little change with increasing job
inter-arrival delays (refer to Fig. 6(b)). At every step, approximately 65% of jobs were executed remotely
while remaining executed at the originating site itself.

13

 job

 95.4
 95.5
 95.6
 95.7
 95.8
 95.9

 96
 96.1
 96.2
 96.3
 96.4

 10 20 30 40 50 60
 inter−arrival time (secs)

 p
ro

ce
ss

in
g

ti
m

e
(s

ec
s)

(a) average job inter-arrival delay (secs) vs processing
time (secs).

 Remotely Done

 0.3
 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65

 10 20 30 40 50 60
 inter−arrival time (secs)

%
 o

f
jo

bs

 Locally Done

(b) average job inter-arrival delay (secs) vs % of jobs.

Figure 6: Simulation: Effect of job inter-arrival delay: lightly-constrained.

7.3 Effect of Job Inter-Arrival Delay: Heavily-Constrained Workloads

This experiment simulates the performance of P2P tuple space in coordinating resource provisioning for
highly-constrained workload or job characteristic. The heavily-constrained workloads on an average require
relatively larger number of processors on per job-basis as compared to the lightly-constrained ones. For this
experiment, the job characteristics were generated by configuring the minimum and maximum processor
per job as 26 and 28 respectively in the workload model. Other simulation configurations stay the same as
described for the previous experiment.

Fig. 7(a) depicts results for the average coordination delay in secs with increasing job inter-arrival delay.
With increase in average job inter-arrival delay, we observed noticeable decrease in the average coordination
delay. At inter-arrival delay of 5 secs, on the average job experienced a coordination delay of about 172
secs (refer to Fig. 7(a)). And at inter-arrival delay of 50 secs, the coordination delay decreased to 45 secs.
The results show that at higher inter-arrival delays, resource claim objects experience less network traffic
and competing requests. Although, we saw the same trend in case of lightly-constrained jobs as well, the
decrease in case of heavily-constrained jobs is more significant (about 73%). The chief reason behind this
being higher degree of competition between resource claim requests, as on the average they required larger
number of processors for execution. The effect of diminishing coordination delay can be seen in the response
time metric for the jobs as well (refer to Fig. 7(b)), which is also seen to improve with increase in inter-arrival
delays.

Similar to lightly-constrained case, we observed that the processing delays (refer to Fig. 8(a)) does not
change significantly with increase in inter-arrival delay. Further, the job-migration statistics also showed
negligible or very little change with increasing job inter-arrival delays (refer to Fig. 8(b)). At every step,
approximately 62% of jobs were executed remotely while remaining executed at the originating site itself.

8 Conclusion

In this paper, we described a P2P tuple space framework for efficiently coordinating resource provisioning
in a federated Grid system such as the Grid-Federation. The proposed coordination space built upon the
resource discovery system presented in the paper [19]. The simulation based study shows that heavily-
constrained workloads can experience significant coordination delays due to the competing requests in the

14

job

 20
 40
 60
 80

 100
 120
 140
 160

 10 20 30 40 50 60
 inter−arrival time (secs)

 c
oo

rd
in

at
io

n
de

la
y

(s
ec

s)

(a) average job inter-arrival delay (secs) vs average coor-
dination delay (secs).

 job

 140
 160
 180
 200
 220
 240
 260
 280

 10 20 30 40 50 60
 inter−arrival time (secs)

 r
es

po
ns

e
ti

m
e

(s
ec

s)

(b) average job inter-arrival delay (secs) vs average re-
sponse time (secs).

Figure 7: Simulation: Effect of job inter-arrival delay: heavily-constrained.

system. However, the same is not true when the workloads are lightly-constrained i.e. the resource claim
requests for lesser number of processors.

One limitation with our approach is that the current publish/subscribe index can map a resource claim
object to at most 2 index cells. In some cases this can lead to generation of unwanted notification messages
in the system and may be to an extent sub-optimal load-balancing as well. In our future work, we are going
to address this issue by constraining the mapping of a resource claim object to an index cell. Another way
to tackle this problem is to make the peers currently managing the same resource claim object communicate
with each other before sending the notifications.

References

[1] A. O. Allen. Probability, Statistics and Queuing Theory with computer science applications. Academic
Press, INC., 1978.

[2] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. OurGrid: An approach to easily assemble
grids with equitable resource sharing. In JSSPP’03: Proceedings of the 9th Workshop on Job Scheduling
Strategies for Parallel Processing. LNCS, Springer, Berlin/Heidelberg, Germany, 2003.

[3] A. Auyoung, B. Chun, A. Snoeren, and A. Vahdat. Resource allocation in federated distributed com-
puting infrastructures. In OASIS ’04: 1st Workshop on Operating System and Architectural Support
for the Ondemand IT InfraStructure, Boston, MA, October, 2004.

[4] N. Busi, C. Manfredini, A. Montresor, and G. Zavattaro. Peerspaces: data-driven coordination in
peer-to-peer networks. In SAC ’03: Proceedings of the 2003 ACM symposium on Applied computing,
Melbourne, Florida, pages 380–386. ACM Press, New York, NY, USA, 2003.

[5] A. Raza Butt, R. Zhang, and Y. C. Hu. A self-organizng flock of condors. In SC ’03: Proceedings of
the 2003 ACM/IEEE conference on Supercomputing. IEEE Computer Society, Los Alamitos, CA, USA,
2003.

15

 job

 115.6

 115.8

 116

 116.2

 116.4

 116.6

 116.8

 10 20 30 40 50 60

 p
ro

ce
ss

in
g

ti
m

e
(s

ec
s)

 inter−arrival time (secs)

(a) average job inter-arrival delay (secs) vs processing
time (secs).

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 10 20 30 40 50 60

%
 o

f
jo

bs

 inter−arrival time (secs)

 Locally Done
 Remotely Done

(b) average job inter-arrival delay (secs) vs % of jobs.

Figure 8: Simulation: Effect of job inter-arrival delay: heavily-constrained.

[6] R. Buyya and M. Murched. Gridsim: A toolkit for the modeling and simulation of distributed resource
management and scheduling for grid computing. Journal of Concurrency and Computation: Practice
and Experience;14(13-15), Pages:1175-1220, 2002.

[7] G. Cugola and G. Picco. PeerWare: Core middleware support for peer-to-peer and mobile systems.
Technical Report, Politecnico Di Milano, 2001.

[8] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all: multi-dimensional queries in
p2p systems. In WebDB ’04: Proceedings of the 7th International Workshop on the Web and Databases,
Paris, France, pages 19–24. ACM Press, New York, NY, USA, 2004.

[9] P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Tejedor, and R. Rallo. Planetsim: A new overlay network
simulation framework. In Software Engineering and Middleware, SEM 2004, Linz, Austria, pages 123–
137, 2005.

[10] D. Gelernter. Generative communication in linda. ACM Transactions on Programming Languages and
Systems, ACM Press, New York, NY, USA, 7(1):80–112, 1985.

[11] K. Lai, B. A. Huberman, and L. Fine. Tycoon: A distributed market-based resource allocation system.
Technical Report, HP Labs, 2004.

[12] Z. Li and M. Parashar. Comet: A scalable coordination space for decentralized distributed environments.
In HOT-P2P ’05: Proceedings of the Second International Workshop on Hot Topics in Peer-to-Peer
Systems, pages 104–112. IEEE Computer Society, Los Alamitos, CA, USA, 2005.

[13] B. Liu, W. Lee, and D. L. Lee. Supporting complex multi-dimensional queries in p2p systems. In
ICDCS’05: Proceedings of the 25th IEEE International Conference on Distributed Computing Systems,
Columbus, OH, USA, pages 155– 164. IEEE Computer Society, Los Alamitos, CA, USA, 2005.

[14] U. Lublin and D. G. Feitelson. The workload on parallel supercomputers: modeling the characteristics
of rigid jobs. Journal of Parallel and Distributed Computing, Academic Press, Inc., Orlando, FL, USA,
63(11):1105–1122, 2003.

16

[15] S. W. McLaughry and P. Wycko. T spaces: The next wave. In HICSS ’99: Proceedings of the Thirty-
second Annual Hawaii International Conference on System Sciences-Volume 8, page 8037. IEEE Com-
puter Society, Los Alamitos, CA, USA, 1999.

[16] S. MicroSystems. Javaspace specification 2.0, http://www.sun.com/software/jini/specs/js2 0.pdf. Tech-
nical Report, 2003.

[17] A. L. Murphy, G. P. Picco, and G. Roman. LIME: A coordination model and middleware supporting
mobility of hosts and agents. ACM Transactions on Software Engineering Methodology, ACM Press,
New York, NY, USA, 15(3):279–328, 2006.

[18] R. Ranjan, R. Buyya, and A. Harwood. A case for cooperative and incentive based coupling of dis-
tributed clusters. In Cluster’05: Proceedings of the 7th IEEE International Conference on Cluster
Computing, Boston, MA, USA. IEEE Computer Society, Los Alamitos, CA, USA, 2005.

[19] R. Ranjan, L. Chan, A. Harwood, R. Buyya, and S. Karunasekera. A scalable, robust, and decentralised
resource discovery service for large scale federated grids. Technical Report GRIDS-TR-2007-6, Grids
Laboratory, CSSE Department, The University of Melbourne, Australia, 2007.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for large-
scale peer-to-peer systems. In Middleware’01: Proceedings of IFIP/ACM International Conference on
Distributed Systems Platforms, pages 329–359. SpringerLink, Heidelberg, Germany, 2001.

[21] C. Schmidt and M. Parashar. Flexible information discovery in decentralized distributed systems. In
HPDC’12: In the Twelfth International Symposium on High Performance Distributed Computing, June.
IEEE Computer Society, Los Alamitos, CA, USA, 2003.

[22] H. Shan, L. Oliker, and R. Biswas. Job superscheduler architecture and performance in computational
grid environments. In SC ’03: Proceedings of the 2003 ACM/IEEE conference on Supercomputing,
page 44. IEEE Computer Society, Los Alamitos, CA, USA, 2003.

[23] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. In SIGCOMM ’01: Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols for computer communications, San Diego,
California, USA, pages 149–160. ACM Press, New York, NY, USA, 2001.

[24] E. Tanin, A. Harwood, and H. Samet. A distributed quadtree index for peer-to-peer settings,. In
ICDE’05: Proceedings of the International Conference on Data Engineering, pages 254–255, 2005.

[25] R. Tolksdorf and D. Glaubitz. Coordinating web-based systems with documents in xmlspaces. In CooplS
’01: Proceedings of the 9th International Conference on Cooperative Information Systems, pages 356–
370. Springer-Verlag, London, UK, 2001.

17

