
433659 Distributed Computing Project The Cache Mechanism for NOSA

 I

The Cache Mechanism

-for NICTA Open Sensor Web Architecture

Supervisors: Tom Kobialka and Rajkumar Buyya

Students: Huan Xie, Hong Xue

Department of Computer Science and Software Engineering

The University of Melbourne

National ICT Australia (NICTA)

October 2007

433659 Distributed Computing Project The Cache Mechanism for NOSA

 II

Contents

Contents... II

Abstract... III

Acknowledgement ..IV

1 Introduction ...1

1.1 Background and Motivation ...1

1.2 Cache Mechanism...4

1.3 Related Works...6

2 Architecture and Design ..9

2.1 Architecture Design ..10

2.2 Components Design..14

2.2.1 Locking scheme ...15

2.2.2 Cache ...15

2.2.3 Cache Manager ..17

2.2.4 Rule Engine ...17

2.2.5 Comparer ...21

2.2.6 GUI client ..22

2.3 Limitations..23

3. Implementation...24

4. Experiment and Results ..26

4.1 Processing Ability Test ...26

4.1.1 Data Sets ..26

4.1.2 Environment Setting ..27

4.1.3 Test Results ..29

4.2 Accuracy Test..31

4.2.1 Test Model ...31

4.2.2 Environment Setting ..32

4.2.3 Test Results ..33

5. Conclusions and Future Work...36

References ..37

Appendix I. NOSA Cache Project Configuration Manual..39

Appendix II. Full Classes Diagram ..45

433659 Distributed Computing Project The Cache Mechanism for NOSA

 III

Abstract

Along with sensor network application development, the trend of combining a sensor

network with other techniques is growing. NICTA has implemented an Open Sensor Web

Architecture (NOSA) [1] that as a combination of Web Services and Grid technology

working with sensor networks to overcome the obstacles of connecting and sharing

heterogeneous sensor resources. Although the current NOSA middleware can handle

multiple queries, its processing ability is limited. The Core services of the NOSA

middleware compose of three specifications of Sensor Web Enablement (SWE) [4]:

Sensor Collection Service (SCS) [6], Sensor Planning Service (SPS) [7], Web Notification

Service (WNS) [8] and Sensor Repository Service (SRS). Among those four services, the

SCS has the responsibility to communicate with the sensor networks and it has

implemented for handling multiple queries concurrently. The bottleneck of processing

simultaneously requests is that the physical sensor network can only process one query at

a time so consecutive queries must wait in a queue until the current query processing

completes. This project implements a cache mechanism for overcome this limitation of

NOSA in such way that the cache system can group and schedule all the query requests,

store the results of the historical queries and analyze incoming query requests based on

the relationships between current and cached queries. The entire or part of the results of

historical queries can be reused to answer current queries. The aim of these

enhancements is to reduce the workload of the physical sensor nodes and improve the

multiple queries processing ability of the system. In this report we illustrate the cache

system architecture and how it integrates with the existing NOSA system. We describe

the design issues related to the components of the cache mechanism and we evaluate our

contribution with several test cases, demonstrating that the cache mechanism improves

the concurrent queries processing speed of the NOSA middleware by 10~20 times faster

without reducing the accuracy.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 IV

Acknowledgement

We would like to express our appreciation to Tom Kobialka, the supervisor of this project,

for supporting our work, sharing his knowledge and experience with us, and guiding us

in the right direction. We also wish to thank Rajkumar Buyya, Associate Professor and

Leader of Computer Science and Software Engineering; and Director of the Grid

Computing and Distributed Systems (GRIDS) Laboratory at the University of Melbourne

and Christopher Leckie, Senior Lecturer at the Department of Computer Science and

Software Engineering and Program Leader of Network Information Processing Program

at NICTA, for giving us suggestions of how to improve the software mechanisms.

Furthermore, we would like to thank Egemen Tanin, lecturer of Department of Computer

Science and Software Engineering, for providing us with research references and

directions.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 1

1 Introduction

Wireless sensor networks provide a way to observe and monitor the physical

environment. Sensor networks have wide applicability in industry, military and scientific

applications. Along with the development of sensor networks, pervasive sensors are

becoming a reality, providing opportunities for new sensor-based services. The NICTA

Open Sensor Web Architecture (NOSA) middleware provides such a sensor-based

service by integrating the sensor network with Service Oriented Architecture (SOA) and

Grid Technique [1]. The SOA allows middleware to discover, describe and invoke stateful

Web Services (WSRF) from a heterogeneous software platform using XML and SOAP

standards. And with the contribution of Globus Middleware platform, the services could

be highly geographically distributed. NOSA takes a major step forward to achieving the

vision of a Sensor Grid [2]. Following such integrated architecture, the sensor network as

a resource could be discovered, accessed and controlled over the World Wide Web

through the Web Services which define the basic data processing operations including

data query, retrieval and aggregation, resource scheduling, allocation and discovery. [3] In

section 1.1 below, we will demonstrate the limitation of the NOSA middleware and the

motivation of our cache mechanism.

1.1 Background and Motivation

Kobialka T et al explain that the NOSA is a suite of middleware services for sensor

network applications which are built upon the Sensor Web Enablement (SWE) [4], which

is a set of operations and standard sensor data representations defined by the Open

Geospatial Consortium (OGC) [5].

The overall structure of NOSA is outlined in Figure 1-1. Four layers have been defined,

namely Fabric, Services, Development and Application. Fundamental services are

provided by low-level components whereas higher-level components provide tools for

433659 Distributed Computing Project The Cache Mechanism for NOSA

 2

creating applications and management of the lifecycle of data captured through sensor

networks.

Sensor1 Sensor2 Sensor3 Sensor4 SensorN….

NICTOR Sensor Field

iModel+Encoding:
1. SensorML

2. Observation &
Measurements

Sensor
Directory
Services

Sensor
Data Grid
Services

SensorGrid
Processing
Services

Sensor
Planning
Services

Sensor
Notification
Services

Sensor
Collection/
Observation
Services

Sensor
Coordination
Services

Sensor Programming Framework
(APIs, Visual Tools)

Water

Information
Network

Barrier Reef
Observation

Network

Secure
Australia

Network ….

ZigBee/IEEE 802.15.4 protocols

SensorWeb
Simulation

or
Emulation

Safe
Transportation

and

Roads

Tsunami
Detection

Network

Actuator1 Actuator2 Actuator3 ActuatorM….

Sensor
Configuration
Services

Faulty Sensor
Data Correction &

Management Services

Third Party
Tools

….

Pollution

Monitoring
Network

Sensor1 Sensor2 Sensor3 Sensor4 SensorN….

NICTOR Sensor Field

iModel+Encoding:
1. SensorML

2. Observation &
Measurements

Sensor
Directory
Services

Sensor
Data Grid
Services

SensorGrid
Processing
Services

Sensor
Planning
Services

Sensor
Notification
Services

Sensor
Collection/
Observation
Services

Sensor
Coordination
Services

Sensor Programming Framework
(APIs, Visual Tools)

Water

Information
Network

Barrier Reef
Observation

Network

Secure
Australia

Network ….

ZigBee/IEEE 802.15.4 protocols

SensorWeb
Simulation

or
Emulation

Safe
Transportation

and

Roads

Tsunami
Detection

Network

Actuator1 Actuator2 Actuator3 ActuatorM….

Sensor
Configuration
Services

Faulty Sensor
Data Correction &

Management Services

Third Party
Tools

….

Pollution

Monitoring
Network

Applications
Layer

Application
Development

Layer

Application
Services

Layer

Sensor Fabric
Simulation

Environment

Figure 1-1: High-level view of NICTA Open Sensor Web Architecture [3]

According to [3], the four specifications of SWE implemented in the NOSA, Sensor

Collection Service (SCS) [6], Sensor Planning Service (SPS) [7], Web Notification Service

(WNS) [8] and Sensor Repository Service compose the core services set of NOSA. Figure

1-2 below shows the typical invocation for Sensor Web Client using those services.

Sensor Planning
Service

3 Planning Request

WSDL

Sensor
Registry

Service

W
S

D
L

1 Search available service

2 SPS WSDL Address
Web Notification

Service

WSDL

W
S

D
L

4 R
egis

te
r U

ser

Sensor Collection
Service

WSDL

W
S

D
L

5 U
ser I

D

6 Get Observation

8 Return O&M

9 C
olle

ctio
n D

ata
 R

eady

10 Notify User

Sensor Repository
Service

WSDL

W
S

D
L

7 S
to

re
 O

&M

Figure 1-2: A typical invocation for Sensor Web client [3]

433659 Distributed Computing Project The Cache Mechanism for NOSA

 3

Among those four core services, the SCS is the largest and most important service in the

NOSA architecture. The responsibility of the SCS is communicating directly with the

sensor networks. It receives incoming SOAP requests and then passed the query to the

sensor network via a proxy. The SCS provides the proxy interface to both streaming data

and query based sensor applications that are built on top of TinyOS [10] and TinyDB [11].

The proxy worked with streaming data, which are collected directly from sensor nodes, is

the Techfest proxy, and the one worked with TinyOS and TinyDB that fetching data from

TinyVIZ simulation software is TinyDB proxy. After sensing, the proxy collects the

resulting queries information and translates the raw observational data into a XML

Observation and Measurement (O&M) [9] encoding and then returns the encoded

observation data to the connecting client.

According to [3], the SCS could handle simultaneous queries to heterogeneous Sensor

Networks, but the experiment results of the [3] shows that as the number of simultaneous

clients steadily increases so does the response time. Degradation in the performance is an

outcome of the limited concurrency available at the sensor network level of the service

because only one query can be processed by the sensor network at a time. In this case, if

the SCS get multiple requests at the same time, the queries have to be placed in a queue

at the sensor network accessing point until the result of the current executing query

obtained from the sensor network.

The solution to this problem could be eliminating or reducing duplicate data in the

queries through implementing a cache in memory and in a database. In this approach, if a

new query is received that is similar to one which has recently been executed, then the

result can be anticipated as being the same and resulting observational data could then be

pulled from the cache. This would reduce the number of duplicate queries sent to the

sensor network and improve the scalability. [3] To develop this solution, our group has

implemented a cache mechanism as part of the NOSA project.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 4

1.2 Cache Mechanism

The cache mechanism is implemented as part of the NOSA middleware, as mentioned

before, the NOSA middleware consist of four layers: application layer, service layer,

sensor layer and physical layer. Basically, we focus on the lower three levels to build up

the cache mechanism to analyze the query requests, which come from SCS. With the

cache mechanism, the SCS will return an observation result back to the client either

directly from cache or it will forward the query to the sensor network. For processing,

this is determined by the environment parameters, user defined setting or by the cache

system and intelligently analysis of historical data sets. The layer structure of the NOSA

middleware and how the cache mechanism fits in the existing architecture are shown in

Figure 1-3 below.

Figure 1-3: Layer architecture of the NOSA middleware [3]

433659 Distributed Computing Project The Cache Mechanism for NOSA

 5

The cache mechanism sits between the SCS and the physical sensor networks or TinyVIZ

simulation environment, working with the corresponding proxy to processing the query

requests and observational results data sets.

The cache mechanism includes several novel properties, as indicated below:

1. The cache mechanism currently composes of two level caches: memory cache

and database cache. Generally, memory cache is fast, but the size of memory is

largely restricted by the runtime environment. By contrast, a database cache

tends to have much more space, while its speed is lower than the memory. So

combining them together is good way to achieve high speed and large space.

More cache level can be made to satisfy specially needs (like tape media

accessing).

2. The cache mechanism has adjustable parameters to control the physical

characters of the cache and the logic of insert, delete or analyze the cached

queries and results. This includes the cache size, lifetime of the cached entries,

different discard policies for deleting the cached entries, estimation for

evaluation of the effect of historical results, threshold to decide whether the

cached entries are reusable or not. All of these parameters will be discussed in

detail in the section 2.2.

3. The cache mechanism is designed for working with types of proxies connected,

including streaming data and query based sensor applications that are built on top

of TinyOS and TinyDB.

4. The mechanism includes a Rule Engine that can exploit the similarity between

queries, analyze the historical data stored in the cache and calculate the trend of

environment changing. According to the analysis result, the mechanism could

produce a prediction of the result of further incoming queries. The estimation and

threshold mentioned in the second property are implemented in the rule engine.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 6

1.3 Related Works

Most sensor applications are used to monitor changes of physical phenomena, for

example sound, light or temperature. The sensor network could be considered as a

distributed database, which comprises of the sensing data and the description of

characteristics of the sensor nodes, such as the location and the type of the sensor. [12]

Since the sensing data collected by one sensor at one time could only reflect the physical

phenomena at a small region and the changes during a short period of time, the sensor

database requires processing the information in a different way with traditional database

system. The sensing service should map the raw sensor readings with the sensor

characters onto the physical reality and, in this case, a model of that reality is required to

complement the readings. On another hand, adaptive sampling is sufficient for the model,

which means if sensor nodes only send data when the observed physical phenomena

change. This allows answering queries directly at the gateway rather than fetching every

tuple from the network. The idea has been proposed in [13] where a statistical model is

run at the gateway. Whenever the prediction of the model does not reach the

confidentiality specified in the query, the gateway actively requests additional data from

the sensors in order to update the model parameters and thus increase the quality of the

prediction. In our cache mechanism, the rule engine plays a similar role as such a model

that the rule engine will update the parameters for the cache system to use the historical

results in a more intelligent and efficient way. As an extension of this idea, one can

consider running a less complex model at the sensor nodes that allows the node to decide

on its own when the model at the gateway is outdated and requires new data to update its

parameters. By moving from a pull-based to a push-based mode of operation, the number

of messages can further be reduced since no explicit requests have to be sent.

Besides the [13], many other query aggregation architectures and approximate querying

models in sensor networks have been proposed to solve how to collaboratively process

433659 Distributed Computing Project The Cache Mechanism for NOSA

 7

the sensor reading and how to build a model to analyze historical data to predict the

current environment status. The [14] proposes a Similarity Aware Query Processing

scheme, which can answer queries by exploiting the similarities among different queries

issued to data-centric storage sensor networks. The basic idea is to replicate results for

previously issued queries as materialized views in the network and utilize the

materialized views to answer similar queries. In our cache mechanism, we have

implemented a Comparer, whose responsibility is comparing the current executing query

with cached queries. The algorithm, which we utilized to split a query and fetch the

useful parts from the result, is a simplified version of the one discussed in the [14],

because the query split algorithm in [14] is for multi-dimensional range query, which is a

different case with our proposal.

The query aggregation frame proposed in [15] used for application that have the features

that the query rate is high due to a large number of users sending queries, while the

response data to the query is simple. This might be the case of the NOSA applications,

since the response data only containing temperature, sound or light values. One

disadvantage of the query aggregation frame is that it does not consider the topology of

the existing sensor network and this also might be a future work for our cache

mechanism. One novel feature of the cache system in [16] is partial match caching,

which ensures that even partial matches on cached data can be exploited and that correct

answers are returned. The cache mechanism that we have implemented integrates all the

valuable ideas of the approaches or models referred above, combines with the existing

NOSA middleware to achieve a more flexible and practical system. It considers not only

the query processing model, which could exploit the similarity of queries and parse the

historical result in the cache to estimate the physical phenomena, but also a configurable

two level cache system to implement those models.

The remainder of this paper is organized as follow. Section 2 shows the architecture and

design strategy of our cache mechanism and describes the software and hardware

433659 Distributed Computing Project The Cache Mechanism for NOSA

 8

developing environment. A discussion concerning the limitation of the simulation and

test environment will also be included in this section. The experiment results are in the

section 3, and conclusion and future work are in the section 4.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 9

2 Architecture and Design

In this section, we will illustrate the system architecture of the cache mechanism and the

key components of each mechanism. This includes the locking scheme for handling

concurrent queries, the two level cache chain, rule engine working principles and the

query aggregation rules. They are used for parsing the cached queries and predicting the

results for current queries.

Figure 2-1 Architecture of the cache mechanism

Get connected

Consult the RE

Retrieve cached results

CacheManager

Memory

Cache
Configuration

RuleEngine

Sensor Connector

Send queries

GUI Client

Query requests

SCS

Insert requests in

queue

Pop out next job Send back results

Lock Manager

Proxy Interface

Database

Cache Configuration

External Database

Query sensor

network

Sensor

Network

433659 Distributed Computing Project The Cache Mechanism for NOSA

 10

2.1 Architecture Design

System Structure

The cache mechanism is implemented with the Sensor Collection Service. It interacts

with the proxy interface, storing the results retrieved from the physical sensor nodes and

utilizing the cached result to analyze and predict the observation time for current queries.

Figure 2-1 shows the architecture of the cache mechanism. As indicated in the figure, the

system consists of several components: LockManager, CacheManager, RuleEngine and

the Cache, connecting with the existing NOSA components: SCS, GUI client, proxy

interface and sensor connector.

� LockManager sits between SCS and Proxy Interface. It aims at providing

concurrent access control to the sensor network. Before connecting to a sensor

connector, the sensor proxy has first get a lock from LockManager. The operation for

getting a lock is a blocking operation, which means control cannot be returned to the

sensor proxy until the lock is granted. When query is finished and result is fetched

from sensor connector, the lock should be returned. By doing this, another request in

queue can acquire the lock and continue processing.

� CacheManager is an entrance to the cache(s) from a SensorProxy’s point of view.

Inside a CacheManager, there is a RuleEngine and a pointer which points to the first

cache of the cache chain. Upon receiving a request, the CacheManager first asks the

RuleEngine whether is time to access sensor network. If yes, CacheManager returns

null immediately so that the sensor proxy will query the sensor network. If no,

CacheManger check each level of the cache and return a suitable cache value or null

if no suitable cache value found. Whenever a sensor proxy queries the sensor

network, it should also feedback the result to CacheManager when the query is done.

With the feedback function invoked, the CacheManager will store the result into

every level of cache as well as feedback the result to the RuleEngine.

� RuleEngine is an advisor for CacheManager to tell whether to access the sensor

433659 Distributed Computing Project The Cache Mechanism for NOSA

 11

network or not. The parameters inside the RuleEngine are used to make decisions.

These parameters are dynamically changed by the surrounding environment via the

feedback function. If the environment is changing fast, the RuleEngine will tell

system to access sensor network (instead of cache) more frequently.

� Cache provides caching facilities. Cache acts like a map. Providing a key, there is at

most one value corresponding to that key. In the project, key is defined as the query

string, while value is the result from sensor network. Cache is actually an interface,

so that it can be implemented in many ways flexibly to meets different systems’

needs.

System Interaction

Figure 2-2 Work flow of the cache mechanism

433659 Distributed Computing Project The Cache Mechanism for NOSA

 12

The Figure 2-2 is a sequence diagram which shows the work flow of the system. The

clients send out the query request initially, after the SCS receiving the request, the

services will create a SensorProxy to handle the request. SensorProxy will ask the

CacheManager to check whether there are cached results available (This is first check). If

the cache is available, the corresponding cache entry will be fetched From Cache and

send back to client. If no cache entry is available, the cache manager will insert the

request into the queue. When a request comes out from the queue, it will check again

whether there’s cache available (This is second check). The second check is the same as

first check, but omitted in Figure 2-2. This double check makes sure that cache is reused

if another request gets a value back while this request is waiting in the queue. This might

happen. Let’s assume there’s no cache at the beginning. Now request A comes. Obviously

A cannot find suitable cache entry. So it gets the locks and access sensor network. Now B

comes with same query. Since A has not return yet from sensor network yet, B will not

find any cache result, so it has to enter the queue and wait for the lock. If there’s no

double check after B get the lock later, B will access the sensor network immediately,

which is not efficient enough because A has come back with a reusable result. In order to

reuse A’s result, the double check is necessary. Next, if a cache is available after the

double check, it is sent back to the client. If there’s still no cache available after double

check, SensorProxy will connect to the sensor network via SensorConnector. After value

is read from sensor, it will be sent back to client and stored in all cache levels.

When we talk about getting cache entry from Cache, there are two steps.

First, we have to discover, whether there are cache entry keys similar to the request one.

Key is actually the query string. The key is stored as a string likes “SELECT * FROM SENSOR

WHERE light > 90”, other substring like “features …” from the original query string is removed.

Two keys are “similar” if they are exactly the same or criteria of if the queries are within

some threshold. The threshold is changed dynamically by the RuleEngine to reflect the

environment, while the decision of whether they are similar enough is given by Comparer.

For examples, let’s say the initial threshold is 3. If the first query is “SELECT * FROM SENSOR

WHERE light > 30” and the second query is “SELECT * FROM SENSOR WHERE light > 33”. We

433659 Distributed Computing Project The Cache Mechanism for NOSA

 13

define these two query is “similar” and the result from the first query is reusable because “33-30 <=

3”. Both RuleEngine and Comparer will be discussed later on Section 2.2

Second, if no cached queries are “similar” to the request query, we then use Comparer to

refine the cached Object by removing, adding or combining some of them together to

form a new result. For examples, if the one of the cached query is “light > 90” and the request

query is “light >100”. Then all values between 90 and 100 of the cached entry will be removed. The

values left becomes the result for query “light>100”.

On the other hand, storing new result back to cache is also not in a single step. First, we have to

determine where to put the result. If the cache already has one entry with exactly same query string,

then we can safely replace it. If no, a new entry will be allocated and put into the cache. This step

cannot process if the cache is already full, which means the size of entries is equal to the configured

parameter “maxCacheSize”. When cache is full, we have to first remove some of them. There’s a lot

of replacing policies in other sophisticated cache system. Here only two are implemented: least rank

and oldest. The first one keen to remove the one which is used least by using rank in descending order,

while the latter one keen to remove the oldest one by using lifetime in ascending order. After being

stored in the cache, the result is also feedback to the RuleEngine to be analyzed. In RuleEngine, the

result along with received time (of that result) is analyzed to make changes to “estimate” and

“threshold”.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 14

2.2 Components Design

Both SensorLockManager and CacheManager are used and only used in the sensor proxy.

Because both SensorLockManager and CacheManager imply single instance pattern,

there’s no code in the sensor proxy class to create or destroy these classes. Just as shown

in Figure 2-3, the relation among sensor proxy and these classes are association, which

means sensor proxy just knows where they are but not has them. For example, the sensor

proxy can lock the sensor network simply by invoking “SensorLockManager.lock()”.

Similarly, the instance of CacheManager can be retrieve by invoke

“CacheManager.getInstance()”.

Figure 2-3 Relation between Sensor Proxy and new Components

The Figure 2-4 shows the relations between each component. Please refer to Appendix II

to see the full classes diagram. There’s only one CacheManager across the system.

Within the CacheManager, there’s one RuleEngine and a pointer pointed to the Cache on

first level. Each Cache has a pointer to the next level Cache, unless there’s no more lower

level cache. Besides the pointer, there’s a configuration class named CacheConfig,

holding all configuration parameters. Two classes is also hold in the CacheConfig. One is

Comparer for doing query key comparing quest. The other one is DiscardParser, which is

responsible for ensuring replacement policy. Both of these two class are also configurable

from the configuration file.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 15

Figure 2-4 Cache Related Classes Diagram

2.2.1 Locking scheme

The lock manager provides a method to queue the

incoming requests. Although it looks like a separate part

in the system structure, it provides the cache system the

fundamental function of handling concurrent requests. LockManager is the only one class

in this part. When lock() is invoked, it appends the request to the queue and pops it out

when unlock() is called by the other.

2.2.2 Cache

Cache is linked.

Each Cache has a

pointer pointing to

433659 Distributed Computing Project The Cache Mechanism for NOSA

 16

the next Cache (we can use next() the get the next Cache). Different levels of caches

work together. On the other hand, Cache behaves like a map. Each cache entry has a

corresponding key, which is the query string. Therefore, objects can be stored/retrieved

to/from Cache by normal Map functions add()/get().

Like many other cache system, there are many parameters that control the runtime

behavior of the cache. These parameters are packed in the configuration class. So that

cache can focus on dealing with how to access and manager storage media, while all

configuration stuff is handle by the configuration class.

Parameters are listed below:

1. Max cache size: This parameter determines at most how many cache entries can be stored

in the cache. It is critical for memory cache because memory is limited on most of the

system. Cache size will not be reduced by a certain amount until a new entry comes in.

2. Max entry life time: This restricts how long a entry can reside in the cache. Together with

max cache size, these two parameters decide how the cache grow and shrink.

3. Shrink interval: Cache is shrunk at a certain interval time. Expired entries are removed at

each shrink process. Too small shrink interval time makes system very busy, while a large

one makes cache might have lots of expired entries.

4. Shrink size: When the cache is full, some entries have to be removed. Shrink size

determines at most how many cache entries will be removed at a time.

5. Comparer: Comparer is used to provide information of how related those cache entries are

with current request and how can they be reused. It will be discussed later in this section as

a separated module.

6. Discard Parser: The discard policy is fairly flexible. Basically, the policy is just a string

that can be in any format. What we need is a parser to parser that string and provide

accordingly function. Discard Parser is what we need. The only one function in this class is

used to sort all cache entries in a certain order. With this ordered cache entries, a cache can

remove its entries one by one to ensure the discard policy. Currently, only “rank; lifetime”

433659 Distributed Computing Project The Cache Mechanism for NOSA

 17

and “lifetime; rank”, which mean “least used first” and “oldest first” respectively, is

implemented.

2.2.3 Cache Manager

CacheManager is the gateway to all function except the lock facility. This is the only

class that a client

should inter face

to. Cache manager

uses singleton pattern, which means there is only on instance of CacheManager at any

time across the system. Method getInstace() is used to get the instance reference. This

ensures different clients use the same cache.

One of the major tasks for CacheManager is to deal with the cache along the link. Let say

we have memory cache and database cache (which is the current settings of the project).

When acquiring cache object, if it resides in the database but not memory, it will be

fetched from the database and stored in memory as well as sent back to client. When

storing a cache entry, it will be stored to both cache level (memory and database).

CacheManager also communicate with the RuleEngine. Whenever it is asked for cache

object, CacheManager asks RuleEngine whether to query the cache. If the answer is yes,

then look up the cache object in each level of cache by the order defined in configuration

file (commonly first memory second database makes sense). If no, it will send back null

object to tell the client to query the sensor network. CacheManager also pass the result

object to RuleEngine so that it can analyse the result.

2.2.4 Rule Engine

The cache

433659 Distributed Computing Project The Cache Mechanism for NOSA

 18

interface provides higher performance to the system, however, there’s a gap between the

cache result and the current query being processed by the sensor network. Clearly, we

need some mechanism to fill the gap, and RuleEngine does this.

Here we define the gap as the different between the latest available cached value and the

current value from sensor.

Since there’s only two ways to obtain a value, either from the cache or from the sensor,

we have to make a decision when to access cache and when to access the sensor. It is

controlled by a parameter named “estimate”. Estimate is the estimate of how fast the

environment is changing. If it is small, it means environment is changing fast. If it is

larger, the environment tends to be stable. For examples, the light environment of a room

with a lamp flashing is changing faster then the one in an open field under the sun. On

receiving a request, the system will check the current time of that request and pass it to

the RuleEngine. When CacheManager asks the RuleEngine for help, whether to access

sensor network instead of cache, the RuleEngine uses this estimate to make the decision.

If the request time exceeds the last update time of cached result plus the estimate, then

the request is redirect to the sensor network, because “the environment is changing fast”.

Before going down to further explain how estimate works, a description of each

functions are shown here:

bypassCache():

Client uses this function to determine whether to use the cache or not(not

considering whether there’s cache value available yet, which is determine

by other classes named Cache and Comparer)

feedback():

After receiving the result from sensor network, client uses this functions to

give the RuleEngine feedback. Then the RuleEngine uses the result and time

to change its estimate and threshold.

Now we are going to describe how estimate works. The estimate is initialized in the

433659 Distributed Computing Project The Cache Mechanism for NOSA

 19

configuration file and dynamically changed by the RuleEngine at runtime. When a client

(Actually, the “client” is a SensorProxy. We name it “client” because from

CacheManager’s point of view, it is the client) feedbacks the result read from sensor

network to RuleEngine via CacheManager, the result is analyzed. As described above,

CacheManger will first store the result to Cache, then pass it to the RuleEngine. How

much the result changes compared to last cached result will affects the estimate. By a

formula, we calculate the difference and applied it to the estimate. So estimate will

increase if difference is small and decrease if difference is large.

In the following, a formula for the estimate will be presented and discussed.

Assumption:

We have i sensors:

iSSSS ,,,, 321 K)(Ii ∈

Last reading for each sensor is recorded as well as the time. The record format is:

() () () ()ii TVTVTVTV ,,,,,,,, 332211 K)(Ii ∈

*where V stands for value and T stands for time.

Scenario: At T time, we have k)(Kk ∈ new readings for some of the sensors:

() () () ()TVTVTVTV
kkkkk ,,,,,,,, ''''

321
K)(Kk j ∈

Goal: calculate the new estimate.

Formula:

433659 Distributed Computing Project The Cache Mechanism for NOSA

 20

()

()

()

()

devvdeestimateportionsign

estimateportioneestimat

devvdesign

nnportion

devtimelastdev

TTV
n

vde

Ksizeofn

Isizeofn

TT

T

V

else

TTT

VVV

Kiif

IiVallfor

ik

i

Ii

ii

k

k

i

i

Ii

i

i

i

ii

iii

i

/***

*)1(

1:1?

/

/
1

0

0

/1

,

2

′+

−=′

+−>′=

=

=

∆∆∆=′

=

=

∆=∆

=∆

=∆

−=∆






 −

′
=∆

∈

∈

∑

∑

∈

∈

Explanation:

Firstly, we have to calculate the differences of each new value, IiVi ∈∆ , . Then we

calculate the Standard Deviation vde ′ with weight TTi ∆∆ / . The weight comes from the

reciprocal of time difference because the larger the time difference is, the less the

environment changed.

Secondly, we need to determine the sign and portion. Sign is important to control the

estimate whether to grow or decrease. When current vde ′ is larger than the last dev,

which means environment is change faster, the sign is negative, so that the estimate will

decrease. Portion is the ratio of change of estimate. Since we only received kn results

out of in , thus the portion of change is ik nn / .

At last, every thing is ready to calculate the new estimate. (1-portion) of the old estimate

433659 Distributed Computing Project The Cache Mechanism for NOSA

 21

remains the same. The rest of the old estimate increase/decrease by devvde /′ .

2.2.5 Comparer

Comparer is the

components for

comparing the

current queries with

the historical queries stored in the cache, after analysis, the comparer will make a

decision of whether the cached result is reusable and how to reuse the cached result,

either directly copy the old value or refine the cached result based on the current queries.

The comparison rules are shown in the table 2-1 below:

Table 2-1 Query comparing rules

Compare Property Compare Operator Compare Value Return Value

Different ----- ---- False

Different ----- False

----- ----- Same True

S: > C: > V1>V2 True, if V1-V2<threshold

S: > C: > V1<V2
True, refine required when

V2-V1>threshold

S: > C: > V1>V2 False, if V1-V2>threshold

S: < C: < V1>V2
True. Refine, when

V1-V2>threshold

S: < C: < V1<V2 True if V2-V1<threshold

S: < C: < V1<V2 False, if V2-V1>threshold

S: = C: = ----- False

Same
Same

S: <> C: <> ----- False

* S = Storage Query, C = Current Query, V1 = Storage Value, V2 = Current Value

False = the cached results cannot be reused, True = the cached result could be reused

There are two cases that the results need to be refined to fit the current query. The

refining method is deleting the useless part of the results. For example, the cached query

is

433659 Distributed Computing Project The Cache Mechanism for NOSA

 22

SELECT light

FROM all sensors

WHERE light>30

And the current query is

SELECT light

FROM all sensors

WHERE light>37

Assuming the threshold is 5, which means the cached result cannot be reused directly,

because 37-30=7 is bigger than 5. Result is required to be refined in this case.

Considering the cached result of the historical query that consists of several data

elements:

Table 2-2 Result

Node id Reading Value

2 40

3 32

As shown in Table 2-2, the first element still meets the requirement of the second query,

so it will be kept in the result, and the second reading, which is smaller than 37, will be

deleted. The refined results could be retrieved back to the client directly without visiting

the physical sensor nodes.

2.2.6 GUI client

User friendly is an important criterion for a

system. The existing NOSA includes a client

GUI interface, which could send queries to the

services but cannot specify the queries. For

improving the system usability, we modify the

input part of the client by adding features that user could choose different methods to

produce queries:

433659 Distributed Computing Project The Cache Mechanism for NOSA

 23

1. Manual input some particular query

2. Input from a file that including the specification of queries. File is read and

processed by QueryFileReader as shown on the right.

3. Random produce queries

This makes the experiment of the cache mechanism much easier and more efficient.

Another improvement we made is changing the queries produced time. In this case, the

client program could be used as a test case producer, all the queries producing processes

are under control.

2.3 Limitations

At this stage, the NOSA use centralized storage architecture to process the queries and

results. The storage capabilities of sensor nodes have been ignored. Since communication

is more energy-consuming compared to local computation, in-network aggregation could

reduce energy consumption. Combining the in-network aggregation with the query

aggregation in the cache system will be a better solution.

The TinyViz simulation environment is not stable, which is an obstacle when implementing the cache

mechanism. In the developing and experiment processes, we try to use the physical sensor instead of

the simulator.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 24

3. Implementation
The cache mechanism has to work with the existing NOSA system, so that we try to

follow the same programming pattern in the developing process, such as:

Object Factory: Many classes are initialized within the object factory using parameters from

“application.properties” file. This unified instantiation of object can make system highly

configurable.

Interface and Abstract: Besides using the object factory, we also create many interfaces and

abstract class to represent the system.

Configurability: The parameters for the Cache Mechanism are configurable via the

“cache.conf” file. Like the other part of the project, by doing this, we can make changes to the

system without recompiling and redeploying the software. For detail of how to configure,

please see the Appendix I.

The development environment and software tools for the cache mechanism are[1]:

1. Java

JavaSE5 is the runtime and develop kit for the project.

2. Eclipse3.2

Eclipse is the IDE for this project, combined with Tomcat Plugin and subclipse for

subversion controlling.

3. TinyOS 1.x

TinyOS runs on a different Java runtime, which is Java1.4 inside cgywin. We have tried to

run it on a outside Java runtime, like Java5 described above, but it doesn’t work. Java1.4

comes with the installation of TinyOS.

4. Tomcat 5.5

Tomcat 5.5 is the server for hosting the web services, including SCS. The directory

“$TOMCAT_HOME/common/class” is the place we place our configuration files.

5. TinyDB

433659 Distributed Computing Project The Cache Mechanism for NOSA

 25

TinyDB combined with the GUI (TinyViz) is used to simulate the sensor environment.

During testing, 10 sensors are used for the simulation.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 26

4. Experiment and Results

In this section, we measure the performance of the cache mechanism through two

different aspects: system processing ability and system accuracy with physical sensor

networks, which consists one base station and six MICAz sensing nodes. The system

processing ability is the major improvement comparing with the original system, as

mentioned before, in the original version of NOSA system, the ability to handle

concurrent queries is quite limited and all the queries will be passed to the sensor

network directly. Considering the properties of sensor network, the original system could

consume excessive resources, including power of physical sensor nodes, system

processing time and the bandwidth of the network connection. In the experiment, we use

different data sets to test the processing ability of the system with cache mechanism and

compare the result with original system without the cache. System accuracy is another

point to evaluate the cache mechanism, because the cache mechanism will utilize the

historical data to predict the results of current queries, it is unavoidable to introduce some

errors. We will show in the experiment that these errors are well controlled by adjusting

the parameters of the cache system. Both two tests are focus on querying the light

property of the environment because of limitation of the current NOSA system.

4.1 Processing Ability Test

4.1.1 Data Sets

System processing ability, in another words, it is how the system could handle queries

simultaneously in our cache mechanism. This test is based on three groups of test data

sets, as shown below:

Case one:

SELECT light

FROM all sensors

433659 Distributed Computing Project The Cache Mechanism for NOSA

 27

WHERE light>30

Case two:

SELECT light

FROM all sensors

WHERE light>30

SELECT light

FROM all sensors

WHERE light>31

SELECT light

FROM all sensors

WHERE light>37

SELECT light

FROM all sensors

WHERE light<40

Case three:

SELECT light

FROM all sensors

WHERE light > or < a value between 20 and 40

All the query values are in a range of 20~40 lux, because we assume the environment is

relatively stable, which is the most case in reality also. The first two test cases are

pressure test cases, where test case one is the simplest case and case two contains all the

possibilities of variety of queries which are:

1. Same operator and value difference smaller than the threshold

2. Same operator and value difference bigger than the threshold

3. Different operator

The third case is simulating the real situation. We send different number of such three

kinds of queries to the system and measure the total processing time.

4.1.2 Environment Setting

For the first and the third cases, we use number of 1, 2, 4, 8, 16, 32 and 64 queries sent to

the sensor network and for the second case, we use number of 1, 2, 4, 8 and 16 for each

of the four queries: light>30, light>31, light>37 and light<40 so the total number are 4, 8,

16, 32 and 64. The first two queries are initialed at a time, with the time interval

randomly produced in the range of 0~5 seconds, one after another. For example, in the

433659 Distributed Computing Project The Cache Mechanism for NOSA

 28

case of test case one with four queries, the queries might be initialed at time: 0s, 2s, 7s,

and 10s. The third query are produced in such way that all the queries equally divided

into three parts, the interval of initial time of the queries of the first and the third parts

using the value randomly produced in the range of 0~5s while the second parts using the

value randomly produced in the range of 0~10s, because we aimed to build such a

situation that the frequency of queries changed from time to time. In this case, the first

and the third queries of the test case three are dense, but the second part is sparse.

Figure 4-1

As shown in Fig 4-1, we choose the manual input, and setup the value then click connect.

The rest of the test input are similar.

All the three cases will be tested under three conditions: without the cache, with the

cache and with the cache working with the rule engine. As indicated in the design and

implementation sections, the rule engine will make the cache system working in a more

intelligent way that some of the performance controlled parameters of the cache

mechanism could be modified according to the environment change. In this test, we just

want to show that using the rule engine with the cache system will not change the ability

of processing the queries and the advantage of the rule engine will be presented in a

433659 Distributed Computing Project The Cache Mechanism for NOSA

 29

much obvious way in the accuracy test later.

The parameters of the cache mechanism, which read from the configuration files, are set

as follow:

1. Number of Entries in the cache: 10

2. Lifetime of the cache entries: 60s

3. Threshold: 5, if the difference of query values between the current query and historical

query which stored in the cache is less than five, the result will be retrieved from the cache

directly

4. Estimate: 3, for the cases with cache and rule engine, first query will visit the physical

sensor nodes and the next three will retrieve results from cache. This parameter is

dynamically adjusted.

5. Discard policy: lifetime discard and ranking discard policies.

4.1.3 Test Results

Figure 4-2 Results of test case one

433659 Distributed Computing Project The Cache Mechanism for NOSA

 30

Figure 4-3 Result of test case two

Figure 4-4 Results of test case three

The Figures 4-2 to 4-4 illustrate the experiment results of the system processing ability

test above. All the three graphs show that the processing time of the system without

cache mechanism is linear with the number of the queries. In certain circumstance like

case one and case two, the cache mechanism increase the speed of the query processing

433659 Distributed Computing Project The Cache Mechanism for NOSA

 31

by 20 times when there are 64 queries, and as the number of queries increasing, the times

will increase too. In the third case, because the queries are generated randomly, the

enhancement of the processing time is 5.7 times. The difference of performance between

the first two cases and the last case shows that the probabilities of similarity of queries

affects the times of cache hits. The results prove that the cache mechanism providing a

sufficient improvement in the query processing ability of the system.

4.2 Accuracy Test

For testing the accuracy of the results given by cache mechanism, we deigned two

different test models simulating a continuous changing environment.

4.2.1 Test Model

The test model utilizes a three levels light source:

1. Level one: deploying the sensors in a dark room and under a persistent reading lamp

2. Level two: in the same environment with level one, cover the reading lamp using two pieces

of paper

3. Level three: deploying the sensors in a total sealed metal box

We switch the three levels of the light conditions following a predefined frequency,

which is changing the level every minute for test case one and every 30 seconds for the

test case two.

Assuming the human factors like covering the lamp, covering the sensors by the metal

box will not influence the experiment results by executing these operations at the time

slot between the actual sensing processes, the reading of the system without cache should

reflect the environment condition, so that, comparing the results from the system with

cache or the system with cache and rule engine with the results from the system without

cache will show the accuracy of the cache mechanism.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 32

The query sending to the service is defined as:

SELECT light

FROM all sensors

WHERE light>0

In all three light levels, the sensor readings are bigger than 0, so we choose the light>0

for the test cases, in such way, all the sensor readings will be saved and we can treat the

reading from the system without cache as the measurement of the environment and use

them for comparison as discussed before.

4.2.2 Environment Setting

In test case one, we set the related parameters as follow:

1. Number of queries: 25

2. Query frequency: 5 per minute

3. Light source level: 1-2-3-2-1 each stage lasted for one minute

4. Number of Entries in the cache: 10

5. Lifetime of the cache entries: 40s

6. Threshold: 5

7. Estimate: 3 (*threshold and estimate are same with the processing ability test)

8. Discard policy: lifetime discard and ranking discard policies.

For the test case two, we set the parameters as:

1. Number of queries: 21

2. Query frequency: 6 per minute

3. Light source level: 1-2-3-2-1-2-3 each stage lasted for 30 seconds

4. Number of Entries in the cache: 10

5. Lifetime of the cache entries: 20s

The others are same with the test case one.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 33

4.2.3 Test Results

The test results 4-5, 4-6 below show that the cache mechanism could reflect the light

condition changes in most situations, although it makes the system more environment

changing insensitive, especially when the light level change from level three, which is

total dark condition, to level two. The reason is when the light condition is changed, the

system can not realize at the right time until the cache entry is delete from memory and it

has to visit the physical sensor nodes. One possible improvement is dynamically

adjusting the lifetime of the cache entries.

Figure 4-5 Result of accuracy test one

Figure 4-6 Result of accuracy test two

433659 Distributed Computing Project The Cache Mechanism for NOSA

 34

In the second test case, because of the more frequently changing environment, the rule

engine updates the estimate from 3 to 1 after reading from the sensors at time 36s. This is

one of the most important properties of the cache mechanism to make the system more

intelligent and it is also one of the contributions to overcome the environment changing

insensitive.

The parameters setting are the major factor that could affect the performance of the cache

mechanism. As shown in the results, once we change the lifetime of the cache entries

from 40s in test case one to 20s in the second test case, the delay time of discovering the

environment changing is reduced from nearly 30s to 10s. This proves again that making

the lifetime adjusting dynamically is an effective way to improve the system.

The test results could not reflect the accuracy in a highly precise way, because of the

following reasons. Firstly, the test environment is controlled by ourselves, which means

the assumption we made in the test model that human factors do not affect the

experiment could not always be achieved, so that the fluctuation of the reading values is

reasonable.

Secondly, the queries were initialed by the client with the same time interval and what we

expected is that they will be processed with the same interval too, which means queries

0~20 were sent out at time 0s, 10s, 20s, etc and they should be processing at time 0s, 10s,

20s, etc, if we consider the query 0 was processed at time 0s. Actually, the queries might

be processed at time 0s, 12s, 15s, etc, which caused by different waiting time when the

queries are waiting for execution. For such reason, the query with same ID will have

different execution time under the three conditions: without cache, with cache and with

cache and rule engine. For example, in the accuracy test case two, query 4 was executed

at time 25s, 27s and 19s under those conditions respectively. The figures present that in

some cases the accuracy of the cache with rule engine is worse than the one without rule

engine. Due to the reason discussed above, this proposition cannot be proven. In contrast,

433659 Distributed Computing Project The Cache Mechanism for NOSA

 35

when the environment changing frequency reduce to switch level every 30s, which is the

test case two, the number of fetching results from cache directly is reduced from 3 (initial

estimation setting) to 1, which is a evidence of improved accuracy since the reading from

sensor network is more accuracy.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 36

5. Conclusions and Future Work

The cache mechanism is working with the existing NOSA project, providing an enhanced

ability to handle multiple concurrent queries by storing the results of historical queries,

analyzing the relationship between current queries with cached queries, reusing entire or

part of the historical results to reduce the query traffic. The cache mechanism includes

many configurable parameters and some of them could automatically adjust referring to

the changes of the physical environment. These features make the system more

intelligent. The experiment results prove the tremendous improvement of query

processing ability of the system, and the self-update functions.

As discussed in the report, the lifetime of the cache entries should be updated

dynamically, which will improving the accuracy of the cache mechanism. Another

approach might be including more data mining related algorithms to analyze the

historical result, so that the cached results could be utilized in a more efficient way. The

sensor network part of the current NOSA system has many disadvantages considering the

consumption of sensor nodes power and sensor connection bandwidth, in-network

aggregation is a possible solution that the raw data sensing by the nodes should be

processed before passing to the base station [12] And as demonstrated in the related work

section, the query analysis model at the sensor nodes, which allows the node to decide

when the query stored in the cache is expired and the cache mechanism requires new data

to update its parameters, is also a possible solution to further reduce the number of

messages passing over the sensor network.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 37

References

[1]. Chu X, Kobialka T, Durnota B, and Buyya R. "Open Sensor Web Architecture: Core Services". In

Proceedings of the 4th International Conference on Intelligent Sensing and Information Processing

(ICISIP 2006, IEEE Press, Piscataway, New Jersey, USA, ISBN 1-4244-0611-0) pp. 98-103, Dec.

15-18, 2006, Bangalore, India.

[2]. Tham C, and Buyya R, “SensorGrid: Integrating Sensor Networks and grid Computing”,

Technical Report, GRIDS-TR_2005-10, Grid Computing and Distributed Systems Laboratory,

University of Melbourne, Australia, June 24, 2005

[3]. Kobialka T, Buyya R, and Leckie C, Open Sensor Web Architecture: Stateful Web Services,

Technical Report, GRIDS-TR-2007-13, Grid Computing and Distributed Systems Laboratory, The

University of Melbourne, Australia, July 13, 2007.

[4]. Botts M, Percivall G, Reed C, Davidson J, OGC® Sensor Web Enablement: Overview and High

Level Architecture, OpenGIS Consortium Inc, 2006

[5]. Open Geospatial Consortium, Inc

URL: http://www.opengeospatial.org/

Accessed [4, Nov]

[6]. The Globus Alliance

URL: http://www.globus.org/

Accessed [4, Nov]

[7]. Simonis I, Sensor Planning Service OGC 05-089r1, Open GIS Consortium Inc, 2005

[8]. Simonis I, Wytzisk A, Web Notification Service OGC 03-008r2, Open GIS Consortium Inc, 2003

[9]. OGC Implementation Specification Download Agreement

URL:

http://portal.opengeospatial.org/modules/admin/license_agreement.php?suppressHeaders=0&acc

ess_license_id=3&target=http://portal.opengeospatial.org/files/index.php?artifact_id=14034

Accessed [5,Nov]

[10].TinyOS Alliance

URL: http://www.tinyos.net

Accessed [5,Nov]

[11] Sam Madden, TinyDB

URL: http://telegraph.cs.berkeley.edu/tinydb

Accessed [5, Nov]

[12] Feng Z and Leonidas G, Wireless Sensor Network, Morgan Kaufmann Publishers, San Francisco,

CA, 2004

[13] Deshpande A, Guestrin C, Madden S, Hellerstein J, and Hong W, Model-based Approximate

Querying in Sensor Networks, Proceedings of VLDB Journal , 2005

[14] Ping X., Chrysanthis P.K. and Labrinidis A., Similarity-Aware Query Processing in Sensor

Networks, Parallel and Distributed Processing Symposium, IPDPS 2006, April 25-29, 2006

[15] Wei Y, Thang N L, Jangwon L, Dong X, Effective query aggregation for data services in sensor

networks, Computer Communications archive Volume 29, Issue 18, November 2006

[16] Amol D, Suman N, Phillip B. G, Srinivasan S, Cache-and-query for wide area sensor databases

433659 Distributed Computing Project The Cache Mechanism for NOSA

 38

International Conference on Management of Data, Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, San Diego, California 2003

[17] David C, Amol D, Joseph M. H and Hong W, Approximate Data Collection in Sensor Networks

using Probabilistic Models, Proceedings of the 22nd International Conference on Data Engineering

(ICDE'06), Volume 00, page 48, 2006

433659 Distributed Computing Project The Cache Mechanism for NOSA

 39

Appendix I. NOSA Cache Project Configuration Manual

Packages Organization

The hierarchy is organized as follows:

org.sensorweb.core.scs.cache contains all important classes like CacheManager and

RuleEngine and all interfaces.

org.sensorweb.core.scs.cache.impl contains the concrete classes for those interfaces and

abstract class.

There are some other classes lying around other packages, which are listed below

org.sensorweb.demo.report.StopWatch: A class to calculate the time cost.

org.sensorweb.demo.summer: This package also contains some new added utilities class.

org.sensorweb.service.SensorLockManager: A class to handle the locking mechanism.

Configurations

Two files are needed in order to make service runs. The first one is

“application.properties”, which is presented in the original project. Some place needs to

be changed slightly. The second one is “cache.conf”, which is new added in this project.

Details of two files are shown below:

application.properties:

 We need to add following lines to “application.properties”:

Lines start with “#” are comments, just add whatever you want. Other lines are the

###########cache############

cache.comparer.EnhancedComparer=org.sensorweb.co

re.scs.cache.impl.ComparerImpl

cache.discard.OrderParser=org.sensorweb.core.scs

.cache.impl.DiscardParserImpl

cache.Memory=org.sensorweb.core.scs.cache.impl.M

emoryCache

cache.DB=org.sensorweb.core.scs.cache.impl.DBCac

he

433659 Distributed Computing Project The Cache Mechanism for NOSA

 40

configuration line. String on the left of “=” is the reference name of class. String on the

right of “=” is the QName of the class. Reference name of class is used in the

“cache.conf” file. Just use whatever you like to name the class. QName is the full path

which leads to the class, including the class’s name.

Please make sure that all the classes’ names used in the “cache.conf” file is presented and

well specified here.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 41

cache.conf:

 The following are the default settings of “cache.conf”

########## RuleEngine Configuration ############

#it indicates whether to use RuleEngine

#available values are "true" and "false"

useRuleEngine=true

#estimate. estimate controls whether to access sensor network or not.

#this is the intialized estimate for RuleEngine

#it is in seconds, for examples, 3 means 3 seconds

#estimate=3

#similar threshold controls the gap between request query and cache

query

#please refer to the documentation

#threshold=1

########## Memory Cache Configuration ##########

#cache size is the maximum size of a cache

#default value is 50, uncomment to specify your value

#mem.maxCacheSize=50

#how long can an entry life in a cache

#in seconds

#default is 60 seconds

#mem.maxEntryLifeTime=60

#discard policy tells in what order the entries are replaced

#currently two are available, "rank;lifetime" means least used will

be replaced first

#while "lifetime;rank" means oldest will be replaced first

#please notice that there is not default value, make sure you specify

exactly one

#mem.discardPolicy=rank;lifetime

mem.discardPolicy=lifetime;rank

#implemention: implemention class to ensure the policy by using the

above string

mem.discardParserClass=cache.discard.OrderParser

433659 Distributed Computing Project The Cache Mechanism for NOSA

 42

#It defines how frequently the CacheMainter to shrink the cache

#default is 5 seconds (they are in seconds)

#mem.shrinkInterval=5

#how many entries are shrinked at a time if no expired entries found

#default is 3

#mem.shrinkSize=3

#the compare class for memory cache

mem.comparerClass=cache.comparer.EnhancedComparer

########## Database Cache Configuration ##########

#most of the database cache parameters are the same as the memory

cache

#please refer to the memory cache comments

#db.maxCacheSize=50

#db.maxEntryLifeTime=60

#policy

#db.discardPolicy=rank;lifetime

#policy implemention

db.discardParserClass=cache.discard.OrderParser

#shrink interval

#db.shrinkInterval=5

#how many entries are shrinked

#db.shrinkSize=3

#the interval time between refresh used to fectch cached queries

#database cache need to refresh its entry list. this is the interval

time.

refreshInteval=0.5

433659 Distributed Computing Project The Cache Mechanism for NOSA

 43

most of the parameters are explained in the comments of the file. There’s only one thing

to be careful. Parameters start with prefix. For examples, memory cache starts with

“mem” while database cache start with “db”. Prefix is defined inside the class. Please

refer to the class documentation.

#db.comparerClass=cache.comparer.SimpleComparer

db.comparerClass=cache.comparer.EnhancedComparer

#this is the connection string. it should be standard jdbc connection

string

db.connectionString=jdbc:postgresql://localhost:5432/NOSA

#driver name for the database

db.driverName=org.postgresql.Driver

#name of the table

db.tableName=cache

#user name

db.userName=your_name

#password

db.password=your_password

########## CacheManager Configuration ##########

#use cache chain to chain to memory and database cache

#when not cache.chain is specified here, no cache is used

#for example, cache.Memory;cache.DB means memory cache is the first

level

#while database cache is second level.

#cache.chain=cache.Memory;cache.DB

#cache.chain=cache.Memory

#cache.chain=cache.DB

########## Performance Capture Configuration ###########

#this is the filename where performance of query is output

#filename should in such format where "\" should be written as "\\"

#filename=e:\\result3-cache

#surfix is the surfix of the file

#surfix=txt

433659 Distributed Computing Project The Cache Mechanism for NOSA

 44

There are several parts to config, but most of them are very easy.

1. Cache:

Cache has to specify in the “cache.conf” file. First, set the cache chain

under field “cache.chain”. Second, setup the parameters with prefix of that

cache.

2. RuleEngine:

There are three parameters to set. “useRuleEngine” determine whether to

use RuleEngine or not. “estimate” is the initial value of estimate. Similarly,

“threshold” is the initial threshold.

3. CacheManager:

A parameter name “cache.chain” specifies what does the cache chain looks

like.

4. Performance:

This part set the output file’s name for performance of cache.

433659 Distributed Computing Project The Cache Mechanism for NOSA

 45

Appendix II. Full Classes Diagram

433659 Distributed Computing Project The Cache Mechanism for NOSA

 46

This diagram shows all the classes that are newly created by this project. From beginning,

we can first focus on the interface. Cache is a cache holder, which contains a

CacheConfig. CacheConfig holds DiscardParser and Comparer. These three classes

makes up the major part of cache facility. RuleEngine and CacheManager are singleton,

while CacheMaintainer resides in each Cache for cleaning up the expired cache entries.

