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Abstract

The potential of the Grid computing paradigm has led to the creation of several regional and
national Grid environments. These environments are, however, like “Grid islands” with no re-
source sharing between them. We have presented an architecture to enable internetworking of
Grids for resource sharing based on peering arrangements between Grids. This architecture and
related mechanisms and policies are termed as the InterGrid. In this paper, we address the prob-
lem of resource exchange in InterGrid environments. Enabling resource exchange in InterGrids is
a challenging task: a Grid can benefit from internetworking with other Grids but needs to respect
its local user communities. The paper describes a peak load management mechanism and related
policies for resource exchange between Grids using a resource share model. We demonstrate that
gateways with provisioning rights over the resources of a Grid can interact with one another by
using the proposed mechanism, enabling resource exchange while satisfying the requests of local
user communities.

1. Introduction

The emergence of Grid computing has led to the creation of several Grid-based resource shar-
ing networks (e.g. TeraGrid [6, 14], Naregi [13] and Open Science Grid [1]) currently utilised
by multiple scientific communities for varying purposes. Resource sharing in these networks is
generally performed through collaborations among groups of individuals, organisations and re-
sources formed to tackle a common problem or achieve a common goal; these collaborations are
widely known as Virtual Organisations (VOs) [8]. Although appealing, these efforts have resulted
in disjointed communities or what we term “Grid islands”, with no resource sharing between them.

Our previous work introduces an architecture based on gateways that mediate the resource ex-
change between Grids and allow participants to allocate resources from different Grids in a seam-
less manner [7]. This architecture and related mechanisms and policies are termed as the InterGrid.
The InterGrid is inspired in the way that Internet Service Providers (ISPs) establish agreements



with one another in the Internet. The Internet is composed of competing ISPs that agree to al-
low traffic into one another’s networks providing their customers with connectivity to the entire
Internet. These agreements between ISPs are commonly termed as peering and transit arrange-
ments [12]. We have advocated that internetworking of Grids through peering arrangements that
enable Grids to exchange resources with one another is important for the evolution of Grid com-
puting.

Additionally, the Grid Interoperability Now - Community Group (GIN-CG) [2] has been work-
ing on providing interoperability between Grids by developing components and adapters that en-
able secure job submission, data transfers and information queries. Although GIN-CG’s efforts are
relevant, its members also highlight the need for common allocation and brokering of resources
between Grids. However, these challenges are not yet addressed in present research1. Therefore,
we have been investigating mechanisms and policies for resource allocation and exchange in the
InterGrid, which can be applicable to scenarios such as the GIN Grids.

Resource exchange across Grids is a challenging task because of the autonomy regarding capac-
ity planning and provisioning of resources to user communities within each Grid. There is con-
tention for resources and dynamicity regarding the shares supplied by resource providers within
each participating Grid. Moreover, there can be benefits for a Grid to provide spare capacity
to peering Grids, possibly in return to regular payments, and to acquire resources from peering
Grids to serve occasional peaks in the demand of its user communities. This approach can re-
duce the costs incurred by over-provisioning. Thus, the main problems of resource exchange in
the InterGrid are how a Grid can (i) meet the demand of local user communities by providing the
resources required; (ii) coordinate with peering Grids in acquiring additional resources when its
users demand; and (iii) provide spare resources to other Grids in return to payments when user
communities in the other Grids require them.

The main contributions of this paper are (a) to propose a mechanism for Grid internetworking
based on a contract network between the peering Grids that enables a Grid to offload requests to
another Grid; (b) provide policies for inter-Grid resource exchange to enable the redirection of
resource requests to a peering Grid and the acceptance of resource requests from other Grids.

2. Related Work

The two major related initiatives that have recently emerged for enabling internetworking of
resource sharing networks are the Global Environment for Network Innovations (GENI) [16] and
GIN-CG under the Open Grid Forum [2].

The PlanetLab architecture [15] has been evolving to allow the federation of autonomous Plan-
etLabs controlled by different organisations [16]. PlanetLab currently provides a global infras-
tructure and mechanisms that allow the creation of slices; on top of these slices, varying dis-
tributed applications can run. The interest in federation, however, will eventually lead to the cre-
ation of smaller autonomous PlanetLabs. The use of virtualisation technology and federation of
autonomous utility infrastructures is also a scenario considered by GENI. The mechanisms and
policies that we are investigating can enable the interaction between dispersed PlanetLab’s with
disparate slice authorities.

1A personal communication amongst GIN-CG members is available at: http://www.ogf.org/pipermail/gin-
ops/2007-July/000142.html
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Several Grid infrastructures have been created over the last years [1, 6, 13, 14]. Additionally,
GIN-CG [2] has been working on leveraging community efforts to address problems regarding
security, standard job submission, data management and information services. GIN-CG’s mem-
bers highlight the importance of policies for inter-Grid brokering and resource management. We
consider these efforts of utmost importance and aim to build on these to investigate resource man-
agement in InterGrids. We follow a slightly different resource model and consider that Grids are
aggregates of resource providers that can be autonomous in nature. Enabling resource exchange
amongst these aggregates is more challenging than resource allocation within an individual ag-
gregate. Although in its infancy, our work intends to develop mechanisms that can bridge this
gap.

Shirako [11, 17] offers an architecture for resource management based on the abstraction of re-
source leasing. Sites delegate limited power to allocate their resources by registering their resource
offerings with brokers. Guest applications can acquire resources from brokers by leasing them for
a specified time. Our work shares some concepts with Shirako such as the delegation of provi-
sioning rights. We focus on the policies for resource exchange amongst InterGrid Gateways that
can also be suitable to the interaction amongst brokers in systems like Shirako. This has not been
explored in depth in Shirako thus far.

Grit et al. [10] investigate the number of VM migrations incurred when a broker and provider
sites use either conflicting or synchronised policies for resource provisioning and VM placement.
In their allocation model, sites delegate rights to provision host servers to a broker. The broker
determines how to allocate resource slivers from its logical inventory to serve requests. Sites have
their policies to map VMs to physical resources. Clients may want to resize their slivers due to
load changes. It is shown that when providers and the broker use conflicting policies, the number
of migrations can be high (i.e. the broker assumes that VMs can be migrated or that providers
assume that slivers can grow; and providers try to minimise the number of resources used). We are
currently researching the interaction and contracts between sites and gateways, the provisioning of
resources to applications by sites in the presence of intermediate entities like IGGs and further the
provision by the IGGs themselves under imprecise information provided by participating sites.

The creation of execution environments has been considered by others. For example, there are
initiatives aiming at the creation and management of execution environments [18]. Such technol-
ogy can be used to enable the creation of DVEs spanning multiple Grids and the peering arrange-
ments between Grids. We aim to enable VOs to evolve to multiple Grids in a transparent way
through the peering arrangements between IGGs.

Balazinska et al. [3] propose a load balancing mechanism for Medusa. Medusa is a stream pro-
cessing system that allows the migration of stream processing operators from overloaded resources
to resources with spare capacity. We have taken inspiration in the above mechanism and extend it
to support the exchange of slots amongst Grids in the proposed architecture.

3. Resource Exchange in the InterGrid

This section provides an overview of the InterGrid architecture and its main components fol-
lowed by a description of the resource exchange scenario.
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3.1. Overview of the InterGrid

Figure 2 provides an overview of the InterGrid architecture for enabling internetworking of
Grids. A detailed discussion has already been presented elsewhere [7]. The abstraction of contain-
ers is used for resource allocation across Grids. This way, the resources exchanged between Grids
can be physical or virtual resources such as Virtual Machines (VMs). We use the term “slot” to
denote a VM or a physical resource on which the services and applications required by users can
be deployed.
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IGG managed Grid IRM managed Grid
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Figure 1. The main components of the InterGrid architecture.

Resource Providers (RPs) contribute a share of computational resource, storage resource, net-
works, application services or other types of resources to a Grid in return for regular payments.
The RP advertises its resources (i.e. slots) in the registry provided by the IntraGrid Resource Man-
ager (IRM). The advertisement is made through a “slot assertion”, which is a delegation of the
provisioning rights over a set of slots or resource shares. This delegation can use a secure protocol
such as SHARP [9]. The IRM can manage different shares of resources that have been allocated
by the RPs to the Grid. The IRM is not an essential part of the architecture as it may represent an
existing resource manager deployed in an individual Grid. The IRM can assign provisioning rights
to the InterGrid Gateway (IGG) over part of the resources provided by RPs. We also consider the
case where RPs can assign provisioning rights directly to the IGG.

A Grid can have peering arrangements with other Grids through which they coordinate the use
of resources of the InterGrid. These arrangements are managed by IGGs. An IGG is aware of the
terms of the peering with other Grids; provides Grid selection capabilities by selecting a suitable
Grid able to provide the required resources; and replies to requests from other IGGs.

CLient applications (CLs) can implement resource management mechanisms of their own. How-
ever, we envisage that applications can have performance and environment isolation provided by
Distributed Virtual Environments (DVEs), which can be created on top of the InterGrid and can
span multiple Grids. DVEs can leverage virtualisation technologies [4] and provide an overlay
network comprising the resources allocated from the InterGrid. When a CL shows interest in ob-
taining a number of slots to deploy or execute an application, it sends “slot requests” to the IRM
(i.e. when the Grid has its own IRM) or to the IGG based on the demands of the application. The
IRM can provide all or part of the required slots based on its provisioning policies. If the individual
Grid cannot provide the required slots, then the IRM forwards part of the slot requests to the IGG.
The IGG selects a peering Grid from which the slots can be allocated based on the peering agree-
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ments and the policies in place. Once the slots have been acquired, the CL is given a permission to
use them.

3.2. The Resource Exchange Scenario

The InterGrid is defined by Equation (1). The InterGrid comprises a set G of participating Grids.
Each Grid gi ∈ G has a set CLi of clients running applications that require resources and a set
of resource providers RPi that provide shares of resources to Grid gi. Grid gi is at a given time
composed of a set of resources, which is the union of the resources contributed by the each resource
provider rp ∈ RPi. CL and RP represent the set of clients and providers in the InterGrid scenario
respectively.

gi ∈ G : gi ⇒
⋃cln

clj
and

⋃rpn

rpj

; rpj ∈ RPi ⊂ RP and clj ∈ CLi ⊂ CL (1)

Here, the current resource allocation at Grid gi is represented by Ai. K represents the types
of resources that Grids can acquire from one another. Clients issue resource requests according
to their demands requiring resources whose types are specified in K. A resource request can be
fragmented or continuous. If the request is continuous, then it has to be served with resources from
a single resource provider. When a request r can be fragmented, then the resources used to serve r
can be provided by multiple resource providers. In this work, we consider that requests cannot be
fragmented. We also consider that a request for additional resources corresponds to the arrival of
a new request, whereas the release of resources by a client represents the termination of a request.

The peering agreements between Grids define, for example, (i) how resource requests are redi-
rected from one Grid to another; (ii) how to balance resource requests; and (iii) the resource types
for resource exchange between Grids. Therefore, the goal of a participating Grid gi is to (i) serve
its clients or user communities by providing allocations Ai that assign resources that satisfy their
QoS requirements; (ii) offer spare resource to peering Grids under some compensation; and (iii)
acquire resource from other Grids to satisfy its clients under conditions of peak load.

3.3. Assertions, Requests and Permissions

Each resource provider rpj has a Resource Manager (RM) responsible for the resource provi-
sioning and allocation at the RP. RPs agree to provide their resources under the terms stated in
contracts such as Service Level Agreements (SLAs). The resources provided to a Grid under these
agreements are published as slot assertions. These assertions and a description of the policies
utilised by the RPs are kept by the IRM. The IRM can delegate part or the full set of slot assertions
to the IGG.

A slot assertion for rpj , saj , includes information about the slots available at RP j, their char-
acteristics and when they will be available. Therefore, saj = (Sj, tj,∆tj) where Sj is a slot
set containing the list of slots available at rpj; tj represents the start time when the slots will be
available; and ∆tj is the amount of time over which the slots will be available.

A slot set can contain information regarding the number of CPUs, the CPUs’ architecture and
speed, amount of memory and disk space. Here, we use the term type to indicate a virtual or
physical resource with a given configuration. Thus, a slot set Sj is represented by Sj = (sj, xj),
where sj represents the number of slots that compose the set; xj is the type of the slots in the set.
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The requests received by an IRM or IGG contain a description of the required slots. A slot
request made by client clj is defined as srj = (gj, Sj, tj,∆tj, rtj), where gj is the slot request
group (i.e. the request belongs to a group of requests identified by gj); Sj is the required slot set;
tj is the start time when the client expects to use the slots; ∆tj is the amount of time for which the
slot set will be required; rtj is the type of request. There can be RT request types, so rtj = (1 or 2
or ... or RT). For example, a request can be flexible regarding the time, meaning that the resources
can be provided at a time different from that originally stipulated. Here, we consider two types of
requests, namely immediate start and advance reservations.

4. The Peak Load Management Mechanism

In this section we describe the mechanism to balance the load imposed by slot requests in the
InterGrid. The mechanism is derived from Medusa [3], but differs in terms of the resource selection
and request redirection policies.

The offloading of allocation requests is enabled between Grids that have negotiated contracts, at
within the contracted price range. The offloading occurs when a Grid forwards requests to another
because the cost of fulfilling the requests is higher than the amount that it would have to pay to the
other Grid to serve them. For each IGGi representing the Grid gi, the allocation of its resources
by its user communities over a unit of time represents a cost. The real-valued cost function of the
participating IGGi is represented by (2), where Ai corresponds to current allocations of Grid gi

and SSi to the number of slots in Grid gi, as described beforehand.

∀Ai, costi(Ai, SSi)→ < (2)

Therefore, the cost given by costi(Ai, SSi) depends on the number of slots allocated by the re-
quests and the slot sets available at the Grid. Although each Grid could have its own cost function,
in this work, the participating Grids utilise a quadractic cost function. Grid gi has a load threshold,
by crossing which Grid gi considers itself overloaded. Request movements are based on the per
slot marginal cost, mci : (u,Ai, SSi)→ < which is the increment in the cost for Grid gi in accept-
ing to provide the slots required by request u given its current allocations Ai and slots SSi. If the
request u requires one slot of a type x specified in K for a time unit t, so the marginal cost for one
slot of that type is given by mx = mcx(u,Ai,x, SSi,x), where Ai,x is the current allocation of slots
of type x and SSi,x is the total number of slots of type x available.

4.1. Contract Types

A contractCi,j between IGGi and IGGj has a price range PRx(Ci,j) : [minx(Ci,j),maxx(Ci,j)],
which is the price paid by IGGi for a slot of type x allocated from Grid IGGj over a time unit
t. IGGi can have several contracts with other Grids. The set of contracts of IGGi is represented
by CSi. Ci is the number of contracts of IGGi. During periods of peak load, IGGi can redirect
requests to IGGj if both have a contract. Based on the current load levels, they agree on a final
price Px(Ci,j) for a slot of type x within PRx(Ci,j). The number of slots allocated by Grid gi from
Grid gj is represented by Υi,j . IGGi pays the amount equivalent to (Px(Ci,j)∗Υi,j ∗∆t) to IGGj ,
where ∆t corresponds to the number of time units over which Grid gi utilises resources from Grid
gj .
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We support two kinds of contracts, namely fixed price (i.e. PRx(Ci,j) : [fpx, fpx] where fp is
the fixed price) and price range contracts (i.e. PRx(Ci,j) : [fpx −∆x, fpx]). In the case of price
range contracts, participating Grids have to negotiate the final price at runtime. As discussed by
Balazinska et al. [3], a load management mechanism based on fixed price contracts may present
disadvantages in some cases. For example, it lacks on flexibility when a Grid needs to offload
requests, because it would offload them only if the price of a contract in its contract set is exactly
lower than its marginal cost. Moreover, a Grid will accept a request only if the price of the request
is higher than the Grid’s marginal cost.

Similarly to Balazinska et al. [3], we define the price range for a slot of type x considering the
decrease of k slots from the allocations A. Let u be a request that requires 1 slot of type x; the
decrease in the per-slot marginal cost due to removing k slots from the Grid’s A is represented by
δk, which is defined by (3).

δk(A) = mc(u,A− u)−mc(u,A− (k + 1)u) (3)

δk is the approximate difference in the cost function gradient evaluated at the load level including
and excluding the k slots of type x. Given a contract with fixed price fp, Ax is the maximum set
of requests that an IGG can accept before its per slot marginal cost exceeds fp. Therefore, Ax

satisfies: mc(u,Ax − u) ≤ size(u) ∗ fp and mc(u,Ax) > size(u) ∗ fp. In order to estimate the
price range for a slot in the contracts in our experiments, we let Ax be the allocations A at a given
utilisation rate and u be a request of size 1 and ∆x = δk. We evaluate different values for Ax and
k.

Considering that two Grids gi and gj that have a contract specifying a price range. Consider that
gi sends an offer to gj when gi’s marginal cost is higher than the minimum price of the contract
with gj . Grid gj in turn sends a counter-offer if its marginal cost is smaller than the maximum price
specified in the contract. Grid gj’s counter-offer contains the price of the offer sent by gi if gj’s
marginal cost is smaller than the offered price. The price in the counter-offer is gj’s marginal cost
if the latter is between the range specified in the contract. Grid gi accepts the counter-offer if the
price given by gj is smaller than its marginal cost.

4.2. Request Balancing Algorithms

In this section we describe a set of algorithms for the proposed peak load management mecha-
nism. These algorithms define how an IGG offloads slot requests to peering Grids considering a
contract network and how it accepts requests from peering Grids. Algorithm 1 describes how an
IGGi allocates slots to the requests made by its user communities (i.e. resource provisioning) and
how it offloads the requests to another Grid.

During a given number of time units Ω, or while requests previously submitted are being treated
(i.e. requests are being either served or moved), IGGi stores the requests received in the list ORi

(lines 2 to 6). After Ω, IGGi orders the contracts in ascending order of price and for each contract
Ci,j . IGGi evaluates whether there are requests that can be redirected to the peering IGGj . From
line 11 to 13, IGGi verifies if its marginal cost is greater than the price that it would pay to the
IGGj for serving the request. If the marginal cost is greater, then the IGGi adds the request to
the requestset. Otherwise, if there are resources available, the request is treated locally (lines 14 to
17). From line 20 to 32, IGGi creates an offer, sends it to IGGj and waits for a reply. If the IGGj
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accepts the offer, then the IGGi informs the CLs about the acceptance. From line 34 to 42 the
IGGi performs a last iteration to allocate slots to requests that have not being accepted by other
Grids.

Algorithm 2 specifies the steps that the IGGj follows to accept or reject offers sent by peering
Grids. IGGj inserts the offers in a list during a time interval (lines 2 to 6). After the interval
lapsed, IGGj sorts the offers by decreasing order of price. In addition, IGGj maintains a list of
offers with which it has agreed or to which it will send a counter-offer (i.e. potentialset). For each
request in an offer, IGGj verifies if the marginal cost of accepting the request is smaller than the
amount that it is going to receive to serve the offer, given its current load and the potentialset.
After that, if the marginal cost is smaller, IGGj adds the request to the set of requests that will be
accepted. If the set of requests accepted is not empty, then IGGj sends a response and updates its
potentialset (lines 22 to 25).

We use a best-fit policy for resource selection by an IGG. Algorithm 3 shows the best-fit algo-
rithm for select(request r). In this algorithm, IGGj orders the slot assertions in increasing order
of slots available and tries to fit the request in the smallest slot assertion able to provide the slots
required. Moreover, a Grid may provide a large share of its resources to peering Grids, which may
decrease the request acceptance rate of its local user communities. To minimise this impact, we
introduce a Peering Threshold (PT) that defines the number of resources that an IGG can provide
to its peering IGGs. When an IGG selects resources to peering Grids, it verifies if the resulting
allocations will not violate PT.

5. Performance Evaluation

5.1. Experimental Scenario

Simulation tool and cost functions: The evaluation of the proposed mechanism is performed
through simulation by using GridSim Toolkit 4.0 [5]. We extend GridSim to support the functional-
ity of slots and IGGs. We consider that IGGs use a quadratic cost function given by α(Ax)+β(Ax)2

where α is the average cost of a slot of type x for a time unit (i.e. it is the price paid by the IGG
to resource providers), Ax is the load (i.e. the number of slots of type x allocated) and β is a small
constant that indicates how steep the cost curve is as the Grid approaches full utilisation.

Workload and requests: The workload of clients is modelled using the San Diego Supercom-
puter Center (SDSC) SP2 log2. The log is divided into 15-day intervals one interval is assigned to
each client. Requests that require less than 5 CPUs and whose duration is smaller than 2 hours long
have been removed from the original log, because we believe that these do not reflect the current
requests for initialising VMs on remote sites. We scale the trace according to the maximum capac-
ity of resource providers of the Grid to which each client belongs so the resource requests issued
by a client can be served by an individual resource provider. The experiments are performed with
10 different sets of workloads. For each set, 10 executions are carried out and the best and worst
results removed. The results presented are averages of the experiments with 10 sets of workloads.

There are two types of requests, namely Immediate Start Requests (ISRs) and Advance Reser-
vations (ARs). When an IGG receives an ISR, it verifies whether it has free slots over the duration
of the ISR starting from the current time. ARs on the other hand, are requests for slots for a given

2We use the version 3.1 of the SDSC SP2 log, available at: http://www.cs.huji.ac.il/labs/parallel/workload/
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Algorithm 1 Provisioning and request redirection.
1: loop
2: for Ω time units or while (movement = true) do
3: for each request r received do
4: ORi ← ORi ∪ {r}
5: end for
6: end for
7: sort CSi on P (Ci,j) ascending
8: for each contract Ci,j ∈ CSi do
9: requestset← ∅

10: for each request u ∈ ORi do
11: if mc(u, Ai) > size(u) ∗ P (Ci,j) then
12: requestset← requestset ∪ {u}
13: else
14: selected← select(u) /* find slots in SSi; see Algorithm 3 */
15: send(CLi, accept, u, selected)
16: Ai ← Ai ∪ {selected}
17: ORi ← ORi − {u}
18: end if
19: end for
20: if requestset 6= ∅ then
21: offer← P (Ci,j), requestset
22: (resp, acceptset, assigned)← send(IGGj ,offer)
23: movement← true /* Accept set contains the resources given by IGGj*/
24: if resp = accept and acceptset 6= ∅ then
25: confirm(IGGj , P (Ci,j), acceptset)
26: end if
27: for each request accepted a ∈ accepset do
28: selected← assigned slots(assigned, a)
29: send(CLi, accept, a, selected)
30: ORi ← ORi − {a}
31: end for
32: end if
33: end for
34: if ORi 6= ∅ then
35: for each request u ∈ ORi do
36: selected← select(u) /* find slots in SSi */
37: if selected 6= ∅ then
38: send(CLi, accept, u, selected)
39: else
40: send(CLi, reject, u)
41: end if
42: end for
43: end if
44: end loop
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Algorithm 2 Offer evaluation.
1: loop
2: for Ω time units or while (movement = true) do
3: for each offer o received do
4: offersj ← ORi ∪ {r}
5: end for
6: end for
7: sort offersj on price descending
8: potentialset← ∅
9: for each offer oi ∈ offersj do

10: acceptset← ∅
11: assigned← ∅
12: for each request u ∈ oi do
13: load← Aj ∪ potentialset ∪ acceptset
14: if mc(u, load) < size(u) ∗ P (oi) then
15: selected← select(u) /* find slots in SSj ; see Algorithm 3 */
16: if selected 6= ∅ then
17: acceptset← acceptset ∪ {u}
18: assigned← assigned ∪ selected
19: end if
20: end if
21: end for
22: if acceptset 6= ∅ then
23: potentialset← potentialset∪ acceptset /* Update the set of potentially accepted requests */
24: resp← (accept, acceptset, assigned)
25: movement← true
26: else
27: resp← (reject, ∅, ∅)
28: end if
29: end for
30: end loop

time in the future. ARs can be made up to 12 hours before their start time.
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Figure 2. InterGrid environment simulated.
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Algorithm 3 Selection of slots from SSi.
1: reqslots← get the slots required by r
2: type← get the type of slots of reqslots
3: str ← get the start time of r
4: ∆tr ← duration of request r
5: SStype ← the slot assertions of type type in SSi

6: selected← ∅
7: found← ∅
8: sort SStype on capacity and duration ascending
9: for each assertion saj ∈ SStype or while (found = false) do

10: stj ← get the start time of saj

11: ∆tj ← get the duration of saj

12: if stj ≤ str and ∆tj ≥ ∆r then
13: availj ← n. of slots available in saj from str to ∆tr
14: if reqslots ≤ availi then
15: selected← select reqslots from saj

16: /* lock slots in saj until the confirmation of use */
17: found← true
18: end if
19: end if
20: end for
21: return selected

Evaluated scenario: Figure 2 presents the InterGrid environment simulated while Table 1 sum-
marises the parameters. Grids exchange two types of slots. We specify that about 50% of the
resource providers per Grid are dedicated. The resource providers that are not dedicated issue slot
assertions with a duration uniformly distributed between 3 and 5 days. The time between two slot
assertions issued by a resource provider is uniformly distributed between 0 and 6 hours. PT is 30%,
which means that an IGG will not provide more than 30% of its resources to its peers at any time.
We calculate the price for slots in the contracts between the Grids by assigning different values to
A in equation (3). These values in fact correspond to Ax explained in Section 4.1. We perform
experiments considering A equals to 99%, 95%, 90% and 85% of utilisation and with different
values for k (i.e. 1%, 5%, 10% and 20% of the Grids’ resources). For example, when A=99% and
k=1%, the fixed price (fp) of a contract is equals the marginal cost of accepting a request of size 1
when the Grid is at 99% of utilisation. The price range contract has a maximum price of fp and a
minimum price given by fp minus the difference between the marginal cost at 99% of utilisation
and the the marginal cost at 98% of utilisation.

Performance metrics: We select two metrics, namely increase in request acceptance rate and
percentage of the generated load that is redirected by the IGGs. The redirected load demonstrates
the performance of the mechanism in terms of migration of peak loads; the increase in acceptance
rate, on the other hand, demonstrates whether the IGG compromises local users by peering with
other IGGs. We also compute the increase in utilisation for comparison against the migration of
load.
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Table 1. Evaluated scenario and parameters.
Parameter Description Value

Number of types of slots exchanged 2
Number of dedicated RPs per Grid 50%
Mean duration of slot assertions 3-5 days
Mean time between slot assertions 0-6 hours
Peering Threshold (PT) 30%
Number of Grids 4
Number of RPs per Grid 8-10
Number of slots per RP 500-600
Number of clients (CL) per Grid 8-10
Proportion of AR requests 20% of the requests of each client
Contracts between Grids (A↔B represents a
contract between Grids A and B)

(A↔B) (B↔C) (C↔D)

5.2. Experimental Results

The global increase in request acceptance rate under the different types of contracts is shown in
Figure 3 (a-c). It represents the acceptance rate of all the requests made by users of all the Grids.
The charts demonstrate that, overall, Grids benefit from peering with one another by increasing
the request acceptance rate. The charts in Figure 3 (d-f) present the percentage from the total load
that has been exchanged by the IGGs. We have noticed that IGGs can accept requests using price
range contracts without heavily compromising the request acceptance rate when they maintain PT
below 30%. When Grids define the maximum price for a slot as the marginal cost at 99% of
utilisation (i.e. Ax equals to 99%), the overall acceptance rate is improved in almost all the cases.
The acceptance is better when the contracts define a price range, which allows Grids to redirect
more load.

When IGGs set the maximum price equals to the marginal cost at a low Ax and the price range
is large, the increase in acceptance rate and the amount of load exchanged decrease. The reason
for this behaviour is that overloaded IGGs tend to be more conservative in accepting load from
other IGGs, even though they try to migrate load more easily. In other words, an IGGi that needs
to offload, will redirect requests willing to pay a price less or equals to the maximum price of
a contract. If the marginal cost of the IGG considering to accept the load is slightly above the
maximum price, it will not accept the load. In our experiments, this behaviour is reflected in the
acceptance rate.

Table 2 presents the increase in the acceptance rate of the requests originated in each Grid and
the amount of load migrated by the IGGs to other Grids. Grid A and D migrate smaller amounts
of load as they have only one contract each. Grid C transfers the most of load to other Grids, so
decreasing its resource utilisation. Even though Grids A and B do not have a substantial increase in
the acceptance rate of the requests originated by their users, they increase their resource utilisation,
without compromising the acceptance rate of the requests originated in their Grids. This leads to
an increase in profit as they can receive a payment from the other Grids for the resources provided;
however, we do not measure the profits of each Grid here. Overall, the algorithms achieve their

12
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Figure 3. Increase in acceptance rate, and load exchanged amongst the Grids (PT=30%).

goal, which is redirect requests driven by the Grids marginal cost.

6. Conclusions and Future Work

This paper describes a mechanism and related policies that enable organisations or Grids that
employ virtualisation technology to redirect requests to other Grids during periods of peak de-
mands. The mechanism is based on contracts that specify price ranges for virtual resources ex-
changed between Grids. We present empirical results that demonstrate that with simple resource
selection policies, the mechanism enables the migration of requests across Grids, leading to an
overall increase in the request acceptance rate and redirection of requests under peak demands.
We have seen that some Grids can increase the resource utilisation, without compromising the
acceptance rate of requests originated at the local Grid.

Future investigations include more sophisticated resource selection policies, specially for han-
dling advance reservation requests. IGGs with over-provisioned peering policies (i.e. that are
willing to provide a large share of its resources to peering Grids) need to ensure that they are able
to meet the needs its local user communities. Moreover, the proposed mechanism will be improved
by providing means for Grids to redirect requests across several Grids (i.e. we are extending the
mechanism to support transitive relationships between the Grids in the contract network).

Currently, we are investigating the provisioning of resources by resource providers under the
presence of intermediate entities such as IGGs. Moreover, we want to work on the problem faced
by gateways to provision resources to users of a Grid and to other gateways based on imprecise
provisioning decisions made by providers. Additionally, in these scenarios gateways may act to
maximise their utility, which is given by the difference between the price paid to the resource
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Table 2. Acceptance rate and load redirected per Grid.
Ax

99% 95%
Fixed k Fixed k

Metric Grid Price 1 5 10 20 Price 1 5 10 20

Increase in request
acceptance rate
(%)

A 0.6040 0.5718 0.4038 0.2167 0.1377 0.6198 0.7132 0.5831 0.3836 0.3660
B 0.9213 1.0484 1.8319 2.0646 2.2168 1.7897 1.9031 2.0887 2.1332 2.3840
C 5.5093 5.5878 5.5462 5.6052 5.4440 5.3075 5.2357 5.2984 5.3459 5.2227
D 2.3564 2.5343 2.7384 2.7656 2.5186 2.6819 2.7081 2.6918 2.7878 2.3648

% of the generated
load redirected to
other Grids

A 7.76 7.87 8.89 9.94 11.49 7.75 7.91 9.02 9.98 11.55
B 13.79 14.38 17.00 19.43 22.85 14.80 15.22 17.60 19.78 23.02
C 23.16 23.53 25.42 27.20 30.20 23.04 23.43 25.11 27.07 29.67
D 10.37 10.49 11.63 12.89 14.99 10.74 10.81 12.09 13.24 14.72

Increase in
resource utilisation
(%)

A 2.9069 3.0632 3.3575 3.7115 4.1442 3.1645 3.1666 3.4478 3.7535 4.2066
B 5.2801 5.2719 5.1885 4.9187 4.2210 5.1720 5.0620 4.8918 4.5012 3.8351
C -0.5753 -0.4947 -0.4074 -0.2988 -0.3426 -0.0476 0.0052 -0.1006 -0.0340 0.0104
D 1.0847 1.0947 1.2161 1.2891 1.4032 1.2886 1.3444 1.3973 1.3973 1.5410

Ax

90% 85%
Fixed k Fixed k

Metric Grid Price 1 5 10 20 Price 1 5 10 20

Increase in request
acceptance rate
(%)

A 0.7026 0.5766 0.5735 0.5174 0.3935 0.6855 0.6554 0.4427 0.4795 0.3392
B 1.8427 1.9550 1.9560 2.2031 2.3241 1.7866 1.8149 1.9576 2.1828 2.1508
C 4.9483 4.9482 4.9569 4.8747 4.8630 4.4843 4.5853 4.4561 4.4585 4.5667
D 2.5636 2.4953 2.4841 2.4781 2.4016 2.3509 2.3925 2.3581 2.3419 2.1160

% of the generated
load redirected to
other Grids

A 7.55 7.73 8.75 9.82 11.08 7.03 7.16 8.21 9.19 10.52
B 14.81 15.33 17.41 19.56 22.48 14.22 14.76 16.75 18.76 21.41
C 22.39 22.57 24.43 26.31 28.67 20.81 21.17 23.22 24.96 27.10
D 10.81 10.94 11.98 13.15 14.57 10.38 10.55 11.58 12.51 13.95

Increase in
resource utilisation
(%)

A 3.1466 3.2162 3.4901 3.7339 4.0733 2.9848 3.0715 3.3186 3.4722 3.8211
B 4.6328 4.5691 4.3622 4.1091 3.4430 4.0787 4.0399 3.8411 3.5232 2.9968
C 0.3576 0.3292 0.1594 0.2535 0.4811 0.6417 0.5962 0.6974 0.6375 0.8768
D 1.4644 1.4705 1.5006 1.4532 1.6752 1.4329 1.3388 1.5613 1.6283 1.7090

providers and the amount received from users when provisioning resources. Therefore, we are
working on provisioning of resources in these multi-level federated infrastructures3.
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