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Abstract

Image filtering is the use of computer graphics algorithms to enhance the quality of digital images or to
extract information about their content. However rendering very large size digitial images on a single
machine is a performance bottleneck. To address this we propose parallelising this application on a desktop
Grid environment. For parallelizing this application we use the Alchemi Desktop Grid environment and the
resulting framework is referred to as ImageGrid. ImageGrid allows the parallel execution of linear digital
filters algorithms on images. We observed acceptable speed up as the result of parallelising filtering
through ImageGrid. We run the tests on different data sets by varying the dimension of the images and the
complexity of the filters. Results demonstrate potential of Grid computing for desktop applications and that
the speed up obtained is more consistent for large images and complex filters.

1. Introduction

Digital image processing [1] has nowadays become a common activity for every kind of users. If we went
out with your digital camera we will most likely to have hundreds of pictures whose size is normally about
3 megabytes; this means that if we want to retouch or adjust them we will have to deal with hundreds of
megabytes. If we consider image processing for scientific purposes we will have terabytes of data and,
probably, days of processing time. Digital image management plays an important role in astronomy (earth
observation, space probes) and medicine (medical imaging as Magnetic Resonance Imaging and
microscopy): in these cases large datasets of huge images are produced daily. For example radar images are
normally 25K x 5K pixels while microscope images can range from 40K x 40K to 100K x 100K pixels.
This means having to process images whose size ranges from hundreds of megabytes to gigabytes. The
common tasks performed on these images range from image enhancement to features extraction and
content retrieval and they basically rely on some sort of image filtering. Image filtering is a CPU intensive
task and processing images of the above dimensions becomes prohibitive even on a fast workstation.
Fortunately, it is possible to take advantage of distributed systems like computational Grids, to reduce the
filtering processing time or to rely on wide network storage.

Computational Grids [2] are a particular kind of distributed systems which use the resources of many
separate computers connected through the Internet and expose them as a virtual computer architecture that
is able to distribute process execution across a parallel infrastructure. Grids can provide different kind of
resources to the user: CPU cycles (Computational Grids), disk space (Data Grids) and services (Service
Grids). A Grid is an intrinsically dynamic system: resources constituting the system change during time
and normally come from different domains and organisations. When these resources are spread across an
enterprise, provide services to users within that enterprise and are managed by a single organisation, we are
considering an Enterprise Grid (which is popularly called as a Desktop Grid).



The “Grid concept” is now considerably established in the IT and there are many grid infrastructures that
can be used (Globus [3], Gridbus [4], Achemi [5], Condor [6], NetSolve [9], Harness II [7], and H20 [8]).
The real challenge now lies in making Grid computing infrastructures easily accessible and usable to the
end users by seamlessly integrating their desktop applications with Grids on demand (whenever they need a
huge computing power). In other words the Grid should be used as a service in any kind of application. At
the moment Grid computing is already being employed widely as a service in e-Science and e-Business
applications. In particular, in the case of e-Science, Grids are used to process large amounts of data
generated by scientific experiments that evaluate models, and to share large datasets among researchers.
Some projects that have been actively used by research communities include:, PlanetLab [10], myGrid [11],
MediGrid [12], MammoGrid [13], and BIRN [14].

These large-scale efforts predomently focused on the use of high-end computing systems such as clusters
and supercomputers to build computational Grids for scientific applications. Our work complements them
by demonstraing how a light weight Grids can be established (by leveraging existing technologies) and
easily harnessed for performing image filetering operaton. Filetering is the basis for many image
manipulation tasks performed by any imaging application running on either desktop or workstation.
Nowadays desktop users deal with ever-growing image sizes with the proliferation of digital cameras and
the demand for more computing power to quickly perform image editing tasks has been growing. It is no
more uncommon to manipulate images as large as 10K x 2K pixels on desktop computers. Almost all
professional and semi-professional imaging applications allow extending their features with the use of
plug-ins: by developing a plug-in we can easily enhance such applications and make them Grid aware. A
smooth integration of desktop applications with enterprise grids (desktop grids) rapidly enhances adoption
of Grids for common day-to-day applications.

In this article we present our work, called‘ImageGrid’, an application that has been developed as a proof of
concept to demonstrate the advantages desktop Grid-based image filtering and to show how desktop
applications can easily exploit Grid-services. ImageGrid allows performing basic image editing operations
and let the user run them either locally or remotely by executing the filters on an Alchemi Grid. The
integration between Alchemi and ImageGrid is seamless and does not require the user to learn much about
the Grid. The user just has to provide his/her credentials and the host name/IP address of the Alchemi Grid
Manager. For these reasons, ImageGrid is a good point to start and to learn from, if we wish to make Grid-
aware professional imaging applications.

2. Image Filtering: Basics in Brief

A digital image is a representation of a two-dimensional image as a finite set of digital values, called
picture elements or pixels. Digital images are commonly represented with 2D matrices whose elements a,,
maintain the color information (values for the red, green, and blue channels and transparency) of the
corresponding point in the image at the given coordinates (x,y)'.

Digital image processing is the use of computer algorithms to perform processing on digital images or
make modifications to them. In particular, image filtering is the process of applying computer algorithms —
called digital filters — to an image in order to create a new one. Image filtering allows performing basic
image editing tasks such as image smoothing, sharpening, blurring, edge detection, mean removal and
embossing. All these operations can be implemented by a particular class of filters called linear filters.
Linear filters compute each pixel-value as a linear combination of the values of a set of pixels in the image.
Usually this set is defined by the pixels contained in a square region centered on the pixel to be evaluated.
In this case, the coefficients corresponding to each pixel can be arranged in a matrix, called the kernel,
whose dimensions are defined by the previous square region. If the filter is described by a kernel it is
possible to express the value of each new pixel as the result of the following 2D discrete convolution
operation:

P () =0 S K ko ky]- PGe— (N =1)72) + ko, y = (N = 1)/ 2) + k)

Expression 1. Pixel Convolution

! Hereafter we will omit the term digiral that is always implied.



In the expression N is the dimension of the kernel matrix K and Pg,, and P are the functions which return
the corresponding pixel information, given the coordinates x and y. Figure 1 describes the entire process of
determining the new value of a pixel. The summations in Expression 1 can be easily translated into a two
nested for-loops and by iterating this expression for all the pixels we can implement the filtering algorithm.
Actually, the real implementation of the filtering algorithm has to take into account some issues that are not
captured by the previous expression. These are : pixel value underflow, overflow® and edge-pixel filtering.
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Figure 1- Computing the value of the filtered pixel.

2.1. Pixel Value Overflow and Underflow

So far we have not looked into the structure of the data maintained for each pixel and have implicity
assumed that pixel color information is represented by a scalar value. Actually, the structure of such data
strictly depends on the image encoding format and the scalar value has to be manipulated in order to extract
the pixel information. If we consider images using a 24bppRGB encoding format, then the scalar value
represented by the 24 bits has to be separated into the three corresponding bytes with each byte
representing a single colour channel. This means that the previous expression has to be computed for each
colour channel. Moreover, since the encoding assigns only one byte per channel, a pixel value for each
channel ranges from 0 to 255, and the possible overflows or underflows have to be rounded to the range
limits and the resulting value has to cast into a byte value.

2.2, Edge-pixel Filtering

Pixels on the edges of the image cannot be evaluated with the discussed algorithm since the square region
required by the kernel is not properly defined. In other words, when we want to compute the value of
Pjiier(0,0) we need the information of P(-(N-1)/2, -(N-1)/2) which does not exist. In order to solve this
problem the original image is enlarged by (N-1)/2 pixels on each side and the new regions are filled
according to a given algorithm®.

? The terms underflow and overflow respectively identify the condition in which a quantity goes out of an
established range by assuming a value smaller than the minimum or bigger than the maximum. The
expression pixel value underflow (overflow) means that the numeric value of the pixel is out of range.

? There are normally three different techniques used: zero fill, mirror fill, and stretch fill. The first strategy
assigns to each pixel the black color value. The second one mirrors the pixel values by taking the original
image borders as symmetry axis while the third one just replicates the pixel value of edge pixels.



3. Grid-based Image Filtering

Given an image the performance of linear filtering heavily depends on the kernel dimension. For example,
given a kernel dimension of &, for each pixel channel we will have:

®  NxN sums

®  NxN products
Hence the complexity for each pixel is O(N°). This means that for large images the filtering process can
take a lot of time and the operation is computationally intensive. A possible solution to reduce the
processing time and the CPU workload is trying to parallelise the process and to take advantage of
distributed computing infrastructures such as computational Grids.

This operation is actually possible because linear filtering is a local operation; this means that in order to
compute the value of one pixel we need the information of only the nearby pixels and not of the entire
image. More precisely, given a kernel of dimension N, in order to determine the value of pixel (x,y), we
need to access the pixels contained in the square region centered on that pixel which has an edge of N
pixels. Normally an even value of N ranging from 3 to 9 is chosen. A value of 3 is for fast filters while a
value of 9 leads to more accurate but more computationally intensive filters.

Due to this locality property of linear filtering, we can parallelise the execution by dividing the image into
several adjacent rectangular regions and model the filtering of each region as a separate Grid task. After all
the tasks are executed the filtered regions are recomposed into the resulting image. Figure 2 describes the
entire process.

r ,
! Slice fiter ng execulion on arid nodes !

b

I
|
.
 — Ovedansac slisas | | | il | [ mibacast stiazs  —
[ Ciginal mage | Cvetlapaec slizes | A T | Fitered sices [ Fitered image |
e ———— R - -l | TL_T | W _ .
OO0l ST 8 | 'ss | A pEEEE ——
—— 11—t Ji = ————— | |
Y Y | — Ld ] e | |
=l ILILILIL] V=l = | | lowl 9 |l ] e e == | |
PO S0 Ew Bl 5= ) e (- | —
| rrarar . B | T =" e | ([
QU IS S I i B % - Y L el ] el |
| k. i S |
| N 5 B S |
. A R S
| Slicing | — | Recomposiion |
=1

Figure 2 - Grid-based image filtering.

The task of filtering a large image can be broken down into a set of filtering tasks performed on smaller
images. The operation performed on each rectangular region is the same as that for the entire image. If we
overlap the rectangular regions by half of the kernel dimension the filtering process becomes an
embarrassingly parallel problem and there will be no need of inter-task communication. Grid-based
filtering adds additional time to the entire filtering task since we need to perform the following operations:

¢ Divide the image into rectangular regions

e  Connect to the Grid and send tasks

e Recompose the filtered regions into the resulting image after the tasks are completed
The time required to perform these sub-tasks depends on the number of regions we decide to create; for
these reason choosing the right number of regions can greatly influence the overall computation time.
Nonetheless, the time required to perform these tasks is only a fraction of the entire computation time and
is far less than the time required to perform filtering. This is particularly true for large images. Moreover,
we can observe that image recomposition can be performed while the filtering process is still running
without spending additional time. The reason behind this is that as soon as the grid tasks are completed the
corresponding sub-region in the resulting image is filled with the filtered data. The recomposition time is
then negligible in comparison to the slicing and the applicaction setup times. Thus the recomposition time
can be excluded for computing the overall filtering time.



4. Exploiting the Power of the Grid: ImageGrid Implementation

ImageGrid is an application that allows users performing basic filtering operations on digital images. It
relies on the Alchemi Grid computing infrastructure to perform filtering. ImageGrid allows you to run
image filters in three different modes:

®  Default: on the local node without parallel execution

®  Threaded: on the local node with parallel execution

®  Alchemi: on multiple nodes by exploiting the services of Alchemi
The application keeps track of the execution timing along with a wide range of statistics for the parallel
execution modes. In particular, it is possible to see the timing for each slice and to collect the maximum,
the minimum and the average execution time. By using this historical data the user can be supported in
selecting the best execution mode for a given image.
ImageGrid is developed using the .NET Framework 2.0 and does not require anything more than the
framework and the Alchemi libraries available for free download from http://www.alchemi.net.

4.1. Alchemi
Alchemi is an open source, .NET-based enterprise Grid computing framework developed by researchers at
the GRIDS laboratory, in the Computer Science and Software Engineering Department at the University of
Melbourne, Australia. It lets the user to painlessly aggregate the computing power of networked machines
into a virtual supercomputer and develop applications to run on the Grid with no additional investment and
no discernible impact on users. Alchemi supports the Microsoft Windows operating system and the main
features offered by the framework are:

e  Virtualisation of compute resources across the LAN/internet

e Ease of deployment and management

e  Web Services interface for interoperability with Grid meta-schedulers
Three components constitute the architecture of an Alchemi Grid (see Figure 3):

e  The Manager

e  The Executor

e The User application
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Figure 3 — Alchemi architecture.

The Manager node is a computer with the Alchemi Manager installed. Its main function is to service user
requests for application distribution. On receiving a user request, the Manager authenticates it, and
distributes the workload across the various executors that are connected to it. The Executor node is the
node that actually performs the computation. By using the Alchemi Software Developer’s Kit users can
easily create the applications and run and monitor their execution on the Grid.
Alchemi offers two different programming models:
e  Object-oriented Grid thread programming model. This model is suitable for Grid application
development: a Grid application consist of a set of Grid threads which define the tasks performed
by the application and are executed on the Grid.



e File-based Grid job model. This model allows legacy applications running on the Grid. In this case
the users submit a job to the Grid which consists of an executable that will be run on the Grid
Executor nodes.

By using the first model we take advantage of all the APIs available with the .NET framework while the
second model is useful when we want to Grid-enable legacy/existing applications without changing their
codebase. Alchemi is widely used for a variety of applications. It has been used for teaching, setting up test
Grids and also for some commercial applications.

4.2, ImageGrid

ImageGrid is the GUI application which allows users performing basic image editing using predefined
filters. Users can load images from the file system, apply the filters and save the results. Along with the
basic filtering operations (edge detection, smoothing, Gaussian blur, sharpening, mean removal, and
emboss) users can define their own linear filter by defining the kernel matrix through the settings dialog.
The settings dialog also allows users providing the connection parameters to the Alchemi Grid and other
properties for the parallel execution such as the slices dimension of the slices and recomposition mode.
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(a) Original Image (b) Emboss Filetred Image

Figure 4 — A snapshot of ImageGrid GUI. Image used in creating emboss is a photo of ones of the authors
(Buyya) taken with Prof. Niklaus Wirth who is the inventor of Pascal language.

Figure 4 shows the structure of the GUI and its usage in emboss operation. The working area hosts a tabbed
interface in which the user can compare the filtered image and the original one. All the information about
the current filtering task (image dimensions, size, filtering mode, and kernel) are mantained into a property
page. ImageGrid records the execution times of each filters and provides a history of all the filters run: this
feature allows users to compare the different runs quickly.

The GUI acts as the front-end of the imaging library which actually performs image filtering. All the filters
must implement the IFilter interface which defines the basic operation each filter should support. In order
to integrate the GUI with Alchemi we developed a filter class implementing the IFilter interface which
connects to the Alchemi Grid computing infrastructure and applies filtering as described in Figure 2.

5. Performance Evaluation

We have run some tests in order to compare the performance of the different execution modes. We set up
different tests by varying the following parameters:

¢ Image dimensions

e Slice dimensions

e Kernel dimensions
In order to run the tests we used a Pentium 4, 2.80 GHz with 2 GB RAM as local machine, while the
Alchemi Grid was composed by 6 - 1 manager and 5 executors - Dell OPTIPlex GX 2f0 Pentium IV 3.40
GHz, 1.5 G of RAM connected through a 100 Mbps LAN. All the machines used in the test were running
Windows XP SP2 and .NET framework 2.0.



Table 1 presents the timining statistics (hh.mm:ss.d) for the different filtering modes which have been
tested with four different image sizes and four different kernel dimensions. As mentioned earlier in the case
of parallel filtering only the slicing time is taken into account.

Default Parallel Thread
Image Size Kemel 5 128x%128 256256 512x512 10241024

Single Thread) Threaded Alchemi Slicing Threaded Alchemi Slicing = Threaded Alchemi Slicing Threaded Alchemi Slicing
10205x1752 9x9 01.26:03.6 S0:536 12380 03042 45327 09264 00529 44546 08:458 00131 4027 08575  00:037
7 00.41:42.5 32150 09442 03035 28316 06156 00483 27465 05375 00:18.1 27438 05457 00:04.5

Sxb 00.21:19.1 18402 07806 03056 16364 03513 00482 14627 03136 000160 14417 03088 000458
3x3 00.08:14.2 11193 08:086 02681 08674 02190 00628 06074  01:308 000144 05544 012168 00040

3072x2304 Ox9 00.29:54 4 2x008 042189 00280 18502 03421 00073 18:58.8 03:288 00020 @ 182768 04524 00010
IxT 00.19:09.5 12638 03032 0021 12000 02265 00:064 11:696 02211 00022 11449 0022 00O
S 00.08:56.5 07:398 02128 00298 06464 01285 00078 06:23.9 01:196 00024  OE383  01:402 00009
3x3 00.03:46.5 02570 01455 002269 02254 00:487 00076 02216 00:38.1  00:027 02221 00:457  00:008
204831365 Oxd 0012:22.0 07278 01371 00047 OF 106 01270 00013 07110 01:391 00005  O7060 2 O424 00004
IxT 00.07:33.0 04:448 01121 0O0OBS 04326  00:558 00015 04:306 0558 00005  Os003  01:31.8  00:00.3
Sxh 00.04:16.9 02:437 00492 00052 02295 00:342 00018 02:234 00:341 00007 02259 00551 00003
x3 00.01:41.8 01:006 00367 00053 00557 00188 00014 00:55.9 00:16.1  00:00.4 00547 00:231 00:00.2
1024x683 9x9 00.02:20.7 01:521 00285 00004 O1:50.4 ©00:253  00:002 01:56.9 00:37.7 00:00.1  O2132 01:37.3 00:002
IxT 00.01:21.9 01101 00176 00004 01080 @ 00467  00:001 01:09.8 002468 00001 01256 01016 00002
Sxh 00.00:42.6 00375 00128 00004 000361 00102 00002 0037 7 00:145  00:001  DO:448 00326 00:00.1
Ix3 00.00:16.8 00147 00098 DO:O0S 000138 00064 O0:001 00138 00:07.3 00001 DO16d4 00158 00002

Table 1 — Filter timing (hh.mm:ss.d).

The data represented in Table 1 shows that the use of Alchemi as computing backbone helps speeding up
the image filtering process. This performance gain becomes more evident as the size of the image
increases. The best results for the given configuration of Alchemi have been obtained with 256x256 and
512x512 slices. Figure 5 shows the comparison of execution times of the default mode with the worst runs
of the parallel modes along with the time required to divide the image into slices: it can be observed that
Alchemi gives always the best performance. In this case the time spent to divide the image in slices is just a
small fraction of the overall execution time of the filter. Even when the two parallel filtering modes
(Threaded and Alchemi) give comparable processing times the use of Alchemi has an advantage in that it
does not cause a high percentage of CPU usage on the local machine.

Filter Execution Timing
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Figure 5 — Filter timing histogram.



6. Conclusion and Future Work

The use of Alchemi for image filtering — and of Grid computing in general — is a real advantage and its
integration into ImageGrid has been a seamless task. ImageGrid is a proof of concept effort demonstraing
seamless integration of desktop applications with light-weight Grids. It also demonstrates the strategy used
and how it can be adopted in existing imaging software like PaintShop Pro or Photoshop. Another
interesting idea is to try to plug-in Grids into the Paint.NET open source project. Paint. NET is a .NET-
based imaging application which uses an architecture similar to ImageGrid to implement image filters.
Paint.NET is a popular imaging software and the introduction of such a feature into its code base would
really contribute to making the Grid computing resources available to end users with no burden.
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