
Sensor Web Architecture: Core Services
#Xingchen Chu1, Tom Kobialka2, Rajkumar Buyya1

GRIDS Lab
1
 and NICTA Victoria Lab

2

Department of Computer Science and Software Engineering

Faculty of Engineering

The University of Melbourne, Australia

{xchu,tkob,raj}@csse.unimelb.edu.au

Abstract

As sensor network deployments begin to grow there emerges

an increasing need to overcome the obstacles of connecting

and sharing heterogeneous sensor resources. Common data

operations and transformations exist in deployment scenarios

which can be encapsulated into a layer of software services

that hide the complexity of the underlying infrastructure from

the application developer. NOSA is a built upon the Sensor

Web Enablement (SWE) standard defined by the Open GIS

Consortium (OGC), which is composed of a set of

specifications, including SensorML, Observation &

Measurement, Sensor Collection Service, Sensor Planning

Service and Web Notification Service. It presents a reusable,

scalable, extensible, and interoperable service oriented

Sensor Web architecture that (i) conforms to the SWE

standard; (ii) integrates Sensor Web with Grid Computing

and (iii) provides middleware support for Sensor Webs.

Keywords
Sensor Web, SensorML, Service-Orientated Architecture,

Observation and Measurement, Sensor Collection Service,

Sensor Planning Service, Web Notification Service, NOSA.

1. INTRODUCTION

Sensor networks are persistent computing systems composed

of large numbers of sensor nodes. Sensor nodes communicate

with one another over wireless low-bandwidth links and have

limited processing capacity. Sensor nodes work together to

collect information about their surrounding environment, this

may include things like temperature, light intensity or GPS

location. As sensor networks grow and rapidly improve in

their ability to measure real-time information in an accurate

and reliable fashion, a new research challenge, on how to

collect and analyze this generated information presents itself.

Deployment scenarios for sensor networks are countless and

diverse, sensors may be used for military applications,

weather forecasting, tsunami detection, pollution detection,

for power management in schools and office buildings. In

many of these cases the software management tools for data

aggregation, archiving and decision making are tightly

coupled with the application scenario. However, as sensor

systems begin to grow and mature a set of common data

operations and transformations begin to emerge. For example,

all application scenarios will need to send queries to a sensor

network and retrieve some resulting data. Some scenarios

may require information from historic queries be stored in a

repository for further analysis. Others may require regular

queries to be scheduled and automatically dispatched without

external operator intervention. There is a growing need to

share resources among diverse network deployments to aid in

tasks like decision making. For example, a tsunami warning

system may rely on water level information from two

geographically distributed sets of sensors developed by

competing hardware vendors. This presents significant

challenges in resource interoperability, fault tolerance and

software reliability.

In NICTA Open Sensor Web Architecture (NOSA), we aim

to implement a set of uniform operations and a standard

representation for sensor data which will fulfill the software

needs of a sensor network regardless of the deployment

scenario. We adopt a Service Orientated Architecture (SOA)

approach to describe, discover and invoke services from a

heterogeneous platform using XML and SOAP standards.

Services are defined for common operations including data

aggregation, scheduling, resource allocation and resource

discovery. Combing sensors and sensor networks with a SOA

is an important step forward in presenting sensors as

important resources which can be discovered, accessed and

where applicable, controlled via the World Wide Web. We

refer to this combination of technologies as the Sensor Web.

It opens up the opportunity for linking geographically

distributed sensor and computational resources into a sensor-

grid.

Pollution Detection

Computer Grid

Instrument

Weather Forecast

Tsunami Detection

Researcher

Collaborators

Software, Model, Workflow

Sensor Nets

Historical Data

Fig. 1: Vision of the Sensor Web.

Fig. 1 demonstrates an abstract vision of the Sensor Web,

various sensors and sensor nodes form a web view and are

treated as available services to all the users who access the

Web. A researcher may wish to predict if a tsunami is going

to occur, they may query the entire Sensor Web and retrieve

the response either from real-time sensors that have been

registered on the Web or from historic sensor data available in

a remote database. The clients are not aware of where the real

sensors are and what operations they may have, although they

are required to set parameters for their plan and invoke the

service.

In Section 2 we describe the OGC Sensor Web Enablement

(SWE) method, Section 3 introduces the Service-Orientated

Architecture, and Section 4 details the Design and

Implementation behind NOSA, including detailed sections on

the core implemented services including the Sensor

Collection Service (SCS), Sensor Planning Service (SPS) and

Web Notification Service (WNS). Section 5 provides a

detailed performance evaluation of NOSA.

2. OGC SENSOR WEB ENABLEMENT

Sensor network applications have been successfully

developed and deployed around the world. Concrete examples

include deployments on Great Duck Island [3], Cane-toad

monitoring [4] and for Soil Moisture Monitoring [5].

However, lack of software interoperability prevents users

from accessing resources generated by these applications

without specialized tools. Moreover, lack of semantics to

describe the sensors makes it impossible to build a uniform

registry to discover and access these sensors. In addition,

internal information is often tightly coupled with the specific

deployment application rather than making use of standard

data representations, this restricts the ability for mining and

analyzing the data for decision making.

Imagine hundreds of in-site or remote weather sensors

providing real-time measurements of current wind and

temperature conditions for multiple metropolitan regions. A

weather forecast application may request and present the

information directly to end-users or other data acquisition

components. A collection of Web-based services may be

involved in order to maintain a registry of available sensors

and their features. Also consider that the same Web

technology standard for describing the sensors, outputs,

platforms, locations and control parameters is in use beyond

the boundaries of regions or countries. This enables the

interoperability necessary for cross-organization activities,

and it provides a big opportunity in the market for customers

to receive a higher quality of service. These needs drive the

Open Geospatial Consortium (OGC) [1] to develop the

geospatial standards that will make the "open sensor web"

vision a reality [2].

In general, SWE is the standard developed by OGC that

encompasses specifications for interfaces, protocols and

encodings that enable discovering, accessing, obtaining

sensor data as well as sensor-processing services. The

following are the five primary specifications for SWE:

1. Sensor Model Language (SensorML) [7] – Information

model and XML encodings that describe either a single

sensor or sensor platform in regard to discovery, query

and control of sensors.

2. Observation and Measurement (O&M) [14] –

Information model and XML encodings for observations

and measurement.

3. Sensor Collection Service (SCS) [17] – Service to fetch

observations, which conform to the O&M information

model, from a single sensor or a collection of sensors. It

is also used to describe the sensors and sensor platforms

by utilizing SensorML

4. Sensor Planning Service (SPS) [18] – Service to help

users build a feasible sensor collection plan and to

schedule requests for sensors and sensor platforms.

5. Web Notification Service (WNS) [19] – Service to

manage client sessions and notify the client about the

outcome of the requested service using various

communication protocols.

Fig. 2: A typical collaboration within Sensor Web Enablement

Framework.

As [6] stated, the purpose of SWE is to make all types of

web-resident sensors, instruments and imaging devices, as

well as repositories of sensor data, discoverable, accessible

and, where applicable, controllable via the World Wide Web.

In other words, the goal is to enable the creation of Web-

based sensor networks. Fig. 2 demonstrates a typical

collaboration between services and data encodings of SWE.

3. SERVICE-ORIENTED SENSOR WEB

NICTA Open Sensor Web Architecture (NOSA) is an OGC

SWE standard compliant software infrastructure for providing

service based access to and management of sensors. NOSA is

a platform for integration of sensor networks and emerging

distributed computing platforms such as SOA and Grid

Computing. The integration brings several benefits to the

community. First, the heavy load of information processing

can be moved from sensor networks to the backend

distributed systems such as Grids. This separation is

beneficial because it reduces the energy and power needed by

the sensors, allowing them to concentrate on sensing and

sending information. The information processing and fusing

is performed on a separate distributed system. Moreover,

individual sensor networks can be linked together as services,

which can be registered, discovered and accessed by different

clients using a uniform protocol. As [8] stated, Grid-based

sensor applications are capable of providing advanced

services for smart-sensing by developing scenario-specific

operators at runtime.

The various components defined for NOSA are showed in

Fig. 3. Four layers have been defined, namely Fabric,

Services, Development and Application. Fundamental

services are provided by low-level components whereas

higher-level components provide tools for creating

applications and management of the lifecycle of data captured

through sensor networks. NOSA provides the following

sensor services:

1. Sensor notification, collection and observation;

2. Data collection, aggregation and archival;

3. Sensor co-ordination and data processing;

4. Faulty sensor data correction and management, and;

5. Sensor configuration and directory service

Sensor1 Sensor2 Sensor3 Sensor4 SensorN….

NICTOR Sensor Field

iModel+Encoding:
1. SensorML

2. Observation &
Measurements

Sensor
Directory
Services

Sensor
Data Grid
Services

SensorGrid
Processing
Services

Sensor
Planning
Services

Sensor
Notification
Services

Sensor
Collection/
Observation

Services

Sensor
Coordination
Services

Sensor Programming Framework
(APIs, Visual Tools)

Water
Information

Network

Barrier Reef

Observation
Network

Secure

Australia
Network ….

ZigBee/IEEE 802.15.4 protocols

SensorWeb

Simulation
or

Emulation

Safe
Transportation

and
Roads

Tsunami

Detection
Network

Actuator1 Actuator2 Actuator3 ActuatorM….

Sensor
Configuration
Services

Faulty Sensor
Data Correction &

Management Services

Third Party

Tools
….

Pollution
Monitoring

Network

Sensor1 Sensor2 Sensor3 Sensor4 SensorN….

NICTOR Sensor Field

iModel+Encoding:
1. SensorML

2. Observation &
Measurements

Sensor
Directory
Services

Sensor
Data Grid
Services

SensorGrid
Processing
Services

Sensor
Planning
Services

Sensor
Notification
Services

Sensor
Collection/
Observation

Services

Sensor
Coordination
Services

Sensor Programming Framework
(APIs, Visual Tools)

Water
Information

Network

Barrier Reef

Observation
Network

Secure

Australia
Network ….

ZigBee/IEEE 802.15.4 protocols

SensorWeb

Simulation
or

Emulation

Safe
Transportation

and
Roads

Tsunami

Detection
Network

Actuator1 Actuator2 Actuator3 ActuatorM….

Sensor
Configuration
Services

Faulty Sensor
Data Correction &

Management Services

Third Party

Tools
….

Pollution
Monitoring

Network

Applications

Layer

Application
Development
Layer

Application
Services

Layer

Sensor Fabric

Simulation
Environment

Fig. 3: High-level view of NICTA Open Sensor Web Architecture.
Besides the core services derived from the SWE, such as the

SCS, SPS and WNS, there are several other important

services in the service layer. The Sensor Directory Service

provides the capability of searching for and registering remote

services and resources. The Sensor Coordination Service

enables the interaction between groups of sensors, which

monitor different kinds of events. The Sensor Data Grid

Service publishes and maintains replicas of sensor data

collected from sensor deployments. The Sensor Grid

Processing Service collects the sensor data and processes it

utilizing grid services. The development layer focuses on

providing useful tools in order to ease and accelerate the

development of sensor applications.

NOSA mainly focuses on providing an interactive

development environment, an open and standards-compliant

Sensor Web services middleware and a coordination language

to support the development of various sensor applications.

SWE only provides the principle standard of how the Sensor

Web looks, and does not have any reference implementation

or working system available to the community; therefore,

there are many design issues to consider, including all of the

common issues faced by other distributed systems such as

security, multithreading, transactions, maintainability,

performance, scalability and reusability, and the technical

decisions that need to be made about which alternative

technologies are best suitable to the system. Fig. 4 depicts a

prototype instance of NOSA, the implementation concentrates

on the Service Layer and Sensor Layer as well as the XML

encoding and the communication between the sensors and

sensor networks. The following section will describe the key

technologies that are relevant to different layers of NOSA. In

addition, the design and implementation of the core services

are presented in this section.

Sensor Layer

Service Layer

Application Layer

Sensor Operating System

Physical Layer

Sensor

Application

Sensor

Application

Sensor Collection Service

Sensor Planning Service

Sensor Development Tools Third Party Tools

High Level

Application

High Level

Application

XML Messages

Web Notification Service

Sensor Repository Service

Information
Model&Encoding

Sensor

Simulator

Emulator

sensors

Sensor Data & Messages

Fig. 4: A prototype instance of NOSA

4. DESIGN AND IMPLEMENTATION

Currently, the primary design and implementation of NOSA

focuses on the core services including SCS, WNS, and SPS

(which extend from the SWE) as well as the Sensor

Repository Service (SRS) that provides a persistent data

storage mechanism for the sensor and the observation data.

Sensor Planning
Service

3 Planning Request

WSDL

Sensor
Registry
Service

W
S

D
L

1 Search available service

2 SPS WSDL Address
Web Notification

Service

WSDL

W
S

D
L

4 R
egis

te
r U

ser

Sensor Collection
Service

WSDL

W
S

D
L

5 U
ser I

D

6 Get Observation

8 Return O&M

9 C
olle

ctio
n D

ata
 R

eady

10 Notify User

Sensor Repository
Service

WSDL

W
S

D
L

7 S
to

re
 O

&M

Fig. 5: A typical invocation for Sensor Web client.

Fig. 5 illustrates an example of a client collection request and

the invocations between relating services. As soon as the end

user forwards an observation plan to the SPS, the service

checks the feasibility of the plan and submits it if feasible.

The user will be registered in the WNS during this process

and the user id will return to the SPS. The SPS is responsible

for creating the observation request according to user’s plan

and retrieving the O&M encoded data from the SCS. Once

the O&M data is ready, the SPS will send an operation

complete message to the WNS along with the user id and task

id. The WNS will then notify the end user to collect the data

via email or other protocols it supports.

The following sections describe in detail the core set of

implemented services implemented in NOSA, namely the

SCS, SPS and WNS.

S
e
n
s
o
r

C
o
n
n
e
c
to

r

Tiny DB

Tin
y O

S

Sensor Collection
Service

3 Query for data

4 Observation data

WSDL

Sensor
Registry
Service

W
S

D
L

1 Search available service

2 SCS WSDL Address

ProxyProxy

DB Connector

O/R Mapping(JDO)

Database
Sensor Observation Archives

Fig. 6: Sensor Collection Service Architecture.

A. Sensor Collection Service

Within the core services of NOSA, the SCS is one of the most

important components residing in the service layer. The SCS

is the fundamental and unique component that communicates

directly with sensor networks, it is responsible for collecting

real time sensing data and then translating the resulting raw

information into a XML based O&M encoding for other

services to utilize and process. The SCS is the gateway for

entering into the sensor networks from outside clients. The

design of the SCS provides an interface to both streaming

data and query based sensor applications that are built on top

of TinyOS [9] and TinyDB [10] respectively. Fig. 6 illustrates

the architecture of the SCS. The service conforms to the

interface definition that is described by the OGC SCS

Specification and has been designed as a Web Service which

works by connecting via a proxy to either real sensors or a

remote repository database. Clients need to query the Sensor

Registry Service to retrieve an available SCS WSDL address

a data query request is then sent via SOAP to the SCS in

order to obtain the resulting encoded observation data

conforming to the O&M specification.

The proxy acts as an agent working with various connectors

that connect to the resources holding the information and

which encode the raw observation into O&M compatible

data. Different types of connectors have been designed to fit

into different types of resources including sensor networks

running on top of TinyOS or TinyDB and remote observation

data archives. The proxy needs to process the incoming

messages from the client in order to determine what kind of

connectors, either real-time based or archive based, to use.

The design of the SCS is flexible and makes it simple to

extend for further development if alternative sensor operating

systems are adopted by the sensor networks, these may

include MANTIS [11] or Contiki [12]. Besides a sensor

operating system specific connector no modifications need to

be made in the current system. The design of the proxy also

encourages the implementation of a cache mechanism to

improve the scalability and performance of the SCS. Load

balancing mechanisms can be added to the system easily as

well, by simply deploying the web service to different

servers.

Sensor Planning
Service

WSDL

Sensor
Registry
Service

W
S

D
L

1 Search available service

2 SPS WSDL Address

3 Make a plan

4 Feasible or not

5 Submit feasible plan

6 Submit Success or fail

Scheduler

Rule Engine

Feasibility check

Schedule request

Sensor
Collection

Service

Web
Notification

Service

Get Observation

Do Notification

DataCollector

Notify client outcome and

where to collect the data

Store Data

Fig. 7: Sensor Planning Service Architecture.

B. Sensor Planning Service

The design of the SPS considers both the short-term and long-

term requirements of the user’s plan, which means that the

SPS must provide response to the user immediately, rather

than blocking to wait for the collection results. Shown in the

Fig. 7, the SPS utilizes a rule engine which reads a specific

set of predefined rules in order to clarify the feasibility of the

plan made by the user. The implementation of the rule engine

can be quite complicated, expecting the system to accept rules

within a configuration file as plain text, XML-based or other

types of rule-based languages. Currently, the rule engine is

implemented as an abstract class that can be extended by the

application developers to specify a set of boundary conditions

that define the feasibility of the applications. For example, in

a simple temperature application, a boundary condition for

the temperature may be a range from 0 to 100. The most

important component that makes the SPS suitable for short or

long term plan execution is the Scheduler which is

implemented as a separate thread running in the background.

The execution sequence of the Scheduler is as following; (i)

the scheduler composes a collection request according to

user’s plan and then invokes the getObservation call on the

SCS, (ii) it asks the DataCollector to store the resulting

observation data for users to collect afterward, and (iii) sends

notification to the WNS indicating the outcome of the

collection request. The time of the execution in the scheduler

varies based on the requirements of the user’s plan. The client

receives a response indicating that ther plan will be processed

right after the plan is submitted to the SPS. The scheduler

deals with the remaining time consuming activities. The client

may get the notification from the WNS as soon as the WNS

receives a message from the scheduler, the client can then

collect results from the DataCollector.

C. Web Notification Service

The current design of WNS is displayed in Fig. 8, it contains

two basic components: AccountManager and Notification.

The SPS may request to register users via WNS, which asks

the AccountManager to manage the user account in the

DBMS in order to retrieve user information in the subsequent

operations. The Notification is used to create a specific

communication protocol and send the messages via the

protocol to the user that has been registered in the DBMS.

Currently, an EmailCommunicationProtocol has been

implemented to send messages via email. Further

implementations can be easily plugged into the existing

architecture by implementing the CommunicationProtocol

interface with a send method.

Web Notification
Service

WSDL

Sensor
Registry

Service

W
S

D
L

Search available service

WNS WSDL Address

Register User

Account

Manager

User Registration

MySQL DB

Notification

Notify Registered User
Send

Notification

Communication
Protocol

Specify protocol

Fig. 8: Web Notification Service Architecture.

5. PERFORMANCE EVALUATION

 The experiment platform for the services was built on

TOSSIM (described by [15] as a discrete event simulator that

can simulate thousands of motes running complete sensor

applications and allow a wide range of experimentation) and

Crossbow’s MOTE-KIT4x0 MICA2 Basic Kit [16] which

consists of 3 Mica2 Radio boards, 2 MTS300 Sensor Boards,

a MIB510 programming and serial interface board. The

experiment concentrated on the SCS, due to the fact that it is

the gateway for other services to sensors, which would be the

most heavily loaded service and possible bottleneck for the

entire system.

Fig. 9: Deployment of Experiment

Fig. 9 illustrates the SCS as deployed on Apache Tomcat 5.0

server running on two different machines, one of which is

hosting the TinyDB application under TOSSIM and the other

the Temperature Monitoring application under Crossbow’s

motes. A Sensor Registry Service is also configured on a

separate machine that provides the functionality to access the

sensor registry and data repository.

A simple temperature monitoring application has been

developed. The application is programmed using nesC [13]

and uses simple logic, which broadcasts the sensing

temperature, light and node address to the sensor network at

regular intervals. The simple application does not consider

any multi-hop routing or energy saving mechanisms. Before

installing the application on the Crossbow motes, the

functionality is verified under the TOSSIM simulator. Once

the application has been successfully installed onto each mote

via the programming board, a wireless sensor network is

setup using the two nodes and one base station connecting to

the host machine via the serial cable. Besides installing the

application itself, the SerialForwarder program also needs to

run on the host machine in order to forward the data from the

sensor network to the server. Fig. 10 displays the results

retrieved by a client from the SCS interfaced with the

temperature monitoring application. The light intensity level

is illustrated by the graph plot; two individual sensors each

take recordings at 100ms intervals. Recordings from sensor

one are illustrated in the top half of the window and sensor

two on the bottom half. A change in the graph plot indicates a

variance in the incoming light intensity for each sensor. The

left-hand-side column contains SensorML descriptions of the

sensors retrieved by the client from the SCS.

Fig. 10: Client showing visualization of results received from

temperature monitoring application called from SCS

Regarding scalability, a simulation program that can stimulate

a varying number of clients running simultaneously has been

used exclusively for the SCS. The performance measured by

time variable (per second) for both auto-sending and query-

based applications running on top of TinyOS is displayed in

the following figures. Fig. 11 displays the result of the auto-

sending mode application; the response time is moderate

when the number of clients who request the observation

simultaneously is small. Even when the number of clients

reaches 500; the response time for a small number of records

is also acceptable. In contrast, the result show in Fig. 12 is

fairly unacceptable as even just one client requesting a single

observation takes 34 seconds. The response time increases

near linearly when the number of clients and the number of

records increase. The reason why the query-based approach

has very poor performance is due to the execution mechanism

of TinyDB. A lot of time is spent on initializing each mote,

and the application can only execute one query at one time,

which means another query needs to wait until the current

query has completed or is terminated. A solution to this

problem may require the TinyDB application to run a generic

query for all clients, and the more specific query can be

executed in-memory according to the observation data

collected from the generic query. There are several possible

ways to enhance the performance. A caching mechanism may

be one of the possible approaches, recently collected

observation data can be cached in a proxy for a limited time

period, such that clients requesting the same set of

observation data can simply read it from the cache. Response Time for collecting real-time data0100200300400
Number of ClientsSecond 1 record10 records20 records1 record 2.047 2.097 3.569 22.90410 records 12.14 16.29 27.032 173.4820 records 24.52 32.904 54.602 354.861 5 50 500

Fig. 11: Performance for collecting auto-sending data. Response Time for collecting TinyDB query data0200400600

Number of ClientsSecond 1 record10 records20 records1 record 34.2635 164.3177510 records 76.5 395.27252520 records 96.05 492.211 5

Fig. 12: Performance for collecting TinyDB query data.

However, as the data should be kept as close to real time as

possible, it is rather difficult to accurately determine the

period of time for the cache to be valid. An approximate

decision can be made according to the dynamic features of the

information the application is targeting. For example, the

temperature for a specific area may not change dynamically

by minutes or by hours. Consequently, the time period for

setting the cache for each sensor application can vary based

on the information the sensor is targeting. Enhancement of

query performance may be achieved by utilizing the XQuery

of the XML data directly as opposed to querying the real

sensor itself and executing the query in a similar fashion to

TinyDB.

6. CONCLUSION

NOSA is an implementation of OGC SWE standard which

standardizes the vision of Sensor Web. SensorML, O&M,

SCS, SPS and WNS are coupled together, to create an

integrated platform for registering, discovering and accessing

heterogeneous distributed sensors using Web Services. We

have introduced the design and implementation of the core

services in NOSA. In future work we aim to extend NOSA

beyond the SWE and provide additional services for

processing information collected from sensor resources

accompanied by computational grids. We have detailed the

scalability and performance of the prototype SCS which

forms the backbone of the core services. The development of

NOSA is still in its early stages. Future works include

implementing all methods described in the specifications of

SWE services but which are not available currently, a caching

mechanism for the SCS and extension of notification

protocols for the WNS.

 ACKNOWLEDGEMENT
We would like to thank Bohdan Durnota for his technical

guidance while formulating and designing initial prototype.

We thank Jiye Lin for his contribution towards the

development of SensorWeb repository. We thank all members

of the NOSA project especially those involved in advancing

SensorWeb into the future. Special thanks to Ingebjorg Theiss

for her contribution of the client GUI snapshot (GUI code

presented in Fig. 10).

REFERENCES

[1] http://www.opengeospatial.org/

[2] http://www.geoplace.com/uploads/FeatureArticle/0412ee

.asp

[3] Mainwaring A, Polastre J, Szewczyk R, Culler D,

Anderson J (2002) Wireless sensor networks for habitat

monitoring, 1st ACM International Workshop on

Wireless Sensor Networks and Applications, Sept. 28,

Atlanta, GA, USA.

[4] Hu W, Tran VN, Bulusu N, Chou CT, Jha S, Taylor A

(2005) The Design and Evaluation of a Hybrid Sensor

Network For Cane-toad Monitoring. Information

Processing in Sensor Networks, April 25-27, Los

Angeles, CA, USA.

[5] Cardell-Oliver R, Smettern K, Kranz M, Mayer K (2004)

Field Testing a Wireless Sensor Network for Reactive

Environmental Monitoring. International Conference on

Intelligent Sensors, Sensor Networks and Information

Processing, December 14-17, Melbourne, Australia.

[6] Reichardt M (2005) Sensor Web Enablement: An OGC

White Paper. Open Geospatial Consortium (OCG), Inc.

[7] http://vast.nsstc.uah.edu/SensorML/

[8] Tham CK, Buyya R (2005) SensorGrid: Integrating

Sensor Networks and Grid Computing. CSI

Communications 29:24-29.

[9] http://www.tinyos.net/

[10] http://telegraph.cs.berkeley.edu/tinydb/

[11] http://mantis.cs.colorado.edu/index.php/tiki-index.php

[12] http://nescc.sourceforge.net/

[13] http://www.sics.se/~adam/contiki/index.html

[14] Cox S, (2006) Observations and Measurements OGC 05-

087r3, Open Geospatial Consortium Inc,

http://portal.opengeospatial.org/modules/admin/license_agree

ment.php?suppressHeaders=0&access_license_id=3&target=

http://portal.opengeospatial.org/files/index.php?artifact_id=14

034

[15] Levis P, Lee N, Welsh M, Culler D (2003) TOSSIM:

Accurate and. Scalable simulation of entire TinyOS

applications. 1st Intl. Conf. on Embedded Networked Sensor

Systems, November 4-7, Los Angeles, CA, USA.

[16] http://www.xbow.com/Products/productsdetails.aspx

[17] McCarty T, (2003) Sensor Collection Service OGC 03-

023r1, Open GIS Consortium Inc.

[18] Simonis I, (2005) Sensor Planning Service OGC 05-

089r1, Open GIS Consortium Inc.

[19] Simonis I, Wytzisk A, (2003) Web Notification Service

OGC 03-008r2, Open GIS Consortium Inc.

