A Taxonomy of Desktop Grids and its Mapping to
State-of-the-Art Systems

SUNGJIN CHOI, RAJKUMAR BUYYA
University of Melbourne, Australia
and

HONGSOO KIM, EUNJOUNG BYUN
Korea University, Korea

and

MAENGSOON BAIK

Samsumg SDS, Korea

and

JOONMIN GIL

Catholic University of Daegu, Korea
and

CHANYEOL PARK

Supercomputing Center, KISTI, Korea

Desktop Grid has emerged as an attractive computing paradigm for high throughput applica-
tions. In Desktop Grid systems, numerous desktop computers owned by different individuals are
employed as computational resources at the edge of the Internet. Accordingly, building such sys-
tems is complicated due to resources’ heterogeneity, failures, non-dedication, volatility and lack
of trust. Therefore, it is important to comprehend how these distinct characteristics impact on
architecture, execution model, resource management, and scheduling. In this article, architectural
elements are investigated and then a new taxonomy of Desktop Grids is proposed. The taxonomy
puts emphasis on: (a) system, (b) application, (c) resource, and (d) scheduler perspectives. Then,
the proposed taxonomy is mapped to various state-of-the-art systems to identify their unique el-
ements, strengths, weaknesses, and challenges. Based on these mapping studies, a gap analysis is
performed and the future directions of Desktop Grids are proposed, which help with better design
and development of new systems and scheduling algorithms.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks|: Distributed
systems—distributed applications; H.3.4 [Information Storage and Retrieval]: Systems and
Software—Distributed systems

General Terms: Design, Algorithm, Management

Additional Key Words and Phrases: Desktop Grid, scheduling, resource management, taxonomy

Author’s address: SungJin Choi, Grid Computing and Distributed Systems Laboratory, Depart-
ment of Computer Science and Software Engineering, University of Melbourne, 5.21/111 Barry
Street, Carlton, Victoria 3053, Australia; email:lotieye@csse.unimelb.edu.au

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0360-0300/20YY/1200-0001 $5.00

ACM Computing Surveys, Vol. V, No. N, Month 20YY, Pages 1-61.

2 . SunglJin Choi et al.

1. INTRODUCTION

Grid computing has recently emerged as a promising paradigm for high performance
or high throughput applications because of the vast development of powerful com-
puters and high-speed network technologies as well as their low cost [Berman et al.
2003; Foster and Kesselman 2004; Li and Baker 2004; Baker et al. 2002; Foster
and Tamnitchi 2003]. It aims to aggregate heterogeneous, large-scale and multiple-
institutional resources, and to provide transparent, secure and coordinated access to
various computing resources (for example, supercomputer, cluster, scientific instru-
ment, database, storage, etc.) owned by multiple institutions by creating virtual
organization [Berman et al. 2003; Foster and Kesselman 2004; Li and Baker 2004;
Baker et al. 2002; Foster and Iamnitchi 2003]. On the other hand, Desktop Grid
computing! aims to harvest a number of idle desktop computers owned by indi-
viduals at the edge of the Internet [Foster and Iamnitchi 2003; BOINC ; Fedak
et al. 2001; Chien et al. 2003; Sarmenta 2001; Kondo 2005; Choi et al. 2007]. It
has recently gained rapid interest and attraction because of the success of the most
popular examples such as GIMPS [GIMPS], distributed.net [Distributed.net] and
SETI@Home [SETI@home |.

Desktop Grid computing is a type of Grid computing, but there are several dis-
tinct differences between them in terms of the type and characteristics of resources
and the type of sharing (see Table I). Building such systems, especially offering
enterprise class services, is complicated due to resources’ heterogeneity, failures,
non-dedication, volatility and lack of trust, since they are at the edge of the In-
ternet and owned by individuals [Milojicic et al. 2002; Barkai 2002; Steinmetz and
Wehrle 2005; Subramanian and Goodman 2005; BOINC ; Anderson 2004; Taufer
et al. 2005; Fedak et al. 2001; Chien et al. 2003; Sarmenta 2002; Zhou and Lo 2005;
Zhao and Lo 2005; Kondo et al. 2002; Kondo et al. 2004; Choi et al. 2007; Choi et al.
2006]. Particularly, resource management and scheduling are different from Grid
in terms of process, organization and goal (see section 2.2). These distinct charac-
teristics have a direct effect on system performance and reliability. If Desktop Grid
systems do not consider non-dedication, volatility and lack of trust of volunteers,
performance and reliability will be seriously deteriorated. Therefore, it is important
to comprehend how these distinct characteristics impact on architecture, execution
model, resource management and scheduling.

This article aims to identify and comprehend concepts, architecture, execution
model and characteristics to be considered when developing and implementing
Desktop Grid systems. In this article, a new taxonomy of Desktop Grids is provided
focusing on: (a) system, (b) application, (c) resource and (d) scheduler perspectives.
The taxonomy considers various application’s requirements, resource’s properties
and scheduling algorithms when analyzing and classifying Desktop Grid systems.
Then, the proposed taxonomy is mapped to various state-of-the-art systems to iden-
tify their unique elements, strengths, weaknesses and challenges. Based on these
mapping studies, a gap analysis is performed and the future directions of Desktop

Desktop Grid computing is also called volunteer computing [BOINC ; Sarmenta 2001], global
computing [Fedak et al. 2001; Neary et al. 2000; Dou et al. 2003; Kondo et al. 2002], Peer-to-Peer
Grid computing [Zhou and Lo 2005; Choi et al. 2006], public-resource computing [Anderson 2004]
and Peer-to-Peer cycle sharing systems [Zhao and Lo 2005].

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 3

Grids are proposed, which help with better design and development of new systems
and scheduling algorithms.

This article has several novel contributions towards the improvement of the un-
derstanding of Desktop Grid and the advance of the area of resource management
and scheduling in regard to Desktop Grid systems. In addition, it aims to help
comprehend the definition, architecture, execution model, characteristics and ap-
plications of Desktop Grid. It also aims to help characterize and classify resource
management and scheduling mechanisms, and furthermore develop new ones.

The rest of the article is structured as follows. Section 2 presents the overview
of Desktop Grid and its differences with Grid. Section 3 describes the design issues
and layered architectural elements. Section 4 presents a new taxonomy of Desktop
Grids focusing on system, application, resource and scheduler perspectives. Section
5 presents a mapping to state-of the-art-systems. Section 6 presents gap analysis,
challenging issues and the future directions. Section 7 illustrates related studies on
taxonomy of Grids and Desktop Grids. Finally, conclusions are given in Section 8.

2. OVERVIEW
2.1 Desktop Grid

Desktop Grid aims to harvest a number of idle desktop computers (that is, volun-
teers) owned by individuals at the edge of the Internet [Foster and Tamnitchi 2003;
BOINC ; Fedak et al. 2001; Chien et al. 2003; Sarmenta 2001; Kondo 2005; Choi
et al. 2007]. A Desktop Grid computing environment ? mainly consists of client,
volunteer and server, as shown in Figure 1. A client is a parallel job submitter who
requests for results. A volunteer is a resource provider that donates its computing
resources when idle. A serwver is a central manager that controls submitted jobs
and volunteers. It can have a file server to maintain tasks and results files. A client
submits a parallel job to a server. The job is divided into sub-jobs that have their
own specific input data. The sub-job is called a task. The server distributes tasks
to volunteers using scheduling mechanisms. Each volunteer executes its task when
idle. When each volunteer subsequently finishes its task, it returns the result of the
task to the server. Finally, the server returns the final result of the job back to the
client.

Volunteers have heterogeneous capabilities (that is, CPU, memory, network band-
width and latency), and are exposed to link and crash failures. In particular, they
are voluntary participants that do not receive any reward for donating their re-
sources. As a result, they are free to join and leave in the middle of execution
without any constraints. Accordingly, they have heterogeneous volunteering times
(that is, the time of donation) and public execution (that is, the execution of
a task as a volunteer) can be stopped arbitrarily on account of unexpected leave.
Moreover, public execution is temporarily suspended by private execution (that
is, the execution of a private job as a personal user) because volunteers are not
totally dedicated to public executions. Volunteers have different execution behav-
ior. In addition, some malicious volunteers may tamper with their computations

2The services of client and server can be performed by one machine or the services of server and
volunteer can be conducted by one machine according to architecture, organization, and model of
Desktop Grid systems

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

4 . SunglJin Choi et al.

Volunteers
V0 |4 1 VZ 3 V,,,3 Vn-Z Vn-l
O » Elew |, o) .ijgj;;-‘(‘” e
== = SE= = J*Q = "0
° ® o0 b eQe® ®
A v - x - - - A - A » A
Parallel Parallel Parallel Parallel Parallel Parallel Parallel Parallel
cade code cade code code code code code
L) [L) TOMNGE)) Gl Gl
(1 (1 (1 (1)) (1) 1) (1
(5) (3) (&) (5) (5 (3) (5) (5)
B?ta 5 E?Ia | Data, | Data, |)] 5 Data il Data ol Data ;| Dara ;|
Data; | Data; | Data ;| Data =) <% Data; | Data;: | Data ;| Data |
. . . . v
‘. ‘. H ‘ . L ° N ¢ ‘ H ‘ . .
Data,, | Data ,, | Data,,_, Data,, Data,, | Data,_, Data,, Data,, |
(3) (3 (3)[G) (3) (3) (3) (3)
> Internet
-
(1) Registration (4) Task execution
(5) Task result return
(3) Task allocation (6) Job result return
Parallel code and data Management of parallel tasks
distribution and volunteers
Applications
= Results of each volunteer
File Server Server Clients

Fig. 1. Desktop Grid computing environment

and return corrupt results. A variety of hardware and software of volunteers lead
to deviation from the result of a task. These distinct features make it difficult for
a server to schedule tasks and manage the allocated tasks and volunteers. Conse-
quently, they cause the delay and blocking of the execution of tasks and the partial
or entire loss of the executions, and result in performance degradation.

Desktop Grid systems usually support embarrassingly parallel applications, which
consist of many instances of the same computation each with its own data [Berman
et al. 2003; Foster and Kesselman 2004; Anderson 2004; Fedak et al. 2001; Chien
et al. 2003; Sarmenta and Hirano 1999; Neary et al. 1999; Baratloo et al. 1999;
Korea@Home]. The applications are usually involved with scientific problems that
need large amounts of processing capacity over long periods of time. Desktop
Grid computing has been utilized in a variety of fields: mathematics, cryptogra-
phy, high energy physics, molecular biology, medicine, astrophysics, climate study,
chemistry, and so on [GIMPS ; Distributed.net ; SETI@home ; BOINC ; Anderson
2004; Korea@Home |. Examples are GIMPS which searches for Mersenne prime
numbers, distributed.net which finds a solution for the RSA secret-key chal-
lenge, SETI@Home which detects intelligent life outside Earth, Climatepred-
ication.net, BBC Climate Change and Korea@Home which study climate
change, fight AIDS@Home which discovers new drugs to cure diseases and can-
cers, Folding@Home, Predictor@Home, Genome@Home, Korea@Home
and Docking@Home which explore protein structures & sequences and the phys-
ical processes of protein folding, LHC@Home which simulates particles travelling

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 5

around the LHC (Large Hadron Collider), and Einstein@Home which detects
gravitational wave.

Some studies have been made on Desktop Grid systems, which provide an un-
derlying platform: Alchemi [Luther et al. 2005], Bayanihan [Sarmenta and Hirano
1999; Sarmenta 2002; 2001], BOINC [BOINC ; Anderson 2004; Taufer et al. 2005;
Anderson et al. 2005], Cluster Computing On the Fly(CCOF) [Zhou and Lo 2004;
Lo et al. 2004; Zhou and Lo 2005; Zhao and Lo 2005], Charlotte [Baratloo et al.
1999], Condor [Thain et al. 2003; 2005; Tannenbaum et al. 2003], Computer Power
Market (CPM) [Buyya and Vazhkudai 2001; Ping et al. 2001], Entropia [Chien
et al. 2003; Chien et al. 2003], Javelin [Neary et al. 1999; Neary et al. 2000; Neary
and Cappello 2005], Korea@QHome [Korea@Home ; Choi et al. 2007; Choi et al.
2006; Choi et al. 2006; 2005; Byun et al. 2007; Choi et al. 2004], Messor [Babaoglu
et al. 2002; Montresor et al. 2003], Organic Grid [Chakravarti et al. 2005; 2006],
Paradropper [Zhong et al. 2003; Dou et al. 2003], POPCORN [Nisan et al. 1998],
WebCom [Morrison et al. 2001; 2002], XtremWeb [Fedak et al. 2001; Cappello et al.
2005], and so on.

2.2 Desktop Grid vs. Grid

Desktop Grid has recently become appealing for executing high throughput ap-
plications, because CPU, storage and network capacities become more advanced
and cheaper. It is different from Grid in terms of the types and characteristics
of resources, and the types of sharing [Berman et al. 2003; Foster and Kesselman
2004; Foster and Tamnitchi 2003; Milojicic et al. 2002; Barkai 2002; Subramanian
and Goodman 2005; Anderson 2004; Chien et al. 2003; Sarmenta 2001; Choi et al.
2007; Choi et al. 2006] (see Table I). The resources of Desktop Grid are mainly per-
sonal computers (that is, desktop), whereas Grid resources include supercomputer,
cluster, scientific instrument, database, storage, etc. They are highly-volatile, non-
dedicated and highly-heterogeneous, much different from that of Grid. They are
also more malicious, unreliable and faulty than Grid resources. Desktop Grid re-
sources are administrated by individual users, whereas Grid resources are managed
by professional administrators. The applications of Desktop Grid mainly have no
dependency between tasks, so it is not necessary to communicate between volun-
teers. In the case of institution-based Desktop Grid (refer to Section 4 for the
definition), dependent applications (for example, workflow applications) can be ap-
plicable. On the other hand, Grid deals with dependent applications (for example,
workflow or MPT applications) as well as independent ones, so communication be-
tween nodes often happens. Desktop Grid tries to achieve high throughput (that
is, the amount of work that desktop computers can do within a given time period),
whereas Grid mainly focuses on high performance (that is, the speed that a set of
tasks runs).

Scheduling is one of the most challenging problems in Grid computing in general,
and Desktop Grid in particular. It is the process of assigning tasks to the most
suitable resource providers (that is, where to execute tasks) and ordering tasks (that
is, when to execute a task) [Roehrig et al. 2002; Casavant and Kuhl 1988; Rotithor
1994; Ali et al. 2002; Maheswaran et al. 1999; Shopf 2003]. In order to decide
where to execute a task in Grid, information gathering about the resources, resource
discovery that looks for available and potential resources, resource selection, and

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

SunglJin Choi et al.

Table I. A comparison of Grid and Desktop Grid
Desktop Grid (DG) .
Items = Grid
Volunteer DG! (Internet-based) Enterprise DG' (LAN-based)
Resource Desktop Desktop Supercomputer, cluster, scientific
* Anonymous volunteers * within a corporation, university, instrument, database, storage
institute, etc. * Virtual organization (VO)
Connection -Non-dedicated and poor bandwidth -Non-dedicated and intermediate Dedicated and high speed bandwidth
-Immediate presence (connectivity) bandwidth
-Consider firewall, NAT, Dynamic -More constant connectivity than
address Volunteer DG
Heterogeneity | High heterogeneity Intermediate heterogeneity Low heterogeneity
* Less heterogeneous than Volunteer
DG
Dedication -Non-dedicated -Non-dedicated (mainly) Dedicated
-High volatility -Dedicated (possible) * Is able to use reservation
* Need an incentive mechanism -Low volatility (non-business hours)
* Need an incentive mechanism
Trust Malicious volunteer Low trustworthy resources High trustworthy resources
* Need result certification
Reliability Unreliable (faulty) Unreliable More reliable than Desktop Grid
* More reliable than Volunteer DG
Manageability | Individual-based administration Individual-based administration -Domain-based administration
* Totally distributed to individual * More controllable than volunteer * Professional administrator
* Difficult to manage DG
Application -Independent (mainly) -Independent (mainly) -Independent
Model -Computation-intensive (mainly) -Dependent? (possible) -Dependent” (e.g., workflow or MPI
-High-throughput (mainly) (e.g., workflow applications) applications)
-Computation-intensive (mainly) -Computation or data-intensive
* Data-intensive (possible) -High performance (mainly)
-High throughput (mainly)
Inter-node No communication between volunteers| -No communication (mainly) -Low communication between nodes
communication

-Low communication (applicable)
(e.g., workflow applications)

(e.g., workflow application)
-High communication between nodes
(e.g., MPI applications)

1. Refer to Section 4 for the definition of Volunteer or Enterprise DG.
2. In Enterprise DG, ‘dependent” means flow-dependency, whereas ‘dependent’ means both flow- and execution-dependency in Grid (Refer to Section 5.1).

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 7

monitoring of task execution are involved because of the heterogeneous and dynamic
nature of Grid resources. On the other hand, ordering tasks focuses on placing
priority on tasks to be executed at a specific node or site.

Grid systems generally perform scheduling in a hierarchical manner [Krauter et al.
2002; Hamscher et al. 2000; Jacob et al. 2003]. In other words, a Grid scheduler
consists of a meta-scheduler (or a super scheduler) and local schedulers. Generally,
a meta-scheduler is responsible for where to execute tasks among multiple sites,
whereas a local scheduler is responsible for assigning and ordering tasks within one
site [Roehrig et al. 2002; Krauter et al. 2002; Hamscher et al. 2000; Jacob et al.
2003]. LoadLeveler, LSF, or PBS can be used as a local scheduler [Roehrig et al.
2002; Krauter et al. 2002; Hamscher et al. 2000; Jacob et al. 2003].

Desktop Grid scheduling is different from Grid scheduling because Desktop Grid
is different from Grid in terms of the type of resource, dedication, trust, reliability,
application model, and so on [Foster and Tamnitchi 2003; Anderson 2004; Chien
et al. 2003; Sarmenta 2001; Kondo et al. 2004; Choi et al. 2007; Choi et al. 2006] (see
Table I). First, Desktop Grid scheduling mainly focuses on the process of assigning
tasks to the most suitable resources (that is, to decide where to execute tasks)
[Anderson et al. 2005; Cappello et al. 2005; Chien et al. 2003; Sarmenta 2001;
Neary and Cappello 2005; Baratloo et al. 1999; Zhou and Lo 2005; Chakravarti
et al. 2005; Montresor et al. 2003; Kondo et al. 2004; Kondo 2005; Choi et al.
2006]. It can be performed in a centralized way or in a fully distributed way.
Second, unlike Grid, most Desktop Grid systems do not need a local scheduler in
that a scheduling unit is a single desktop computer, not a site in Grid. Finally,
Desktop Grid scheduling is opportunistic. Desktop Grid respects the autonomy of
volunteers (that is, volunteers can freely participate in or leave public execution).
Thus, Desktop Grid scheduling should use resources as quickly as possible when
the resources are available or idle [BOINC ; Sarmenta and Hirano 1999; Baratloo
et al. 1999; Thain et al. 2005; Choi et al. 2006].

Resource management of Desktop Grid is also different from that of Grid. Desk-
top Grid computing is complicated by heterogeneous, volatile, faulty and malicious
resources. Therefore, it should focus more on non-dedication, volatility, lack of
trust and heterogeneous properties than Grid [Sarmenta 2002; Zhou and Lo 2005;
Zhao and Lo 2005; Kondo et al. 2002; Kondo et al. 2004; Choi et al. 2007; Choi
et al. 2006; Choi et al. 2006; 2005; Choi et al. 2004; Sonnek et al. 2007]. For ex-
ample, Desktop Grid systems should focus more on resource grouping in order to
execute tasks and manage volunteers efficiently. It enables a scheduler to apply
appropriate scheduling algorithms to each group that have similar execution be-
haviors. Desktop Grid systems should also provide result certification to tolerate
malicious volunteers. Furthermore, they should consider reputation and incentive
mechanisms to encourage volunteers to donate their resource eagerly, reliably and
trustworthily. Desktop Grid scheduling can be couple with them to give more
benefits and rewards to eager, reliable and trustworthy volunteers.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

8 . SunglJin Choi et al.

3. ARCHITECTURE
3.1 Design Issues

Desktop Grid systems should have the following requirements: security, reliabil-
ity, trust, performance, unobtrusiveness & opportunism, scalability and incentive
[Anderson 2004; Fedak et al. 2001; Chien et al. 2003; Sarmenta and Hirano 1999;
Neary et al. 1999; Baratloo et al. 1999; Korea@Home ; Abbas 2003].

—Security: Desktop Grid systems should protect the integrity of volunteers. They
must prevent the running tasks from accessing or modifying files or data on
volunteers. Security is fundamental to encourage participation in Desktop Grid
computing.

—Reliability: A reliable execution should be guaranteed. Desktop Grid systems
should tolerate the volunteer’s failures such as crash failure, network failure and
volatility.

—Trust: It is important to guarantee the correctness of results. Desktop Grid
systems should tolerate erroneous results generated by malicious volunteers or
variation due to heterogeneous hardware/software versions.

—Incentive: Desktop Grid systems should provide an incentive method in order
to encourage eager participation. It evaluates and ranks volunteers according
to their execution behavior. According to the assessment and ranking, it gives
volunteers benefits (that is, rewards). Furthermore, Desktop Grid systems should
provide incentive/reputation-based scheduling, which distributes more tasks to
eager and reliable volunteers, and consequently gives more reputation and credit
to them.

—Unobtrusiveness and Opportunism: Volunteers are voluntary participants,
so Desktop Grid has to respect the autonomy of volunteers. Volunteers can join
and leave their public execution at their own will. As soon as desktop owners use
their computers, the running public execution should be stopped immediately and
the resources should be yielded to private execution. When desktop computers
are available, Desktop Grid systems should employ idle resources as quickly as
possible.

—Performance: It is important how fast or how many tasks are completed. Desk-
top Grid systems should have an efficient scheduling mechanism for better perfor-
mance. Particularly, it should adapt to a dynamic, heterogeneous and unreliable
environment.

—Scalability: Desktop Grid systems should be scalable and able to manage volun-
teers without deteriorating performance even if the number of volunteers grows
or even if volunteers are spread across the Internet. Distributed algorithms (for
example, distributed scheduling and resource management algorithms) can be
used instead of centralized algorithms for better scalability.

—Ease of Use and Deployment: Desktop Grid is based on the voluntary users
who do not have the professional skills of Grid technology. If sophisticated skills
are required during installation and deployment, the spread of participation in
Desktop Grid computing is hindered. For more users to join in Desktop Grid, it
is guaranteed that they are able to easily install and run the system without any

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems .

GUI Manager } GUI layer
Volunteer Evaluation/Reputation Manager \
Result Certification Result Manager
DB Manager
Manager
—— File Manager
(application & result Fault Tolerance Task State Monitor
files) Manager Core layer
Job Manager Scheduler Task Manager
[Scheduling Pool | [Task Pool |
Volunteer Manager i
Client Manager £ Resource Grouping
Manager |)
’ Security Manager ‘ ’ Login/Logout Manager ‘

Basic layer

’ Communication Manager ‘ ’ Context Manager ‘

| os |

Fig. 2. Server architecture

requirement of professional skills. In addition, the system should provide GUI
(Graphic User Interface) not only for users to control the submitted tasks, but
also for administrators to monitor and manage the volunteers and the allocated
tasks.

3.2 Layered Architecture

The architectures of server, volunteer and client are described as shown in Figures
2,3 and 4 .

3.2.1 Server. A server’s components can be organized in a layered architecture:
basic, core and GUI layers, as shown in Figure 2.

The basic layer provides basic functionalities such as configuration, communica-
tion and security. These are also common to client and volunteer. It consists of
context, communication, security and login/logout managers.

—Context manager: It configures the server system.

—Communication manager: It is responsible for interactions between server
and client, or between server and volunteer.

—Security manager: It provides secure access to resources and secure communi-
cation among server, client and volunteer.

—Login/logout manager: It handles registration or participation processes of
public execution.
The core layer provides main functionalities such as scheduling, management of

volunteers and clients and control of jobs and tasks.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

10 . SunglJin Choi et al.

Application Application
layer
GUI Manager Application API
Result Manager Fault Tolerance A R
Manager Properties Manager
-Physical properties
. . (CPU, memory, C 1
Task State Monitor Execution Manager bandwidth, OS, etc.) > ore layer
-Execution properties
(dedication, volatility,
Task M
asx Vanager Idle State Monitor etc.)
)
Security Manager Login/Logout Manager
Basic layer
Communication Manager Context Manager
(O]

Fig. 3. Volunteer architecture

—Client manager: It manages clients who submit jobs to the server.

—Volunteer manager: It is responsible for managing volunteers. It maintains
the volunteer’s properties such as capabilities (CPU, OS type, memory, network,
etc.), dedication, volatility and credibility. It also maintains the list of volunteers
who participate in public execution.

—Resource grouping manager: It forms volunteer groups according to the
properties of volunteers.

—Job manager: It controls jobs submitted by clients. It also splits a job into
tasks.

—Scheduler: It is responsible for scheduling. It also maintains scheduling infor-
mation in a scheduling pool. It collaborates with various managers such as vol-
unteer, resource grouping, job, task, fault tolerance, result certification, DB and
volunteer evaluation/reputation managers, to achieve its own scheduling goals
and purposes.

—Task manager: It manages tasks distributed to volunteers. It is also responsible
for transferring tasks (code and data) to volunteers, cooperating with the file
manager.

—Task state monitor: It monitors the status of tasks that volunteers are exe-
cuting. It cooperates with the task state monitor of a volunteer.

—F'ile manager: It controls application and result files. Particularly, it cooperates
with the task or job managers in transferring large or huge data reliably and
effectively.

—PFault tolerance manager: It handles the failures of volunteers which occur in

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 11

GUI Manager } GUI layer
Result Manager Job State Monitor Job Submission Core layer
Manager
Security Manager Login/Logout Manager
Basic layer
Communication Manager Context Manager
(O]

Fig. 4. Client architecture

the middle of public execution. It cooperates with the scheduler in rescheduling
tasks.

—DB manager: It keeps and manipulates a lot of information related with vol-
unteers, clients, tasks, scheduling on a database.

—Result certification manager: It detects and tolerates the erroneous results
generated by malicious volunteers or the deviated results due to a variety of
hardware and software.

—Result manager: It manages task results returned by volunteers. It cooperates
with the file manager in transferring result files.

—Volunteer evaluation/reputation manager: It evaluates volunteers, and
scores and ranks them according to their execution behavior and history.

—Incentive manager: It encourages volunteers to donate their resources eagerly,
reliably and trustworthily by giving incentives such as money, opportunity to use
resources, or scheduling priority, ranking, etc.

The GUI layer provides a graphical interface, with which an administrator can
control the server more easily.

—GUI manager: It provides a graphic interface to users, developers, or adminis-
trators.

3.2.2 Volunteer. The volunteer’s components can be organized in a layered ar-
chitecture: basic, core and application layers, as shown in Figure 3. The basic layer
has the same functionalities as the server. Particularly, the security manager is also
responsible for secure execution of tasks.

The core layer provides main functionalities such as task execution and manage-
ment.

—Task manager: It manages tasks transferred from a server.

—Task state monitor: It monitors the status of tasks. It reports the status to
the task state monitor in its server.

—Idle state monitor: It checks if its CPU is idle. It notifies the execution
manager of the status.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

SunglJin Choi et al.

12

Server

GUI Manager

Volunteer Evaluation Manager

DB Manager

ﬂ»mc_s Om—.__»._nw:an _

Result Manager

Result Pool

File Manager

Task State Monitor

(application & result files)

m»:: Tolerance _ _

Job Zw-.umnn
[JobPool]

Task Manager

[Task Pool |

Client Manager

Volunteer Manager
Volunteer Pool

_ wobma::: Pool _ _

_ _ Resource Grouping
M.

Security Manager _ _

Login/Logout Manager

Communication Manager _ _

Context Manager

os

Login/Logout ﬂ

Job Submission

Job State Monitoring

Job Result Return
v &
_ GUI Manager _
Result Manager . Job Submission
Result Pool Job State Monitor Manager
_ Security Manager _ _ Login/Logout Manager _

_ Communication Manager _ _

Context Manager _

oS _

Client

Fig. 5.

a Login/Logout (Registration)

Task Allocation / Reallo

Task State Monitoring

ration

Task Result Return
| v
_ Application
_ GUI Manager _ _ Application API
Result Manager Fault Tolerance Volunteer Properties
Result Pool Manager Manager
-Dedication
Task State Monitor Execution Manager
Task Manager .
Task voo_w Idle State Monitor Resource Manager
_ Security Manager _ _ Login/Logout Manager

_ Communication Manager _ _

Context Manager

_ oS

Volunteer

Interaction among server, client and volunteer.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 13

—Properties manager: It investigates, checks and maintains volunteer’s hard-
ware and software properties (that is, physical properties). It also checks and
manages volunteer’s properties related to public execution (that is, execution
properties), such as dedication, volatility, and so on.

—Execution manager: It executes tasks allocated by its server. It controls (that
is, starts, restarts, stops) the execution depending on the status notified by the
idle state monitor.

—PFault tolerance manager: It detects and controls the failures that occur in
the middle of public execution. It notifies the execution manager as well as the
fault tolerance manager in a server side.

—Result manager: It returns the task result. It cooperates with the result
manager in a server side.

The application layer provides a graphical interface, by which a user can control
one’s resource and public execution more easily. It also provides application API
for developers.

—GUI manager: It provides a graphic interface to users.

—Application API: It provides API (application programming interface) for ap-
plication developers. With the API, application developers can develop applica-
tions running on the middleware (or system).

—Application: Applications are implemented on the basis of Application API.

3.2.3 Client. The client’s components can be organized in a layered architec-
ture: basic, core and GUI layers, as shown in Figure 4. The basic and GUI layers
have the same functionalities as the server. The core layer consists of result man-
ager, job state monitor and job submission manager.

—Result manager: It manages job’s results returned from a server.

—Job state monitor: It monitors the status of jobs that a server is processing.

—Job submission manager: It submits jobs to a server. It cooperates with the
job manager in the server.

3.2.4 Interactions among Server, Client and Volunteer. A server interacts with
clients by exchanging messages such as login / logout, job submission, job state
monitoring and job result return as shown in Figure 5. In addition, a server interacts
with volunteers by exchanging messages such as registration, task allocation, task
state monitoring, and task result return as shown in Figure 5.

4. TAXONOMY OF DESKTOP GRIDS

A new taxonomy of Desktop Grid systems is presented focusing on (a) system, (b)
application, (c) resource and (d) scheduler perspectives as shown in Figure 6.

4.1 System Perspective

Desktop Grids are investigated and analyzed with the system perspectives. Desk-
top Grids are categorized according to organization, platform, scale and resource
properties (see Figure 7).

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

SunglJin Choi et al.

14

System
perspective

Organization
Platform
Scale

Resource Provider

Taxonomy of Desktop Grids

Application
perspective

Type
Dependency
Divisibility

Submission
Pattern

QoS

Resource
perspective

Altruism

Dedication
(Volatility)

Scale
State Change
Trust
Failure

Heterogeneity

Registration
Pattern

QoS

A taxonomy of Desktop Grids (System Perspective)

Scheduler
perspective

Organization
Policy
Grouping
Object
Dynamism

Trust Scheduling
Incentive
Scheduling

Load Sharing &
Balancing

Fault tolerant
scheduling

Scheduling Goal

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 15

* Organization Y Centralized
Distributed

* Platform Y Web-based (Java applet-based)
Middleware-based

* Scale i Internet

LAN (a corporation, university, institution, etc.)

* Resource provider i Volunteer (Voluntary participation)
Enterprise (Non-voluntary participation)

Fig. 7. A taxonomy of Desktop Grid (System’s Perspective)

4.1.1 Organization. Desktop Grids are categorized into two types: centralized
and distributed, according to the organization of components.

—Centralized Desktop Grid: Centralized Desktop Grid (DG) consists of client,
volunteer and server. The execution model of centralized DG consists of eight
phases: registration, job submission, resource grouping, task allocation, task
execution, task result return, result certification and job result return phase, as
shown in the Figure 8. Typical examples are BOINC, XtremWeb, Entropia,
Bayanihan, Korea@Home, and so on.

(1)
(2)
(3)

(8)

Registration phase: Volunteers register their information to a server.

Job submission phase: A client submits a job to a server.

Resource grouping phase 3: A server constructs volunteer groups according
to capability, availability, reputation, trust, and so on [Chien et al. 2003;
Choi et al. 2006; Choi et al. 2006; 2005]. Scheduling is performed on the
basis of groups [Choi et al. 2006; Choi et al. 2006; 2005].

Task allocation phase: A server distributes tasks to the registered volunteers
by means of scheduling algorithms.

Task execution phase: Each volunteer executes its task.

Task result return phase: Each volunteer returns the result of its task to the
server.

Result certification phase: The server checks the correctness of the returned
results in order to tolerate malicious volunteers [Sarmenta 2002; Choi et al.
2005; Renaud and Playez 2003], or to deal with variations in numerical pro-
cessing due to a variety of hardware and software [Taufer et al. 2005].

Job result return phase: The server returns the final result of the job to the
client.

3The resource grouping phase makes scheduling more efficient, which enables a scheduler to apply
various scheduling policies, fault tolerance, and result certification algorithms to each group, or
make resource management easier. However, most of the centralized DG systems do not provide
this phase.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

16 . SunglJin Choi et al.

Volunteers
Client Server v, v, e Vo |%

£2, (Volunteer Information)

2,

Registration
phase

Job Submission phase

Resource
Grouping
Phase 7 (Task)

D

Task
Allocation H
phase Lot

]

R, (Task Result)
Task Result R
Return phase 2

Rn
Result R
Certification
phase
R

Time 1 Job Result Return phase 1

Fig. 8. Execution model of centralized Desktop Grid

—Distributed Desktop Grid: Distributed Desktop Grid* consists of client and
volunteer. In contrast to centralized DG, there is no server; therefore volunteers
take the place of the server °. For example, volunteers maintain the partial
information of other volunteers. They are also responsible for scheduling. The
execution model of distributed DG consists of eight phases: registration, job
submission, computational overlay network (CON) construction, task allocation,
task execution, task result return, result certification, and job result return phase
as shown in the Figure 9. Typical examples are CCOF, Organic Grid, Messor
and Paradropper.

(1) Registration phase: Volunteers exchange their information between other
volunteers.%
(2) Job submission phase: A client consigns a job to its neighbor volunteers.

4Distributed Desktop Grid can be also called Peer-to-Peer (P2P) Desktop Grid in the sense
that it constructs computational overlay network and performs scheduling by using peer-to-peer
communication [Milojicic et al. 2002; Barkai 2002; Steinmetz and Wehrle 2005; Subramanian and
Goodman 2005]. Centralized Desktop Grid also can be called a P2P Grid if it uses peer-to-peer
technologies to perform scheduling, resource management, or resource grouping [Choi et al. 2006;
Choi et al. 2006; 2005].

5A client or a broker can take the place of the server.

6Volunteers can register their information to brokers [Neary et al. 1999; Buyya and Vazhkudai
2001].

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 17

Volunteers |

Client Vo | Vi | Vil V| Voar| Vaz| " Vi | W,

2 Registration
Q2 phase

Job submission phase

7

CON construction phase

Tasks
allocation

—————
phase r Q

< Task result i<
Task result return
return phasejil<—]
phase

Result
Certification
phase

Result
Certification
phase

Time R

Job result return phase 1

v v v v

Fig. 9. Execution model of distributed Desktop Grid

(3) CON construction phase: Volunteers self-organize their CON according to
capability, registration time, timezone, or randomly in a distributed way.”

(4) Task allocation phase: Volunteers distribute tasks to their neighbors or ap-
propriate volunteers by using distributed scheduling algorithms.

(5) Task execution phase: Each volunteer executes its task.

(6) Task result return phase: Each volunteer returns the result of its task to its
parent volunteer.

(7) Result certification phase ®: Some highly reliable volunteers or brokers check
the correctness of the results returned from their child volunteers or the other
volunteers managed by them.

(8) Job result return phase: The parent volunteers return the final results of the
jobs to the client.

Computational overlay network (CON) is a logical set of volunteers for the ex-

ecution of tasks [Milojicic et al. 2002; Barkai 2002; Steinmetz and Wehrle 2005;

Subramanian and Goodman 2005]. The CON construction is similar to resource

grouping except that CON construction is mainly performed by a volunteer or

a broker in a distributed manner. In contrast, resource grouping is mainly

performed by a server in a centralized way. In a distributed DG, scheduling

is performed by each volunteer in a distributed way, depending on CON. In
other words, volunteers distribute tasks to other volunteers differently accord-
ing to the characteristics or topologies of CON (for example, tree, graph, or

DHT (Distributed Hash Table)). A CON can be constructed on-the-fly or before-

7A broker can be responsible for the construction of CON (for example, tree according to regis-
tration time) [Neary et al. 1999].
8Most of the decentralized DG systems do not provide this phase.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

18 . SunglJin Choi et al.

scheduling. In the case of on-the-fly, CON construction and scheduling are per-
formed at the same time [Chakravarti et al. 2005; Montresor et al. 2003; Zhong
et al. 2003]. In the case of before-scheduling, CON construction is performed
before scheduling [Neary et al. 1999]. Then, scheduling is performed on the basis
of the structure of CON.

4.1.2 Platform. Desktop Grids are categorized into web-based (Java Applet-
based) DG and middleware-based DG according to platform running on the volun-
teer’s machine. In a web-based DG, clients write their parallel applications by using
Java and post them as Applet on the Web. After that, participants join the web
page with their browsers. At the moment, the Applet is downloaded automatically
and runs on the participant’s machine. Typical examples are Charlotte, Bayani-
han, Javelin, and so on. In a middleware-based DG, participants need to install
and run a specific middleware on their machine, which provides the services and
functionalities for the execution of parallel applications. The middleware automat-
ically fetches tasks from a server and executes them, when the CPU is idle. Typical
examples are BOINC, XtremWeb, Entropia, Korea@Home, Alchemi and so on.

4.1.3 Scale. Desktop Grids are categorized into Internet-based DG and LAN-
based DG according to scale. Internet-based DG is based on anonymous volunteers
(see Table I). It should consider firewall, NAT(Network address translation), dy-
namic address, poor bandwidth and unreliable connection. On the other hand,
LAN-based DG is based on volunteers within a corporation, university and insti-
tution. It has more constant connectivity than Internet-based DG. It is also more
controllable than Internet-based DG.

4.1.4 Resource Provider. Desktop Grids are categorized into volunteer DG
and enterprise DG according to the properties of resource provider (see Table I).
Volunteer DG is mainly based on voluntary participants. It mainly uses private
resources owned and maintained by individuals. Enterprise DG is mainly based on
non-voluntary participants within a corporation and a university. It mainly uses
public resources owned and maintained by an institution. Mostly, volunteer DG
can be Internet-based DG, and enterprise DG can be LAN-based DG. Volunteer
DG is more volatile, malicious and faulty than enterprise DG. Enterprise DG is
more controllable than volunteer DG because volunteers are located in the same
administrative domain. Typical examples of volunteer DG are BOINC, XtremWeb,
Bayanihan, Javelin, Korea@Home, and so on. Enterprise DG can be Entropia,
Alchemi and Condor. It can be commercialized (for example, Entropia) or studied
academically (for example, Condor, Alchemi).

4.2 Application Perspective

Desktop Grid systems should consider the following aspects on the application’s
perspective when designing and developing resource management and scheduling
mechanisms (See Figure 10).

—Type: Is an application computation-intensive or data-intensive? In the case
of data-intensive, a scheduler should consider data size, the location of data or
replica, the cost of transfer, or replication policy, and so on [Venugopal et al.
2006]. In the case of computation-intensive, a scheduler focuses more on the

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 19

* Type i Computation-intensive
Data-intensive --------------------eooooooes » Data-centric scheduling

* Dependency Y Independent Workflow scheduling

Dependent : Flow-dependency --------------- ‘
Execution-dependency

* Divisibility : Fixed
Moldable (divisible)

e) o . .
* Submission pattern Y Deterministic -----------' ! Static scheduling ;

Non-deterministic - » Dynamic scheduling
* QoS presmommooooooreeoseeeeeeooo » Deadline scheduling
- Turnaround time Deadline Y Strict (real-time)
X Soft
Minimum (fastest)
- Result correctness ----------------m=-mossmsososeooooe » Result certification
- Priority --------eeemeemmmee oo > Preemptive scheduling
- Price (minimum budget) --------------------momo » Economy model

- Security (Resources in the specific domain)

- Restriction and Preference conditions
(Resources with the specific hardware/software version, Specific time (reservation), etc.)

Fig. 10. A Taxonomy of Desktop Grids (Application Perspective)

resource’s capability and availability.

—Dependency: Is there dependency between tasks? If there is no dependency
between tasks, a scheduler attempts to allocate tasks to as many volunteers as
possible according to the resource’s availability, capability and execution proper-
ties, in order to complete as many tasks as possible [Anderson 2004; Neary et al.
1999; Zhou and Lo 2005; Kondo et al. 2004; Choi et al. 2006; Maheswaran et al.
1999; Braun et al. 2001]. In the case of dependent tasks, dependency can be cate-
gorized into flow and execution. The flow-dependency represents precedence and
order between tasks (for example, workflow applications). On the other hand,
the execution-dependency comes from interaction between tasks in the middle of
execution (for example, MPI applications). In the case of flow-dependency, the
relationship between tasks are mainly designed as a graph (for example, Directed
Acyclic Graph (DAG)) [Yu and Buyya 2005; Cao et al. 2006]. The scheduler for
DAG should consider the machine’s capability, communication cost, data and
task dependency, synchronization between tasks simultaneously, in order to min-
imize the overall execution time of the graph [Yu and Buyya 2005; Berman et al.
2003].

—Divisibility: Is a job flexibly divided into multiple tasks depending on the ca-
pability of resources during a scheduling procedure? In the case of a fixed job,
a job is divided into the fixed size of tasks before scheduling. Then, they are
distributed to volunteers. In the case of a divisible or moldable job, a sched-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

20

SunglJin Choi et al.

uler decides the size (or amount) of a task during scheduling according to the
resource’s capability, deadline, etc. It focuses on how much of a task is assigned
to a resource [Ali et al. 2005].

Submission pattern: Does a client submit whole application and data to its
scheduler before scheduling? Or, does it non-deterministically submit them dur-
ing scheduling? In the deterministic case, if resources participate in the public
execution irregularly, a scheduler should wait for them to start scheduling. In the
non-deterministic case, if resources participate in public execution irregularly, it
should wait for both tasks and resources.

QoS: Some applications request QoS of Desktop Grid systems. A certain ap-
plication needs to be finished before the deadline, or wants to do so rapidly.
For example, a scheduler (that is, deadline scheduling) distributes tasks to re-
sources only if the resources are able to (that is, hard deadline) or are likely to
(that is, soft deadline) complete the task by its deadline. Another application
wants to guarantee result correctness. In the case, Desktop Grid systems should
provide result certification or trust scheduling. A certain application with the
highest priority wants to process more immediately and quickly than other appli-
cations. In this case, Desktop Grid systems allow a high-priority task to preempt
a low-priority task running on a machine (that is, preemptive scheduling). In the
non-preemptive scheduling, a machine is allowed to execute another task only
after finishing a task. If an economy model is used, a client (that is, resource
consumer) wants to buy resources minimizing cost/budget. A certain applica-
tion does not want to be assigned to specific nodes or domain due to security,
whereas another application wants to be assigned to specific nodes that satisfy
the hardware/software version or quality required.

4.3 Resource Perspective

Desktop Grid systems should consider the following aspects on the resource’s per-
spective when designing and developing resource management and scheduling mech-
anisms (See Figure 11).

—Altruism: Are resource owners willing to donate their individual resources for

the public good? If resource owners are not altruistic [Ranganathan et al. 2004],
that is, they are unwilling to share their resource although their whole CPUs
are not used or even idle, then Desktop Grid systems should provide incentive
mechanisms not only to participate in public execution, but also to encourage
resource owners (volunteers) to contribute their resources more. Furthermore,
they should provide incentive scheduling to give more benefits to eager volunteers
in a scheduling procedure.

Dedication (or volatility): Are resources dedicated only to public execution
without any interruption by private execution? Are resources allowed to freely
leave in the middle of the public executions without any constraints? In Desk-
top Grid, resources are non-dedicated and volatile [Kondo et al. 2004; Brevik
et al. 2004], so a public execution is suspended or stopped by a private exe-
cution. Therefore, Desktop Grid systems should deal with high-volatility and
non-dedication. It is appropriate that a scheduler is opportunistic in the sense
that a resource is not always available. Moreover, a scheduler can allocate tasks

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 21

e Altruism Y Altruistic

Egoistic -------mmmmmmmmmrme oo » Incentive model <-;

* Dedication Dedicated ,
(VOlatlhty) Non-dedicated (V()latile) :::::::::::::::::::::::::::;;:;:::::::::::::::::::::::i

| boemeaeeeeceooeo » Opportunistic scheduling ‘

* Scale i LAN (small-scale)

Internet (large-scale) -~ Pull mode

* State change : T T > Static scheduling

Dynamic ---mmrsmmrssmmssspmoss oo > Dynamic scheduling

S— + Adaptive scheduling

* Trust : Trustworthy

Malicious S » Result certification .
* Failure : Reliable > Reputation model <
Faulty cooooooooooooooooocoooccl » Fault tolerance :

* Heterogeneity : Homogeneous
Heterogeneous

* Registration pattern : Deterministic --------------*

Non-deterministic --------=-==""""=- » Dynamic scheduling

cQoS e :
- Price (maximizing profit) -------------------omosmme e » Economy model

- Load sharing or balancing (Resource utilization or fairness)

Fig. 11. A taxonomy of Desktop Grids (Resource Perspective)

on the basis of the volunteer’s reputation (that is, characteristics and patterns
of previous executions such as dedication and volatility) or be also coupled with
incentive mechanisms in order to select eager resources or exclude selfish ones
[Choi et al. 2006; Sonnek et al. 2007; Zhu et al. 2006]. To do this, Desktop Grid
systems should provide reputation models to evaluate, score and rank volunteers.

Scale: Are resources located in the scope of LAN or Internet? As shown in Table
I, the characteristics of environment (such as connection, the degree of hetero-
geneity and trust, dedication pattern, failure, manageability, etc.) are different
between Internet-based DG and LAN-based DG. If resources are connected to
the Internet, it is proper that scheduling events are initiated by a resource’s re-
quest in the sense that some resources are behind NAT or firewall and they are
not always available [BOINC ; Anderson 2004; Korea@Home]. In other words,
resources pull a task from its scheduler (that is, pull mode). If resources are con-
nected within LAN, Desktop Grid systems can manage them easily. Applications
can be expanded, for example, workflow applications.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

22 . SunglJin Choi et al.

—State change: Is the execution properties of resources (such as availability,
volatility, trust, failure, load, bandwidth, etc.) changing during the public exe-
cution? In a Desktop Grid environment, resources are controlled by individual
owners. Resources are more heterogeneous, dynamic and unreliable, compared
to Grid. In order to adapt to such a changing environment, Desktop Grid sys-
tems should monitor the state of volunteer and tasks and be able to cope with
the state changes, for example, to change the scheduling policy dynamically and
adaptively.

—Trust: Are resources trustworthy or malicious? If they are malicious, Desktop
Grid systems need result certification in order to ensure the correctness of re-
sults. Particularly, a scheduler can be coupled with reputation in order to select
trustworthy resources or exclude malicious ones [Choi et al. 2005; Sonnek et al.
2007; Zhu et al. 2006; Du et al. 2004].

—Failure: Are resources reliable or faulty? In Desktop Grid, volunteers are faulty.
Therefore, Desktop Grid systems should provide fault tolerance for reliable exe-
cution. Particularly, a scheduler needs fault tolerant mechanisms (that is, check-
point & restart, reassignment, replication, etc.). It also should deal with volatility
because this leads to the failure of execution such as the delay and blocking of
the executions of tasks and even partial or entire loss of the executions [Choi
et al. 2004]. It can be coupled with reputation or incentive mechanism in order
to select reliable resources or exclude faulty resources.

—Heterogeneity: Are resources heterogeneous or homogenous? Resource hetero-
geneity refers to capability heterogeneity (that is, CPU, memory, bandwidth, OS
type, etc.) as well as execution heterogeneity (that is, availability, credibility,
volunteering time, the number of the completed tasks, etc.). Particularly, Desk-
top Grid has high execution heterogeneity. The execution heterogeneity makes
scheduling more difficult and complex. It is necessary for a scheduler to be cou-
pled with resource grouping, by which resources that have similar properties are
grouped together, in the sense that a scheduler can apply scheduling, fault toler-
ance and result certification algorithms suitable for each group [Choi et al. 2006;
Choi et al. 2006; 2005].

—Registration pattern: Do resources participate in public executions deter-
ministically or arbitrarily? If the information about resources is assumed to be
unavailable before scheduling decision, or if resources freely join or leave the
public execution, a dynamic scheduling approach is used [Choi et al. 2006; Casa-
vant and Kuhl 1988; Rotithor 1994; Braun et al. 1998; Maheswaran et al. 1999).
In addition, opportunistic scheduling is needed because volunteers dynamically
register.

—QoS: If economy model is used, a volunteer (that is, resource provider) wants to
sell its resource maximizing its profit. Load sharing and balancing are necessary
for resource utilization and fairness as well as performance. Load sharing aims
to avoid having idle resources as much as possible by distributing the workload,
whereas load balancing attempts to equalize workload among resources [Chow
and Johnson 1997; Zhou 1988; Shivaratri et al. 1992]. Work stealing and load
redistribution (that is, transferring tasks from heavily-loaded node to lightly-
loaded node) improve resource utilization, fairness and performance.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 23

4.4 Scheduler's Perspective

Desktop Grid systems should consider the following aspects on the scheduler’s per-
spective when designing and developing resource management and scheduling mech-
anisms (See Figure 12 and 13).

—Organization: Scheduler organization is classified into three categories: cen-
tralized, distributed and hierarchical according to where and how scheduling
decision is made [Krauter et al. 2002; Hamscher et al. 2000]. In the centralized
approach, there is a central server that is responsible for scheduling decision. A
central server maintains all information of resources and task execution status.
In the distributed approach, scheduling decision is distributed to every node.
Each node has the partial information about the resources and task execution
status. In the hierarchical approach, the scheduling decision is performed in
a hierarchical way (for example, meta-scheduler (high-level scheduler) and local
scheduler (low-level scheduler)). A high-lever scheduler allocates tasks to low-
level schedulers, whereas a low-lever scheduler directly allocates tasks to machines
within its site.

—Mode: Where is a scheduling event initiated? In the pull mode, a scheduling
event is initiated by resources [Cappello et al. 2005; Chien et al. 2003; Tsare-
gorodtsev et al. 2004]. In other words, when a resource is idle or highly-loaded,
it requests (or pulls) tasks to (or from) its server. Pull mode can be easily co-
operated with opportunistic scheduling. In the push mode, a scheduler collects
resource information, and then pushes tasks to resources [Tsaregorodtsev et al.
2004]. Generally, the pull mode is useful if resources are behind NAT or firewall,
or if they are not dedicated [Anderson 2004; Chien et al. 2003; Choi et al. 2006;
Tsaregorodtsev et al. 2004].

—Policy: Scheduling policy is used to match tasks with resources [Casavant and
Kuhl 1988; Rotithor 1994; Braun et al. 1998; Ali et al. 2005; Maheswaran et al.
1999; Braun et al. 2001; Krauter et al. 2002; Yu and Buyya 2005; Yeo and Buyya
2006; Hamscher et al. 2000; Feitelson et al. 1997; Casanova et al. 2000]. It de-
termines how to select appropriate tasks or resources. It is classified into three
categories: simple, model-based and heuristics. In the simple approach, tasks
or resources are selected by using FCFS (First Come First Served) or randomly.
The model-based approach is categorized into deterministic, economy and
mathematics models. The deterministic model is based on structure or topology
such as queue, stack, tree, or ring. Tasks or resources are deterministically se-
lected according to the properties of structure or topology. For example, in tree
topology, tasks are allocated from parent nodes to child nodes. In the economy
model, scheduling decision is based on market (that is, price and budget) [Buyya
et al. 2002; Yeo and Buyya 2006]. In the mathematics model, resources are
selected in mathematics manners (such as Macov, Bayesian, genetic algorithm,
game theory and machine learning techniques). In the heuristics approach,
tasks or resources are selected by ranking, matching and exclusion methods on
the basis of the resource’s reputation or state. The reputation is related with
the execution pattern and history (such as dedication, volatility, availability,
credibility, etc.), whereas, the state represents the current state and capability
of machines (such as hardware capability, performance, communication weight,

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

SunglJin Choi et al.

24

* Organization

* Policy

* Grouping

Centralized * Mode A Pull (Resource provider-initiated)
Distributed Push (Scheduler-initiated)
Hierarchical

Simple (FCFS, Random)

Model-based

Heuristics

Deterministic model (Queue, Stack, Tree, Ring, etc.)

Economy model — Commodity Market, Auction, Bartering, etc.

Mathematics model — Markov, Bayesian, Genetic algorithm, Game theory etc. |

Criteria: Dedication, Volatility, Availability, Reliability,

Reputation-based Credibility, Sharing history, etc.

(Ranking, Matching, Exclusion)

Criteria: Performance (execution time, turnaround time)
Throughput, Capability (CPU, memory, bandwidth, etc.)
Weight (communication, delay, data transfer), Deadline
Precedence (dependency), Workload, Location, etc.

State-based ——————
(Ranking, Matching, Exclusion)

- Criteria: Preference (dependency), Weight, Performance, etc. !

Group-based — Application-oriented A Independent job grouping

Individual-based

(A set of jobs) Dependent job grouping

Resource-oriented A Simple grouping
(Computational Overlay ™\ 5010 gy-based (Tree, Graph, DHT, etc.)

Network (CON)) o o -

i Criteria: Capability, Performance, Weight, Workload,
Location, Timezone, Dedication, Volatility,
Availability, Reliability, Trust, Credibility, etc.

»

* Object Application-oriented % Job selection (mostly dependent job (DAG))

* Dynamism A

Job partition (mostly moldable job)
Job grouping (mostly dependent job)

Resource-oriented ~ Resource selection

Resource grouping

Static scheduling
Dynamic scheduling X Online

Periodic

Fig. 12.

A taxonomy of Desktop Grids (Scheduler Perspective)

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

25

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems

(ea1900ds10g I9MpotPg) splix) dojyse(Jo Awouoxey y 'g] "S1

ANiqeroy - QATIUDU] - Isnip, - Suroueeq 29 SuLeys peo -
Amnoag - o - ndysnoxy, - aurpea(- owin punoJeuing, -
[e03 Surmnpayos «
Surdnois3 10 Lorjod a3uey)

uonestday
(90In0SAI MO[S) v
HQOEQWMWWNOH HQN@QS@OM wﬂ-5~u®ﬁ—0w AOQHSOWOH \A:ﬂ.—.m%v HQDEQMMWWNDM wgﬁﬁzﬁwﬂow
uoneISIA aandepy . 1R)SaI 29 Jurodyoay) — JURIS[O) I[Ne »

(parenmur-papeo AAB9H)

(939 “)sQI93UI UOWIIOD (ysnd) uonnqinsipay
‘poo3 orjqnd 10J swa[qoid SUIA[OS) <
pIemal paseq-uonoeJsnes-JoS (pareniur-papeo| JYII| Jo pAjenIuI-a[p]) MEQEN__B I0

nd) Surfeas y1o 3urreys peo
ot “syse parordios (T1nd) Surred)s y10M LTeys peo] e
Y} Jo Joquiny ‘dwn uoneuod)

pIemal paseq-Junjuey

(Surmpayos 193eq 10)

(910 ‘voneindar eySTy ‘Ayoud L Surmpayos onstunrodd
Surnpayog ‘syse) jrwqns 01 JYSY) ’ T

premar paseq-Sod)

paseq-uoneindoy
(*932 “yI0MIDU “A[IJ ‘NJD Sk yons
$901n0sa1 asn 0) Ayrunyroddo 10 JY3TY)

«— PIseq-oSuBYOXd 90INOSNY
PIemal PISeq-S90INoSAY

PIEMAI PASBQ-AQUOIA poseq-Awouodq SuINpoyds 9ANUAIU] «

pugAy paseq-uoneinday
Sunyoayo-10ds paseq-uoneindoy
3unoa paseq-uoneinday
3unoa pay3rom paseq-uoneinday paseq-uoneinday
(BunoA + Sunyayo-10dg) pugsy
Sunyooyo-10dg (uonesynIa) JNSAY)
3unop poseq-uoneindar-uoN Surmnpayos sniy, e

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

26 . SunglJin Choi et al.

etc). The ranking method ranks the resources or tasks according to criteria and
then chooses the most or the worst one. The matching method chooses the most
suitable tasks and resources in accordance to evaluation functions (for example,
min-min, max-min, sufferage, etc. [Maheswaran et al. 1999; Braun et al. 2001;
Casanova et al. 2000]). The exclusion method excludes resources according to cri-
teria, and then chooses the most appropriate one among the survivors. Ranking,
matching and exclusion methods can be used together or separately.

—Grouping: Grouping is used to form resources or tasks into a group. In the
application-oriented grouping approach, a set of jobs are grouped logically
[Yu and Buyya 2005; Cao et al. 2006]. Particularly, dependent tasks are grouped
together on the basis of dependency or weight (communication or computation)
in DAG, in order to improve performance or reduce communication cost [Yu and
Buyya 2005; Cao et al. 2006]. For example, a set of tasks that uses the same
data can be grouped together [Venugopal et al. 2006; Cao et al. 2006]. The
resource-oriented grouping approach ensures that resources with similar
properties are logically grouped together. The resource-oriented grouping ap-
proach constructs computational overlay networks (CONs). The characteristics
and topology of CONs affect scheduling algorithms, resource management and
information management. In addition, reliability, result correctness and perfor-
mance depend on how CONs are constructed. Performance and reliability can
improve by applying suitable scheduling, fault tolerance and result certification
algorithms to each group. A CON is categorized into simple group and topology-
based. In the simple group approach, resources are grouped together according to
capability, performance, weight, availability, workload, reputation/trust, volatil-
ity, and so on. In the topology-based approach, resources are grouped together
while forming topologies such as tree, graph, or DHT (Distributed Hash Table).

—Object: Scheduling decision is made in an application-oriented or resource-
oriented manner according to the target of scheduling. The application-oriented
approach focuses on job selection, partition and grouping. Job selection and
grouping focus on how to select resources or create a group according to the
precedence and dependency of tasks. Job partition focuses on how much of a task
is assigned to a resource. On the other hand, resource-oriented approach em-
phasizes resource selection and grouping. A dependent job (or DAG) is mainly
related with application-oriented approach (that is, which task is first processed,
or how tasks are grouped or divided for a resource) [Yu and Buyya 2005; Cao
et al. 2006], whereas an independent job is mainly related with resource-oriented
approach (that is, to decide which resource is appropriate for a task) [Maheswaran
et al. 1999; Braun et al. 2001; Cao et al. 2006].

—Dynamism: Scheduling is categorized into static and dynamic according to
whether the information of jobs and resources is known or available, and when
scheduling decision is made [Casavant and Kuhl 1988; Rotithor 1994; Ekmecic
et al. 1996; Ali et al. 2002; Maheswaran et al. 1999]. In the case of static
scheduling, the prior information is assumed to be available [Casavant and Kuhl
1988; Rotithor 1994; Ekmecic et al. 1996; Ali et al. 2002; Maheswaran et al. 1999].
Static scheduling considers the entire tasks during decision making. In the case of
dynamic scheduling, little a prior knowledge is available [Casavant and Kuhl

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 27

1988; Rotithor 1994; Ekmecic et al. 1996; Ali et al. 2002; Maheswaran et al. 1999].
It is unknown in what environment tasks will execute. In addition, some nodes
may go off-line and new nodes may come on-line. That is, the environment state
is changing over time. Dynamic scheduling obtains dynamically changing state
and then takes into account the environmental inputs when making decisions.
Dynamic scheduling can involve adaptive scheduling, fault-tolerant scheduling,
and load sharing and balancing. Dynamic scheduling is classified into online and
periodic according to the time at which scheduling events occur [Maheswaran
et al. 1999]. In the online approach, a scheduling event occurs as soon as a
request arrives (for example, as soon as a resource arrives, or as soon as special
conditions (that is, high or low workload threshold) happens). In contrast, in
the case of the periodic approach, a scheduling event is performed only at the
predefined conditions (for example, every predefined interval or time, or when
the number of volunteers reaches a threshold); therefore some of the scheduling
requests will be delayed until the predefined conditions are satisfied.

—Trust scheduling (Result Certification): Trust scheduling for result certi-
fication aims to detect and tolerate the erroneous result in order to guarantee
trusted execution. It is categorized into non-reputation-based and reputation-
based trust scheduling. Non-reputation-based trust scheduling tolerates
malicious resources or a variety of hardware and software malfunctions [Taufer
et al. 2005; Sarmenta 2002; Choi et al. 2005; Renaud and Playez 2003] without us-
ing volunteer’s reputation in a scheduling procedure. It is categorized into voting,
spot-checking and hybrid. In the voting approach, the same task is distributed to
different volunteers (that is, voting group) as many as the number of redundancy
or until the predefined threshold is reached. If the results returned reach the
predefined threshold (for example, the majority of volunteers generate the same
result), they are considered as trustworthy. In the spot-checking approach, the
special task whose result is already known is distributed to volunteers randomly
selected. Then, the returned result is compared with the already-known result.
If it is different, if it is not within specific error-tolerant range, or if the results
returned do not reach the predefined threshold, the volunteers are regarded as
malicious and the results returned are discarded. Voting approach is apparently
more costly than spot-checking, because it requires a redundancy of at least two
per task. Spot-checking and voting can be combined together. In a reputation-
based trust scheduling, result certification is coupled with the reputation of
volunteers. In this case, the more a volunteer produces a correct result, the higher
its reputation (especially, credibility) becomes. In a reputation-based weighted
voting, some volunteers’ votes carry more weight than others according to their
reputation. In a reputation-based voting, a scheduler calculates the redundancy
of voting according to the volunteer’s reputation, or excludes badly-reputed vol-
unteers in a scheduling procedure. In a reputation-based spot-checking, a sched-
uler calculates the rate of spot-checking according to the volunteer’s reputation,
or selects badly-reputed volunteers for the test, rather than highly-reputed vol-
unteers.

—Incentive scheduling: Incentive mechanisms [Obreiter and Nimis 2003; Zhu
et al. 2006; Ranganathan et al. 2004; Andrade et al. 2007] aim to encourage re-

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

28 . SunglJin Choi et al.

sources’ owners to donate their resources eagerly, reliably and trustworthily. It
gives rewards (such as, money, resources, ranking, etc.) to volunteers for their
donation. Incentive scheduling also has the same goals, but it is more related
with resource selection and management [Zhu et al. 2006; Ranganathan et al.
2004; Andrade et al. 2007]. It tries to give incentives to eager, reliable and
trustworthy volunteers in a scheduling procedure. It also attempts to inflict pun-
ishment (for example, penalty, exclusion from scheduling, low reputation and
ranking, etc.) on selfish, faulty, untrustworthy volunteers. Incentive scheduling
is categorized into economy-based, resource exchange-based, reputation-based,
opportunistic scheduling (or eager scheduling). In an economy-based incentive
scheduling ?, a scheduler tries to allocate tasks to eager, reliable and trustworthy
volunteers in order to give them more money. A resource exchange-based incen-
tive scheduling is mainly applied to distributed DG systems. A volunteer accepts
tasks submitted by volunteers that have already donated their resources to it. In
the reputation-based incentive scheduling, a scheduler distributes tasks accord-
ing to the volunteer’s reputation. For example, only volunteers that have high
or same reputation are allowed to use other resources [Ranganathan et al. 2004],
or to submit tasks. In addition, a scheduler tries to give much higher reputation
and ranking to volunteers that donate their resources eagerly, reliably and trust-
worthily. In an opportunistic scheduling (or eager scheduling), volunteers that
request a task are first served in order to give an opportunity of participation.
In general, they are satisfied with the donation itself because they are resource
providers who have common interest or want to solve problems for public good.

—Load sharing or balancing: Load sharing or balancing is categorized into work
stealing and redistribution. In the work stealing approach, a lightly-loaded
node or idle node steals (or pulls) tasks from a heavily-loaded node. On the
contrary, in the redistribution approach, a heavily-loaded node transfers (or
pushes) tasks to a lightly-loaded node or idle node.

—PFault tolerant scheduling: Fault tolerant scheduling tolerates failure and
volatility. It involves selecting more reliable resources according to availabil-
ity, volatility, or credibility in order to avoid failures as much as possible, and
performing reassignment or replication in the presence of failures or volatility
[Taufer et al. 2005; Sarmenta 2002; Choi et al. 2006; Choi et al. 2006; 2005; Choi
et al. 2004; Abawajy 2004; Anglano et al. 2006; Lee et al. 2005]. It is classified
into checkpoint & restart, reassignment and replication. In the checkpoint &
restart approach, if a scheduler detects the failures of resource, it restarts the
failed task at another resource from the checkpoint. In the reassignment ap-
proach, if a scheduler detects the failures of resource, it reassigns the failed task
to another node. In the replication approach, a scheduler replicates the same
task to multiple nodes. Even though one of them fails, the others can mask the
failure.

9Economy model has incentives in itself because it gives money to resource providers. Economy
model focuses more on maximization or minimization of the profit of resource providers or con-
sumers, whereas economy-based incentive scheduling focuses on the selection of eager, reliable and
trustworthy volunteers in order to give them more money as an incentive.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 29

—Adaptive scheduling: Adaptive scheduling takes environmental stimuli into ac-
count to adapt to dynamically changing environment [Casavant and Kuhl 1988;
Rotithor 1994; Shivaratri et al. 1992]. The environmental changes lead to modify-
ing the scheduling policy. Adaptive scheduling is classified into migration, redun-
dant reassignment and change policy or topology. In the migration approach,
a task is moved from one node to another node. In the redundant reassign-
ment approach, the task that a slow resource does not complete within timeout
is reassigned to other resources. This leads to replication. In the change policy
or topology approach, scheduling policy or topology is switched in accordance
with environmental changes. For example, in a tree topology, fast nodes move
towards a root node. Or, in the SA (Switching Algorithm), MCT (Minimum
Completion time) heuristic is switched to MET (Minimum Execution Time) de-
pending on the load distribution threshold across the nodes [Maheswaran et al.
1999].

—Scheduling goals: A scheduler tries to achieve its scheduling goals. It chooses
appropriate scheduling policies and algorithms according to its goals such as
turnaround time, throughput, deadline, price, load balance, trust, incentive and
reliability.

5. MAPPING OF TAXONOMY TO STATE-OF-THE-ART SYSTEMS

A mapping of the taxonomy to Desktop Grid systems or projects is illustrated in
this section. Existing Desktop Grid systems, projects, and papers are surveyed (see
Table IT and IIT) : Alchemi [Luther et al. 2005], Bayanihan [Sarmenta and Hirano
1999; Sarmenta 2002; 2001], BOINC [BOINC ; Anderson 2004; Taufer et al. 2005;
Anderson et al. 2005], Cluster Computing On the Fly(CCOF) [Zhou and Lo 2004;
Lo et al. 2004; Zhou and Lo 2005; Zhao and Lo 2005], Charlotte [Baratloo et al.
1999], Condor [Thain et al. 2003; 2005; Tannenbaum et al. 2003], Computer Power
Market (CPM) [Buyya and Vazhkudai 2001; Ping et al. 2001], Entropia [Chien
et al. 2003; Chien et al. 2003], Javelin [Neary et al. 1999; Neary et al. 2000; Neary
and Cappello 2005], Korea@Home [Korea@Home ; Choi et al. 2007; Choi et al.
2006; Choi et al. 2006; 2005; Byun et al. 2007; Choi et al. 2004], Messor [Babaoglu
et al. 2002; Montresor et al. 2003], Organic Grid [Chakravarti et al. 2005; 2006],
Paradropper [Zhong et al. 2003; Dou et al. 2003], POPCORN [Nisan et al. 1998],
WebCom [Morrison et al. 2001; 2002], XtremWeb [Fedak et al. 2001; Cappello et al.
2005] and Kondo et al. [Kondo et al. 2002; Kondo et al. 2004; Kondo et al. 2004;
Kondo 2005; Kondo et al. 2006].

Table IV shows the survey of existing Desktop Grid systems according to the
taxonomy of Desktop Grid shown in Figure 7. Table V shows the survey of existing
Desktop Grid systems according to the application’s perspective shown in Figure
10. Tables VI and VII show the survey of existing Desktop Grid systems according
to the resource’s perspective shown in Figure 11. Tables VIII, IX, X, XI show the
survey of existing Desktop Grid systems focusing on scheduling according to the
scheduler’s perspective shown in Figures 12 and 13.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

SunglJin Choi et al.

30

Table II. Desktop Grid Projects around the World

System Developer Remarks Availability
Alchemi University Of Melbourne -.NET based Enterprise Desktop Grid Open source
-http://www.alchemi.net/

Bayanihan MIT -Volunteer computing system (Java or .NET) No
-Credibility-based eager scheduling
-http://bayanihancomputing.net/
BOINC University Of California, -Volunteer computing and Desktop Grid computing (C++) Open source
Berkeley -SETI@Home,Predictor@Home,Folding @Home,
Climatepredication.net, LHC @Home,Einstein@Home, etc.
-http://boinc.berkeley.edu/
CCOF University Of Oregon -Peer-based Desktop Grid computing No
-Wave scheduling, Trust-based scheduling
-http://ccof.cs.uoregon.edu/
Charlotte New York University -Metacomputing on the Web (Java) Open source
-Eager scheduling
-http://www.cs.nyu.edu/milan/charlotte/
Condor University Of Wisconsin -High throughput computing (C, C++) Open binary
Madison -http://www.cs.wisc.edu/condor/
CPM University Of Melbourne -Market-based Grid computing over the Internet No
-http://www.computepower.com/
Entropia Entropia Inc. -Enterprise Desktop Grid No

-VolunteerDG(ENTROPIA2000),Enterprise DG(DCGRID™)
-http://www.entropia.com

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

31

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems

/32 MWRIYX /SR PJ~/1F L[M/ Ay -

9o1nos uadQ (eae[) waoped rejuswradxe Sunndwods [eqoin- K)NSIOAIUN) TX Sued EYYNLIEL)Y
[OTBISI/a1 00N 0N MM //:dNy-
ON 19)ndwooBIOW PIseq-I9UNJOA - 310D 939[[0D ANSIOATUN) WODIIM
yuroddod~[r-oe 1y so mmam//:dny-
Surnpayos AwWou0o3 paseq-uonony -
donos uadQ (eA®() 30UIU] A} JoA0 uoneINdwod pANGINSIP [BQO[D- | WIesNId[JO ANSIOATUN) MAIGOH utoodog
urnpayos paseq-ydei3 priom [[pus-
ON (eaef) Juowuosiaus Sunndwos [eqo[3 asodind [erouan)- | A3o[ouyoa], Jo ymnsu] eyssuey) 10ddospereq
/punorue3i0/q3~/npans[osd//:dny-
Surnpayos 3urzruesio-J[os-
ON puo dopse pazienuadp Ay v- ANISIOATU() 91B)S BURISINO] puD o1uesio
Jpue/sioafordproqruntso mmam//:dny-
Juroue[eq peoj paseq-juady- (Ipuy)
9o1nos uadQ (eae[) swa)sAs 109d-03-109d paseq-juady- eu3o[og JO ANSIOATUN JOSSOIN
/3ug/310 0woy)eeaIoy mmm//:dny-
Surnpayds paseq-AONIBIAl pue SUInpayds paseq-dnoin- | (L.r3[) uoneuLoyuy ASo[outyoa],
ON (++D) woperd Sunndwod paynqLisIp paseq-Dd- PUE 90URIOS JO AJMNSU] BAIOY] QUWIOH @20
JuraAelysyosford/mpa-qson’sommm//:dny-
3uInpayos 10589 PIOUBAPE PIseq 1] - eIeqIEg
ON (eaer) Sunndwods pAngInsig A[[eqO[D) Paseq-1ouIaul- | ejuey ‘BIuIojife) JO AJSIoATUN) ur[oAef
Kiqereay SIRWaY 1odoraasg wAsAg

(penurquo))) PIIOAA o3 punole syoelord pux) dogyse ‘III O[qRL

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

32 . SunglJin Choi et al.

Table IV. Survey of Desktop Grid systems (System perspective)

System Organization Platform Scale | Resource provider
Alchemi Centralized | Middleware-based | LAN or Enterprise or
Internet Volunteer
Bayanihan Centralized Web-based or Internet Volunteer
Middleware-based
BOINC Centralized | Middleware-based | Internet Volunteer or
Enterprise
CCOF Distributed | Middleware-based | Internet Volunteer
Charlotte Centralized Web-based Internet Volunteer
Condor Centralized | Middleware-based | LAN Enterprise
CPM Distributed | Middleware-based | Internet Volunteer
Entropia Centralized | Middleware-based | LAN or Enterprise or
Internet Volunteer
Javelin Distributed Web-based or Internet Volunteer
Middleware-based
Korea@Home | Centralized | Middleware-based | Internet Volunteer
Messor Distributed | Middleware-based | Internet Volunteer
(Anthill)
Organic Grid | Distributed | Middleware-based | Internet Volunteer
Paradropper Distributed | Middleware-based | Internet Volunteer
Popcorn Centralized Web-based Internet Volunteer
WebCom Centralized Web-based Internet Volunteer
XtremWeb Centralized | Middleware-based | Internet Volunteer
5.1 Alchemi

Alchemi [Luther et al. 2005] is a .NET-based Desktop Grid computing framework
that aggregates the computing power of networked desktop computers. It provides
a .NET API and tools to develop .NET-based Grid applications. Alchemi is being
used in applications such as large scale document processing, CSIRO Australia’s
hydrology application, and Microsoft Excel spreadsheet processing.

Alchemi consists of a manager (server in this article) and executors (volunteer in
this article). A manager is in charge of the management of executors and scheduling
which is based on priority and First Come First Served (FCFS). It contains a cross-
platform manager, which is a web services interface that exposes the functionality
that is capable of translating a non-canonical job submitted by a user into a form
that can be acceptable by a manager. An executor executes threads (tasks in
this article). Alchemi can be configured as two modes, that is, enterprise DG and
Volunteer DG. In the case of enterprise DG, a manager can explicitly instruct the
executor to execute threads (that is, push mode). In the case of volunteer DG, an
executor requests threads from the manager. If it is disconnected, the threads are
rescheduled.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

33

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems

ONSIUIULIAIOP-UON

QwIT) punOIBUIN IS8 ONSIUIUINIR(| PIXI] juopuadopuy | oarsusjur-aindwio) | Te 30 opuoy
pay1oads 10N ONSIUTWIRNR(| PoOXId juapuadopuy | sArsudu-aindwio) | qopzweny
(ydea3 pesuapuo)))
peryroads JoN ONSTUTUINNN(| PoxIg juopuado | oArsuayur-ayndwo) WODQIM
oud ONSTUTWLIRNR | POXIA juopuadopuy | darsudjur-oyndwo) uroodog
poy10ads JON | OnSIUIULIO)OP-UON | POXL] juopuadopuy | oarsusjur-aindwo)) | I1oddoipereq
QuwIr) punoJewIn) 358, | OSIUIULIOIOP-UON | POXL] juapuadopuy | sarsuau-aindwo) | puo owesio
poy1oads JON | OnSIUIULIO)OP-UON | PoOXI] juopuadopuy | earsuajur-eindwo) JOSSQA
SSUIDAII0D JNSAY ONSIUTWINR | POXI juapuadopuy | sArsuul-aindwio)) | SwWoy @ eaIoYy]
poy10ads JON | OnSIUIULIONOP-UON | PoXI] juopuadopuy | oarsudur-aindwo) UrpoARf
pory1oads JoN ONSTUTULINNR(| POXI] juapuadopu] | oarsudyur-andwo) erdonuyg
Qurpe=-
Q01 d- ONSTUTULIRNR(| POXId juopuadopuy | oarsusjur-eyndwo)) INdD
SUOT)IPUOD QJUIIJIJ
10 UONDLNSIY- | HSIUIULIIOP-UON juopuado(q SAISUSIUI-BIR(]
Kong- ‘OnSIuTINR | PaxI 9uopuadopuy | ‘earsudiur-oyndwo)) Iopuo))
peryroads JoN ONSIUTULINNR(| PoxIg juapuadopu] | oArsudur-andwo) anorrey)
SSQUIOQIIOD J[NSY | ONSIUTWINOP-UON | POXI] juopuadopuy | earsuaur-eindwo)) J0DD
SSQUI0II0D JNSIY- SAISUSIUI-BIR(]
Kyong- ONSIUTULINR(| PoxIg juopuadapuy | ‘earsudjur-oyndwio)) JONIOF
(ds9) yuspuadaq-
SSQUIOALIOD J[NSAY ONSIUTWINR | POXI juopuadopul- | oasuaur-oyndwo) | ueyruelegq
(morppIom) Juapuada(g
poy10ads JoN OSIUTWINFQ | POXI] 9uopuadopu] | oarsudjur-oyndwo) WYY
SoO u oﬂmwmﬂ_m%z S .M_._'._m_ Louapuadaq adAy, -ddy WIAISAS

(ea1g00dsiod uoryeotddy) swegsAs prir) dogyse(] Jo £eamg A O[qe],

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

SunglJin Choi et al.

34

Table VI. Survey of Desktop Grid systems (Resource perspective)
. Dedication State 3 Hetero- | Registration
System Altruism (Volatility) Scale change Trust Failure geneity pattern QoS
Alchemi Altruistic | -Volatile, -Internet | Dynamic| Not Faulty Hetero- | Non- Not
Non-dedicated, | -LAN specified geneous | deterministic | specified
-Dedicated
(possible)
Bayanihan | Altruistic | Non-dedicated,| Internet | Dynamic| Untrust- | Faulty Hetero- | Non- Not
Volatile worthy geneous | deterministic | specified
BOINC Altruistic, | -Volatile, Internet | Dynamic [Untrust- | Faulty Hetero- | Non- Not
Egoistic Non-dedicated, worthy geneous | deterministic | specified
(Credit) -Dedicated
(possible)
CCOF Altruistic | Non-dedicated, | Internet | Dynamic | Untrust- | Not Hetero- | Non- Not
Volatile worthy specified | geneous | deterministic | specified
Charlotte | Altruistic | Volatile Internet | Dynamic | Not Faulty Hetero- | Non- Not
specified geneous | deterministic | specified
Condor Altruistic | -Volatile & -Internet | Dynamic| Not Faulty Hetero- | Non- Not
Non-dedicated, | -LAN specified geneous | deterministic | specified
-Dedicated
CPM Egoistic Non-dedicated, | Internet | Dynamic | Not Faulty Hetero- | Non- Price
(Economy | volatile specified geneous | deterministic
-based)
Entropia Altruistic | -Volatile & -Internet | Dynamic| Not Faulty Hetero- | Non- Not
Non-dedicated, | -LAN specified geneous | deterministic | specified
-Dedicated

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

35

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems

(a1q1ssod)
ParedIpPa(]-
payroads | oNSIUTWIAAP | snosuad payroads NVT- | ‘Pa1ed1pap-uoN
JON -uoN | -o1e)oH Kyneq JoN | otwreuA(q | jouroul- 29 S[IB[OA- | OnSINN[Y | ‘Te 39 opuoy]
poyy1oads | onSIUIUIIAIOP | Snoduad Aypaom S[IBIOA
JON -uoN | -oroleH Ameq | -snnu() |orweuk(| jouIoU] |‘paredIpap-uoN | onsmnly | qopweny
payroads | oNSIUIWIAAD | snosuad payroads S[IBIOA
JON -uoN | -o10)oH Kyneq JON |otwreuA(q | JoUIAU] |‘pAIeIIPOp-UON | ONSINI[Y woDQIM
(paseq-
ONSIUILIAJOP | SnoQud3 pagroads S[IBIOA | fwouooq)
RRIN | -uoN | -010)9H Ameq JON | oTwreuA (] | 1OUISIU] |‘PAIeITPOP-UON onstoSyq uroddoq
payroads | onsIuIwIAAp | snosuad | payroads | payroads S[IB[OA
JON -uoN | -oI0)oH JON JoN |omureuk(q | jourayuy |‘pajesrpep-uoN | onsinnyy | Ioddoipereq
poy1oads | oNSIUIWLIANAP | snoouad poyyoads S[IBIOA
10N -uoN | -010)H Ameq JON |otwreuA(| JouUISIU] |‘pajedIpop-uoN | onsmnyy | puo omesio
Surouereq | onsiumuilep | snoduad | paygroads | parjroads S[IB[OA
peo -uoN | -oIle)oH JON JON | otwreuA(q | JoUISIU] |‘pAJedIPAp-UON | OnNSINI[Y JIOSSOIN
poy1oads | oNSIUIWLIANAP | Snoouad Aqpiom S[IBIOA
10N -uoN | -0I10)eH Ameq | -snnu(|orweuA(| jouIouy |‘paredIpap-uoN | onsmnry | swoyg eeroy
payroads | onsIUIWIAIRP | snosuad payroads S[IB[OA
JON -uoN | -oI1e)oH Aneq JON |otwreuA(q | JoUIAU] |‘pAeIIPOp-UON | ONSINI[Y urjoAef
wed £yRuagd Jgueyd (£ype[oA)
10 J onensioy | -01019H aanpreq Isnaj, B areds T WSy LLIESTNY
(oa1g00dsiod 001mM0saY) swoysAs prir) dojysa(] Jo £oamg IIA O[qRI,

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

SunglJin Choi et al.

36

Table VIII. Survey of Desktop Grid systems (Scheduler perspective)
System Organization | Mode Policy Grouping Object Dynamism
Alchemi Centralized Push | FCFS Individual-based | Resource oriented: | Dynamic
Pull resource selection | *Qpline
Bayanihan Centralized Pull | -FCFS (eager scheduling) Individual-based | Resource oriented: | Dynamic
-Heuristics: Reputation-based resource selection | *Qnline
*Exclusion (credibility)
BOINC Centralized Pull | -FCFS Individual-based | Resource oriented: | Dynamic
resource selection | *QOpline
*Periodic
CCOF Distributed Push | -Heuristics: State-based Resource- Resource oriented: | Dynamic
*Matching (timezone) Mv%.o:ﬁm“ CON resource mz_ucwm.:m‘ *Online
L . imezone resource selection | 4 . ..
-_\._@::m.:o? w%i.m:o:-gmoa based DHT) *Periodic
*Ranking, exclusion (trust)
Charlotte Centralized Pull | FCFS (eager scheduling) Individual-based | Resource oriented: | Dynamic
resource selection | *Qpline
Condor Centralized Push | Heuristics: State-based Individual-based | Resource oriented: | Dynamic
Pull *Matching, ranking resource selection *Online
(capability, location, workload) *Periodic
CPM Distributed Pull | Economy model: Individual-based | Resource oriented: | Dynamic
*Commodity market-oriented resource selection | *Qpline
Entropia Centralized Pull | -Deterministic model: Resource- Resource oriented: | Dynamic
*Queue (job selection) oriented : resource selection, | *Qnline
-Heuristics-based: m::w_o. grouping resource grouping
*Matching (capability) (capability)
Javelin Distributed Pull | -Random Resource- Resource oriented: [Dynamic
_Deterministic model: oriented : CON resource mm_oon.o:, *Online
*Tree-based eager scheduling (tree) resource grouping

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

37

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems

(indyS3noay) Sunjuey
JIpOLI_d ‘(eourwiograd) uorsnoxy {(NdD
QUIUQO UONII[IS AOINOSAI -Kiiqedes) uorsnoxe ‘FunjuLY, gsnd
oTweuA(] | :POIUSLIO 9OINOSIY paseq-[enpIAIpuy Paseq-a1eIS (SONSUNSY- | [[nd pazienua) | ‘Te 39 opuoy
QUIMUQ: | uoNO9[as 92IN0SAI
otweuA(| :POIUSLIO 9OINOSAY paseq-[enpIAIpu] SdDd- | 1nd pazienua) | gopmweny
(eourwiofrad ‘Aouaje|
Sppomidu-Aiqeded) SuryoreA 4
Paseq-91e)S :SONSLINAH-
SUIUO: | uonoopes 90In0sa1 | Aouate[-(991) NOD (u1qo1-punor) ananQyy,
OTWRUA(] | :POIUSLIO 9OINOSIY | POIUSLIO-I0INOSIY [opoul ONSIUIULIR(- | [INd | [BOYOIeISIH | WODGIM
QUIUQO UONII[AS 90INOSAT paseq-uonony .
orweuA(q | :PIIUSLIO AOINOSAY paseq-[enpIAIpuy [epow-Awouody | [nd pazienua) uioodod
UOI}09[S 90INOSAI (ydei3
SUIUO:: | ‘Fuidnoid o0mosar| ppom [[ews) NOD (PeopyIom) Suryuey,
otweuA(q | :POIUSLIO 9OINOSAY | {PIIUSLIO-I0INOSIY Ppaseq-a1e)S SONSUNAH | ysng panqusiq | Ieddoipereq
UONII[IS 90INOSAT (991 paseq
SUNUQ: | *Guidnois oomosar [-9OUBWION™) NOD 9 L PUD
OTwRUA(] | :PIIUSLIO 9OINOSIY | POIUSLIO-I0INOSIY [opow onsmuruIR | [nd paINQLUSI oesiQ
dei3
E%:eﬁw@mmn (prOpIOM) BUIGOIEI
QUITUQO UOT)OJ[AS 90IN0SAI -peorIom) NOD Paseq-aJe)§ -SoNsUnoH- | [[nd
OTwRUA(] | :POIUSLIO 9OINOSIY | :POIUSLIO-IOINOSIY wopuey- [ysng paINqQLISIq JOSSOIN
(Kmmeroa (AOMIRIA)) [9pOW SONBWIAYIRIA-
“Kpiqrparo (A¥[1B[OA ‘UOTIEIIPIP
‘Kpiqerreae) “Apiqipao ‘Ayiqereae)
OIPOLIdd 5 UOTIOA[OS 90IN0SAT Surdnoi3 ordwrg uoISN[oX? ‘Funjuel ‘SuryoIeA
AUIUOx | ‘Suidnoid somosar| PIUSLIO-90IN0SIY paseq-uoneinday] :SONSUNSH-
oIwRUA(] | :POIUOLIO 90IN0SAY | IO PIseq-[enpIAIpuU] SdDd- | 1nd pozIenua)) |owoH @ eo1o3]
wisTweuA(193(qQ guidnoas) L1104 POJA | uopeziuediy | woISAS
(ea1300dsiad I9INPaTPG) sure)sAs prir) dojssa(] Jo Aeamg XTI 9[qRI,

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

SunglJin Choi et al.

38

Table X. Survey of Desktop Grid systems (Scheduler perspective)

q . q Load sharing Fault Adaptive Scheduling
System Trust scheduling Incentive scheduling & balancing tolerance scheduling Goal
Alchemi | Not supported Not supported Not supported | Reassignment | Reassignment | -Reliability
Bayanihan | -Result certification Eager scheduling Not supported | Reassignment | Reassignment | -Trust (sabotage
*Voting *Spot-checking *Self-satisfaction-based S_Q.wso.m.v
*Hybrid (voting+spot-checking) | reward -Reliability
-Reputation-based:
*Trust threshold (Credibility-
based eager scheduling)
BOINC -Result certification Opportunistic scheduling Not supported | -Checkpoint Reassignment | -Throughput
*Voting (homogeneous *Ranking-based reward \Homa:.;) -Trust
redundancy) *Self-satisfaction-based -Replication -Incentive
reward -Reliability
CCOF -Result certification Reputation-based Not supported | Not supported | Migration -Turnaround time
*Voting *Spot-checking *QoS-based reward (timezone) -Trust
(quiz & replication in collision) | (scheduling priority, Higher -Incentive
reputation)
Charlotte | Not supported Eager scheduling Not supported | Reassignment | Reassignment | -Throughput
*Self-satisfaction-based -Reliability
reward
Condor Not supported Opportunistic scheduling Not supported | Checkpoint Migration -Throughput
*Self-satisfaction-based /restart -Reliability
reward
CPM Not supported Economy-based scheduling | Not supported | Reassignment | Not -Price
*Money-based reward supported -Deadline
Entropia | Not supported Not supported Not supported | Reassignment | Reassignment | -Throughput
Javelin Not supported Not supported Work stealing | Reassignment | Reassignment | -Reliability
(Pull) -Load balance

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

39

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems

Annqenay-
aurpes(-
ndy3noay] - (uoneordn(y)
Qwin punoreuwIng - JuoWUSISSBAY uoneosrdoy pauroddns JoN pawoddns 10N payoddns JoN | °[e 30 opuoy]
Anqer oy JuoWUIISSeAY | JUSWUTISSBAY payoddns JoN payoddns JoN pauoddns JoN | gopwony
(Kouaye] ‘peof :991])
Anpiqeroy K3ojodoy o3uey) | JuowudIsseay] pauoddns JoN pawoddns 10N payoddns JoN woDJIM
PIemal paseq-AQUOIA 4 Sunjooyd-10ds
Surmnpayos SUnoA
oL pauoddns JoN | Juowugisseay payoddns JoN paseq-Awouody | uoneoynId)) INsay- uroddog
(ysnd)
Qoue[eq prO pouroddns joN | peyoddns joN | uonnqgLusipar peo| panroddns joN poyoddns joN | Ioddoipereq
(poseq-oouew1o)1ad) PUD
quin punoreurng, A3orodoy o3uey) | juowuSisseoy payroddns JoN payroddns JoN pauoddns joN oe3i0
(ysnd)
PapeO 1YSI] : [INd uonNqIISIPaI peo-
PIPBOLIAO : Usndx (1nd)
Joue[eq peo] Korjod a3uey) | porroddns joN Sur[eas JIoOM - payoddns JoN payioddns Jo0N JOSSIIN
Amaqeey- (uoneindar 10ySIH
SANUIdUT- ISNI- Surdnois | (Poseq-dnoin) Kyuronad Surnpoyos) Sunyoayo-1ods;,
ndy3noay] - 10 Korjod a3uey)- uoneordoy- PIemaI paseq-SoQ) SUunoA 4
uin punoIewIn] - juowru3Issedy- | juowrudisseay- pauoddns JoN paseq uoneindoy :peseq uone)ndoy- | QWO @ LaI0Y]
Surmpayos dUBII0)
[805) SuInpayds aandepy neg Sunuereq peo| ARUAdU] Surnpayos jsnafy, w)SAS
(aa1y00dsiod 1o[npoetpg) suogsAs prin) dojyse(] Jo £oamg TX O[qRI,

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

40 . SunglJin Choi et al.

5.2 Bayanihan

Bayanihan [Sarmenta and Hirano 1999; Sarmenta 2002; 2001] is a web-based volun-
teer computing system using Java. Bayanihan system consists of client (volunteer
in this article) and server. A client executes Java applet on a web browser (that is,
web-based), or Java application on a middleware (that is, middleware-based). It has
a worker engine that executes computation or a watcher engine that shows results
and statistics. A server consists of HIT'TP server, work manager, watch manager
and data pool. The HTTP server serves out Java class file. The work manager dis-
tributes tasks and collects result. The watch manager distributes results to watcher
engines in clients.

A server (that is, work manager) is responsible for scheduling. A worker client
(that is, volunteer) makes remote call to the server to get a task. Bayanihan
basically uses eager scheduling, in which a volunteer asks its server for a new task
as soon as it finishes its current task. The more eagerly volunteers work, the more
tasks are executed. Additionally, the credibility-based fault tolerance mechanism
was studied to tolerate erroneous results from malicious volunteers [Sarmenta 2002;
2001]. In the majority voting approach, the same task is performed by different
volunteers as much as the number of redundancy. In a spot-checking approach, the
special task whose result is already known is performed by the volunteers randomly
selected. If a volunteer returns an erroneous result, it is regarded as malicious one.
In the credibility-enhanced eager scheduling, a task is continuously allocated to
volunteers until its credibility threshold is satisfied. When the desired credibility
threshold is reached, the result is accepted as a final. A volunteer’s credibility is
calculated as follows. The more a volunteer passes the spot-checking, the higher its
credibility becomes. The more volunteers within voting group agree on the same
result, the higher its credibility becomes. The volunteers that produce erroneous
results can be blacklisted. Moreover, Bayanihan also has fault-tolerant and adaptive
scheduling algorithms. If a worker executes a task slowly or if it fails, the scheduler
reassigns the task to different workers.

The applications are mainly compute-intensive and independent. In addition,
Bayanihan supports applications running in BSP (Bulk Synchronous Parallel) mode
[Sarmenta 2001], which provides message-passing and remote memory primitives.

5.3 BOINC

BOINC (Berkeley Open Infrastructure for Network Computing) [BOINC ; Ander-
son 2004; Taufer et al. 2005; Anderson et al. 2005] is a well-known middleware sys-
tem for volunteer computing (or public-resource computing). BOINC makes it easy
for scientists to create and operate public-resource computing projects. There are a
lot of BOINC-based projects: SETIQ@QHome, Predictor@Home, Folding@Home, Cli-
matepredication.net, Climate@Home, LHC@QHome, Einstein@Home, BBC Climate
Change, and so on [BOINC ; Anderson 2004; Taufer et al. 2005; Anderson et al.
2005].

BOINC consists of server and client (volunteer in this article). A server has a task
server that dispatches tasks and processes the results of tasks, a data server that
handles file transfer, a database that stores descriptions of applications, volunteers,
scheduling, etc., and web interfaces for account management, message boards, etc.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 41

A client (that is, volunteer) executes projects’ applications. It can participate in
several projects and specify preferences for the projects. BOINC is mainly based
on voluntary participants connected through the Internet!?.

The BOINC server is responsible for scheduling. Clients (that is, volunteers)
first send requests to its task server (that is, pull mode). Then, it allocates new
tasks to them. Additionally, BOINC supports locality scheduling. Moreover, clients
performs local scheduling on its computer!!, which decides which task to run among
multiple projects, when to ask a server for more works, which project to ask, and
how much work to ask for [BOINC |.

BOINC is used for applications in physics, molecular biology, medicine, chem-
istry, astronomy, climate, etc. The applications are mainly compute-intensive and
independent. The BOINC scheduler distributes a task to clients only if they are
likely to complete the task by its deadline. If the deadline passes or if a task fails,
the server marks it as time-out and then redistributes it to other volunteers. With
the local scheduling, a client may preempt applications either by suspending them
or by instructing them to quit if it participates in multiple projects [BOINC]. In
other words, one task can be preempted by another task. BOINC also provides the
checkpoint API for applications, that is, when to checkpoint and when a checkpoint
has been done.

BOINC supports redundant computing to detect and tolerate erroneous results.
It provides homogeneous redundancy for the numerical applications that may pro-
duce different results depending on the machine architecture, operating systems,
compiler, and compiler flags [Taufer et al. 2005]. In this case, the redundant tasks
are dispatched to numerically identical computers.

54 CCOF

CCOF (Cluster Computing On the Fly) [Zhou and Lo 2004; Lo et al. 2004; Zhou
and Lo 2005; Zhao and Lo 2005] is a cycle sharing peer-to-peer system. It harvests
idle cycles from users at the edges of the Internet. It supports a distributed model,
in which there is no server and any peer can be either a donor or a consumer.

Hosts (volunteers in this article) join a community based overlay network (CAN-
based DHT overlay) to donate their idle cycles [Zhou and Lo 2004; Lo et al. 2004].
Clients discover these resources from this overlay network, and schedule tasks ac-
cording to timezone. If a scheduler fails to find enough resources at day timezone,
it reschedules the tasks at night timezone. If a host is not able to complete its
task, the task migrates to a new host at night timezone for fast turnaround time'2.
If the host fails to find a new host, the original client reschedules the job. This
scheduling is called wave scheduling in that tasks ride a wave of idle cycles (day
or night timezone). Wave scheduling supports deadline-driven tasks. Scheduling is
close to a distributed model in the sense that there is no server and migration is
performed by each host, although a client initially schedules the tasks.

10Recently, BOINC can be used as Enterprise DG computing platform, although it is originally
designed for volunteer DG (volunteer computing) [BOINC].

HTocal scheduling of BOINC is different from local scheduling of Grid. The local scheduler in
Grid decides how to distribute or order tasks to multiple computers (that is, cluster) or processors
in supercomputer.

12Migration can be applicable to a push model

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

42 . SunglJin Choi et al.

The result verification schemes (that is, Quiz and replication) were studied on
the assumption that there is collusion among malicious hosts [Zhao and Lo 2005].
The Quiz method inserts a quiz task (its result is known to a client) into a normal
task (that is, it is similar to spot-checking). In addition, the trust-based scheduling
was proposed; it uses the reputation system to select trusted hosts [Zhao and Lo
2005]. The reputation system evaluates trust values of hosts according to the result
of result verification. The malicious hosts can be blacklisted.

5.5 Charlotte

Charlotte [Baratloo et al. 1999] is a Java-based infrastructure for metacomputing
on the Web. It consists of manager (server in this article) and worker (volunteer
in this article). A manager provides a scheduling service and a memory service for
accessing shared data. A worker provides a computing service implemented as an
applet.

Charlotte firstly proposed eager scheduling. At first, a worker asks for and exe-
cutes each task. After that, if it finishes its task, it contacts the scheduler. If there
are still tasks that have not been assigned, the scheduler assigns one of them to
the worker. If all tasks have been assigned but some tasks have not yet completed,
it reassigns one of the unfinished tasks to the worker. This redundant assignment
of a task to multiple workers eventually tolerates the slow workers and the failed
workers in the sense that if at least one of multiple workers finishes the task, the
task is completed. That is, eager or fast workers overtake slow or failed workers.

5.6 Condor

Condor [Thain et al. 2003; 2005; Tannenbaum et al. 2003] is a batching system
for high-throughput computing on large collection of distributed resources. Condor
provides a job management, scheduling, resource monitoring and resource manage-
ment, etc. Particularly, Condor aims at high-throughput computing and oppor-
tunistic computing [Thain et al. 2005]. Condor is comprised of a central manager
(server in this article) and other resources (volunteer in this article). A central
manager is responsible for matchmaking (scheduling) and information management
about job and resources.

Condor can be used to manage dedicated clusters, or to harness wasted CPU
power from otherwise idle desktop workstations within the boundary of an organi-
zation. Condor can be configured to run jobs only when the keyboard and CPU
are idle. While a job is running on a workstation, when the user returns, the job
migrates to a different node and resumes. In order to tolerate failures, Condor
transparently takes a checkpoint and subsequently resumes the job.

Condor provides ClassAd in order to describe characteristics and requirements
of both jobs and resources [Thain et al. 2005; Tannenbaum et al. 2003]. It also
provides a matchmaker for matching tasks with available resources. Condor per-
forms matchmaking as follows. Agent (that is, client) and resources advertise their
ClassAds to its matchmaker. The matchmaker investigates the ClassAds, and se-
lects job and resource pairs that satisfy each other’s constraints and preferences.
Finally, they establish a contract, and then cooperate to execute tasks.

ClassAd describes the special attributes: Requirements and Rank [Tannenbaum
et al. 2003]. Requirements attribute indicates a constraint, and Rank attribute

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 43

measures the desirability of a match. A matchmaker first selects both job and

resource to satisfy Requirements value. Then it chooses the one with the highest

Rank value among compatible matches. For example, Requirements and Rank have

values such as architecture, operating system, memory, disk size, load, location, etc.

Condor provides DAGMan(Directed Acyclic Graph Manager) for executing de-

pendable jobs [Tannenbaum et al. 2003]. Condor enables preemptive-resume schedul-
ing on dedicated compute cluster resources. It can preempt a low-priority task in

order to immediately start a high-priority task.

57 CPM

CPM(Compute Power Market) [Buyya and Vazhkudai 2001; Ping et al. 2001] is a
market-based middleware system for Grid computing on low-end personal comput-
ing devices connected to the Internet. It aims to develop a computational market-
place for the regulation of resource demand and supply. It applies economic concept
to resource management and scheduling across Internet-wide volunteer resources.

CPM consists of a market, a resource consumer (client in this article), and a
resource provider (volunteer in this article). A market is a mediator between con-
sumer and provider. It maintains information about providers and consumers. A
resource consumer buys computing power from a market. It downloads a mar-
ket resource broker from the market. The market resource broker finds appropriate
providers depending on the information provided by the market. It selects resources
according to deadline or budget, negotiates the cost with resource providers, and
distributes tasks to them. The application and data files are fetched when the task
is ready to run at a resource provider. A resource provider sells computing power
through the market. It has a market resource agent downloaded from the market.
The market resource agent updates information about its resource provider, and
deploys and executes tasks.

In CPM, resources trade is performed between consumer (that is, client) and
producer (that is, volunteer) with help of a market resource broker. Scheduling
is performed by a resource consumer (that is, client). Thus, CPM is close to
distributed DG. Scheduling is also close to distributed one although a consumer is
responsible for scheduling, in the sense that consumers negotiate for the resource’s
cost with providers and there is no special server that is responsible for scheduling.

5.8 Entropia

Entropia [Chien et al. 2003; Chien et al. 2003] is a middleware system for commercial
Desktop Grid. Entropia provides two solutions: enterprise Desktop Grid (Entropia
DCGrid) and Internet Grid (Entropia 2000). The applications are mainly compute-
intensive and independent.

Entropia consists of server and client (volunteer in this article). The server
in Internet Desktop Grid consists of three main components: tasks server, file
server and App server. A task server is responsible for registration, scheduling
and resource management. It maintains a database and forms an application pool
(that is, a list of clients, the number of assigned jobs, and the number of completed
jobs, and the pool priority). The clients (that is, volunteers) within a pool have
similar capabilities such as disk space or operating system type. The App server
decomposes a job into subjobs and assigns them to clients. The task server performs

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

44 . SunglJin Choi et al.

scheduling in the pull mode.

Enterprise Desktop Grid consists of three layers: job management, subjob man-
agement, and resource management layers. The resource management layer is re-
sponsible for registration and resource management, and maintains resource pools
(application pools). The subjob management layer performs scheduling. The job
management layer’s responsibility includes job decomposition and management.
The subjob management layer maintains queues that have priority and default val-
ues for time to live, max time to run, and min time to run. It first processes the
highest priority queue. Higher priority is assigned to the retried subjobs than first
submitted subjobs. Subjobs are selected in a FIFO way. Like this, the subjob
management layer provides how to select subjobs depending on queue structure.
Clients periodically report their resource status to node manager in the resource
management layer and the subjob scheduler. The scheduler assigns subjobs to avail-
able clients according to the client’s attributes such as memory capacity, OS type,
etc. For example, if subjobs need a minimum of 128 MB of memory, then they are
assigned to the clients with at least that amount of memory. If a client becomes
disconnected or unresponsive, or fails to return a result within the expected time,
the scheduler redistributes the subjob to another client.

5.9 Javelin

Javelin [Neary et al. 1999; Neary et al. 2000; Neary and Cappello 2005] is a Java-
based infrastructure for parallel Internet computing (or global computing). Appli-
cations run as Java applet (Javeline version) or screen saver (Javelin++ version).
Applications are mainly compute-intensive and independent. Javelin consists of
three entities: broker, client and host (volunteer in this article). A client registers
its tasks to a broker. A host provides computing resources. A broker coordinates
the supply and demand for computing resources. When a host contacts a broker,
the broker adds it to a logical tree structure. A broker maintains and reorganizes
the tree of hosts (that is, tree-based CON).

A client registers with a broker. If a host requests tasks to the broker, the broker
informs it of client ID and application information. Then the host executes tasks.
At this time, work stealing and advanced eager scheduling are performed [Neary
et al. 2000; Neary and Cappello 2005]. With work stealing, when a host runs out
of work, it requests tasks of other hosts in two ways: deterministic or probabilistic
approaches. In a deterministic approach, a host asks its children or its parents for
tasks on the basis of tree structure. In a probabilistic approach, a host randomly
selects the target from the list of other hosts that it currently keeps. With the
advanced eager scheduling, the client selects the next task marked undone and
redistributes it to another host. The advanced eager scheduling is invoked only
when work stealing fails. It also provides fault tolerant mechanism, that is, how
to fix tree in the presence of the host’s failure. The failed work is redistributed
by eager scheduling, in the sense that eager scheduling guarantees that the undone
works will be rescheduled to different hosts eventually.

In Javelin, the work stealing is performed by a host, and eager scheduling is per-
formed by a client. A broker is a simple mediator between clients and hosts. Thus,
Javelin is close to distributed DG, although a broker collects hosts’ information.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 45

5.10 Korea@Home

The Korea@Home project attempts to harness the massive computing power of
the great numbers of desktop computers over the Internet. Korea@Home system
consists of server and agent (volunteer in this article). A server is responsible for
scheduling and information management about jobs and agents. Korea@Home has
applications: Genome alignment, New drug candidate discovery, rainfall forecast,
climate predication, optical analysis of TFT LDC. Most applications are mainly
compute-intensive and independent.

Korea@Home basically uses FCFS scheduling. If a volunteer is idle, it requests a
task of its server(that is, pull mode). Additionally, a group-based adaptive schedul-
ing and a Markov-based scheduling mechanism were studied. Choi et al. [Choi
et al. 2006; Choi et al. 2006; 2005; Choi et al. 2004] proposed centralized scheduling
mechanisms in Desktop Grid. They proposed a group-based adaptive scheduling
mechanism, which evaluates volunteers according to their reputations such as avail-
ability, dedication and credibility, then forms volunteer groups. Then, it applies
scheduling, replication, result certification, and fault tolerant algorithms to each
group while ranking or excluding volunteers. Particularly, it calculates the number
of replication, the rate of result certification on the basis of volunteer group, there-
fore it reduces overhead, and completes more tasks. It can also tolerate volunteer’s
volatility and non-dedication (which is called volunteer autonomy failures) as well
as crash and link failures during execution. Byun et al. [Byun et al. 2007] pro-
posed a probabilistic scheduling using the Markov model. It provides the stochastic
model of volunteer’s availability using the Markov, and then distributes tasks to
volunteers selected by scheduling algorithms such as optimist, pessimist, and realist
methods.

5.11 Messor

Messor!® [Babaoglu et al. 2002; Montresor et al. 2003] aims to support the con-
current execution of highly-parallel and compute-intensive computations. It can
self-organize overlay network for the computation by using peer-to-peer technology.
Messor is composed of interconnected nests. A nest is a peer entity sharing its
computational and storage resources. It can generate ants (that is, autonomous
agents) that travel across the nest network. It manages its resources (that is, CPU
cycles and files) and executes tasks.

Every nest can submit tasks to the nest network. The submitted tasks are sched-
uled to other nests in a distributed way. An ant wanders about the nest network
until it encounters overloaded nest in the SerarchMazx state. It selects the next nest
randomly or according to workload. When it finds an overloaded node, it records
the identifier of this nest and changes its state into the SearchMin state. From
now on, it wanders through the network, looking for a light-loaded nest. When it
finds a light-loaded nest, it requests the local job manager on the nest to fetch jobs
from this overloaded nest, and then changes its state back to the SearchMax state.
Ants continuously perform the processes within its time-to-live. When a task is
completed, the result is sent back to the original nest. Like this, Messor constructs

13Messor is built on the basis of Anthill. It is a Grid computing application.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

46 . SunglJin Choi et al.

workload-based random graph on the fly and achieves load balancing.

5.12 Organic Grid

Organic Grid [Chakravarti et al. 2005; 2006] provides a self-organizing and dis-
tributed approach to the organization of the computation. Hosts (volunteer in this
article) keep a list of other hosts called friends list, and build tree-based overlay
network.

A user starts the computation on its host. If the host receives a request from
other hosts, it distributes tasks to them as the form of a mobile agent. At the
moment, the requesting host becomes a child of the original host. Like this, tasks
are scheduled in a distributed way. Consequently, a tree topology is constructed on
the fly. An agent requests its parent for more work when it completes its task. If
the parent does not have tasks, it sends a request to its parent. If a host obtains
results from children or finishes its tasks, it sends them to its parent.

The tree overlay network is restructured during the computation according to
the performance, that is, the rate at which a host sends a result. The hosts with
high performance move towards the root of the tree. This reconstruction minimizes
communication delay between the root and the best host and makes it possible to
firstly allocate tasks to the best hosts.

If the parent of a host fails, the node contacts its parent’s ancestor. The ancestor
becomes the parent of the host and the computation resumes. Every host keeps
track of the unfinished tasks of children in order to tolerate the failure of tasks. If
a child requests additional tasks, unfinished tasks are resent.

5.13 Paradropper

Paradropper [Zhong et al. 2003; Dou et al. 2003] is a global computing system
that supports self-organizing overlay network by using peer-to-peer technologies.
Peers (volunteers in this article) are organized into an overlay network by using
small world characteristics. A new peer sends a message to the entry point that is
randomly selected among the list of peers. The entry point in turn introduces the
new peer to it neighbors. A small world graph is constructed in this manner.

Every peer maintains workload. Whenever a peer accepts a task, its workload
increases by 1. Whenever it finishes a task and returns its result, its workload
decreases by 1. A new peer has the workload 0. When the workload gets changed,
a peer sends Load Change Report messages to its neighbors.

Tasks are distributed according to workload in a distributed way. Each peer
selects the target that has the smallest workload in its neighbors. When a peer gets
overloaded, it can redistribute its tasks to the network. The tasks will be accepted
by light-loaded peers. Consequently, it results in load balancing. In addition,
powerful peers have executed more tasks than weaker peers.

5.14 POPCORN

POPCORN [Nisan et al. 1998] is a Java-based infrastructure for globally distributed
computation over the Internet. POPCORN provides a market-based mechanism for
the trade of computational resources. POPCORN system consists of market, seller
(volunteer in this article), and buyer (client in this article). A market matches
buyers and sellers according to economic model. A seller provides its resource to

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 47

a buyer by using Java-enabled browser. The applications are mainly compute-
intensive and independent.

A market uses the popcoin (that is, an abstract currency) and maintains a
database about it. A seller can earn popcorn or get any other type of reward
such as on-line game or a picture by barter. A buyer can buy resources with pop-
coins. The market is responsible for matching buyers and sellers, transferring tasks
and results between them, and handling all payments and accounts. It is a well-
known meeting place or matchmaker for buyers and sellers. It uses several auction
models (that is, a repeated Vickrey auction, a sealed bid double-auction, and re-
peated Clearinghouse double auction) for matching buyers and sellers [Nisan et al.
1998].

POPCORN deals with the failure and verification. If a task fails, it simply resends
the tasks to a different host. POPCORN simply uses replication, spot-checking,
self-testing, etc.!?

5.15 WebCom

WebCom [Morrison et al. 2001; 2002] is a web-based distributed computation plat-
form using Java. It consists of master (server in this article) and client (volunteer in
this article). A master maintains a set of clients and is responsible for scheduling.
A client receives tasks as the form of Java applet, executes them within its browser.

A master generates atomic instruction (that is, a task) or a condensed graph (that
is, a set of tasks) that represents an acyclic graph of interacting sequential programs.
Execution begins at the master, and the tasks are distributed to clients when clients
become available. A client can act as a potential master. It can be promoted to
be a master if it receives a condensed graph. The promoted master is assigned a
number of clients according to communication latency. If it needs more clients,
it requests them to the primary master. Conversely, it redirects its clients to its
primary master if they are under-utilized. Like this, the primary master, promoted
masters, and clients form a tree structure. Scheduling is performed hierarchically
by the primary master and the promoted masters.

A master maintains instruction queues for the atomic or condensed graph in-
structions. It distributes instructions to clients in a round robin fashion. It also
performs scheduling according to network latency between client and master. It
allocates tasks to clients on the basis of an expected execution time and load. If a
task fails, it is rescheduled to another client.

5.16 XtremWeb

XtremWeb [Fedak et al. 2001; Cappello et al. 2005] is a Java-based middleware sys-
tem for global computing (large scale distributed system) experiments. XtremWeb
extends the principle of cycle stealing to personal computers connected to the In-
ternet.

XtremWeb is composed of client, server (or coordinator) and worker (volunteer in
this article). A client performs tasks submission and results retrieval. A coordinator
is composed of a repository that advertises or publishes applications, a scheduler,
a result server that collects results, and database. All the communications are

141t does not propose a new mechanism. It just uses existing mechanisms.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

48 . SunglJin Choi et al.

initiated by a worker. A worker contacts its server to get tasks. In other words,
the scheduler uses pull mode to allocate tasks. The scheduler distributes tasks to
workers in a FIFO (First In First Out) way.

The applications are mainly compute-intensive and independent. A worker pe-
riodically sends an alive-signal to its server. If the server has not received the
message during a predefined time (that is, timeout), it reschedules the task to
another worker.

5.17 Kondo et al.

Kondo et al. [Kondo et al. 2002; Kondo et al. 2004; Kondo et al. 2004; Kondo 2005;
Kondo et al. 2006] proposed centralized scheduling mechanisms in Desktop Grid.
They studied resource selection approaches for short-lived application: resource
prioritization, resource exclusion, and task replication [Kondo et al. 2004]. Resource
prioritization is to sort hosts according to some criteria such as clock rate. Resource
exclusion is to exclude some hosts according to clock or makespan predication. Task
replication is to replicate tasks to multiples hosts in order to reduce the probability
of tasks failure and completion delay or to schedule tasks to faster hosts.

Kondo et al. [Kondo et al. 2002] proposed timeout mechanism. If a server does
not receive result from a host within timeout, it redistributes the task to another
host. In addition, they proposed a scheduling mechanism by using a buffer in order
to complete applications within deadline [Kondo et al. 2006].

6. DISCUSSION

On the basis of the taxonomy and mapping, the current states and characteristics
of Desktop Grid systems are discussed. Then the challenging issues are extracted
and the future directions for Desktop Grids are presented.

6.1 Analysis of Desktop Grid Systems

6.1.1 System perspective. Both centralized DG and distributed DG have been
developed. Particularly, centralized DG systems are publicly used by users and sci-
entists. Centralized DG can implement and develop resource management, schedul-
ing algorithms, result certification, and reputation/incentive mechanisms more eas-
ily than distributed DG, even though it has scalability problems. With regard
to platform, initial DG systems are most web-based, while current DG systems
have adopted middleware-based, which can easily apply to a screen saver mode.
In terms of scale and resource provider, most of the DG systems are based on
volunteers through the Internet (that is, volunteer DG). Recently, Desktop Grid
systems try to support enterprise DG as well as volunteer DG, because enterprise
DG gives many benefits, for examples, more reliable and trusted environment and
easier manageability.

6.1.2 Application perspective. The application type of Desktop Grid systems is
mostly computation-intensive. Only a few Desktop Grid systems such as BOINC
and Condor (that is, LAN-based DG or enterprise DG) support data-intensive ap-
plications, because it is expensive to transfer data across the Internet. In terms of
dependency, most of the Desktop Grid systems support only independent applica-
tions, because it is very difficult to control communication between volunteers on

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 49

the Internet because of non-dedication, volatility and failures. With regard to divis-
ibility, Desktop Grid systems focus on scheduling of the fixed size of tasks, because
it is difficult to calculate how much of a task is assigned to heterogeneous resources,
respectively. In terms of submission pattern, centralized DG systems are mainly
deterministic, and distributed DG systems are non-deterministic. This is why any
volunteers in a distributed DG can submit tasks in a distributed way. With regard
to QoS, some Desktop Grid systems provides resource management, result certi-
fication, and scheduling algorithms that support the application’s demands such
as result correctness, fast turnaround time, deadline and price. Especially, result
correctness is implemented in centralized DG systems'®.

6.1.3 Resource perspective. Most of the Desktop Grid systems assume that vol-
unteers are altruistic. Therefore, they do not provide any incentive mechanisms.
Some Desktop Grid systems such as BOINC, Korea@Home, CPM, and Popcorn
use the ranking or economy model to encourage donation. Volunteers are volatile
and non-dedicated in Desktop Grid systems. LAN-based and enterprise DG such as
Alchemi, Entropia, and Condor can set volunteers dedicated. Volunteers are con-
nected through the Internet in most of the Desktop Grid systems. A few Desktop
Grid systems such as Alchemi, Entropia and Condor are based on volunteers within
LAN. In all the Desktop Grid systems, volunteers are dynamically changing. A few
Desktop Grid systems such as Bayanihan, BOINC and Korea@Home deal with the
trust of volunteers. They provide result certification to detect and tolerate erro-
neous results. Most of the Desktop Grid systems consider faulty volunteers. They
provide fault tolerant scheduling (for example, reassignment or replication). In all
the Desktop Grid systems, volunteers are heterogeneous and non deterministic. A
few Desktop Grid systems such as Messor, CPM and Popcorn gives load sharing
and balancing and supports economy model in order to satisfy QoS.

6.1.4 Scheduler perspective. Most centralized DG systems'® provides central-
ized scheduling, distributed DG systems provides distributed scheduling. Most
of the Desktop Grid systems use the pull mode, because volunteers are volatile
and non-dedicated, or are connected behind firewall and NAT. Enterprise DG sys-
tems (Alchemi and Condor) and some distributed DG systems (CCOF, Messor
and Paradropper) provide the push mode. In terms of policy, most of the cen-
tralized DG systems use FCFS (or eager scheduling), some of them (Condor and
Entropia) use state-based heuristics. CPM and Popcorn provide economy model.
Most of the Desktop Grid systems do not use reputation-based heuristics, but just
provide state-based heuristics. With regard to grouping, most of the centralized
DG systems do not provide grouping methods, whereas distributed DG systems
provide them. Most of the distributed DG systems construct CON according to
workload and performance, or randomly. Most of the Desktop Grid systems focus
on resource selection and grouping, not application selection, because most of the
tasks are independent and volunteers are heterogeneous and dynamic. In Desktop
Grid systems, scheduling is dynamic because volunteers dynamically come and go.
Most of the Desktop Grid systems do not provide trust scheduling. Especially, dis-

5In CCOF (distributed DG), result verification is studied in a centralized way.
16WebCom provides hierarchical scheduling on the basis of tree structure.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

50 . SunglJin Choi et al.

tributed DG systems do not provide result certification, because it is very difficult
to implement it in a distributed way. Most of the Desktop Grid systems do not
provide incentive mechanisms and do not couple incentive with scheduling. Even
the Desktop Grid systems that provide incentive scheduling mostly use a basic in-
centive (self satisfaction-based reward), a few systems use reputation-based and
economy-based scheduling. Most of the distributed DG systems do not provide in-
centive scheduling. In terms of load sharing and balancing, some of the distributed
DG systems provide work stealing and load redistribution. Most of Desktop Grid
systems provide fault tolerant scheduling, that is, reassignment and replication. In
terms of adaptive scheduling, most of centralized DG systems provide reassignment
for slow volunteers, and most of distributed DG systems change topology or policy
in response to the conditions of volunteer and execution. With regard to scheduling
goal, most of Desktop Grid schedulers aim for turnaround time, throughput, and
reliability. Most of the Desktop Grid schedulers do not provide trust and are not
couple with incentive.

6.2 Challenging Issues of Desktop Grid Systems

Desktop Grid has challenging problems such as volatility, dynamicity, lack of trust,
failure, scalability and voluntary participation.

— Volatility (non-dedication): Since Desktop Grid is based on desktop com-
puters; it should respect the autonomy of resource providers. In other words,
volunteers can leave arbitrarily in the middle of public execution, and they are
allowed to execute private execution at any time while interrupting the public ex-
ecution. Moreover, the public executions get temporarily suspended by a private
execution because volunteers are not totally dedicated only to public executions.
Accordingly, volunteers have various volunteering time (that is, the time of do-
nation). They also have the various occurrence rate and form of volatility, which
directly affect the execution of tasks. The volatility and non-dedication make
Desktop Grid systems difficult to provide reliable computation as well as good
performance.

—Dynamicity: Resource’s owners can configure its preference and can control its
machine in Desktop Grid. They can freely join and leave in the middle of the
executions without any constraints. Thus, the state of system (that is, workload,
availability, volatility, reputation, trust, failure, etc.) is continuously changing
over time during the public execution. Desktop Grid systems should adapt to
such a dynamic environment for performance and reliable execution.

—Lack of trust: In Desktop Grid, anonymous nodes can participate as a resource
provider. Some malicious volunteers tamper with the computation and then
return the corrupted results. Desktop Grid systems should deal with malicious
volunteers in order to guarantee trusted execution and the correctness of results.

—Failure: In Desktop Grid, volunteers are mainly connected through the Internet,
so they are exposed to crash and link failures. In addition, since volunteers
are not dedicated to public execution and freely leave during public execution,
the execution is delayed, blocked, and even lost. Desktop Grid systems should
tolerate the failures and volatility for reliable execution.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 51

—Heterogeneity: Desktop Grid is based on desktop computers at the edge of
the Internet. Volunteers have heterogeneous properties such as CPU, memory,
network bandwidth, latency. In addition, each volunteer has various execution
properties such as occurrence rate of failures and volatility, availability, reputa-
tion, and trust according to its execution behavior. These heterogeneities delay
the overall completion time or make scheduling decision more difficult.

—Scalability: Centralized DG has some drawbacks such as scalability, single point
of failure, etc. Particularly, a central server suffers from overhead to perform
scheduling and to manage various volunteers and jobs when the number of vol-
unteers increases. Therefore, Centralized DG should be scalable for better per-
formance and management. On the contrary, distributed DG provides scalability
because scheduling decision is made at each volunteer. However, it is difficult
to apply trusted scheduling and incentive. It also has poor performance as com-
pared with centralized DG because it conducts scheduling on the basis of local
and partial information without a global view.

— Voluntary participation: In Desktop Grid, resource providers are mainly vol-
untary participants without any reward for their donation of resources. There-
fore, it is difficult to collects volunteers. In order to encourage resource providers
to participate in public execution and donate their resources eagerly for a long
time, Desktop Grid systems should provide incentive mechanisms. Moreover,
they should couple reputation and incentive with scheduling to give more bene-
fits and rewards.

6.3 Future Directions for Desktop Grids

Desktop Grid has largely two research areas: applications and systems, as shown in
Figure 14. The applications part studies how to implement and develop applications
suitable for Desktop Grid. On the other hand, the systems part focuses on how to
organize and provide various functionalities and components to support applications
and manage resources. The systems part has sub-research topics such as scheduling,
resource management, communication and security. These topics can be combined
together towards better performance and reliability. For example, scheduling can
be coupled with resource grouping, reputation, or incentive. Trust can be coupled
with reputation.

To overcome the above challenging issues, Desktop Grid systems should more
deal with the following considerations. The relationship between challenging issues
and future directions is illustrated in Figure 15.

—Computational overlay network (resource grouping): In Desktop Grid,
volunteers should be grouped together according to their properties (such as ca-
pability, performance, workload, reputation, etc.) in order to execute tasks and
manage volunteers efficiently. The resource grouping method creates computa-
tional overlay network (CON). The CON makes an effect on relieving resource’s
heterogeneity. In addition, a scheduler can expand centralized or distributed ap-
proaches to hierarchical approach by constructing multiple CONs and applying
different scheduling algorithms to each CON [Choi et al. 2006; Choi et al. 2006;
2005]. Thus, it is very important how to make the CON depending on the vol-
unteer’s properties, because scheduling, resource management, and information

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

52 . SunglJin Choi et al.

Desktop Grid

Applications

Algorithm
Simulator
. Performance
Scheduling Evaluation
Resource Resource
Management Grouping
Evaluation /
Communication Reputation
Security Incentive
Scalability Economy
Fault tolerance Monitoring
Trust (Result Characterization

Certification)

Architecture /
Model

Fig. 14. Research Areas of Desktop Grid

management are performed on the basis of characteristics or topologies of the
CON. However, existing centralized DG systems [Anderson 2004; Fedak et al.
2001; Sarmenta and Hirano 1999; Nisan et al. 1998] do not provide how to con-
struct the CON on the basis of reputation such as volunteering time, volatility,
trust and credibility. They simply construct a CON depending on the resource’s
basic properties (for example, disk space, OS type, etc.). On the other hand, ex-
isting decentralized Desktop Grid systems [Neary et al. 1999; Zhou and Lo 2004;
Chakravarti et al. 2005; Montresor et al. 2003; Zhong et al. 2003] provide how
to construct a CON depending on registration time, timezone, performance, or
workload, but they do not consider volatility, volunteering time, credibility and
trust, which directly affect reliability, completion time, and result correctness.
Moreover, resource grouping is not tightly coupled with scheduling (especially,
result certification, replication and reassignment). As a result, uncoupling be-
tween resource grouping and scheduling causes a lot of overhead of replication
and result certification and degrades performance. Desktop Grid systems should
provide more delicate construction methods of CON and couple resource grouping
with scheduling. Additionally, future systems need to aim at supporting negoti-
ation based resource grouping and allocation according to client’s requirements.

—Reputation € Incentive Mechanisms: In Desktop Grid, volunteers can be
eager, reliable, volatile, selfish, or malicious. In other words, volunteers have var-
ious volunteering time, volatility, credibility and availability according to their

execution behavior and donation patterns.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

Therefore, Desktop Grid systems

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 53

. Challenging Issues = H Future Directions =
Volat?lity_ Computational overlay network P K

(non-dedication) / (resource grouping) «--y
Dynamicity : :
Reputation & Incentive o
Mechanisms «-i-)
Lack of trust = i i

. <l

. M~ Trust scheduling =S

Failure Solve & result certification <« -:§
Heterogeneity x Dynamic, adaptive, or DER
fault tolerant scheduling «--- 3
Scalability : E
\ <« K i
Voluntary 7 e Distributed algorithms !
participation o----- !

Fig. 15. The relationship between challenging issues and future directions

consider reputation and incentive mechanisms in order to score and rank the
volunteers, and then reward or punish them according to the assessment. More-
over, a reputation system should be coupled with scheduling. A reputation-based
scheduling enables selection of highly qualified resources, so that it can improve
the reliability, trust and performance. An incentive scheduling tries to give more
rewards and benefit to eager, reliable and trustworthy volunteers, and punish
volatile, selfish, or malicious volunteers (for example, exclusion). Thus, it en-
courages volunteers to donate their resources eagerly and reliably. Desktop Grid
systems should consider reputation-based and incentive scheduling.

—Trust Scheduling € Result Certification: In Desktop Grid, some volunteers
may behave erratically or maliciously. In other words, some malicious volunteers
may tamper with the computation and return corrupted results. In addition,
a variety of hardware and software malfunction leads to variations in numerical
processing [Taufer et al. 2005]. Therefore, Desktop Grid systems need to detect
and tolerate the erroneous result in order to guarantee a reliable execution in
such a distrusted environment. To this end, Desktop Grid systems exploit result
certification mechanisms such as majority voting and spot-checking [Taufer et al.
2005; Sarmenta 2002; Zhao and Lo 2005; Choi et al. 2005; Renaud and Playez
2003]. Result certification should be tightly related with scheduling in the sense
that both the special task for spot-checking and the redundant tasks for voting
are allocated to volunteers in a scheduling procedure. However, existing Desktop
Grid systems simply use eager scheduling, not considering volunteer’s reputation.
As a result, there are high overhead, performance degradation, and scalability

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

54 . SunglJin Choi et al.

problems. Desktop Grid systems should provide new trust scheduling mecha-
nisms for result certification, coupling resource’s reputation such as volatility,
volunteering time, and credibility with result certification.

—Dynamic, adaptive, or fault tolerant scheduling: Desktop Grid is based
on desktop computers at the edge of the Internet, so volunteers can freely join
and leave in the middle of the public execution without any constraints, and
they are exposed to crash and link failures. Moreover, the resource’s properties
(workload, bandwidth, availability, volatility, reputation, etc.) are changing over
time. Desktop Grid systems should adapt to dynamically changing environment.
In other words, Desktop Grid systems should be able to obtain dynamically
changing state and then consider them as environmental inputs or stimuli in a
scheduling procedure when making decisions. Particularly, a scheduler should
be able to deal with volatility and failures that occur frequently in a dynamic
environment, in order to provide reliability.

—Distributed algorithms: Distributed DG [Neary et al. 2000; Lo et al. 2004;
Chakravarti et al. 2005; Montresor et al. 2003; Dou et al. 2003] mainly uses
distributed scheduling because there is no central server. However, existing dis-
tributed scheduling mechanisms allocate tasks to volunteers according to work-
load or performance as well as randomly. They do not use reputation such as
volatility, volunteering time, credibility and trust, which directly affect reliability,
completion time and result correctness. Moreover, they do not provide incentive
or result certification, fault tolerance mechanisms, which is necessary in Desktop
Grid. Distributed DG systems should provide incentive or result certification,
fault tolerance mechanisms, which are coupled with volunteer’s reputation.

7. RELATED STUDIES

Even though Desktop Grid has been studied, there is no general survey and tax-
onomy for it. Therefore, it is difficult to understand the definition, architecture,
model and applications of Desktop Grid, as well as to design and develop Desktop
Grid systems. Moreover, although resource management and scheduling in Desktop
Grid is different from Grid, there is no survey or taxonomy of Desktop Grid. As a
result, it is difficult to design and develop new resource management and scheduling
mechanisms.

7.1 Taxonomy and Survey of Grid and Desktop Grid

There are several taxonomy and survey of Grid. Baker et al. [Baker et al. 2002]
attempted to present the state-of-the-art of Grid computing and survey emerging
Grid computing projects. Krauter et al. [Krauter et al. 2002] proposed the taxon-
omy of Grid focusing on resource management. Venugopal et al. [Venugopal et al.
2006] proposed the taxonomy of Data Grids according to organization, data trans-
port, data replication and scheduling. Foster et al. [Foster and Iamnitchi 2003]
compared P2P and Grid computing.

Sarmenta [Sarmenta 2001] classified volunteer computing into application-based
and web-based (java-based). Chien et al. [Chien et al. 2003] classified Desktop
Grid into Internet Grid and Enterprise Grid. Cappello [Cappello 2007] and Chu
et al. [Chu et al. 2007] classified Desktop Grids into the first (that is, application

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 55

specific systems), the second (that is, multi-application systems), and the third
generation (that is, modular and service-oriented systems). However, they do not
provide a mapping of taxonomy to the existing Desktop Grid systems. Moreover,
the taxonomy proposed in this article is more delicate and expanded.

7.2 Taxonomy and Survey of Scheduling and Resource Management

There are several proposed taxonomy for scheduling and resource management in
distributed, heterogeneous computing, and Grid computing environment.

Casavant et al. [Casavant and Kuhl 1988] proposed the taxonomy of scheduling
in general-purpose distributed computing systems. They classified scheduling into
local and global scheduling, and then classified global scheduling into static and dy-
namic according to the time of decision making. Rotithor [Rotithor 1994] proposed
the taxonomy of dynamic scheduling in distributed computing systems according
to state estimation and decision making.

Braun et al. [Braun et al. 1998] proposed the taxonomy of heterogeneous com-
puting systems. The taxonomy is defined in three major parts: application model,
platform model, mapping strategy characterization. Ali et al. [Ali et al. 2005]
characterized resource allocation heuristics for heterogeneous computing systems
according to workload, platform, and mapping strategy'”. Ekmecic et al. [Ekmecic
et al. 1996] modified the taxonomy proposed by Casavant et al. [Casavant and Kuhl
1988]. Maheswaran et al. [Maheswaran et al. 1999] proposed various online (MCT,
MET, SA, KPB, OLB) and batch mode heuristics (min-min, max-min, sufferage)
for dynamic scheduling in a heterogeneous computing environment. Braun et al.
[Braun et al. 2001] proposed the comparison of static scheduling heuristics (OLB,
MET, MCT, min-min, max-min, duplex, GA, SA, GSA, Tabu, A*) for heteroge-
neous distributed computing systems.

Krauter et al. [Krauter et al. 2002] proposed a taxonomy and survey of grid re-
source management systems. The taxonomy is defined in four aspects: scheduling
organization, state estimation, rescheduling and scheduling policy. Yu et al. [Yu
and Buyya 2005] proposed the taxonomy of scientific workflow scheduling for Grid
computing. The taxonomy is defined in four aspects: architecture, decision making,
planning scheme, and scheduling strategies. Yeo et al. [Yeo and Buyya 2006] pro-
posed the taxonomy of market-based resource management system for utility-driven
cluster computing. They proposed a taxonomy of job model (processing type, com-
position, QoS specification, QoS update) and resource allocation model (domain,
update and QoS support). Venugopal et al. [Venugopal et al. 2006] proposed the
taxonomy of scheduling for Data Grid according to application model, scope, data
replication, utility function and locality. Hamscher et al. [Hamscher et al. 2000]
proposed centralized, hierarchical, and decentralized scheduling architectures for
Grid.

7The three categories of our taxonomy proposed in this article (that is, application, resource,
and scheduler’s perspective) is similar to the three categories of the taxonomy proposed by Barun
et al [Braun et al. 1998] and Ali et al. [Ali et al. 2005]. However, our taxonomy is Desktop
Grid-oriented. It also considers the new and delicate items for Desktop Grid scheduling such as
dedication, volatility, resource grouping, result certification, opportunism, reputation, incentive,
etc.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

56 . SunglJin Choi et al.

Although several studies have investigated taxonomy of heterogeneous computing
systems and various aspects of Grid systems, but no works have focused on Desk-
top Grid systems. Hence, the taxonomy proposed in this article makes contribu-
tions towards enhancing the understanding of Desktop Grid and their development.
Particularly, the proposed taxonomy deals with volunteer’s key properties (such as
volatility, dedication, reputation, trust, etc.) in a Desktop Grid environment and
considers the resource grouping (construction of computational overlay network),
result certification, and reputation/incentive scheduling aspects.

8. CONCLUSION

In this article, a new taxonomy of Desktop Grids was proposed in order to character-
ize and categorize Desktop Grid systems. In addition, a mapping of the taxonomy to
the Desktop Grid systems was presented. Detailed investigation have made on vari-
ous Desktop Grid technology and development during the last one decade. Through
the taxonomy and survey, the challenging issues of Desktop Grids have discovered
such as volatility, dynamicity, lack of trust, failure, heterogeneity, scalability and
voluntary participation. To overcome challenging issues, more research on Desktop
Grids will be needed such as 1) computational overlay network (resource grouping),
2) reputation or incentive-oriented scheduling and resource management, 3) trust
scheduling for result certification, 4) dynamic, adaptive, or fault tolerant schedul-
ing, and 5) distributed algorithms. Moreover, further research on QoS service and
support for different applications model will be undertaken. The taxonomy and

survey will help understand the architecture, model, and characteristics of Desktop
Grid.

Acknowledgment

This work was supported by the Korea Research Foundation Grant funded by the
Korean Government (KRF-2007-357-D00207) and the Department of Computer
Science and Software Engineering, University of Melbourne.

REFERENCES

ABAWAJY, J. H. 2004. Fault-tolerant scheduling policy for grid computing systems. In Proceedings
of the 18th International Parallel and Distributed Processing Symposium (IPDPS 2004), the
5th International Workshop on Parallel and Distributed Scientific and Engineering Computing
(PDSEC-04). IEEE, Santa Fe, USA, 238b.

ABBAS, A. 2003. Grid Computing: A Practical Guide to Technology and Applications. Charles
River Media, Hingham, USA.

AL1, S., BRAUN, T., SIEGEL, H., MACIEJEWSKI, A., N.BECK, BOLONI, L., MAHESWARAN, M.,
REUTHER, A., ROBERTSON, J., THEYS, M., AND YAO, B. 2005. Characterizing resource allocation
heuristics for heterogeneous computing systems. Advances in Computers: Parallel, Distributed
and Pervasive Computing 63, 93—129.

AL, S., BRAUN, T. D., SIEGEL, H. J., AND MACIEJEWSKI, A. A. 2002. Heterogeneous computing.
In Encyclopedia of Distributed Computing. J. Urbana and P. Dasgupta, Eds. Kluwer Academic
Publishers, Norwell, USA.

ANDERSON, D. P. 2004. Boinc: A system for public-resource computing and storage. In Proceedings
of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04). IEEE CS
Press, Pittsburgh, USA, 4-10.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 57

ANDERSON, D. P., KORPELA, E., AND WALTON, R. 2005. High-performance task distribution for
volunteer computing. In Proceedings of the First IEEE International Conference on e-Science
and Grid Technologies (e-Science2005). IEEE CS Press, Melbourne, Australia, 196-203.

ANDRADE, N., BRASILEIRO, F., CIRNE, W., AND MOWBRAY, M. 2007. Automatic grid assembly
by promoting collaboration in peer-to-peer grids. Journal of Parallel and Distributed Comput-
ing 67, 8 (Aug.), 957-966.

ANGLANO, C., BREVIK, J., CANONICO, M., NURMI, D.; AND WOLSKI, R. 2006. Fault-aware schedul-
ing for bag-of-tasks applications on desktop grids. In Proceedings of the 7th IEEE/ACM In-
ternational Conference on Grid Computing. IEEE, Barcelona, Spain, 56—63.

BaBaocLu, O., MELING, H., AND MONTRESOR, A. 2002. Anthill: a framework for the development
of agent-based peer-to-peer systems. In Proceedings of the 22nd International Conference on
Distributed Computing Systems. IEEE CS Press, Vienna, Austria, 15-22.

BAKER, M., Buyya, R., AND LAFORENZA, D. 2002. Grids and grid technologies for wide-area
distributed computing. Software: Practice and Experience 32, 15 (Dec.), 1437-1466.

BARATLOO, A., KARAUL, M., KEDEM, Z. M., AND WILJCKOFF, P. 1999. Charlotte: Metacomputing
on the web. Future Generation Computer Systems, Special Issue on Metacomputing 15, 5-6
(Oct.), 559-570.

BARKAI, D. 2002. Peer-to-Peer computing: Technologies for Sharing and Collaborating on the
Net. Intel Press.

BErRMAN, F., Fox, G. C., AND HEY, A. J. G. 2003. Grid Computing : Making the Global Infras-
tructure a Reality. Wiley, Chichester, West Susses.

BErMAN, F.; WoLski, R., CasaNovA, H., CIRNE, W., DaiL, H., FAERMAN, M., FIGUEIRA, S.,
HavEgs, J., OBERTELLI, G., SCHOPF, J., SHAO, G., SMALLEN, S., SPRING, N., Su, A., AND
ZAGORODNOV, D. 2003. Adaptive computing on the grid using apples. IEEE Transactions on
Parallel and Distributed Systems 14, 4 (Apr.), 369-382.

BOINC. http://boinc.berkeley.edu/.

Braun, T. D., SIEGEL, H. J., BECK, N., BoLoni, L. L., MAHESWARAN, M., REUTHER, A. 1.,
ROBERTSON, J. P., THEYS, M. D., YA0, B., HENSGEN, D., , AND FREUND, R. F. 2001. A com-
parison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems. Journal of Parallel and Distributed Computing 61, 6 (June),
810-837.

Braun, T. D., SIEGELY, H. J., BECKY, N., BoLONIZ, L., MAHESWARANY, M., REUTHERY, A. 1.,
ROBERTSONY, J. P., THEYSY, M. D., AND YAOY, B. 1998. A taxonomy for describing matching
and scheduling heuristics for mixed-machine heterogeneous computing systems. In Proceedings
of the 17th IEEE Symposium on Reliable Distributed Systems (SRDS 1998). IEEE CS Press,
West Lafayette, USA, 330-335.

BREVIK, J., NURMI, D., AND WoOLSKI, R. 2004. Automatic methods or predicting machine avail-
ability in desktop grid and peer-to-peer systems. In Proceedings of the 4th IEEE International
symposium on Cluster Computing and the Grid (CCGRID 2004). IEEE, Chicago, USA, 190—
199.

Buyvya, R., ABRAMSON, D., GIDDY, J., AND STOCKINGER, H. 2002. Economic models for resource
management and scheduling in grid computing. Concurrency and Computation: Practice and
Experience 14, 13-15 (Nov.), 1507-1542.

Buyya, R. AND VAZHKUDAI, S. 2001. Compute power market: towards a market-oriented grid. In
Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid’01). IEEE CS Press, Brisbane, Australia, 574-581.

Byun, E. J., CHol, S. J., BAalk, M. S., GIL, J. M., PARk, C. Y., AND HwANG, C. S. 2007. Mjsa:
Markov job scheduler based on availability in desktop grid computing environment. Future
Generation Computer Systems 23, 4 (May), 616-622.

Cao, J., CHAN, A. T., SuN, Y., Das, S. K., AND Guo, M. 2006. A taxonomy of application
scheduling tools for high performance cluster computing. Cluster Computing 9, 3 (July), 355—
371.

CAPPELLO, F. 2007. 3rd generation desktop grids. In Proceedings of the 1st XtremWeb Users
Group Workshop (XW’07). Hammamet, Tunisia.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

58 . SunglJin Choi et al.

CApPPELLO, F., DJiiLALL, S., FEDAK, G., HERAULT, T., MAGNIETTE, F., NERI, V., AND LODY-
GENSKY, O. 2005. Computing on large-scale distributed systems: Xtremweb architecture, pro-
gramming models, security, tests and convergence with grid. Future Generation Computer
Systems 21, 3 (Mar.), 417-437.

CASANOVA, H., LEGRAND, A., ZAGORODNOV, D.; AND BERMAN, F. 2000. Heuristics for scheduling
parameter sweep applications in grid environments. In Proceedings of the 9th Heterogeneous
Computing Workshop. IEEE CS Press, Cancun, Mexico, 349-363.

CAsavaNT, T. L. AND KUHL, J. G. 1988. A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Transactions on Software Engineering 14, 2 (Mar.), 141-154.

CHAKRAVARTI, A., BAUMGARTNER, G., AND LAURIA, M. 2005. The organic grid: Self-organizing
computation on a peer-to-peer network. IEEE Transactions on Systems, Man, and Cybernet-
ics 35, 3 (May), 1-12.

CHAKRAVARTI, A., BAUMGARTNER, G., AND LAURIA, M. 2006. The organic grid: Self-organizing
computational biology on desktop grids. In Parallel Computing for Bioinformatics and Com-
putational Biology: Models, Enabling Technologies, and Case Studies. A. Y. ZOMAYA Eds.
Wiley-Interscience, Hoboken, USA, 431-450.

CHIEN, A., CALDER, B., ELBERT, S., AND BHATIA, K. 2003. Entropia: architecture and performance
of an enterprise desktop grid system. Journal of Parallel and Distributed Computing 63, 5
(May), 597-610.

CHIEN, A. A., MARLIN, S., , AND ELBERT, S. T. 2003. Resource management in the entropia
system. In Grid Resource Management: Sate of the Art and Future Trends. J. NABRZYSKI,
J. M. SCHOPF and J. WEGLARZ Eds. Kluwer Academic, 431-450.

Cuort, S. J., Baik, M. S., G, J. M., JuNG, S. Y., AND HwaNG, C. S. 2006. Adaptive group
scheduling mechanim using mobile agents in peer-to-peer grid computing environment. Applied
Intelligence, Special Issue on Agent-based Grid Computing 25, 2 (Oct.), 199-221.

CHol, S. J., Baik, M. S., GiL, J. M., PARk, C. Y., JUNG, S. Y., AND HwANG, C. S. 2005. Dynamic
scheduling mechanism for result certification in peer to peer grid computing. In Proceedings
of International Conference on Grid and Cooperative Computing (GCC 2005). LNCS 3795,
Springer-Verlag, Beijing, China, 811-824.

CHor, S. J., Baik, M. S., GiL, J. M., Park, C. Y., JuNG, S. Y., AND Hwang, C. S. 2006.
Group-based dynamic computational replication mechanism in peer to peer grid computing. In
Proceedings of the Sixzth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID2006), Sizth Workshop on Global and Peer-to-Peer Computing (GP2P). IEEE CS
Press, Singapore, 7.

CHol, S. J., Baik, M. S., Hwang, C. S., GIL, J. M., AND YU, H. C. 2004. Volunteer availability
based fault tolerant scheduling mechanism in desktop grid computing environment. In Pro-
ceedings of the 3th IEEFE International Symposium on Network Computing and Applications,
Workshop on Adaptive Grid Computing (NCA-AGC2004). IEEE CS Press, Cambridge, USA,
476-483.

Cnor, S. J., Kim, H. S., Byun, E. J., Baik, M. S., Kim, S. S., PARK, C. Y., AND HwaNG, C. S.
2007. Characterizing and classifying desktop grid. In Proceedings of the Sizth IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID 2007), Workshop on
Global and Peer to Peer Computing (GP2P). IEEE CS Press, Rio de Janeiro, Brazil, 743-748.

CHOW, R. AND JOHNSON, T. 1997. Distributed Operating Systems € Algorithms. Addison-Wesley.

Cuu, X., NapmiINTI, K., JIN, C., VENUGOPAL, S., AND Buyva, R. 2007. Aneka: Next-generation
enterprise grid platform for e-science and e-business applications. In Proceedings of the 3rd
International International Conference on e-Science and Grid Computing (e-Science 2007).
IEEE CS Press, Bangalore, India, 151-159.

DISTRIBUTED.NET. http://distributed.net.

Dou, W., Jia, Y., WaNG, H. M., SonGg, W. Q., AND Zou, P. 2003. A p2p approach for global
computing. In Proceedings of International Parallel and Distributed Processing Symposium
2008 (IPDPS 2003). IEEE CS Press, Nice, France, 6-11.

Du, W., Jia, J., MANGAL, M., AND MURUGESAN, M. 2004. Uncheatable grid computing. In

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 59

Proceedings of the 24th IEEE International Conference on Distributed Computing Systems
(ICDCS 2004). IEEE CS Press, Tokyo, Japan, 4-11.

ExMEcIC, 1., TARTALJA, 1., AND MILUTINOVIC, V. 1996. A survey of heterogeneous computing:
concepts and systems. Proceedings of the IEEE 84, 8 (Aug.), 1127-1144.

FEDAK, G., GERMAIN, C., NERI, V., AND CAPPELLO, F. 2001. Xtremweb: A generic global com-
puting system. In Proceedings of the 1st IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID 2001): Workshop on Global Computing on Personal De-
vices. IEEE CS Press, Brisbane, Australia, 582—587.

FEITELSON, D. G., RUDOLPH, L., SCHWIEGELSHOHN, U., SEVCIK, K. C., AND WONG, P. 1997. The-
ory and practice in parallel job scheduling. In Proceedings of the 3rd Workshop on Job Schedul-
ing Strategies for Parallel Processing (JSSPP 1997). LNCS 1291, Springer-Verlag, Geneva,
Switzerland, 1-34.

FOSTER, I. AND IAMNITCHI, A. 2003. On death, taxes, and the convergence of peer-to-peer and
grid computing. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03). LNCS 2735, Springer-Verlag, Berkeley, USA, 24-31.

FOSTER, I. AND KESSELMAN, C. 2004. The Grid 2: Blueprint for a new Computing Infrastructure.
Morgan Kaufmann, San Francisco, USA.

GIMPS. http://www.mersenne.org/.

HAMSCHER, V., SCHWIEGELSHOHN, U., STREIT, A., AND YAHYAPOUR, R. 2000. Evaluation of job-
scheduling strategies for grid computing. In Proceedings of the First IEEE/ACM International
Workshop on Grid Computing (Grid 2000). LNCS 1971, Springer-Verlag, Bangalore, India,
191-202.

JACOB, B., FERREIRA, L., BIEBERSTEIN, N., GILZEAN, C., GIRARD, J. Y., STRACHOWSKI, R., AND
Yu, S. S. 2003. Enabling Applications for Gird Computing with Globus. IBM Redbooks.

Konpo, D. 2005. Scheduling task parallel applications for rapid turnaround on desktop grids.
Ph.D. thesis, University of California, San Diego, San Diego, USA.

Konpo, D., CasaNova, H., WING, E., AND BERMAN, F. 2002. Models and scheduling mech-
anisms for global computing applications. In Proceedings of the 16th International Parallel
and Distributed Processing Symposium (IPDPS 2002). IEEE CS Press, Fort Lauderdale, USA,
79-86.

Konpo, D., CHIEN, A. A., AND CASANOVA, H. 2004. Resource management for rapid application
turnaround on enterprise desktop grids. In Proceedings of the ACM/IEEE Conference on
Supercomputing (SC2004,).

Konpo, D., KINDARJI, B., FEDAK, G., AND CAPPELLO, F. 2006. Towards soft real-time applica-
tions on enterprise desktop grids. In Proceedings of the Sixth IEEE International Symposium
on Cluster Computing and the Grid (CCGRID2006). IEEE CS Press, Singapore, 65-72.

Konpo, D., TAUFER, M., KARANICOLAS, J., BROOKS, C. L., CASANOVA, H., AND CHIEN, A. 2004.
Characterizing and evaluating desktop grids: An empirical study. In Proceedings of the 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004).

KOREA@QHOME. hitp://www.koreaathome.org/eng/.

KRAUTER, K., BuyyA, R., AND MAHESWARAN, M. 2002. A taxonomy and survey of grid resource
management systems for distributed computing. Software: Practice and Experience 32, 2 (Feb.),
135-164.

LEg, H. M., CHUNG, K. S., CHIN, S. H., LEE, J. H., LEE, D. W., PARK, S. B., AND YU, H. C. 2005.
A resource management and fault tolerance services in grid computing. Journal of Parallel and
Distributed Computing 65, 11 (Nov.), 1305-1317.

L1, M. AND BAKER, M. 2004. The Grid: Core Technologies. John Wiley & Sons Ltd, Chichester,
West Susses.

Lo, V., ZHou, D., ZApPALA, D., L1u, Y., AND ZHAO, S. 2004. Cluster computingon the fly: P2p
scheduling of idle cycles in the internet. In Proceedings of the 3rd International Workshop on
Peer-to-Peer Systems (IPTPS’04). LNCS 3279, Springer-Verlag, San Diego, USA, 227-236.

LUTHER, A., Buyva, R., RANJAN, R.; AND VENUGOPAL, S. 2005. Alchemi: A .net-based enter-
prise grid computing system. In Proceedings of the 6th International conference on Internet
Computing (ICOMP’05). Las Vegas, USA, 269-278.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

60 . SunglJin Choi et al.

MAHESWARAN, M., ALl, S., SIEGEL, H. J., HENSGEN, D., AND FREUND, R. F. 1999. Dynamic
matching and scheduling of a class of independent tasks onto heterogeneous computing systems.
In Proceedings of the 8th Heterogeneous Computing Workshop (HCW’99). IEEE CS Press, San
Juan, USA, 30-44.

MivoJicic, D. S., KALOGERAKI, V., LUKOSE, R., NAGARAJA, K., J. PRUYNE, B. R., ROLLINS, S.,
AND XU, Z. 2002. Peer-to-peer computing. HP Laboratories Palo Alto HPL-2002-57.

MONTRESOR, A., MELING, H., AND BABAOGLU, O. 2003. Messor: Load-balancing through a swarm
of autonomous agents. In Proceedings of International Workshop on Agents and Peer-to-Peer
Computing (AP2PC 2002). LNCS 2530, Springer-Verlag, Bologna, Italy, 125-137.

MORRISON, J. P., KENNEDY, J. J., AND POWER, D. A. 2001. Webcom: A web based volunteer
computer. Journal of Supercomputing 18, 1 (Jan.), 47-61.

MORRISON, J. P., KENNEDY, J. J., AND POWER, D. A. 2002. Load balancing and fault tolerance in
a condensed graphs based metacomputer. The Journal of Internet Technologies, Special Issue
on Web based Programming 3, 4 (Dec.), 221-234.

NEARY, M. O., Brypon, S. P., Kmiec, P., RoLLINS, S., AND CAPPELLO, P. 2000. Javelin4+:
Scalability issues in global computing. Concurrency: Parctice and Experience 12, 8 (Aug.),
727-753.

NEARY, M. O. AND CAPPELLO, P. 2005. Advanced eager scheduling for java-based adaptive
parallel computing. Concurrency and Computation: Practice and Ezperience 17, 7-8 (June),
797-819.

NEARY, M. O., CHRISTIANSEN, B. O., CAPPELLO, P., AND SCHAUSER, K. 1999. Javelin: Parallel
computing on the internet. Future Generation Computer Systems, Special Issue on Metacom-
puting 15, 5-6 (Oct.), 6569-674.

NisaN, N., LoNDON, S., REGEV, O., AND CAMIEL, N. 1998. Globally distributed computation
over the internet-the popcorn project. In Proceedings of the 18th International Conference on
Distributed Computing Systems. IEEE CS Press, Amsterdam, Netherlands, 592—-601.

OBREITER, P. AND N1Mmis, J. 2003. A taxonomy of incentive patterns: The design space of incentives
for cooperation. In Proceedings of the 2th International Workshop on Agents and Peer-to-Peer
Computing (AP2PC 2003). LNCS 2872, Springer-Verlag, Melbourne, Australia, 89-100.

Ping, T. T., Sopny, G. C., YONG, C. H., HARON, F., AND Buyya, R. 2001. A market-based sched-
uler for jxta-based peer-to-peer computing system. In Proceedings of International Conference
on Computational Science and its Applications (ICCSA 2004). LNCS 3046, Springer-Verlag,
Perugia, Italy, 147-157.

RANGANATHAN, K., RIPEANU, M., SARIN, A., AND FOSTER, I. 2004. Incentive mechanisms for
large collaborative resource sharing. In Proceedings of the 4th IEEE International symposium
on Cluster Computing and the Grid (CCGRID 2004). IEEE, Chicago, USA, 1-8.

RENAUD, C. G. AND PLAYEZ, N. 2003. Result checking in global computing systems. In Proceedings
of the 17th Annual ACM International Conference on Supercomputing (ICS’03). ACM, San
Francisco, USA, 226-233.

ROEHRIG, M., ZIEGLER, W., AND WIEDER, P. 2002. Grid scheduling dictionary of terms and
keywords. GFD-1.11, Grid Scheduling Dictionary WG (SD-WG).

RotiTHOR, H. G. 1994. Taxonomy of dynamic task scheduling schemes in distributed computing
system. IEE Proceedings Computers and Digital Techniques 141, 1 (Jan.), 1-10.

SARMENTA, L. F. G. 2001. Volunteer computing. Ph.D. thesis, MIT, Cambridge, USA.

SARMENTA, L. F. G. 2002. Sabotage-tolerance mechanisms for volunteer computing systems.
Future Generation Computer Systems 18, 4 (Mar.), 561-572.

SARMENTA, L. F. G. AND HIRANO, S. 1999. Bayanihan: building and studying web-based vol-
unteer computing systems using java. Future Generation Computer Systems, Special Issue on
Metacomputing 15, 5-6 (Oct.), 675-686.

SETIQHOME. hitp://setiathome.ssl.berkeley. edu.

SHIVARATRI, N. G., KRUEGER, P., AND SINGHAL, M. 1992. Load distributing for locally distributed
systems. IEEE Computer 25, 12 (Dec.), 33-44.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

A Taxonomy of Desktop Grids and its Mapping to State-of-the-Art Systems . 61

SHOPF, J. M. 2003. Ten actions when grid scheduling. In Grid Resource Management: Sate of
the Art and Future Trends. J. NABRZYSKI, J. M. SCHOPF and J. WEGLARZ Eds. Kluwer
Academic, 15—-24.

SONNEK, J., CHANDRA, A., AND WEISSMAN, J. B. 2007. Adaptive reputation-based scheduling
on unreliable distributed infrastructures. IEEE Transactions on Parallel and Distributed Sys-
tems 18, 11 (Nov.), 1551-1564.

STEINMETZ, R. AND WEHRLE, K. 2005. Peer-to-Peer Systems and Applications. Springer-Verlag,
Berlin, Germany.

SUBRAMANIAN, R. AND GOODMAN, B. D. 2005. Peer-to-Peer Computing: The Evolution of a
Disruptive Technology. IDEA Group Publishing, Hershey, USA.

TANNENBAUM, T., WRIGHT, D., MILLER, K., AND LivNY, M. 2003. Condor-a distributed job
scheduler. In Beowulf Cluster Computing with Linuz. W. Gropp, E. Lusk and T. Sterling Eds.
The MIT Press, 379-426.

TAUFER, M., ANDERSON, D., CicorTi, P., anDp III, C. L. B. 2005. Homogeneous redundancy:
a technique to ensure integrity of molecular simulation results using public computing. In
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05), Heterogeneous Computing Workshop (HCW’05). IEEE CS Press, Denver, USA,
119a.

THAIN, D., TANNENBAUM, T., AND L1ivNY, M. 2003. Condor and the grid. In Grid Computing :
Making the Global Infrastructure a Reality. F. Berman, G. Fox, and A. J.G. Hey Eds. Wiley,
Chichester, West Susses, 299-336.

THAIN, D., TANNENBAUM, T., AND LivNY, M. 2005. Distributed computing in practice : The
condor experience. Concurrency and Computation: Practice and Ezperience 17, 2-4 (Feb.),
323-356.

TSAREGORODTSEV, A., GARONNE, V., AND STOKES-REES, I. 2004. Dirac: a scalable lightweight
architecture for high throughput computing. In Proceedings of the Fifth IEEE/ACM Interna-
tional Workshop on Grid Computing (GRID2004). IEEE CS Press, Pittsburgh, USA, 15-24.

VENUGOPAL, S., BuyvA, R., AND RAMAMOHANARAO, K. 2006. A taxonomy of data grids for
distributed data sharing, management and processing. ACM Computing Surveys 38, 1 (Mar.),
1-53.

YEO, C. S. AND Buyya, R. 2006. A taxonomy of market-based resource management systems for
utility-driven cluster computing. Software: Practice and Experience 36, 13 (Nov.), 1381-1419.

Yu, J. AND Buyva, R. 2005. A taxonomy of scientific workflow systems for grid computing.
SIGMOD Record, Special Issue on Scientific Workflows 34, 3, 44-49.

ZHAO, S. AND Lo, V. 2005. Result verification and trust-based scheduling in open peer-to-peer
cycle sharing systems. In Proceedings of the Fifth IEEE International Conference on Peer-to-
Peer Computing (P2P 2005). IEEE CS Press, Konstanz, Germany, 31-38.

ZHONG, L., WEN, D., MING, Z. W., AND PENG, Z. 2003. Paradropper: a general-purpose global
computing environment built on peer-to-peer overlay network. In Proceedings of the 23rd
International Conference on Distributed Computing Systems (ICDCS 2003), Workshop on
New Advances of Web Server and Proxy Technologies (NAWSPT). IEEE CS Press, Providence,
USA, 954-957.

Zuou, D. AND Lo, V. 2004. Cluster computing on the fly: resource discovery in a cycle sharing
peer-to-peer system. In Proceedings of IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’04). IEEE CS Press, Chicago, USA, 66-73.

Zuou, D. AND Lo, V. 2005. Wave scheduler: Scheduling for faster turnaround time in peer-to-peer
desktop grid systems. In Proceedings of the 11th Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP’05). LNCS 3834, Springer-Verlag, Cambridge, USA, 194-218.

ZHOU, S. 1988. A trace-driven simulation study of dynamic load balancing. IEEE Transactions
on Software Engineering 14, 9, 1327-1341.

Zuu, Y., Xiao, L., Xu, Z., AND N1, L. M. 2006. Incentive-based scheduling in grid computing.
Concurrency and Computation: Practice and Experience 18, 14 (Dec.), 1729-1746.

ACM Computing Surveys, Vol. V, No. N, Month 20YY.

