
A Taxonomy of Data Grids for Distributed Data Sharing,
Management and Processing

Srikumar Venugopal, Rajkumar Buyya and Ramamohanarao Kotagiri
Grid Computing and Distributed Systems Laboratory,

Department of Computer Science and Software Engineering,
The University of Melbourne, Australia
Email:{srikumar, raj, rao}@cs.mu.oz.au

Abstract

Data Grids have been adopted as the next-generation platform by many scientific communi-
ties that need to share, access, transport, process and manage large data collections distributed
worldwide. They combine high-end computing technologies with high-performance network-
ing and wide-area storage management techniques. In this paper, we discuss the key concepts
behind Data Grids and compare them with other data sharing and distribution paradigms such
as content delivery networks, peer-to-peer networks and distributed databases. We then provide
comprehensive taxonomies that cover various aspects of architecture, data transportation, data
replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to
various Data Grid systems not only to validate the taxonomy but also to identify areas for future
exploration.

1 Introduction

The next-generation of scientific applications in domains as diverse as high-energy physics, molec-
ular modeling and earth sciences involve the production of large datasets from simulations or from
large-scale experiments. Analysis of these datasets and their dissemination among researchers lo-
cated over a wide geographic area requires high capacity resources such as supercomputers, high
bandwidth networks and mass storage systems. Collectively, these large scale applications have
come to be known as part of e-Science (Hey and Trefethen, 2002), a discipline that envisages using
high-end computing, storage, networking and Web technologies together to facilitate collaborative,
data-intensive scientific research1 . However, this requires new paradigms in Internet computing that
address issues such as multi-domain applications, co-operation and co-ordination of resource own-
ers and blurring of system boundaries. Grid computing (Foster and Kesselman, 1999) is one such
paradigm that proposes aggregating geographically-distributed, heterogeneous computing, storage
and network resources to provide unified, secure and pervasive access to their combined capabilities.
Such aggregations are also called Grids.

Data Grids (Chervenak et al., 2000; Hoschek et al., 2000) primarily deal with providing services
and infrastructure for distributed data-intensive applications that need to access, transfer and modify
massive datasets stored in distributed storage resources. For users to derive maximum benefits out
of the infrastructure, the following capabilities are needed: (a) ability to search through numerous

1also known as e-Research with the inclusion of digital libraries and the humanities community.

1

available datasets for the required dataset and to discover suitable data resources for accessing the
data, (b) ability to transfer large-sized datasets between resources in as short a time as possible,
(c) ability for users to manage multiple copies of their data, (d) ability to select suitable compu-
tational resources and process data on them and (e) ability to manage access permissions for the
data. Content delivery networks, peer-to-peer file-sharing networks and distributed databases are
some of the other paradigms with similar requirements for supporting a distributed data-intensive
infrastructure. In the next section, we provide a general overview and systematic characterization
of Data Grids and a thorough examination of their differences from the distributed data-intensive
mechanisms mentioned before.

The rapid emergence of Data Grids in scientific and commercial settings has led to a variety of
systems offering solutions for dealing with distributed data-intensive applications. Unfortunately,
this has also led to difficulty in evaluating these solutions because of the confusion in pinpointing
their exact target areas. The taxonomy provided in section 3 breaks down the overall research in
Data Grids into specialised areas and categorizes each of them in turn. The following section,
section 4 then surveys some representative projects and publications and classifies them according
to the taxonomy.

A few studies have investigated and surveyed Grid research in the recent past. Krauter et al.
(2002) present a taxonomy of various Grid resource management systems that focuses on the
general resource management architectures and scheduling policies. Specifically for Data Grids,
Bunn and Newman (2003) provide an extensive survey of projects in High Energy Physics while
Qin and Jiang (2003) produce a compilation that concentrates more on the constituent technolo-
gies. Moore and Merzky (2002) identify functional requirements (features and capabilities) and
components of a persistent archival system. In contrast to these papers, Finkelstein et al. (2004)
spell out requirements for Data Grids from a software engineering perspective and elaborate on the
impact that these have on architectural choices. A similar characterisation has been performed by
Mattmann et al. (2005). The work in this paper, however, concentrates on issues pertaining to all
data-intensive application environments including Data Grids. It provides a more detailed and com-
plete understanding of Data Grids and its underlying technologies through multiple perspectives
including resource allocation, data management and user requirements.

The main objective of this paper, therefore, is to delineate very clearly the uniqueness of Data
Grids from other similar paradigms and provide a basis for categorising present and future devel-
opments in this area. This paper also aims to provide readers with an understanding of the essential
concepts of this rapidly changing research area and helps them identify important and outstanding
issues for further investigation.

2 Overview

2.1 Terms and Definitions

A data intensive computing environment consists of applications that produce, manipulate or anal-
yse data in the range of hundreds of MegaBytes (MB) to PetaBytes (PB) and beyond (Moore et al.,
1998). The data is organised as collections or datasets and are typically stored on mass storage
systems (also called repositories) such as tape libraries or disk arrays. The datasets are accessed by
users in different locations who may create local copies or replicas of the datasets to reduce laten-
cies involved in wide-area data transfers and therefore, improve application performance. A replica
may be a complete or a partial copy of the original dataset. A replica management system or data
replication mechanism allows users to create, register and manage replicas and may also update the

2

replicas if the original datasets are modified. The system may also create replicas on its own guided
by replication strategies that take into account current and future demand for the datasets, locality
of requests and storage capacity of the repositories. Metadata, or “data about data”, is information
that describes the datasets and could consist of attributes such as name, time of creation, size on disk
and time of last modification. Metadata may also contain specific information such as details of the
process that produced the data. A replica catalog contains information about locations of datasets
and associated replicas and the metadata associated with these datasets. Users query the catalog
using metadata attributes to conduct operations such as locating the nearest replica of a particular
dataset.

In the context of Grid computing, any hardware or software entity such as supercomputers, stor-
age systems or applications that are shared between users of a Grid is called a resource. However,
for the rest of this paper and unless otherwise stated, the term resource means hardware such as
computers or storage systems. Resources are also nodes in the network and hence, we use these
terms interchangeably. The network-enabled capabilities of the resources that can be invoked by
users, applications or other resources are called services.

2.2 Data Grids

A Data Grid provides services that help users discover, transfer and manipulate large datasets stored
in distributed repositories and also, create and manage copies of these datasets. At the minimum, a
Data Grid provides two basic functionalities: a high-performance, reliable data transfer mechanism,
and a scalable replica discovery and management mechanism (Chervenak et al., 2000). Depending
on application requirements, various other services need to be provided. Examples of such ser-
vices include consistency management for replicas, metadata management and data filtering and
reduction mechanism. All operations in a Data Grid are mediated by a security layer that handles
authentication of entities and ensures conduct of only authorized operations.

Another aspect of a Data Grid is to maintain shared collections of data distributed across admin-
istrative domains. These collections are maintained independent of the underlying storage systems
and are able to include new sites without major effort. More importantly, it is required that the
data and information associated with data such as metadata, access controls and version changes
be preserved even in the face of platform changes. These requirements lead to the establishment of
persistent archival storage (Moore et al., 2005).

Figure 1 shows a high-level view of a worldwide Data Grid consisting of computational and
storage resources in different countries that are connected by high speed networks. The thick lines
show high bandwidth networks linking the major centres and the thinner lines are lower capacity
networks that connect the latter to their subsidiary centres. The data generated from an instrument,
experiment or a network of sensors is stored in its principal storage site and is transferred to the
other storage sites around the world on request through the data replication mechanism. Users
query their local replica catalog to locate datasets that they require. If they have been granted the
requisite rights and permissions, the data is fetched from the repository local to their area, if it is
present there; otherwise it is fetched from a remote repository. The data may be transmitted to a
computational site such as a cluster or a supercomputer facility for processing. After processing, the
results may be sent to a visualisation facility, a shared repository or to the desktops of the individual
users.

A Data Grid, therefore, provides a platform through which users can access aggregated com-
putational, storage and networking resources to execute their data-intensive applications on remote
data. It promotes a rich environment for users to analyse data, share the results with their collabora-

3

Replica Catalog Replica Catalog

Compute Resource

Instruments

Storage Resource

User

Figure 1: A High-Level view of a Data Grid.

tors and maintain state information about the data seamlessly across institutional and geographical
boundaries. Often cited examples for Data Grids are the ones being set up for analysing the huge
amounts of data that will be generated by the CMS (Compact Muon Solenoid), ATLAS (A Toroidal
LHC AppratuS), ALICE (A Large Ion Collider Experiment) and LHCb (LHC beauty) experiments
at the Large Hadron Collider (LHC) (Lebrun, 1999) at CERN when they will begin production in
2007. These Data Grids will involve thousands of physicists spread over hundreds of institutions
worldwide and will be replicating and analysing terabytes of data daily.

Resources in a Grid are heterogeneous in terms of operating environments, capability and avail-
ability and are under the control of their own local administrative domains. These domains are
autonomous and retain the rights to grant users access to the resources under their control. There-
fore, Grids are concerned with issues such as: sharing of resources, authentication and authoriza-
tion of entities, and resource management and scheduling for efficient and effective use of available
resources. Naturally, Data Grids share these general concerns, but have their own unique set of
characteristics and challenges listed below:

Massive Datasets: Data-intensive applications are characterised by the presence of large datasets
of the size of Gigabytes (GB) and beyond. For example, the CMS experiment at the LHC is
expected to produce 1 PB (1015 bytes) of RAW data and 2 PB of event summary data (ESD)
annually when it begins production (Holtman et al., 2001). Resource management within
Data Grids therefore extends to minimizing latencies of bulk data transfers, creating replicas
through appropriate replication strategies and managing storage resources.

Shared Data Collections: Resource sharing within Data Grids also includes, among others, sharing
distributed data collections. For example, participants within a scientific collaboration would
want to use the same repositories as sources for data and for storing the outputs of their
analyses.

4

Unified Namespace: The data in a Data Grid share the same logical namespace in which every
data element has a unique logical filename. The logical filename is mapped to one or more
physical filenames on various storage resources across a Data Grid.

Access Restrictions: Users might wish to ensure confidentiality of their data or restrict distribution
to close collaborators. Authentication and authorization in Data Grids involves coarse to
fine-grained access controls over shared data collections.

However, certain characteristics of Data Grids are specific to the applications for which they are
created. For example, for astrophysics or high energy physics experiments, the principal instrument
such as a telescope or a particle accelerator is the single site of data generation. This means that all
data is written at a single site, and then replicated to other sites for read access. Updates to the source
are propagated to the replicas either by the replication mechanism or by a separate consistency
management service.

A lot of challenges in Grid computing revolve around providing access to different types of
resources. Foster, Kesselman and Tuecke (2001) have proposed a Grid architecture for resource
sharing among different entities based around the concept of Virtual Organizations (VOs). A VO is
formed when different organisations pool resources and collaborate in order to achieve a common
goal. A VO defines the resources available for the participants and the rules for accessing and using
the resources and the conditions under which the resources may be used. Resources here are not just
compute, storage or network resources, they may also be software, scientific instruments or business
data. A VO also provides protocols and mechanisms for applications to determine the suitability
and accessibility of available resources. In practical terms, a VO may be created using mechanisms
such as Certificate Authorities (CAs) and trust chains for security, replica management systems for
data organisation and retrieval and centralised scheduling mechanisms for resource management.

The existence of VOs impacts the design of Data Grid architectures in many ways. For example,
a VO may be stand alone or may be composed of a hierarchy of regional, national and international
VOs. In the latter case, the underlying Data Grid may have a corresponding hierarchy of repositories
and the replica discovery and management system will be structured accordingly. More importantly,
sharing of data collections is guided by the relationships that exist between the VOs that own each
of the collections. In subsequent sections, we will look at how Data Grids are differentiated by such
design choices and how these affect underlying technologies.

2.3 Layered Architecture

The components of a Data Grid can be organised in a layered architecture as shown in Figure
2. This architecture follows from similar definitions given by Foster et al. (2001) and Baker et al.
(2002). Each layer builds on the services offered by the lower layer in addition to interacting and
co-operating with components and the same level (eg. Resource broker invoking VO tools). We can
describe the layers from bottom to top as below:

• Grid Fabric: Consists of the distributed computational resources (clusters, supercomputers),
storage resources (RAID arrays, tape archives) and instruments (telescope, accelerators) con-
nected by high-bandwidth networks. Each of the resources runs system software such as
operating systems, job submission and management systems and relational database manage-
ment systems (RDBMS).

• Communication: Consists of protocols used to query resources in the Grid Fabric layer and to
conduct data transfers between them. These protocols are built on core communication pro-

5

Clusters SANNetworks DisksInstruments Tape Archives
HARDWARE / PHYSICAL LAYER

Operating Systems Batch Job Systems Dist. File Systems

SOFTWARE

.... Databases

Security Layer (GSI or Kerberos)

File Transfer Protocols (FTP, GridFTP, etc.)

Internet Protocol

Overlay Structures

Replication Discovery Job Submission Data Transfer Libraries

CORE SERVICES

Replica Management Resource Brokering Virtual Organization Tools....
USER-LEVEL SERVICES

Portals Collaboratories Remote Visualization Remote Instrumentation....
APPLICATION TOOLS

High Energy Physics Virtual Observatory Climate Modelling....
APPLICATIONS

BASIC GRID FABRIC

COMMUNICATION

DATA GRID SERVICES

APPLICATION

Figure 2: A Layered Architecture.

tocols such as TCP/IP and authentication protocols such as PKI (Public Key Infrastructure),
passwords or SSL (Secure Sockets Layer). The cryptographic protocols allow verification of
users’ identities and ensure security and integrity of transferred data. These security mecha-
nisms form part of the Grid Security Infrastructure (GSI) (Foster et al., 1998). File transfer
protocols such as GridFTP (Grid File Transfer Protocol), among others, provide services for
efficient transfer of data between two resources on the Data Grid. Application-specific overlay
structures provide efficient search and retrieval capabilities for distributed data by maintaining
distributed indexes.

• Data Grid Services: Provides services for managing and processing data in a Data Grid. The
core level services such as replication, data discovery and job submission provide transparent
access to distributed data and computation. User-level services such as resource brokering
(selection of resources for a user based on his requirements) and replica management provide
mechanisms that allow for efficient resource management hidden behind inituitive commands
and APIs (Application Programming Interfaces). VO tools provide easy way to perform func-
tions such as adding new resources to a VO, querying the existing resources and managing
users’ access rights.

• Applications: Specific services cater to users by invoking services provided by the layers

6

below and customising them to suit the target domains such as high energy physics, biology
and climate modelling. Each domain provides a familiar interface and access to services such
as visualisation. Portals are web interfaces that provide single-point access to available VO
services and domain-specific applications and tools. Collaboratories (Kouzes et al., 1996)
have similar intent and also provide applications that allow users to conduct joint operations
with their colleagues.

The security layer and Data Grid services provide applications uniform access to resources in the
Fabric layer while abstracting out much of the inherent complexity and heterogeneity. Formation of
VOs requires interoperability between the resources and components that are provided by different
participants. This motivates the use of standard protocols and service interfaces for information ex-
change among VO entities. Service interfaces themselves have to be separated from implementation
details and have to be described in language- and platform-independent format. Realization of these
requirements have led the Grid computing research community, through forums such as Global Grid
Forum (GGF), to adopt a new Open Grid Services Architecture (OGSA) (Foster et al., 2002) that is
based on the emerging Web services paradigm. Web services are self-contained, stateless compo-
nents that use standard mechanisms for representation and exchange of data. OGSA builds on Web
service properties such as vendor and platform neutral service definition using XML (eXtensible
Markup Language) (Bray et al., 2004) and standard communication protocols such as SOAP (Sim-
ple Object Access Protocol) to create Grid services. Grid services are standardized Web service
interfaces that provide Grid capabilities in a secure, reliable and stateful manner. Grid services may
also be potentially transient and service instances support service lifetime management and state
notification. OGSA utilizes standard Web service mechanisms for discovering and invoking Grid
services.

The OGSA Data Services (Foster et al., 2003) deal with accessing and managing data resources
in a Grid environment. A data service implements one or more of a set of basic interfaces that
describe the data and provide operations to manipulate it. The same data can be represented in
many ways by different data services that implement different set of operations and data attributes.
This abstract view of data created by a data service is termed data virtualisation. Subsequent ef-
forts through the Data Access and Integration Services Working Group (DAIS-WG) at GGF have
produced a set of more concrete standards (Antonioletti et al., 2005) for representing data through
services. While these standards provide the consumers of these services the advantage of being
isolated from the inner workings of Data Grids, the actual work of transferring and managing data
is done by the underlying or core mechanisms such as data transport, data replication and resource
management. The taxonomy section focuses on these core mechanisms as these define the capabil-
ities of a Data Grid.

2.4 Related Data-Intensive Research Paradigms

Three related distributed data-intensive research areas that share similar requirements, functions and
characteristics are described below. These have been chosen because of the similar properties and
requirements that they share with Data Grids.

2.4.1 Content Delivery Network

A Content Delivery Network (CDN) (Davison, 2001; Dilley et al., 2002) consists of a “collection of
(non-origin) servers that attempt to offload work from origin servers by delivering content on their
behalf” (Krishnamurthy et al., 2001). That is, within a CDN, client requests are satisfied from other

7

servers distributed around the Internet (also called edge servers) that cache the content originally
stored at the source (origin) server. A client request is rerouted from the main server to an available
server closest to the client likely to host the content required (Dilley et al., 2002). This is done
by providing a DNS (Domain Name System) server that resolves the client DNS request to the
appropriate edge server. If the latter does not have the requested object then it retrieves the data
from the origin server or another edge server. The primary aims of a CDN are, therefore, load
balancing to reduce effects of sudden surges in requests, bandwidth conservation for objects such as
media clips and reducing the round-trip time to serve the content to the client. CDNs are generally
employed by Web content providers and commercial providers such as Akamai Inc., Speedera Inc.
and IntelliDNS Inc. have built dedicated infrastructure to serve multiple clients. However, CDNs
haven’t gained wide acceptance for data distribution because of the restricted model that they follow.
Also, current CDN infrastructures are proprietary in nature and owned completely by the providers.

2.4.2 Peer-to-Peer Network

Peer-to-peer (P2P) networks (Oram, 2001) are formed by ad hoc aggregation of resources to form
a decentralised system within which each peer is autonomous and depends on other peers for re-
sources, information and forwarding requests. The primary aims of a P2P network are: to en-
sure scalability and reliability by removing the centralised authority, to ensure redundancy, to share
resources and to ensure anonymity. An entity in a P2P network can join or leave anytime and
therefore, algorithms and strategies have to be designed keeping in mind the volatility and re-
quirements for scalability and reliability. P2P networks have been designed and implemented for
many target areas such as compute resource sharing (e.g. SETI@Home (Anderson et al., 2002),
Compute Power Market (Buyya and Vazhkudai, 2001)), content and file sharing (Napster, Gnutella,
Kazaa (Choon-Hoong et al., 2005)) and collaborative applications such as instant messengers (Jab-
ber (Jabber Project, 2005)). Milojicic et al. (2002) present a detailed taxonomy and survey of peer-
to-peer systems. Here we are concerned mostly with content and file-sharing P2P networks as these
involve data distribution. Such networks have mainly focused on creating efficient strategies to lo-
cate particular files within a group of peers, to provide reliable transfers of such files in the face of
high volatility and to manage high load caused due to demand for highly popular files. Currently,
major P2P content sharing networks do not provide an integrated computation and data distribution
environment.

2.4.3 Distributed Databases

A distributed database (DDB) (Ceri and Pelagatti, 1984; Ozsu and Valduriez, 1999) is a logically
organised collection of data stored at different sites of a computer network. Each site has a de-
gree of autonomy, is capable of executing a local application, and also participates in the execution
of a global application. A distributed database can be formed either by taking an existing sin-
gle site database and splitting it over different sites (top-down approach) or by federating existing
database management systems so that they can be accessed through a uniform interface (bottom-up
approach) (Sheth and Larson, 1990). The latter are also called multidatabase systems. Varying
degrees of autonomy are possible within DDBs ranging from tightly-coupled sites to complete site
independence. Distributed databases have evolved to serve the needs of large organisations which
need to remove the need for a centralised computer centre, to interconnect existing databases, to
replicate databases to increase reliability and to add new databases as new organisational units are
added. This technology is very robust. It provides distributed transaction processing, distributed

8

query optimisation and efficient management of resources. However, these systems cannot be em-
ployed in their current form at the scale of Data Grids envisioned as they have strong requirements
for ACID (Atomicity, Consistency, Isolation and Durability) properties (Gray and Reuter, 1993) to
ensure that the state of the database remains consistent and deterministic.

2.5 Analysis of Data-Intensive Networks

This section compares the data-intensive paradigms described in the previous sections with Data
Grids in order to bring out the uniqueness of the latter by highlight the respective similarities and
differences. Also, each of these areas have their own mature solutions which may be applicable to
the same problems in Data Grids either wholly or with some modification based on the differing
properties of the latter. These properties are summarised in Table 1 and are explained below:

Purpose - Considering the purpose of the network, it is generally seen that P2P content sharing
networks are vertically integrated solutions for a single goal (for example, file-sharing). CDNs are
dedicated to caching web content so that clients are able to access it faster. DDBs are used for
integrating existing diverse databases to provide a uniform, consistent interface for querying and/or
for replicating existing databases for increasing reliability or throughput. In contrast to these single
purpose networks, Data Grids are primarily created for enabling collaboration through sharing of
distributed resources including data collections and support various activities including data transfer
and computation over the same infrastructure. The overall goal is to bring together existing disparate
resources in order to obtain benefits of aggregation.

Aggregation - All the networks are formed by aggregating individual nodes to form a distributed
system. The aggregation can be created through an ad hoc process wherein nodes subscribe to the
network without prior arrangements or a specific process where they are brought together for a
particular purpose. The aggregation can be stable or dynamic. P2P networks, by definition, are ad
hoc in nature with nodes entering and leaving at will. A CDN provider creates the infrastructure
by setting up dedicated servers for caching content. DDBs are created by either federating existing
databases or by establishing a tightly-coupled network of databases by a single organisation. In
the case of a CDN or a DDB system, the entire network is managed by a single entity that has
the authority to add or remove nodes and therefore, these have stable configurations. Data Grids
are created by institutions forming VOs by pooling their resources for achieving a common goal.
However, within a Data Grid, dynamic configurations are possible due to introduction or removal
of resources and services.

Organisation - The organisation of a CDN is hierarchical with the data flowing from the origin
to the edges. Data is cached at the various edge servers to exploit locality of data requests. There are
many models for organisation of P2P content sharing network and these are linked to the searching
methods for files within the network. Within Napster, a peer has to connect to a centralised server
and search for an available peer that has the required file. The two peers then directly communicate
with each other. Gnutella avoids the centralised directory by having a peer broadcast its request
to its neighbours and so on until the peer with the required file is obtained. Kazaa and FastTrack
limit the fan-out in Gnutella by restricting broadcasts to SuperPeers who index a group of peers.
Freenet (Clarke et al., 2001) uses content-based hashing, in which a file is assigned a hash based
on its contents and nearest neighbour search is used to identify the required document. Thus, three
different models of organisation, viz. centralised, two-level hierarchy and flat (structured and un-
structured) can be seen in the examples presented above. Distributed databases provide a relational
database management interface and are therefore organised accordingly. Global relations are split
into fragments that are allocated to either one or many physical sites. In the latter case, replication

9

of fragments is carried out to ensure reliability of the database. While distribution transparency may
be achieved within top-down databases, it may not be the case with federated databases that have
varying degrees of heterogeneity and autonomy. As will be shown in the taxonomy section, there
are 4 different kinds of organisation present in a Data Grid: monadic, hierarchical, federated, and
hybrid combinations of these.

Table 1: Comparison between various data distribution networks

Property P2P (Content
sharing)

CDN DDB Data Grids

Purpose File sharing Reducing web la-
tency

Integrating ex-
isting databases,
Replicating
database for
reliability &
throughput

Analysis, collab-
oration

Aggregation Ad hoc, Dynamic Specific, Stable Specific, Stable Specific, Dy-
namic

Organisation Centralised, two-
level hierarchy,
flat

Hierarchical Centralised, fed-
eration

Hierarchical, fed-
eration, bottom
up or hybrid

Data Access
Type

Mostly read with
frequent writes

Read-only Equally read and
write

Mostly read with
rare writes

Data Discov-
ery

Central directory,
Flooded requests
or document rout-
ing

HTTP Request Relational
Schemas

Catalogues

Latency Man-
agement &
Performance

Replication,
Caching, Stream-
ing

Caching, Stream-
ing

Replication,
Caching

Replication,
Caching, Stream-
ing, Pre-staging,
High-speed data
movement, Opti-
mal selection of
data source and
sink

Consistency
Requirements

Weak Strong (read-
only)

Strong Weak

Transaction
Support

None None currently Yes None currently

Computa-
tional Re-
quirements

None currently None (Client-
side)

Transaction Pro-
cessing

Data Production
and Analysis

Autonomy Operational, Par-
ticipation

None (Dedicated) Operational (fed-
erated)

Access, Opera-
tional, Participa-
tion

10

Heterogeneity System, Struc-
tural

System System System, Syntac-
tic, Structural,
Semantic

Management
Entity

Individual Single Organisa-
tion

Single Organisa-
tion

VO

Security
Requirements

Anonymity Data Integrity Authentication,
Authorisation,
Data Integrity

Authentication,
Authorisation,
Data Integrity

Data Access Type - Access type distinguishes the type of data access operations conducted
within the network. P2P content sharing networks are mostly read-only environments and write
operations occur when an entity introduces new data into the network or creates copies of existing
data. CDNs are almost exclusively read-only environments for end-users and updating of data
happens at the origin servers only. In DDBs, data is both read and written frequently. Data Grids
are similar to P2P networks as they are mostly read-only environments into which either data is
introduced or existing data is replicated. However, a key difference is that depending on application
requirements, Data Grids may also support updating of data replicas if the source is modified.

Data Discovery - Another distinguishing property is how the data is discovered within the net-
work. The three approaches for searching within P2P networks have been mentioned previously.
Current research focuses on the document routing model and the four algorithms proposed for this
model: Chord (Stoica et al., 2003), CAN (Ratnasamy et al., 2001), Pastry (Rowstron and Druschel,
2001) and Tapestry (Zhao et al., 2001). CDNs fetch data which has been requested by a browser
through HTTP (Hyper Text Transfer Protocol). DDBs are organised using the same relational
schema paradigm as single-site databases and thus, data can be searched for and retrieved using
SQL (Structured Query Language). Data in Data Grids are organised into catalogues which map
the logical description of data to the actual physical representation. One form of these catalogues is
the replica catalogue which contains a (possibly) one-to-many mapping from the logical (or device-
independent) filename to the actual physical filenames of the datasets. Data can be located by
querying these catalogues and resolving the physical locations of the logical datasets.

In addition to these mechanisms, the use of metadata for searching data is supported by certain
individual products in each of the four data-intensive networks. Data can be queried for based on
attributes such as description or content type. In Data Grids, metadata catalogues offer another
means for querying for data. In such cases, metadata has to be curated properly as otherwise it
would affect the efficiency and accuracy of data discovery. We will look at the role of metadata and
catalogues in detail in later sections.

Latency Management & Performance - A key element of performance in distributed data-
intensive networks is the manner in which they reduce the latency of data transfers. Some of the
techniques commonly used in this regard are replicating data close to the point of consumption,
caching of data, streaming data and pre-staging the data before the application starts executing.
Replication is different from caching in that the former involves creation and maintenance of copies
of data at different places in the network depending on access rates or other criteria while the lat-
ter involves creating just one copy of the data close to the point of consumption. Replication is,
therefore, done mostly from the source of the data (provider side) and caching is done at the data
consumer side. While both replication and caching seek to increase performance by reducing la-
tency, the former also aims to increase reliability by creating multiple backup copies of data.

11

CDNs employ caching and streaming to enhance performance especially for delivering media
content (Saroiu et al., 2002). While several replication strategies have been suggested for a CDN,
Karlsson and Mahalingam (2002) experimentally show that caching provides equivalent or even
better performance than replication. In the absence of requirements for consistency or availability
guarantees in CDNs, computationally expensive replication strategies do not offer much improve-
ment over simple caching methods. P2P networks also employ replication, caching and streaming
of data in various degrees. Replication and caching are used in distributed database systems for
optimizing distributed query processing (Kossmann, 2000).

In Data Grids, all of the techniques mentioned are implemented in one form or another. How-
ever, additionally, Data Grids are differentiated by the requirement for transfer of massive datasets.
This is either absent in the other data-intensive networks or is not considered while designing these
networks. This motivates use of high-speed data transfer mechanisms that have separation of data
communication - that is, sending of control messages happens separately from the actual data trans-
fer. In addition, features such as parallel and striped data transfers among others, are required to
further reduce time of data movement. Optimization methods to reduce the amount of data transfers,
such as accessing data close to the point of its consumption, are also employed within Data Grids.

Consistency - Consistency is an important property which determines how “fresh” the data is.
Grids and P2P networks generally do not provide strong consistency guarantees because of the over-
head of maintaining locks on huge volumes of data and the ad hoc nature of the network respectively.
Among the exceptions for Data Grids is the work of Dullmann et al. (2001) which discusses a con-
sistency service for replication in Data Grids. In P2P networks, Oceanstore (Kubiatowicz et al.,
2000) is a distributed file system that provides strong consistency guarantees through expensive
locking protocols. In CDNs, while the data in a cache may go stale, the system always presents the
latest version of the data when the user requests it. Therefore, the consistency provided by a CDN
is strong.

Distributed databases, as mentioned before, have strong requirements for satisfying ACID prop-
erties. While these requirements can be relaxed in the case of unstable conditions such as those
found in mobile networks (Pitoura and Bhargava, 1999), even then the semantics for updating are
much stricter within distributed databases than in other distribution networks. Also, updates are
more frequent and can happen from within any site in the network. These updates have to be mi-
grated to other sites in the network so that all the copies of the data are synchronised. There are
two methods for updating that are followed (Gray et al., 1996): lazy, in which the updates are asyn-
chronously propagated and eager, in which the copies are synchronously updated.

Transaction Support - A transaction is a set of operations (actions) such that all of them succeed
or none of them succeed. Transaction support implies the existence of check-pointing and rollback
mechanisms so that a database or data repository can be returned to its previous consistent state in
case of failure. It follows from the discussion of the previous property that transaction support is
essential for distributed databases. CDNs have no requirements for transaction support as they only
support read only access to data to the end users. P2P Networks and Data Grids currently do not have
support for recovery and rollback. However, efforts are on to provide transaction support within
Data Grids to provide fault tolerance for distributed transactions(Transaction Management Research Group (GGF),
2005).

Computational Requirements - Computational requirements in data intensive environments orig-
inate from operations such as query processing, applying transformations to data and processing
data for analysis. CDNs are exclusively data-oriented environments with a client accessing data
from remote nodes and processing it at its own site. While current P2P content sharing networks
have no processing of the data, it is possible to integrate such requirements in the future. Com-

12

putation within DDBs involves transaction processing which can be conducted in two ways: the
requested data is transmitted to the originating site of the transaction and the transaction is pro-
cessed at that site, or the transaction is distributed among the different nodes which have the data.
High volumes of transactions can cause heavy computational load within DDBs and there are a
variety of optimisation techniques to deal with load balancing in parallel and distributed databases.

Data Grids have heavy computational requirements that are caused by workloads involving anal-
ysis of datasets. Many operations in Data Grids, especially those involving analysis, can take long
intervals of time (measured in hours or even days). This is in contrast to the situation within DDBs
where the turnaround time of requests is short and for applications such as OLTP (On Line Trans-
action Processing), measured in milliseconds. High performance computing sites, that generally
constitute existing Data Grids, are shared facilities and are oversubscribed most of the time. There-
fore, application execution within Data Grids has to take into account the time to be spent in queues
at these sites as well.

Autonomy - Autonomy deals with the degree of independence allowed to different nodes within a
network. However, there could be different types and different levels of autonomy provided (Sheth and Larson,
1990; Alonso and Barbara, 1989). Access autonomy allows a site or a node to decide whether to
grant access to a user or another node within the network. Operational autonomy refers to the abil-
ity of a node to conduct its own operations without being overridden by external operations of the
network. Participation autonomy implies that a node has the ability to decide the proportion of re-
sources it donates to the network and the time it wants to associate or disassociate from the network.
Data Grid nodes have all the three kinds of autonomy to the fullest extent. While nodes in a P2P
network do not have fine-grained access controls against users, they have maximum independence
in deciding how much share will they contribute to the network. CDNs are dedicated networks and
so, individual nodes have no autonomy at all. Tightly coupled databases retain all control over the
individual sites whereas multidatabase systems retain control over local operations.

Heterogeneity - Network environments encompass heterogeneous hardware and software con-
figurations that potentially use different protocols. This impacts applications which have to be en-
gineered to work across multiple interfaces, multiple data formats and multiple protocols wherever
applicable. Interoperability of the system therefore, refers to the degree of transparency a system
provides for a user to access this information while being unaware of the underlying complexity.

Heterogeneity can also be split into many types depending on the differences at various levels
of the network stack. Koutrika (2005) has identified four different types of heterogeneity in the case
of data sources within digital libraries.

1. System heterogeneity - arises from different hardware platforms and operating systems.

2. Syntactic heterogeneity - arises from the presence of different protocols and encodings used
with the system.

3. Structural heterogeneity - originates from the data organised according to different models
and schemas.

4. Semantic heterogeneity - originates from different meanings given to the same data, especially
because of the use of different metadata schemas for categorising the data.

It can be seen from the definitions of the data-intensive networks that the same classification is
applicable in the current context. System heterogeneity is a feature of all the data-intensive networks
discussed here. Though P2P networks, CDNs and DDBs can simultaneously store data in different
formats, they require the establishment of common protocols within individual networks. CDNs and

13

DDBs are also homogeneous when it comes to structure of data as they enforce common schema
(Web content schema for CDNs and relational schema for DDBs). P2P networks offer structural and
semantic heterogeneity as they unify data from various sources and allow the user to query across
all of the available data.

The existence of different components including legacy and otherwise, that speak a variety of
protocols and store data in their own (sometimes proprietary) formats with little common structure
or consistent metadata information means that Data Grids contain data that is syntactically, struc-
turally and semantically heterogeneous. However, where Data Grids truly differ from other data
intensive networks in this regard is the level of interoperability required. Users within a Data Grid
expect to have an integrated view of data which abstracts out the underlying complexity behind a
simple interface. Through this interface, they would require to manipulate the data by applying
transformations or conducting analysis and viewing its results and using these results to conduct
further operations. This means that not only should a Data Grid provide interoperability between
different protocols and systems, it should also be able to extract meaningful information from the
data according to users’ requirements. This is different to P2P content sharing networks where the
user only queries for datasets matching a particular criterion and downloads them.

Management Entity - The management entity administers the tasks for maintaining the aggrega-
tion. Generally, this entity is a collection of the stakeholders within the distribution network. While
this body usually does not have control over individual nodes, nevertheless, it provides services such
as a common data directory for locating content and an authentication service for the users of the
network. For the Data Grid, we have already discussed the concept of VO. Though entities in a P2P
network are independent, a central entity may provide directory service as in the case of Napster.
CDNs are owned and maintained by a corporation or a single organisation. Likewise, DDBs are
also maintained by single organisations even though the constituent databases may be independent.

Security Requirements - Security requirements differ depending on perspective. In a data dis-
tribution network, security may have to be ensured against corruption of content (data integrity),
for safeguarding users’ privacy (anonymity) and for resources to verify users’ identities (authenti-
cation). P2P Networks such as Freenet are more concerned with preserving anonymity of the users
as they may be breaking local censorship laws. A CDN primarily has to verify data integrity as
access for manipulating data is granted only to the content provider. Users have to authenticate
against a DDB for carrying out queries and transactions and data integrity has to be maintained for
deterministic operation.

Since Data Grids are multi-user environments with shared resources, the main security concerns
are authentication of both users and resources and granting of permissions for specific types of
services to a user (authorisation). Data Grids resources are also spread among various administrative
entities and therefore, accepting security credentials of a user also involves trusting the authority that
issued the credentials in the first place. Many VOs have adopted community-based authorization
where the VO itself provides the credentials or certifies certain authorities as trusted and sets the
access rights for the user. While these are issues within Grids in general, Data Grids also need
verification while accessing data and need to guard against malicious operations on data while in
transit. Also, more elaborate access controls than that maybe required in Grids are needed for
safeguarding confidential data in Data Grids.

Thus, it can be seen that though Data Grids share many characteristics with other types of data
intensive network computing technologies, they are differentiated by heavy computational require-
ments, wider heterogeneity and autonomy and the presence of VOs. Most of the current Data Grid
implementations focus on scientific applications. Recent approaches have, however, explored the in-
tegration of the above-mentioned technologies within Data Grids to take advantage of the strengths

14

Data Grid
Elements

Transport
Data

Data
Replication

Organization

Scheduling

Figure 3: Data Grid Elements.

that they offer in areas such as data discovery, storage management and data replication. This is
possible as Data Grids already encompass and build on diverse technologies. Foster and Iamnitchi
(2003) discuss the convergence of P2P and Grid computing and contend that the latter will be able
to take advantage of the failure resistance and scalability offered by the former which gains from the
experience in managing diverse and powerful resources, complex applications and the multitude of
users with different requirements. Ledlie et al. (2003) present a similar view and discuss the areas of
aggregation, algorithms and maintenance where P2P research can be beneficial to Grids. Practical
Grid technologies such as Narada Brokering (Fox and Pallickara, 2002) have used P2P methods for
delivering a scalable event-service.

3 Taxonomy

This section details a taxonomy that covers various aspects of Data Grids. As Data Grids consist
of several elements, our taxonomy covers each one of them in depth. This taxonomy is split into
four sub-taxonomies as shown in Figure 3. The first sub-taxonomy is from the point of view of
Data Grid organization. This classifies ongoing scientific Data Grid efforts worldwide. The next
sub-taxonomy deals with the transport technologies used within Data Grids. This not only covers
well-known file transfer protocols but also includes other means of managing data transportation. A
scalable, robust and intelligent replication mechanism is crucial to the smooth operation of a Data
Grid and the sub-taxonomy presented next takes into account concerns of Grid environments such
as metadata and the nature of data transfer mechanisms used. The last sub-taxonomy categorizes
resource allocation and scheduling research and looks into issues such as locality of data.

While each of the areas of data transport, replica management and resource management are
independent fields of research and merit detailed investigations on their own, in this paper, these
are studied from the point of view of the specific requirements of Data Grid environments that have
been provided in previous sections.

3.1 Data Grid Organization

Figure 4 shows a taxonomy based on the various organizational characteristics of Data Grid projects.
These characteristics are central to any Data Grid and are manifest in different ways in different
systems.

Model - The model is the manner in which data sources are organised in a system. A variety of
models are in place for the operation of a Data Grid. These are dependent on: the source of data,
whether single or distributed, the size of data and the mode of sharing. Four of the common models
found in Data Grids are shown in Figure 5 and are discussed as follows:

15

Data Grid
Organization
Taxonomy

Data
Sources

Virtual
Organization

Hierarchical

Federation

Collaborative

Regulated

Economic

Intradomain

Interdomain

Hybrid

Reputation−based

Transient

Stable

Autonomic

Monadic

Managed

Model

Scope

Management

Figure 4: Data Grid Organization Taxonomy.

• Monadic: This is the general form of a Data Grid in which all the data is gathered at a
central repository that then answers user queries and provides the data. The data can be
from many sources such as distributed instruments and senor networks and is made available
through a centralised interface such as a web portal which also verifies users and checks for
authorization. This model is shown in Figure 5(a) and has been applied in the NEESgrid
(Network for Earthquake Engineering Simulation) project (2004) in the United States.

The difference between this and other models of Data Grids is that there is only a single
point for accessing the data. In contrast, within other models, the data can be wholly or
partially accessed at different points where it is made available through replication. The
central repository may be replicated in this case for fault tolerance but not for improving
locality of data. Thus, this model serves better in scenarios where the overhead of replication
is not compensated for by an increase in efficiency of data access such as the case wherein all
accesses are local to a particular region.

• Hierarchical: This model is used in Data Grids where there is a single source for data and
the data has to be distributed across collaborations worldwide. For example, the MONARC
(Models of Networked Analysis at Regional Centres) group within CERN has proposed a
tiered infrastructure model for distribution of CMS data (Aderholz et al., 2000). This model is
presented in Figure 5(b) and specifies requirements for transfer of data from CERN to various
groups of physicists around the world. The first level is the compute and storage farm at
CERN which stores the data generated from the detector. This data is then distributed to sites
distributed worldwide called Regional Centres (RCs). From the RCs, the data is then passed
downstream to the national and institutional centres and finally onto the physicists. A Tier1
or a Tier2 centre has to satisfy certain bandwidth, storage and computational requirements as
shown in the figure.

16

Institution

Central Data
Repository

Local Data Repository

Sensors

Tape

Instruments

(a) Monadic (b) Hierarchy

Institution

Institution

Institution

Institution

Institution

Local Data Repository

(c) Federation

Institution InstitutionInstitution

Source

Distributor Distributor Distributor

(d) Hybrid

Figure 5: Possible models for organization of Data Grids.

17

The massive amounts of data generated in these experiments motivate the need for a robust
data distribution mechanism. Also, researchers at participating institutions may be interested
only in subsets of the entire dataset that may be identified by querying using metadata. One
advantage of this model is that maintenance of consistency is much simpler as there is only
one source for the data.

• Federation: The federation model (Rajasekar et al., 2004) is presented in Figure 5(c) and is
prevalent in Data Grids created by institutions who wish to share data in already existing
databases. One example of a federated Data Grid is the BioInformatics Research Network
(BIRN) (2005) in the United States. Researchers at a participating institution can request
data from any one of the databases within the federation as long as they have the proper
authentication. Each institution retains control over its local database. Varying degrees of
integration can be present within a federated Data Grid. For example, Moore et al. (2004)
discuss about 10 different types of federations that are possible using the Storage Resource
Broker (SRB) (Baru et al., 1998) in various configurations. The differences are based on
the degree of autonomy of each site, constraints on cross-registration of users, degree of
replication of data and degree of synchronization.

• Hybrid: Hybrid models that combine the above models are beginning to emerge as Data
Grids mature and enter into production usage. These come out of the need for researchers to
collaborate and share products of their analysis. A hybrid model of a hierarchical Data Grid
with peer linkages at the edges is shown in Figure 5(d).

Scope - The scope of a Data Grid can vary depending on whether it is restricted to a single
domain (intradomain) or if it is a common infrastructure for various scientific areas (interdomain).
In the former case, the infrastructure is adapted to the particular needs of that domain. For example,
special analysis software may be made available to the participants of a domain-specific Data Grid.
In the latter case, the infrastructure provided will be generic.

Virtual Organizations - Data Grids are formed by VOs and therefore, the design of VOs reflects
on the social organization of the Data Grid. A VO is collaborative if it is created by entities who
have come together to share resources and collaborate on a single goal. Here, there is an implicit
agreement between the participants on the usage of resources. A regulated VO may be controlled
by a single organization which lays down rules for accessing and sharing resources. In an economy-
based VO, resource providers enter into collaborations with consumers due to profit motive. In such
cases, service-level agreements dictate the rights of each of the participants. A reputation-based VO
may be created by inviting entities to join a collaboration based on the level of services that they are
known to provide.

Data Sources - Data sources in a Data Grid may be transient or stable. A scenario for a transient
data source is a satellite which broadcasts data only at certain times of the day. In such cases,
applications need to be aware of the short life of the data stream. As we will see later, most of the
current Data Grid implementations have always-on data sources such as mass storage systems or
production databases. In future, with diversification, Data Grids are expected to handle transient
data sources also.

Management - The management of a Data Grid can be autonomic or managed. Present day
Data Grids require plenty of human intervention for tasks such as resource monitoring, user au-
thorization and data replication. However, research is leading to autonomic (Parashar and Hariri,
2004; Ardaiz et al., 2003) or self-organizing, self-governing systems whose techniques may find
applications in future Data Grids.

18

Data Transport
Taxonomy

Fault
Tolerance

Transfer
Mode

Security

Function Overlay Network

Transfer Protocol

File I/O mechanism

Authentication

Restart Transmission

Resume Transmission

Cached Transfers

Block

Stream

Compressed

Bulk transfers

Authorization

Encryption

Cryptographic Keys

Passwords

Coarse−grained

Fine−grained

SSL

Unencrypted

Figure 6: Data Transport Taxonomy.

3.2 Data Transport

The data transport mechanism is one of the fundamental technologies underlying a Data Grid. Data
transport involves not just movement of bits across resources but also other aspects of data access
such as security, access controls and management of data transfers. A taxonomy for data transport
mechanisms within Data Grids is shown in Figure 6.

Functions - Data transport in Grids can be modelled as a three-tier structure that is similar to
the networking stacks such as the OSI reference model. At the bottom is the Transfer Protocol
that specifies a common language for two nodes in a network to initiate and control data transfers.
This tier takes care of simple bit movement between two hosts on a network. The most widely-
used transport protocols in Data Grids are FTP (File Transfer Protocol) (Postel and Reynolds, 1985)
and GridFTP (Allcock, 2003). The second tier is an optional Overlay Network that takes care of
routing the data. An overlay network provides its own semantics over the Internet protocol to
satisfy a particular purpose. In P2P networks, overlays based on distributed hash tables provide
a more efficient way of locating and transferring files (Andersen et al., 2001). Overlay networks
in Data Grids provide services such as storage in the network, caching of data transfers for better
reliability and the ability for applications to manage transfer of large datasets. The topmost tier
provides application-specific functions such as File I/O. A file I/O mechanism allows an application
to access remote files as if they are locally available. This mechanism presents to the application a
transparent interface through APIs that hide the complexity and the unreliability of the networks. A
data transport mechanism can therefore perform one of these functions.

Security - Security is an important requirement while accessing or transferring files to ensure
proper authentication of users, file integrity and confidentiality. Transport security can be divided

19

into three main categories: authentication and authorization of users and encryption of data trans-
fer. Authentication can be based on either passwords or symmetric or asymmetric public key cryp-
tographic protocols such as the Kerberos (Neuman and Ts’o, 1994) or the X.509 (Housley et al.,
2002) mechanisms respectively. In the context of data movement, authorization of users is enforced
by mechanisms such as access controls on the data that is to be transferred. Coarse-grained autho-
rization methods use traditional methods such as UNIX file permissions to restrict the number of
files or collections that are accessible to the user. However, expansion of Data Grids to fields such
as medical research that have strict controls on the distribution of data have led to requirements for
fine-grained authorization. Such requirements include restricting the number of accesses even for
authorised users, delegating read and write access rights to particular files or collections and flexible
ownership of data (Moore et al., 2004). Fine-grained access control methods that may be employed
to achieve these requirements include time- and usage-limited tickets, Access Control Lists (ACLs),
Role Based Access Control (RBAC) methods (Sandhu et al., 1996) and Task-Based Authorization
Controls (TBAC) (Thomas and Sandhu, 1997). Data encryption may be present or absent within a
transfer mechanism. The most prevalent form of data encryption is through SSL (Secure Sockets
Layer) (Wagner and Schneier, 1996).

Fault Tolerance - Fault tolerance is also an important feature that is required in a Data Grid en-
vironment especially when transfers of large data files occur. Fault tolerance can be subdivided into
restarting over, resuming from interruption and providing caching. Restarting the transfer all over
again means that the data transport mechanism does not provide any failure tolerance. However,
all data in transit would be lost and there is a slight overhead for setting up the connection again.
Protocols such as GridFTP allow for resuming transfers from the last byte acknowledged. Overlay
networks provide caching of transfers via store-and-forward protocols. In this case, the receiver
does not have to wait until the connections are restored. However, caching reduces performance
of the overall data transfer and the amount of data that can be cached is dependent on the storage
policies at the intermediate network points.

Transfer Mode - The last category is the transfer modes supported by the mechanism. Block,
stream and compressed modes of data transfer have been available in traditional data transmission
protocols such as FTP. However, it has been argued that transfers of large datasets such as those that
are anticipated within Data Grids are restricted by vanilla FTP and underlying Internet protocols
such as Transmission Control Protocol (TCP) which were initially designed for low bandwidth, high
latency networks. As such, these are unable to take advantage of the capabilities of high bandwidth,
optical fibre networks that are available for Data Grid environments (Lee et al., 2001). Therefore,
several optimisations have been suggested for improving the performance of data transfers in Grid
environments by reducing latency and increasing transfer speed. Some of them are listed below:

• Parallel data transfer - is the ability to use multiple data streams over the same channel to
transfer a file. This also saturates available bandwidth in a channel while completing transfer.

• Striped data transfer - is the ability to use multiple data streams to simultaneously access
different blocks of a file that is partitioned among multiple storage nodes (also called striping).
This distributes the access load among the nodes and also improves bandwidth utilisation.

• Auto-resizing of buffers - is the ability to automatically resize sender and receiver TCP win-
dow and buffer sizes so that the available bandwidth can be more effectively utilised.

• Container operations - is the ability to aggregate multiple files into one large dataset that can
be transferred or stored more efficiently. The efficiency gains come from reducing the number
of connections required to transfer the data and also, by reducing the initial latency.

20

Replica Manager

UpdateUpdate

File B File A

Storage Node

File A

Storage Node

File CData Transfer Protocol

Replica Catalog

Figure 7: A Replica Management Architecture.

The first three are protocol-specific optimisations while the last one is applied to the transfer mech-
anism. We group these enhancements under bulk transfer mode. A mechanism may support more
than one mode and its suitability for an application can be gauged by the features it provides within
each of the transfer modes.

3.3 Data Replication and Storage

A Data Grid is a geographically-distributed collaboration in which all members require access to the
datasets produced within the collaboration. Replication of the datasets is therefore a key require-
ment to ensure scalability of the collaboration, reliability of data access and to preserve bandwidth.
Replication is bounded by the size of storage available at different sites within the Data Grid and
the bandwidth between these sites. A replica management system therefore ensures access to the
required data while managing the underlying storage.

A replica management system, shown in Figure 7, consists of storage nodes which are linked to
each other via high-performance data transport protocols. The replica manager directs the creation
and management of replicas according to the demands of the users and the availability of storage,
and a catalog or a directory keeps track of the replicas and their locations. The catalog can be queried
by applications to discover the number and the locations of available replicas of a particular dataset.
In some systems, the manager and the catalog are merged into one entity. Client-side software
generally consists of a library that can be integrated into applications and a set of commands or GUI
utilities that are built on top of the libraries. The client libraries allow querying of the catalog to
discover datasets and to request replication of a particular dataset.

The important elements of a replication mechanism are therefore the architecture of the system
and the strategy followed for replication. The first categorization of Data Grid replication is there-
fore, based on these properties as is shown in Figure 8. The architecture of a replication mechanism
can be further subdivided into the categories shown in Figure 9.

Model & Topology - The model followed by the system largely determines the way in which the
nodes are organized and the method of replication. A centralized system would have one master
replica which is updated and the updates are propagated to the other nodes. A decentralized or peer-
to-peer mechanism would have many copies, all of which need to be synchronized with each other.

21

Replication Strategy Taxonomy

Replica Architecture Taxonomy
Replication Taxonomy

Figure 8: Replication Taxonomy.

Replica Architecture
Taxonomy

Storage
Integration

Transfer
Protocols

Catalog
Organization

Update
Propogation

Update
Type

Topology

Metadata

Model

Tightly−coupled

Intermediate

Loosely−coupled

Hybrid

Flat

Hierarchical

Open Protocols

Closed Protocols

Attributes

Asynchronous

Synchronous

Tree

Hash−based

DBMS

Decentralized

Centralized

Epidemic

On−demand

System

User−defined

Active

Passive

Figure 9: Replica Architecture Taxonomy.

Nodes under a replica management system can be organised in a variety of topologies which can
be grouped chiefly into three: Hierarchy, Flat and Hybrid. Hierarchical topologies have tree-like
structure in which updates propogate through definite paths. Flat topologies are found within P2P
systems and progression of updates is entirely dependent on the arrangements between the peers.
These can be both structured and unstructured. Hybrid topologies can be achieved in situations such
as a hierarchy with peer connections at different levels as has been discussed by Lamehamedi et al.
(2002).

Storage Integration - The relation of replication to storage is very important and determines the
scalability, robustness, adaptability and applicability of the replication mechanism. Tightly-coupled
replication mechanisms that exert fine-grained control over the replication process are tied to the
storage architecture on which they are implemented. The replication system controls the filesystem
and I/O mechanism of the local disk. The replication is conducted at the level of processes and is
often triggered by a read or write request to a file at a remote location by a program. Such systems

22

more or less try to behave as a distributed file system such as NFS (Network File System) as they
aim to provide transparent access to remote files to applications. An example of such a mechanism
is Gfarm (Tatebe et al., 2002). Intermediately-coupled replication systems exert control over the
replication mechanism but not over the storage resources. The filesystems are hosted on diverse
storage architectures and are controlled by their respective systems. However, the replication is still
initiated and managed by the mechanism, and therefore it interacts with the storage system at a very
low-level. Such mechanisms work at the level of individual applications and data transfer is handled
by the system. While replication can be conducted transparent to users and applications, it is also
possible for the latter to direct the mechanism, and thereby, control the replication process. Example
of such a system is the SRB. Loosely-coupled replication mechanisms are superimposed over the
existing filesystems and storage systems. The mechanism exerts no control over the filesystem.
Replication is initiated and managed by applications and users. Such mechanisms interact with
the storage systems through standard file transfer protocols and at a high level. The architecture is
capable of complete heterogeneity.

Transfer Protocols - The data transport protocols used within replica management systems is
also a differentiating characteristic. Open protocols for data movement such as GridFTP allow
clients to transfer data independent of the replica management system. The replicated data is ac-
cessible outside of the replica management system. Systems that follow closed or unpublished
protocols restrict access to the replicas to their client libraries. Tightly-coupled replication sys-
tems are mostly closed in terms of data transfer. RLS (Replica Location Service) (Chervenak et al.,
2002) and GDMP (Grid Data Mirroring Pilot) (Samar and Stockinger, 2001) use GridFTP as their
primary transport mechanism. But the flip-side to having open protocols is that the user or the ap-
plication must take care of updating the replica locations in the catalog if they transfer data outside
the replication management system.

Metadata - It is difficult, if not impossible, for users to identify particular datasets out of hun-
dreds and thousands that may be present in a large, distributed, collection. From this perspective,
having proper metadata about the replicated data aids users in querying for datasets based on at-
tributes that are more familiar to them. Metadata can have two types of attributes: one is system-
dependent metadata, which consists of file attributes such as creation date, size on disk, physical
location(s) and file checksum and the other is user-defined attributes which consist of properties that
depend on the experiment or VO that the user is associated with. For example in a High-Energy
Physics experiment, the metadata could describe attributes such as experiment date, mode of pro-
duction (simulation or experimental) and event type. The metadata can be actively updated by the
replica management system or else updated passively by the users when they create new replicas,
modify existing ones or add a new file to the catalog.

Replica Update Propagation - Within a Data Grid, data is generally updated at one site and
the updates are then propagated to the rest of its replicas. This can be in synchronous or in asyn-
chronous modes. While synchronous updating is followed in databases, it is not practiced in Data
Grids because of the expensive wide-area locking protocols and the frequent movement of massive
data required. Asynchronous updating can be epidemic (Holliday et al., 2000), that is, the primary
copy is changed and the updates are propagated to all the other replicas or it can be on-demand
as in GDMP (Stockinger et al., 2001) wherein replica sites subscribe to update notifications at the
primary site and decide themselves when to update their copies.

Catalog Organization - A replica catalog can be distinguished on the basis of its organization.
The catalog can be organized as a tree as in the case of LDAP (Lightweight Directory Access
Protocol) based catalogs such as the Globus Replica Catalog (Allcock et al., 2001). The data can be
catalogued on the basis of document hashes as has been seen in P2P networks. However, SRB and

23

Replication Strategy
Taxonomy

Objective
Function

Method

Granularity

Static

Dynamic

File

Fragment

Dataset

Container

Economic

Update costs

Popularity

Locality

Preservation

Publication

Figure 10: Replication Strategy Taxonomy.

others follow the approach of storing the catalog within a database.
Replication strategies determine when and where to create a replica of the data. These strate-

gies are guided by factors such as demand for data, network conditions and cost of transfer. The
replication strategies can be categorized as shown in Figure 10.

Method - The first classification is based on whether the strategies are static or dynamic. Dy-
namic strategies adapt to changes in demand and bandwidth and storage availability but induce
overhead due to larger number of operations that they undertake as these are run at regular intervals
or in response to events (for example, increase in demand for a particular file). Dynamic strategies
are able to recover from failures such as network partitioning. However, frequent transfers of mas-
sive datasets that result due to such strategies can lead to strain on the network resources. There
may be little gain from using dynamic strategies if the resource conditions are fairly stable in a Data
Grid over a long time. Therefore, in such cases, static strategies are applied for replication.

Granularity - The second classification relates to the level of subdivision of data that the strategy
works with. Replication strategies that deal with multiple files at the same time work at the gran-
ularity of datasets. The next level of granularity is individual files while there are some strategies
that deal with smaller subdivisions of files such as objects or fragments.

Objective Function - The third classification deals with the objective function of the replication
strategy. Possible objectives of a replication strategy are to maximise the locality or move data
to the point of computation, to exploit popularity by replicating the most requested datasets, to
minimize the update costs or to maximize some economic objective such as profits gained by a
particular site for hosting a particular dataset versus the expense of leasing the dataset from some
other site. Preservation driven strategies provide protection of data even in the case of failures such
as corruption or obsolescence of underlying storage media or software errors. Another possible
objective function for a replication strategy is to ensure effective publication by propagating new
files to interested clients.

24

Scheduling
Taxonomy

Application
Model

Data
Replication

Utility
Function

Scope

Locality

Independent Tasks

Process−Oriented

Workflows

Bag of Tasks

Individual

Community−based

Coupled

Decoupled

Makespan

Load balancing

Profit

Quality of Service

Temporal

Spatial

Figure 11: Data Grid Scheduling Taxonomy.

3.4 Resource Allocation and Scheduling

The requirements for large datasets and the presence of multiple replicas of these datasets scattered
at geographically-distributed locations makes scheduling of data-intensive jobs different from that
of computational jobs. Schedulers have to take into account the bandwidth availability and the
latency of transfer between a computational node to which a job is going to be submitted and the
storage resource(s) from which the data required is to be retrieved. Therefore, the scheduler needs
to be aware of any replicas close to the point of computation and if the replication is coupled to
the scheduling, then create a new copy of the data. A taxonomy for scheduling of data-intensive
applications is shown in Figure 11. The categories are explained as follows:

Application Model - Scheduling strategies can be classified by the application model that they
are targeted towards. Application models are defined in the manner in which the application is
composed or distributed for scheduling over global grids. These can range from fine-grained lev-
els such as processes to coarser levels such as individual tasks to sets of tasks such as workflows.
Here, a task is considered as the smallest independent unit of computation. Each level has its own
scheduling requirements. Process-oriented applications are those in which the data is manipulated
at the process level. Examples of such applications are MPI (Message Passing Interface) programs
that execute over global grids (Foster and Karonis, 1998). Independent tasks having different ob-
jectives are scheduled individually and it is ensured that each of them get their required share of
resources. A Bag of Tasks (BoT) application consists of a set of independent tasks all of which must
be executed successfully subject to certain common constraints such as a deadline for the entire ap-
plication. Such applications arise in parameter studies (Abramson et al., 2000) wherein a set of tasks
is created by running the same program on different inputs. In contrast, a workflow is a sequence
of tasks in which each task is dependent on the results of its predecessor(s). The products of the
preceding tasks may be large datasets themselves (for example, a simple two-step workflow could
be a data-intensive simulation task and the task for analysis of the results of simulation). Therefore,

25

scheduling of individual tasks in a workflow requires careful analysis of the dependencies and the
results to reduce the amount of data transfer.

Scope - Scope relates to the extent of application of the scheduling strategy within a Data Grid.
If the scope is individual, then the scheduling strategy is concerned only with meeting the objectives
from a user’s perspective. In a multi-user environment therefore, each scheduler would have its own
independent view of the resources that it wants to utilise. A scheduler is aware of fluctuations in
resource availability caused by other schedulers submitting their jobs to common resources and it
strives to schedule jobs on the least-loaded resources that can meet its objectives. With the advent of
VOs, efforts have moved towards community-based scheduling in which schedulers follow policies
that are set at the VO level and enforced at the resource level through service level agreements and
allocation quotas (Dumitrescu and Foster, 2004; Wasson and Humphrey, 2003).

Data Replication - The next classification relates to whether job scheduling is coupled to data
replication or not. Assume a job is scheduled to be executed at a particular compute node. When
job scheduling is coupled to replication and the data has to be fetched from remote storage, the
scheduler creates a copy of the data at the point of computation so that future requests for the same
file that come from the neighbourhood of the compute node can be satisfied more quickly. Not only
that, in the future, any job dealing with that particular data will be scheduled at that compute node
if available. However, one requirement for a compute node is to have enough storage to store all the
copies of data. While storage management schemes such as LRU (Least Recently Used) and FIFO
(First In First Out) can be used to manage the copies, the selection of compute nodes is prejudiced by
this requirement. There is a possibility that promising computational resources may be disregarded
due to lack of storage space. Also, the process of creation of the replica and registering it into a
catalog adds further overheads to job execution. In a decoupled scheduler, the job is scheduled to
a suitable computational resource and a suitable replica location is identified to request the data
required. The storage requirement is transient, that is, disk space is required only for the duration of
execution. A comparison of decoupled against coupled strategies by Ranganathan and Foster (2002)
has shown that decoupled strategies promise increased performance and reduce the complexity of
designing algorithms for Data Grid environments.

Utility function - A job scheduling algorithm tries to minimize or maximize some form of a util-
ity function. The utility function can vary depending on the requirements of the users and architec-
ture of the distributed system that the algorithm is targeted at. Traditionally, scheduling algorithms
have aimed at reducing at the total time required for computing all the jobs in a set, also called
its makespan. Load balancing algorithms try to distribute load among the machines so that max-
imum work can be obtained out of the systems. Scheduling algorithms with economic objectives
try to maximize the users’ economic utility usually expressed as some profit function that takes into
account economic costs of executing the jobs on the Data Grid. Another possible objective is to
meet the Quality-of-Service (QoS) requirements specified by the user. QoS requirements that can be
specified include minimising the cost of computation, meeting a deadline, meeting stricter security
requirements and/or meeting specific resource requirements.

Locality - Exploiting the locality of data has been a tried and tested technique for scheduling
and load-balancing in parallel programs (Polychronopoulos and Kuck, 1987; Hockauf et al., 1998;
McKinley et al., 1996) and in query processing in databases (Shatdal et al., 1994; Stonebraker et al.,
1994). Similarly, data grid scheduling algorithms can be categorized as whether they exploit the
spatial or temporal locality of the data requests. Spatial locality is locating a job in such a way
that all the data required for the job is available on data hosts that are located close to the point of
computation. Temporal locality exploits the fact that if data required for a job is close to a compute
node, subsequent jobs which require the same data are scheduled to the same node. Spatial locality

26

can also be termed as “moving computation to data” and temporal locality can be called as “moving
data to computation”. It can be easily seen that schedulers which couple data replication to job
scheduling exploit the temporal locality of data requests.

4 Mapping of Taxonomy to Various Data Grid Systems

In this section, we classify various Data Grid research projects according to the taxonomies we
developed in Section 3. While the list of example systems is not exhaustive, it is representative
of the classes that have been discussed. The projects in each category have been chosen based
on several factors such as broad coverage of application areas, project support for one or more
applications, scope and visibility, large-scale problem focus and ready availability of documents
from project web pages and other sources.

4.1 Data Grid Projects

In this space, we study and analyse the various Data Grid projects that have been developed for
various application domains around the world. While many of these projects cover aspects of Data
Grid research such as middleware development, advanced networking and storage management, we
will however, only focus on those projects which are involved in setting up infrastructure. A list
of these projects and a brief summary about each of them is provided in Table 2. These are also
classified according to the taxonomy provided in Figure 4

Table 2: Data Grid Projects around the world.

Name Domain Grid Type Remarks Country
/ Region

LCG (2005) High Energy
Physics

Hierarchical model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

To create and maintain a
data movement and anal-
ysis infrastructure for
the users of LHC.

Global

EGEE (2005) High En-
ergy Physics,
Biomedical
Sciences

Hierarchical model,
Interdomain, Collabora-
tive VO, Stable Sources,
Managed

To create a seamless
common Grid infrastruc-
ture to support scientific
research.

Global

BIRN (2005) Bio-Informat-
ics

Federated model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

To foster collaboration
in biomedical science
through sharing of data.

United
States

NEESgrid
(Pearlman et al.,
2004)

Earthquake
Engineering

Monadic model, In-
tradomain, Collabo-
rative VO, Transient
Sources, Managed

To enable scientists to
carry out experiments in
distributed locations and
analyse data through a
uniform interface.

United
States

27

GriPhyn
(Avery and Foster,
2001)

High Energy
Physics

Hierarchical model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

To create an integrated
infrastructure that pro-
vides computational
and storage facilities
for high-energy physics
experiments.

United
States

Grid3
(Gardner et al.,
2004)

Physics, Biol-
ogy

Hierarchical model,
Interdomain, Collabora-
tive VO, Stable Sources,
Managed

To provide a uniform,
scalable and managed
grid infrastructure for
science applications

United
States

BioGrid,
Japan (2005)

Protein Sim-
ulation, Brain
Activity
Analysis

Federated model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

Computational and data
infrastructure for med-
ical and biological re-
search.

Japan

Virtual Ob-
servatories
(Szalay and Gray,
2001)

Astronomy Federated model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

Infrastructure for access-
ing diverse astronomy
observation and simula-
tion archives through in-
tegrated mechanisms.

Global

Earth Sys-
tem Grid
(Allcock et al.,
2001)

Climate Mod-
elling

Federated model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

Integrating computa-
tional, data and analysis
resources to create
environment for next
generation climate
research.

United
States

GridPP
(Huffman et al.,
2002)

High Energy
Physics

Hierarchical model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

To create computational
and storage infrastruc-
ture for Particle Physics
in the UK.

United
Kingdom

eDiaMoND
(Brady et al.,
2003)

Breast Cancer
Treatment

Federated model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

To provide medical
professionals and re-
searchers access to
distributed databases of
mammogram images.

United
Kingdom

Belle Analysis
Data Grid
(Winton,
2003)

High Energy
Physics

Hierarchical model,
Intradomain, Collabora-
tive VO, Stable Sources,
Managed

To create computational
and storage infrastruc-
ture in Australia for
physicists involved in
the Belle and ATLAS
experiments.

Australia

Some of the scientific domains that are making use of Data Grids are as follows:

High Energy Physics (HEP) The computational and storage requirements for HEP experiments
have already been covered in previous literature (Bunn and Newman, 2003). Other than the

28

four experiments at the LHC already mentioned, the Belle experiment at KEK, Japan, the
BaBar experiment at the Stanford Linear Accelerator Center (SLAC) and the CDF and D0
experiments at Fermi National Laboratory, US are also adopting Data Grid technologies for
their computing infrastructure. There have been numerous Grid projects around the world
that are setting up the infrastructure for physicists to process data from HEP experiments.
Some of these are the LHC Computing Grid (LCG) led by CERN, the Particle Physics Data
Grid (PPDG) and Grid Physics Network (GriPhyN) in the United States, GridPP in the UK
and Belle Analysis Data Grid (BADG) in Australia. These projects have common features
such as a tiered model for distributing the data, shared facilities for computing and storage
and personnel dedicated towards managing the infrastructure. Some of them are entering or
are being tested for production usage.

Astronomy The community of astrophysicists around the globe are setting up Virtual Observato-
ries for accessing the data archives that has gathered by telescopes and instruments around the
world. These include the National Virtual Observatory (NVO) in the US, Australian Virtual
Observatory, Astrophysical Virtual Observatory in Europe and AstroGrid in the UK (Szalay,
2002). The International Virtual Observatory Alliance (IVOA) is coordinating these efforts
around the world for ensuring interoperability. Commonly, these projects provide uniform ac-
cess to data repositories along with access to software libraries and tools that may be required
to analyse the data. Other services that are provided include access to high-performance
computing facilities and visualization through desktop tools such as web browsers. Other
astronomy grid projects include those being constructed for the LIGO (Laser Interferom-
eter Gravitational-wave Observatory) (2005) and SDSS (Sloan Digital Sky Survey) (2005)
projects.

BioInformatics The increasing importance of realistic modeling and simulation of biological pro-
cesses coupled with the need for accessing existing databases has led to Data Grid solutions
being adopted by bioinformatics researchers worldwide. These projects involve federating
existing databases and providing common data formats for the information exchange. Ex-
amples of these projects are BioGrid project in Japan for online brain activity analysis and
protein folding simulation, the eDiaMoND project in the UK for breast cancer treatment and
the BioInformatics Research Network (BIRN) for imaging of neurological disorders using
data from federated databases.

Earth Sciences Researchers in disciplines such as earthquake engineering and climate model-
ing and simulation are adopting Grids to solve their computational and data requirements.
NEESgrid is a project to link earthquake researchers with high performance computing and
sensor equipment so that they can collaborate on designing and performing experiments.
Earth Systems Grid aims to integrate high-performance computational and data resources
to study the petabytes of data resulting from climate modelling and simulation.

4.2 Data Transport Technologies

Within this subsection, various projects involved in data transport over Grids are discussed and
classified according to the taxonomy provided in Section 3.2. The data transport technologies
studied here range from protocols such as FTP to overlay methods such as Internet Backplane
Protocol to file I/O mechanisms. Each technology has unique properties and is representative of

29

Table 3: Comparison between various data transport technologies.

Project Function Security Fault
Toler-
ance

Transfer
Mode

GASS File I/O PKI, Unencrypted,
Coarse-grained

Caching Block, Stream
append

IBP Overlay
Mechanism

Password, Unencrypted,
Coarse-grained

Caching Block

FTP Transfer Pro-
tocol

Password, Unencrypted,
Coarse-grained

Restart All

SFTP Transfer Pro-
tocol

PKI, SSL, Coarse-
grained

Restart All

GridFTP Transfer Pro-
tocol

PKI, SSL, Coarse-
grained

Resume All

Kangaroo Overlay
Mechanism

PKI, Unencrypted,
Coarse-grained

Caching Block

Legion File I/O PKI, Unencrypted,
Coarse-grained

Caching Block

SRB File I/O PKI, SSL, Fine-grained Restart Block, Stream,
Bulk transfer

the categories in which it is placed. A summary of these technologies and their categorization is
provided in Table 3.

4.2.1 GASS

Global Access to Secondary Storage (GASS) (Bester et al., 1999) is a data access mechanism pro-
vided within the Globus toolkit for reading local data at remote machines and for writing data to
remote storage and moving it to a local disk. The goal of GASS is to provide a uniform remote I/O
interface to applications running at remote resources while keeping the functionality demands on
both the resources and the applications limited.

GASS conducts its operations via a file cache which is an area on the secondary storage where
the remote files are stored. When a remote file is requested by an application for reading, GASS by
default fetches the entire file into the cache from where it is opened for reading as in a conventional
file access. It is retained in the cache as long as applications are accessing it. While writing to
a remote file, the file is created or opened within the cache where GASS keeps track of all the
applications writing to it via reference count. When the reference count is zero, the file is transferred
to the remote machine. Therefore, all operations on the remote file are conducted locally in the
cache, which reduces demand on bandwidth. A large file can be prestaged into the cache, that is,
fetched before an application requests it for reading. Similarly, a file can be transferred out via
poststaging. GASS operations also allow access to permitted disk areas other than the file cache
and are available through an API and also through Globus commands. GASS is integrated with the
Globus Resource Access and Monitoring (GRAM) service (Czajkowski et al., 1998) and is used for
staging executables, staging in files and retrieving the standard output and error streams of the jobs.

30

GASS provides a limited ability for data transfer between remote nodes. As it prefetches the
entire file into the cache, it is not suitable as a transfer mechanism for large data files (of GigaByte
upwards) as the required cache capacity might not be available. Also, it does not provide features
such as file striping, third-party transfer, TCP tuning, etc. provided by protocols such as GridFTP.
However, because of its lightweight functionality, it is suitable for applications where the overhead
of setting up a GridFTP connection dominates.

4.2.2 IBP

Internet Backplane Protocol (IBP) (Plank et al., 1999; Bassi et al., 2002) allows applications to opti-
mize data transfer and storage operations by controlling data transfer explicitly by storing the data at
intermediate locations. IBP uses a “store-and-forward” protocol to move data around the network.
Each of the IBP nodes has a temporary buffer into which data can be stored for a fixed amount of
time. Applications can manipulate these buffers so that data is moved to locations close to where it
is required.

IBP is modelled after the Internet Protocol. The data is handled in units of fixed-size byte arrays
which are analogous to IP datagrams or network packets. Just as IP datagrams are independent
of the data link layer, byte arrays are independent of the underlying storage nodes. This means
that applications can move data around without worrying about managing storage on the individual
nodes. IBP also provides a global addressing space that is based on global IP addressing. Thus, any
client within an IBP network can make use of any IBP node.

IBP can also be thought of as a virtualisation layer or as an access layer built on top of storage
resources. IBP provides access to heterogeneous storage resources through a global addressing
space in terms of fixed block sizes thus making access to data independent of the storage method
and media. The storage buffers can grow to any size, and thus the byte arrays can also be thought
of as files which live on the network.

IBP also provides a client API and libraries that provide semantics similar to UNIX system
calls. A client connects to an IBP “depot”, or a server, and requests storage allocation. In return,
the server provides it three capabilities: for reading from, writing to and managing the allocation.
Capabilities are cryptographically secure byte strings which are generated by the server. Subse-
quent calls from the client must make use of the same capabilities to perform the operations. Thus,
capabilities provide a notion of security as a client can only manipulate its own data. Capabilities
can be exchanged between clients as they are text. Higher-order aggregation of byte arrays is possi-
ble through exNodes which are similar to UNIX inodes. exNodes allow uploading, replicating and
managing of files on a network with an IBP layer above the networking layer (Plank et al., 2002).

Beyond the use of capabilities, IBP does not have an address mechanism that keeps track of
every replica generated. There is no directory service that keeps track of every replica and no
information service that can return the IBP address of a replica once queried. Though exNodes
store metadata, IBP itself does not provide a metadata searching service. IBP is more a low-level
storage solution that functions just above the networking layer.

4.2.3 FTP

FTP (File Transfer Protocol) (Postel and Reynolds, 1985) is one of the fundamental protocols for
data movement in the Internet. FTP is therefore ubiquitous and every operating system ships with
an FTP client.

31

FTP separates the process of data transfer into two channels, the control channel used for send-
ing commands and replies between a client and a server and the data channel through which the
actual transfer takes place. The FTP commands set up the data connection by specifying the pa-
rameters such as data port, mode of transfer, data representation and structure. Once the connection
is set up the server then initiates the data transfer between itself and the client. The separation of
control and data channels also allows third-party transfers to take place. A client can open two con-
trol channels to two servers and direct them to start a data transfer between themselves bypassing
the client. Data can be transferred in three modes : stream, block and compressed. In the stream
mode, data is transmitted as is and it is the responsibility of the sending host to notify the end of
stream. In the block mode, data is transferred as a series of blocks preceded by header bytes. In the
compressed mode, a preceding byte denotes the number of replications of the following byte and
filler bytes are represented by a single byte.

Error recovery and restart within FTP does not cover corrupted data but takes care of data lost
due to loss of network or a host or of the FTP process itself. This requires the sending host to insert
markers at regular intervals within the data stream. A transmission is restarted from the last marker
sent by the sender before the previous transfer crashed. However, restart is not available within
the stream transfer mode. Security within FTP is very minimal and limited to the control channel.
The username and password are transmitted as clear text and there is no facility for encrypting data
while in transit within the protocol. This limits the use of FTP for confidential transfers.

Numerous extensions to FTP have been proposed to offset its limitations. RFCs 2228 (Horowitz and Lunt,
1997) and 2389 (Hethmon and Elz, 1998) propose security and features extensions to FTP respec-
tively. However, these are not implemented by popular FTP servers such as wu-ftpd. SSH File
Transfer Protocol (SFTP) (Galbraith et al., 2005) is a secure file transfer protocol that uses the Se-
cure Shell (SSH) Protocol for both authentication and data channel encryption. SFTP is designed
to be both a transfer protocol and a remote file system access protocol. However, it does not sup-
port features required for high-performance data transfer such as parallel and striped data transfer,
resuming interrupted transmissions or tuning of TCP windows.

4.2.4 GridFTP

GridFTP (Allcock, 2003; Allcock et al., 2002) extends the default FTP protocol by providing fea-
tures that are required in a Data Grid environment. The aim of GridFTP is to provide secure,
efficient, and reliable data transfer in Grid environments.

GridFTP extends the FTP protocol by allowing GSI and Kerberos based authentication. GridFTP
provides mechanisms for parallel and striped data transfers and supports partial file transfer that is,
the ability to access only part of a file. It allows changing the sizes of the TCP buffers and conges-
tion windows to improve transfer performance. Transfer of massive data-sets is prone to failures
as the network may exhibit transient behaviour over long periods of time. GridFTP sends restart
markers indicating a byte range that has been successfully written by the receiver every 5 seconds
over the control channel. In case of a failure, transmission is resumed from the point indicated by
the last restart marker received by the sender.

GridFTP provides these features by extending the basic FTP protocol through new commands,
features and a new transfer mode. The Striped Passive(SPAS) command is an extension to the FTP
PASV command wherein the server presents a list of ports to connect to rather than just a single
port. This allows for multiple connections to download the same file or for receiving multiple files
in parallel. The Extended Retrieve (ERET) command supports partial file transfer among other
things. The Set Buffer (SBUF) and AutoNegotiate Buffer (ABUF) extensions allow the resizing of

32

TCP buffers on both client and server sides. The Data Channel Authentication (DCAU) extension
provides for encrypting of data channels for confidential file transfer. DCAU is used only when
the control channel is authenticated through RFC 2228 (Horowitz and Lunt, 1997) mechanisms.
Parallel and striped data transfers are realised through a new transfer mode called the extended
block mode (mode E). The sender notifies the receiver of the number of data streams by using the
End of Data (EOD) and End of Data Count (EODC) codes. The EODC code signifies how many
EOD codes should be received to consider a transfer closed. An additional protocol is therefore
required from the sender side to ensure that the receiver obtains the data correctly. GridFTP im-
plements RFC 2389 (Hethmon and Elz, 1998) for negotiation of feature sets between the client and
the server. Therefore, the sender first requests the features supported by the receiver and then sets
connection parameters accordingly. GridFTP also supports restart for stream mode transfers which
is not provided in the vanilla FTP protocol.

The only public implementation for the GridFTP server-side protocols is provided in the Globus
Toolkit (Foster and Kesselman, 1998). The Globus GridFTP server is a modified wu-ftpd server that
supports most of GridFTP’s features except for striped data transfer and automatic TCP buffer size
negotiation. The Globus Toolkit provides libraries and APIs for clients to connect to GridFTP
servers. A command-line tool, globus-url-copy, built using these libraries functions as a GridFTP
client. Another examples of a GridFTP clients is the UberFTP (NCSA GridFTP Client, 2005) client
from NCSA.

Evaluation of GridFTP protocols alongside FTP has shown that using the additional features
of GridFTP increases performance of data transfer (Ellert et al., 2002). Particularly, the usage of
parallel threads dramatically improves the transfer speed over both loaded and unloaded networks.
Also, parallel transfers saturate the bandwidth thus improving the link utilisation.

4.2.5 Kangaroo

Kangaroo (Thain et al., 2001) is an end-to-end data movement protocol that aims to improve the
responsiveness and reliability of large data transfers within the Grid. The main idea in Kangaroo
is to conduct the data transfer as a background process so that failures due to server crashes and
network partitions are handled transparently by the process instead of the application having to deal
with them.

Kangaroo uses memory and disk storage as buffers to which data is written to by the application
and moved out by a background process. The transfer of data is performed concurrently with CPU
bursts thereby improving utilization. The transfer is conducted through hops, or stages where an
intermediate server is introduced between the client and the remote storage from which the data is
to be read or written. Data received by the intermediate stage is spooled into the disk from where
it is copied to the next stage by a background process called the mover. This means that a client
application writing data to a remote storage is isolated from the effects of a network crash or slow-
down as long as it can keep writing to the disk spool. However, it is also possible for a client to
write data to the destination server directly over a TCP connection using the Kangaroo primitives.

Kangaroo services are provided through an interface which implements four simple file seman-
tics: get (non-blocking read), put(non-blocking write), commit (block until writes have been
delivered to the next stage) and push (block until all writes are delivered to the final destination).
However, this provides only weak consistency since it is envisioned for grid applications in which
data flow is primarily in one direction. As can be seen, Kangaroo is an output-oriented protocol
which primarily deals with reliability of data transfer between a client and a server.

The design of Kangaroo is similar to that of IBP even though their aims are different. Both of

33

them use store-and-forward method as a means of transporting data. However, while IBP allows
applications to explicitly control data movement through a network, Kangaroo aims to keep the data
transfer hidden through the usage of background processes. Also, IBP uses byte arrays whereas
Kangaroo uses the default TCP/IP datagrams for data transmission.

4.2.6 Legion I/O model

Legion (Chapin et al., 1999) is a object-oriented grid middleware for providing a single system
image across a collection of distributed resources. The I/O mechanism within Legion (White et al.,
2000) aims to provide transparent access to files stored on distributed resources through APIs and
daemons that can be used by native and legacy applications alike.

Resources within the Legion system are represented by objects. BasicFileObjects correspond
to files in a conventional file system while ContextObjects correspond to directories. However,
these are separated from the actual file system. A datafile is copied to a BasicFileObject to be
registered within the context space of Legion. The context space provides location-independent
identifiers which are bound to human-readable context names. This presents a single address space
and hierarchy from which users can request files without worrying about their location. Also, the
representation of BasicFileObject is system-independent, and therefore provides interoperability
between heterogeneous systems.

Access to a Legion file object is provided through various means. Command-line utilities pro-
vide a familiar interface to the Legion context space. Application developers can use APIs which
closely mimic C and C++ file primitives and Unix system calls. For legacy codes, a buffering in-
terface is provided through which applications can operate on local files copied from the Legion
objects and the changes are copied back. Another method is to use a modified NFS daemon that
translates client request to appropriate Legion invocations.

Security for file transfer is provided through means of X.509 proxies which are delegated to the
file access mechanisms (Ferrari et al., 1999). Data itself is not encrypted while in transit. Caching
and prefetching is implemented for increasing performance and to ensure reliability.

4.2.7 SRB I/O

The Storage Resource Broker (SRB) (Baru et al., 1998) developed at the San Diego Supercomputing
Centre (SDSC) focuses on providing a uniform and transparent interface to heterogenous storage
systems that include disks, tape archives and databases. A study of SRB as a replication mechanism
is provided in the following section, in this section however, we will focus on the data transport
mechanism within SRB.

Data transport within SRB provides features such as parallel data transfers for performing bulk
data transfer operations across geographically distributed sites. If parallel transfer is requested by
a client, the SRB server creates a number of parallel streams depending on bandwidth availability
and speed of the storage medium. SRB also allows streaming data transfer and supports bulk ingest
operations in which multiple files are sent using multiple streams to a storage resource. SRB I/O can
transfer multiple files as containers and can stage files from tape or archival storage to disk storage
for faster access.

SRB provides for strong security mechanisms supported by fine-grained access controls on data.
Access security is provided through credentials such as passwords or public key and private key
pair which can be stored within MCAT itself. Controlled authorization for read access is provided

34

Table 4: Comparison between various data replication mechanisms.

Project Model Topology Storage
Integra-
tion

Data
Trans-
port

Meta-
data

Update Catalog

Grid
Datafarm

Centralised Hierarchy Tightly-
coupled

Closed System,
Active

Async.,
epidemic

DBMS

RLS Centralised Hierarchy Loosely-
coupled

Open User-
defined,
Passive

Async., on-
demand

DBMS

GDMP Centralised Hierarchy Loosely-
coupled

Open User-
defined,
Passive

Async., on-
demand

DBMS

SRB Decentral-
ised

Flat Intermed-
iate

Closed User-
defined,
Passive

Async., on-
demand

DBMS

through tickets issued by users who have control privileges on data. Tickets are time-limited or
use-limited. Users can also control access privileges along a collection hierarchy.

SRB also provides support for remote procedures. These are operations which can be performed
on the data within SRB without having to move it. Remote procedures include execution of SQL
queries, filtering of data and metadata extraction. This also provides for an additional level of access
control as users can specify certain datasets or collections to be accessible only through remote
procedures.

4.3 Data Replication and Storage

In this subsection, four of the data replication mechanisms used within Data Grids are studied in
depth and classified according to the taxonomy given in Section 3.3. These were chosen not only
because of their wide usage but also because of the wide variations in design and implementation
that these represent. A summary is given in Table 4. Table 5 encapsulates the differences between
the various replication mechanisms on the basis of the replication strategies that they follow. Some
of the replication strategies have been only simulated and therefore, these are explained in a separate
subsection.

4.3.1 Grid DataFarm

Grid Datafarm (Gfarm) (Tatebe et al., 2002) is an architecture that couples storage, I/O bandwidth
and processing to provide scalable computing to process petabytes (PB) of data. The architecture
consists of nodes that have a large disk space (in the order of terabytes (TB)) coupled with com-
puting power. These nodes are connected via a high speed interconnect such as Myrinet or Fast
Ethernet. Gfarm consists of the Gfarm filesystem, process scheduler and the parallel I/O APIs.

The Gfarm filesystem is a parallel filesystem that unifies the file addressing space over all the
nodes. It provides scalable I/O bandwidth by integrating process scheduling with data distribution.

35

Table 5: Comparison between replication strategies.

Project Method Granularity Objective Func-
tion

Grid Datafarm Static File, Fragment Locality
RLS Static Datasets, File Popularity, Publica-

tion
GDMP (Stockinger et al.,
2001)

Static Datasets, File,
Fragment

Popularity, Publica-
tion

SRB Static Containers,
Datasets, File

Preservation, Publi-
cation

Lamehamedi et.
al [(2002); (2003)]

Dynamic File Update Costs

Bell et al. (2003) Dynamic File Economic
Lee and Weissman
(2001)

Dynamic File Popularity

Ranganathan et al.
(2002)

Dynamic File Popularity

A Gfarm file is a large file that is stored throughout the filesystem on multiple disks as fragments.
Each fragment has arbitrary length and can be stored on any node. Individual fragments can be
replicated and the replicas are managed through Gfarm metadata. Individual fragments may be
replicated and the replicas are managed through the filesystem metadata and replica catalog. Meta-
data is updated at the end of each operation on a file. A Gfarm file is write-once, that is, if a file is
modified and saved, then internally it is versioned and a new file is created.

Gfarm targets data-intensive applications in which the same program is executed over different
data files and where the primary task is of reading a large body of data. The data is split up and
stored as fragments on the nodes. While executing a program, the process scheduler dispatches it to
the node that has the segment of data that the program wants to access. If the nodes that contain the
data and its replicas are under heavy CPU load, then the filesystem creates a replica of the requested
fragment on another node and assigns the process to it. In this way, I/O bandwidth is gained by
exploiting the access locality of data. This process can also be controlled through the Gfarm APIs.
It is also possible to access the file using a local buffer cache instead of replication.

On the whole, Gfarm is a system that is tuned for high-speed data access within a tightly-
coupled yet large-scale architecture such as clusters consisting of hundreds of nodes. It requires
high-speed interconnects between the nodes so that bandwidth-intensive tasks such as replication
do not cause performance hits. This is evident through experiments carried out over clusters and
wide-area testbeds (Yamamoto et al., 2004; Tatebe et al., 2004). The scheduling in Gfarm is at the
process level and applications have to use the API though a system call trapping library is provided
for inter-operating with legacy applications. Gfarm targets applications such as High Energy Physics
where the data is “write-once read-many”. For applications where the data is constantly updated,
there could be problems with managing the consistency of the replicas and the metadata though an
upcoming version aims to fix them (Tatebe et al., 2004).

36

4.3.2 RLS

Giggle (GIGa-scale Global Location Engine) (Chervenak et al., 2002) is an architectural framework
for a Replica Location Service (RLS) that maintains information about physical locations of copies
of data. The main components of RLS are the Local Replica Catalog (LRC) which maps the logical
representation to the physical locations and the Replica Location Index (RLI) which indexes the
catalog itself.

The actual data is represented by a logical file name (LFN) and contain some information such
as the size of the file, its creation date and any other such metadata that might help users to identify
the files that they seek. A logical file has a mapping to the actual physical location(s) of the data
file and its replicas, if any. The physical location is identified by a unique physical file name (PFN)
which is a URL (Uniform Resource Locator) to the data file on storage. Therefore, a LRC provides
the PFN corresponding to an LFN. The LRC also supports authenticated queries that is, information
about the data is not available in the absence of proper credentials.

A data file may be replicated across several geographical and administrative boundaries and
information about its replicas may be present in several replica catalogs. An RLI creates an index
of replica catalogs as a set of logical file names and a pointer to a replica catalog entries. There-
fore, it is possible to define several configurations of replica indexes, for example a hierarchical
configuration or a central, single-indexed configuration or a partitioned index configuration. Some
of the possible configurations are listed by Chervenak et al. (2002). The information within an RLI
is periodically updated using soft-state mechanisms similar to those used in Globus MDS (Moni-
toring and Discovery System). In fact, the structure of the replica catalog is quite similar to that of
MDS (Czajkowski et al., 2001).

RLS is aimed at replicating data that is “write once read many”. Data from scientific instruments
that needs to be distributed around the world is falls into this category. This data is seldom updated
and therefore, strict consistency management is not required. Soft-state management is enough for
such applications. RLS is also a standalone replication service that is it does not handle file transfer
or data replication itself. It provides only an index for the replicated data.

4.3.3 GDMP

GDMP (Samar and Stockinger, 2001; Stockinger et al., 2001) is a replication manager that aims
to provide secure and high-speed file transfer services for replicating large data files and object
databases. GDMP provides point-to-point replication capabilities by utilizing the capabilities of
other Data Grid tools such as replica catalogs and GridFTP.

GDMP is based on the publish-subscribe model, wherein the server publishes the set of new files
that are added to the replica catalog and the client can request a copy of these after making a secure
connection to the server. GDMP uses GSI as its authentication and authorization infrastructure.
Clients first register with the server and receive notifications about new data that are available which
are then requested for replication. Failure during replication is assumed to be handled by the client.
For example, if the connection fails while replicating a set of files, the client may reconnect with
the server and request a re-transfer. The file transfer is conducted through GridFTP.

GDMP deals with object databases created by High Energy Physics experiments. A single
file may contain up to a billion (109) objects and therefore, it is advantageous for the replication
mechanisms to deal with objects rather than files. Objects requested by a site are copied to a new
file at the source. This file is then transferred to the recipient and the database at the remote end is
updated to include the new objects. The file is then deleted at the origin. In this case, replication is

37

static as changing Grid conditions are not taken into account by the source site. It is left upto the
client site to determine the time and the volume of replication.

GDMP was originally conceived for the CMS experiment at the LHC in which the data is
generated at one point and has to be replicated globally. Therefore, consistency of replicas is not a
big issue as there are no updates and all the notifications are in a single direction. The data for this
experiment was in the form of files containing objects where each object represented a collision.
GDMP can interact with the object database to replicate specific groups of objects between sites.

4.3.4 SRB

The purpose of the SRB is to enable the creation of shared collections through management of con-
sistent state information, latency management, load leveling, logical resources usage and multiple
access interfaces (Baru et al., 1998; Rajasekar et al., 2003). SRB also aims to provide a unified view
of the data files stored in disparate media and locations by providing the capability to organise them
into virtual collections independent of their physical location and organization. It provides a large
number of capabilities that are not only applicable to Data Grids but also for collection building,
digital libraries and persistent archival applications.

An SRB installation follows a three-tier architecture - the bottom tier is the actual storage re-
source, the middleware lies in between and at the top is the Application Programming Interface
(API) and the metadata catalog (MCAT). File systems and databases are managed as physical stor-
age resources (PSRs) which are then combined into logical storage resources (LSRs). Data items
in SRB are organised within a hierarchy of collections and sub-collections that is analogous to the
UNIX filesystem hierarchy. Collections are implemented using LSRs while the data items within a
collection can be located on any PSR. Data items within SRB collections are associated with meta-
data which describe system attributes such as access information and size, and descriptive attributes
which record properties deemed important by the users. The metadata is stored within MCAT which
also records attributes of the collections and the PSRs. Attribute-based access to the data items is
made possible by searching MCAT.

The middleware is made up of the SRB Master daemon and the SRB Agent processes. The
clients authenticate to the SRB Master and the latter starts an Agent process that processes the
client requests. An SRB agent interfaces with the MCAT and the storage resources to execute
a particular request. It is possible to create a federation of SRB servers by interconnecting the
masters. In a federation, a server acts as a client to another server. A client request is handed over
to the appropriate server depending on the location determined by the MCAT service.

SRB implements transparency for data access and transfer by managing data as collections
which own and manage all of the information required for describing the data independent of the
underlying storage system. The collection takes care of updating and managing consistency of the
data along with other state information such as timestamps and audit trails. Consistency is managed
by providing synchronisation mechanisms that lock stale data against access and propagates updates
throughout the environment until global consistency is achieved.

SRB is one of the most widely used Data Grid technologies in various application domains
around the world including the UK eScience (eDiaMoND), BaBar, BIRN, IVOA and the California
Digital Library (Rajasekar et al., 2002).

38

4.3.5 Other Replication Strategies

Lamehamedi, et. al [(2002);(2003)] study replication strategies based on the replica sites being
arranged in different topologies such as ring, tree or hybrid. Each site or node maintains an index
of the replicas it hosts and the other locations of these replicas that it knows. Replication of a
dataset is triggered when requests for it at a site exceed some threshold. The replication strategy
places a replica at a site that minimises the total access costs including both read and write costs
for the datasets. The write cost considers the cost of updating all the replicas after a write at one of
the replicas. They show through simulation that the best results are achieved when the replication
process is carried out closest to the users.

Bell et al. (2003) present an file replication strategy based on an economic model that optimises
the selection of sites for creating replicas. Replication is triggered by the number of requests re-
ceived for a dataset. Access mediators receive these requests and start auctions to determine the
cheapest replicas. A Storage Broker (SB) participates in these auctions by offering a price at which
it will sell access to a replica if it is present. If the replica is not present at the local storage element,
then the broker starts an auction to replicate the requested file onto its storage if it determines that
having the dataset is economically feasible. Other SBs then bid with the lowest price that they can
offer for the file. The lowest bidder wins the auction but is paid the amount bid by the second-lowest
bidder. This is a Vickrey second price auction (Vickrey, 1961) with descending bids.

Lee and Weissman (2001) present an architecture for dynamic replication within a service Grid.
The replicas are created on the basis of each site evaluating whether its performance can be improved
by requesting one more replica. The most popular services are, therefore, most replicated as this
will entail a performance boost by lessening the load requirements on a particular replica.

Ranganathan et al. (2002) present a dynamic replication strategy that creates copies based on
trade-offs between the cost and the future benefits of creating a replica. The strategy is designed
for peer-peer environments where there is a high-degree of unreliability and hence, considers a
minimum number of replicas that might be required given the probability of a node being up and
the accuracy of information possessed by a site in a peer-peer network.

4.4 Resource Allocation and Scheduling

This subsection deals with the study of resource allocation and scheduling strategies within Data
Grids. While Grid scheduling has been a well-researched topic, this study is limited to only those
strategies that explicitly deal with transfer of data during processing. Therefore, the focus here is
on features such as adapting to environments with varied data sources and scheduling jobs in order
to minimise the movement of data. Table 6 summarises the scheduling strategies surveyed in this
section and their classification.

Scheduling strategies for data-intensive applications can be distinguished on the basis of whether
they couple data movement to job submission or they don’t. As mentioned earlier in Section 3.4,
in the former case, the temporal locality of data requests is exploited. Initial work focused on reuse
of cached data. An example of this direction is the work by Casanova et al. (2000) who introduce
heuristics for scheduling independent tasks sharing common files, on a Grid composed of intercon-
nected clusters. Here, the strategy is to prefer nodes within clusters to which the data has already
been transferred rather than those clusters where the data is not present. The source of the data is
considered to be the client node, i.e., the machine which submits the jobs to the Grid. Later efforts
looked at extending this to data replication where copies of the data are maintained over a longer
term to benefit requests coming from future job submissions. Takefusa et al. (2003) have simulated

39

Table 6: Comparison between scheduling strategies.

Work/Project Application
Model

Scope Data
Replica-
tion

Utility
Function

Locality

Casanova, et al.
(2000)

Bag-of-Tasks Individual Coupled Makespan Temporal

GrADS
(Dail et al., 2004)

Process-level Individual Decoupled Makespan Spatial

Ranganathan &
Foster (2002)

Independent
Tasks

Individual Decoupled Makespan Spatial

Kim and Weissman
(2003)

Independent
Tasks

Individual Decoupled Makespan Spatial

Takefusa, et.
al (2003)

Process-level Individual Coupled Makespan Temporal

Pegasus (Deelman et al.,
2003)

Workflows Individual Decoupled Makespan Temporal

Thain et al. (2001) Independent
Tasks

Community Coupled Makespan Both

Chameleon (2003) Independent
Tasks

Individual Decoupled Makespan Spatial

SPHINX (In et al.,
2003, 2004)

Workflows Community Decoupled QoS Spatial

Gridbus Bro-
ker (Venugopal and Buyya,
2005) and Work-
flow (Yu and Buyya,
2004)

Bag-of-Tasks
and Work-
flows

Individual Decoupled QoS Spatial

job scheduling and data replication policies for central and tier model organization of Data Grids
based on the Grid Datafarm (Tatebe et al., 2002) architecture. Out of the several policies simu-
lated, the authors establish that the combination of OwnerComputes strategy (job is executed on
the resource that contains the data) for job scheduling along with background replication policies
based on number of accesses (LoadBound-Replicate) or on the node with the maximum estimated
performance (Aggressive-Replication) provides the minimum execution time for a job.

Similar in intent, Thain et al. (2001) describe a means of creating I/O communities which are
groups of CPU resources such as Condor pools clustered around a storage resource. The storage
appliance satisfies the data requirements for jobs that are executed on both the processes within and
outside the community. The scheduling strategy in this work allows for both the data to be staged
to a community where the job is executed and the job to migrate to a community where the data
required is already staged. The decision is made by the user after comparing the overheads of either
staging the application or replicating the data. This is different to the policies previously mentioned
wherein the replication process is based on heuristics and requires no user intervention. Again,
improving temporal locality of data by replicating it within a community improves the performance.

40

Later in this section, we will look at another coupled strategy proposed by Phan et al. (2005) that
uses Genetic Algorithms as a scheduling heuristic.

Strategies that decouple job submission from data movement attempt to reduce the data transfer
time either by scheduling the job close to or at the source of the data, or by accessing the data
from a replica site which is closest to the site of computation. Here, the term “close” refers to a
site with minimum transfer time. Ranganathan and Foster (2002) propose a decoupled scheduling
architecture for data intensive applications which consists of 3 components: the External Scheduler
(ES) that decides to which node the jobs must be submitted, the Local Scheduler (LS) on each node
that decides the priority of the jobs arriving at that node and the Dataset Scheduler (DS) that tracks
the popularity of the datasets and decides which datasets to replicate or delete. Through simulation,
they evaluate combinations of 4 job scheduling algorithms for the ES and 3 replication algorithms
for the DS. The results show that the worst performance is given by executing a job at the source of
data in the absence of replication. This is because a few sites which host the data are overloaded in
this case. The best performance is given by same job scheduling strategy but with data replication.
A similar strategy is proposed in Chameleon (Park and Kim, 2003) wherein a site on which the data
has already been replicated is preferred for submitting a job over one where the data is not present.

Most of the strategies studied try to reduce the makespan or the Minimum Completion Time
(MCT) of the task which is defined as the difference between the time when the job was sub-
mitted to a computational resource and the time it completed. Makespan also includes the time
taken to transfer the data to the point of computation if that is allowed by the scheduling strategy.
Takefusa et al. (2003) and Grid Application Development Software (GrADS) project (Dail et al.,
2004) are makespan schedulers that operate at the system process level. Scheduling within the latter
is carried out in three phases: before the execution, there is an initial matching of an application’s
requirements to available resources based on its performance model and this is called launch-time
scheduling; then, the initial schedule is modified during the execution to take into account dynamic
changes in the system availability which is called rescheduling; finally, the co-ordination of all
schedules is done through meta-scheduling. Contracts (Vraalsen et al., 2001) are formed to en-
sure guaranteed execution performance. The mapping and search procedure presented by Dail et al.
(2002) forms Candidate Machine Groups (CMG) consisting of available resources which are then
pruned to yield one suitable group per application. The mapper then maps the application data to
physical location for this group. Therefore, spatial locality is primarily exploited. The scheduler
is tightly integrated into the application and works at the process level. However, the algorithms
are themselves independent of the application. Recent work however has suggested extending the
GrADS scheduling concept to workflow applications (Cooper et al., 2004). However, the treatment
of data still remains the same.

Casanova et al. (2000) extend three heuristics for reducing makespan — Min-Min, Max-Min
and Sufferage that were introduced by Maheswaran et al. (1999) — to consider input and output
data transfer times. Min-Min assigns tasks with the least makespan to those nodes which will exe-
cute them the fastest whereas Max-Min assigns tasks with maximum makespan to fastest executing
nodes. Sufferage assigns tasks on the basis of how much they would “suffer” if they are not as-
signed to a particular node. This “sufferage” value is computed as the difference between the best
MCT for a task on a particular node and the second-best MCT on another node. Tasks with higher
sufferage values receive more priority. The authors introduce another heuristic, XSufferage, which
is an extended version of Sufferage that takes into account file locality before scheduling jobs by
considering MCT on the cluster level. Within XSufferage, a job is scheduled to a cluster if the file
required for the job has been previously transferred to any node within the cluster.

Kim and Weissman (2003) introduce a Genetic Algorithm (GA) based scheduler for reducing

41

makespan of Data Grid applications decomposable into independent tasks. The scheduler targets an
application model wherein a large dataset is split into multiple smaller datasets and these are then
processed in parallel on multiple “virtual sites”, where a virtual site is considered to be a collection
of compute resources and data servers. The solution to the scheduling problem is represented as a
chromosome in which each gene represents a task allocated to a site. Each sub-gene is associated
with a value that represents the fraction of a dataset assigned to the site and the whole gene is
associated with a value denoting capability of the site given the fraction of the datasets assigned,
the time taken to transfer these fractions and the execution time. The chromosomes are mutated
to form the next generation of chromosomes. At the end of an iteration, the chromosomes are
ranked according to an objective function and the iteration stops at a predefined condition. Since the
objective of the algorithm is to reduce the completion time, the iterations tend to favour those tasks
in which the data is processed close to or at the point of computation thereby exploiting the spatial
locality of datasets. Phan et al. (2005) apply a similar GA based strategy, but in their case, data
movement is coupled to job submission. The chromosome that they adopt represents job ordering,
assignments of jobs to compute nodes and the assignment of data to replica locations. At the end of
a specified number of iterations (100 in this case), the GA converges to a near-optimal solution that
gives a job order queue, job assignments and data assignments that minimize makespan.

While the strategies before have concentrated on independent tasks or BoT model of Grid ap-
plications, Pegasus (Deelman et al., 2003) concentrates on reducing makespan for workflow-based
applications. The strategy reduces an abstract workflow that contains the order of execution of
components into a concrete workflow where the component is turned into an executable job and the
locations of the computational resources and the data are specified. The abstract workflow goes
through a process of reduction where the components whose outputs have already been generated
and entered into a Replica Location Service are removed from the workflow and substituted with
the physical location of the products. The emphasis is therefore on the reuse of already produced
data products. The planning process selects a source of data at random, that is, neither the temporal
nor the spatial locality is exploited.

Other projects aim to achieve different scheduling objectives such as achieving a specific QoS
demanded by the application. SPHINX (Scheduling in Parallel for a Heterogeneous Independent
NetworX) (In et al., 2003) is one such middleware project for scheduling data-intensive applica-
tions on the Grid. Scheduling within SPHINX is based on a client-server framework in which a
scheduling client within a VO submits a meta-job as a Directed Acyclic Graph (DAG) to one of the
scheduling servers for the VO along with QoS requirements such as number of CPUs required and
deadline of execution. QoS privileges that a user enjoys may vary with the groups he or she belongs
to. The server is allocated a portion of the VO resources and in turn, it reserves some of these for the
job submitted by the client based on the allocated QoS for the user and sends the client an estimate
of the completion time. The server also reduces the DAG by removing tasks whose outputs are
already present. If the client accepts the completion time, then the server begins execution of the
reduced DAG. The scheduling strategy in SPHINX (In et al., 2004) considers VO policies as a four
dimensional space with the resource provider, resource properties, user and time forming each of
the dimensions. Policies are expressed in terms of quotas which are tuples formed by values of each
dimension.The optimal resource allocation for a user request is provided by a linear programming
solution which minimizes the usage of the user quotas on the various resources.

Data-intensive application scheduling within the Gridbus Broker (Venugopal and Buyya, 2005)
is carried out on the basis of QoS factors such as deadline and budget. The execution model in this
work is that of parameter sweep or Bag of Tasks, each of which depends on multiple data files each
replicated on multiple data resources. The scheduling algorithm tries to minimize the economic

42

Managed

Monadic

Autonomic

Stable

Transient

Reputation-based

Hybrid

Interdomain

Intradomain

Economic

Regulated

Collaborative

Management

Scope

Model
Federation

Hierarchical

Organization
Virtual

Sources
Data

Taxonomy
Organization
Data Grid

LCG, EGEE, PPDG,GridPP,BADG

BIRN, BioGrid, ESG,UK eScience, IVOA

NEESGrid

(All)

NEESGrid

(All except NEESGrid)

(All)

EGEE, UK eScience

(All except EGEE,UK eScience)

Figure 12: Mapping of Data Grid Organization Taxonomy to Data Grid Projects.

objective by incrementally building resource sets consisting of one compute resource for executing
the job and one data site each for each file that needs to be accessed by the job. The scheduler itself
performs no replication of data in this case. Scheduling of workflows is supported by the Gridbus
Workflow Engine (Yu and Buyya, 2004) which otherwise has similar properties with respect to the
scheduling of data intensive applications.

5 Discussion

Figures 12 – 16 pictorially represent the mapping of the systems that were analysed in Section 4
to the taxonomy. Each of the boxes at the “leaves” of the taxonomy “branches” contains those
systems that exhibit the property at the leaf. A box containing “(All)” implies that all the systems
studied satisfy the property given by the corresponding leaf. From the figures it can be seen that the
taxonomy is shown to be complete with respect to the systems studied as each of them can be fully
described by the categories within this taxonomy.

Figure 12 shows the organizational taxonomy annotated with the Data Grid projects that were
studied in Section 4.1. As can be seen from the figure, current scientific Data Grids mostly follow
the hierarchical or the federated models of organization because the data sources are few and well-
established. These data sources are generally mass storage systems from which data is transferred
out as files or datasets to other repositories. From a social point of view, such Data Grids are formed
by establishing collaborations between researchers from the same domain. In such cases, any new
participants willing to join or contribute have to be part of the particular scientific community to be
inducted into the collaboration.

The mapping of various Data Grid transport mechanisms studied in Section 4.2 to the proposed
taxonomy is shown in Figure 13. The requirement to transfer large datasets has led to the develop-
ment of high-speed, low latency transfer protocols such as GridFTP which is rapidly becoming the
default transfer protocol for all Data Grid projects. While FTP is also used within certain projects

43

Unencrypted

SSL

Fine-grained

Coarse-grained

Passwords

Cryptographic Keys

Encryption

Authorization

Bulk transfers

Compressed

Stream

Block

Cached Transfers

Resume Transmission

Restart Transmission

Authentication

File I/O mechanism

Transfer Protocol

Overlay NetworkFunction

Security

Mode
Transfer

Tolerance
Fault

Taxonomy
Data Transport

GASS, Legion, SRB

IBP, Kangaroo

FTP, GridFTP

(All Others)

IBP, FTP

SFTP, GridFTP, SRB

(All Others)

(All Others)

SRB

FTP, SFTP, SRB

GridFTP

GASS, IBP, Kangaroo, Legion

(All)

GASS

FTP, SFTP, GridFTP

SRB

Figure 13: Mapping of Data Transport Taxonomy to Various Projects.

for data with lesser size and security constraints, and SRB I/O is applicable in any SRB installation,
IBP and Kangaroo are not deployed in existing Data Grids. This is due to the fact that the latter are
research projects rather than products and do not meet all requirements of a Data Grid environment.

Figures 14 and 15 show mapping of the data replication systems covered in Sections 4.3 to the
replica architecture and strategy taxonomy. The hierarchical model of the HEP experiments in Fig-
ure 12 has motivated the development of tree-structured replication mechanisms that are designed
to be top-down in terms of organization and data propagation. Many of the projects that have fol-
lowed the federation model have used SRB which offers more flexibility in the organization model
of replica sites. SRB is also used by many HEP experiments such as Belle and BaBar but config-
ured as a hierarchy of sites. Currently massive datasets are being replicated statically by project
administrators in select locations for all the projects, and intelligent and dynamic replication strate-
gies have not yet found a place in production Data Grids. The static replication strategy is guided
by the objective of increasing locality of datasets. Most resource allocation and scheduling efforts,
especially those that involve coupling of replication to job submission, follow similar strategies to
reduce makespan. This can be inferred from Figure 16 which illustrates mapping of scheduling
efforts to the taxonomy.

Data Grid technologies are only beginning to be employed in production environments and are
still evolving to meet present and future requirements. Some of the new developments in areas such
as replication and resource allocation and scheduling have already been covered in Section 4. In
the next subsection, we will look at the emerging trends and how these will drive evolution of Data
Grid technologies.

44

Passive

Active

User-defined

System

On-demand

Epidemic

Centralized

Decentralized

DBMS

Hash-based

Tree

Synchronous

Asynchronous

Attributes

Closed Protocols

Open Protocols

Hierarchical

Flat

Hybrid

Loosely-coupled

Intermediate

Tightly-coupled

Model

Metadata

Topology

Type
Update

Propogation
Update

Organization
Catalog

Protocols
Transfer

Integration
Storage

Taxonomy
Replica Architecture

Gfarm, RLS, GDMP

SRB

Gfarm, GDMP, RLS

SRB

Gfarm

SRB

RLS, GDMP

RLS, GDMP

Gfarm, SRB

Gfarm

SRB, GDMP, RLS

Gfarm

SRB, GDMP, RLS

Gfarm

SRB, GDMP, RLS

Gfarm, SRB, GDMP, RLS

Figure 14: Mapping of Data Replication Architecture Taxonomy to Various Systems.

Publication

Preservation

Locality

Popularity

Update costs

Economic

Container

Dataset

Fragment

File

Dynamic

Static

Granularity

Method

Function
Objective

Taxonomy
Replication Strategy

SRB, Gfarm, RLS, GDMP

Lamehamedi, Bell, Lee, Ranganathan

SRB

SRB, RLS, GDMP

(All)

Gfarm, GDMP

Gfarm

RLS, GDMP, Lee, Ranganathan

Lamehamedi

Bell

SRB

RLS, GDMP, SRB

Figure 15: Mapping of Data Replication Strategy Taxonomy to Various Systems.

45

Spatial

Temporal

Quality of Service

Profit

Load balancing

Makespan

Decoupled

Coupled

Community-based

Individual

Bag of Tasks

Workflows

Process-Oriented

Independent Tasks

Locality

Scope

Function
Utility

Replication
Data

Model
Application

Taxonomy
Scheduling

GrADS, Takefusa

Ranganathan, Kim, Thain, Chameleon

Casanova, Gridbus Broker

Pegasus, SPHINX, Gridbus Workflow

(All except Thain, SPHINX)

Thain, SPHINX

Casanova, Takefusa, Thain

GrADS, Ranganathan, Kim, Pegasus,
Chameleon, SPHINX, Gridbus

(All)

SPHINX, Gridbus

Casanova, Takefusa, Thain, Pegasus

GrADS, Ranganathan, Kim, Thain,
Chameleon, SPHINX, Gridbus

Figure 16: Mapping of Resource Allocation and Scheduling Taxonomy to Various Systems.

5.1 Future Trends

Four trends that will drive innovation within Data Grids are: Increased collaboration, Service-
oriented architectures (SOAs), Market mechanisms and Enterprise requirements. The key properties
of each of the constituent technologies, identified within the taxonomy, that are required to realize
this innovation is discussed in detail below and summarized in Table 7. However, it is important to
note that this does not exclude other characteristics from consideration.

Increased Collaboration: While Data Grids are built around VOs, current technologies do not
provide much of the capabilities required for enabling collaboration between participants.
For example, the tree structure of many replication mechanisms inhibits direct copying of
data between participants that reside on different branches. Replication systems, therefore,
will follow hybrid topologies that involve peer-to-peer links between different branches for
enhanced collaboration. Exchange of data should be accompanied by enhanced security guar-
antees. Therefore, this motivates the use of fine-grained access controls throughout the sys-
tem.

Since communities are formed by pooling of resources by participants, resource allocation
must ensure fair shares to everyone. This requires community-based schedulers that assign
quotas to each of the users based on priorities and resource availability. Individual user sched-
ulers should then submit jobs taking into account the assigned quotas and could negotiate with
the central scheduler for quota increase or change in priorities. It could also be able to swap
or reduce quotas in order to gain resource share in the future. Users are able to plan ahead for
future resource requirements by advance reservation of resources.

Service-Oriented Architecture: An important element within Web (or Grid) services is the ability
for services to be composed of other services by building on standard protocols and invocation
mechanisms. This is the key difference between an SOA (Papazoglou and Georgakopoulos,

46

Table 7: Future Trends and Key Characteristics.

Trend Organization Transport Replication Scheduling
Collabora-
tion

Hybrid models Fine-grained
access

Hybrid topology,
Active metadata,
Replica Publication

Community

SOA Autonomic Manage-
ment

Overlay net-
works, Fault
Tolerance

Open Protocols, Ac-
tive metadata, Popu-
larity and Economic-
based replication

Workflow
models, QoS

Market Interdomain sys-
tems, Economic &
Reputation-based
VOs, Autonomic
Management

Fault Toler-
ance

Decentralized
model, Dynamic
and Economy-based
Replication

Profit, QoS

Enterprise
Require-
ments

Regulated, Economic
& Reputation-based
VOs

Security Active metadata,
Replica update,
Preservation strategy

Workflow
models, QoS

2003) and a traditional client-server architecture. The high level of transparency within SOAs
requires greater reliability guarantees that impact all of the consituent technologies. Service
disruptions should be accounted for and quickly recovered from. This requires clean failure
models and transparent service migration capabilities that can be realised by implementing
autonomic system management in service Grids. Service composition also requires select-
ing the right services with the required QoS parameters. This impacts both replication and
resource allocation and leads to diversification of objective functions and strategies from the
current static methods.

As discussed in Section 2, the major focus on the realisation of SOAs in Grids began with the
introduction of the OGSA. To realise the requirements of OGSA, the Web Service Resource
Framework (WSRF) (Foster et al., 2005) specification has been adopted by the Grid stan-
dards community. Globus Toolkit version 4.0 (Foster, 2005) and WSRF.NET (Humphrey et al.,
2004) are two implementations of the WSRF that provide the basic infrastructure required for
Grid services. However, service composition in Grids is currently a work in progress and will
only be aided by the ongoing standardisation efforts at the GGF.

Market mechanisms The increasing popularity of Data Grids as a solution for large-scale computa-
tional and storage problems will lead to entry of commercial resource providers and therefore,
will lead to market-oriented VOs wherein demand-and-supply patterns decide the price and
availability of resources. This also provides incentive for content owners to offer their data
for consumption outside specific domains and opens up many interesting new applications.
Such VOs are likely to have a broad interdomain scope and consumers will be able to access
domain-specific services by buying them off competing service providers.

From the previous discussion, it can be seen that market mechanisms will be based on SOAs.
Additionally, resource allocation and replication policies need to be guided by utility func-
tions driven by profit and at the same time satisfy user-defined service quality parameters. An

47

example is a dynamic system presented by Lin (2005) that takes into account cost of data
movement.

Enterprise requirements Enterprises already have production systems in place that handle business
functions using distributed data. However, the amount of data that has to be retained and
manipulated has been growing by leaps and bounds. Also, with storage devices even with
terabyte capacity being commoditized, the challenge now is to organize massive volumes of
data to enable time-bound extraction of useful information.

Data Grids that provide a solution to these problems also need to take into account the stricter
reliability and security requirements in enterprise computing. Support for transaction process-
ing is required to provided consistent computation models in enterprises. Another challenge
is to extend the existing Grid mechanisms such as replication, data transfer and scheduling
to work with new data sources such as distributed databases found in businesses (Magowan,
2003).

6 Summary and Conclusion

In this paper, we have studied, characterised and categorised several aspects of Data Grid systems.
Data Grids have several unique features such as presence of applications with heavy computing re-
quirements, geographically-distributed and heterogeneous resources under different administrative
domains and large number of users sharing these resources and wanting to collaborate with each
other. We have enumerated several characteristics where Data Grids share similarities with, and
are different from, other distributed data-intensive paradigms such as content delivery networks,
peer-to-peer networks and distributed databases.

Further on, we focus on the architecture of the Data Grids and the fundamental requirements
of data transport mechanism, data replication systems and resource allocation and job scheduling.
We have developed taxonomies for each of these areas to classify the common approaches and to
provide a basis for comparison of Data Grid systems and technologies. We then compare some of
the representative systems in each of these areas and categorize them according to the respective
taxonomies. In doing so, we have gained an insight into the architectures, strategies and practices
that are currently followed within Data Grids. Also, through our characterisation, we have also
been able to discover some of the shortcomings and identify gaps in the current architectures and
systems. These represent some of the directions that can be followed in the future by researchers in
this area. Thus, this paper lays down a comprehensive classification framework that not only serves
as a tool to understanding this complex area but also presents a reference to which future efforts can
be mapped.

To conclude, Data Grids are being adopted widely for sharing data and collaboratively managing
and executing large-scale scientific applications that process large datasets distributed around the
world. However, more research needs to be undertaken in terms of scalability, interoperability and
data maintainability among others, before Data Grids can truly become the preferred infrastructure
for such applications. But, solving these problems creates the potential for Data Grids to evolve to
become self-organized and self-contained and thus, creating the next generation infrastructure for
enabling users to extract maximum utility out of the volumes of available information and data.

48

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their detailed comments that have helped in im-
proving the quality of this paper. We would like to acknowledge the efforts of all the developers of
the Grid systems surveyed in this paper. We thank our colleagues at the University of Melbourne -
Krishna Nadiminti, Tianchi Ma, Sushant Goel and Chee Shin Yeo- for their comments on this paper.
We would also like to express our gratitude to Reagan Moore (San Diego Supercomputing Center)
for his extensive and thought provoking comments and suggestions on various aspects of this tax-
onomy. We also thank Heinz Stockinger (University of Vienna), Chris Mattman (JPL, NASA) and
William Allcock (Argonne National Lab) for their instructive comments on this paper. This work
is partially supported through the Australian Research Council (ARC) Discovery Project grant and
Storage Technology Corporation sponsorship of Grid Fellowship.

References

ABRAMSON, D., GIDDY, J., AND KOTLER, L. 2000. High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid? In Proceedings of the 14th International Par-
allel and Distributed Processing Symposium (IPDPS 2000) (Cancun, Mexico). IEEE CS Press,
Los Alamitos, CA, USA.

ADERHOLZ, M. ET AL. 2000. Monarc project phase2 report. Tech. rep., CERN. Mar.

ALLCOCK, B., BESTER, J., BRESNAHAN, J., CHERVENAK, A., FOSTER, I., KESSELMAN, C.,
MEDER, S., NEFEDOVA, V., QUESNEL, D., AND TUECKE, S. 2001. Secure, efficient data trans-
port and replica management for high-performance data-intensive computing. In Proceedings of
IEEE Mass Storage Conference (San Diego, USA). IEEE CS Press, Los Alamitos, CA, USA.

ALLCOCK, B., BESTER, J., BRESNAHAN, J., CHERVENAK, A. L., FOSTER, I., KESSELMAN,
C., MEDER, S., NEFEDOVA, V., QUESNEL, D., AND TUECKE, S. 2002. Data management
and transfer in high-performance computational grid environments. Parallel Computing 28, 5,
749–771.

ALLCOCK, B., FOSTER, I., NEFEDOVA, V., CHERVENAK, A., DEELMAN, E., KESSELMAN, C.,
LEE, J., SIM, A., SHOSHANI, A., DRACH, B., AND WILLIAMS, D. 2001. High-performance
remote access to climate simulation data: a challenge problem for data grid technologies. In
Proceedings of the 2001 ACM/IEEE conference on Supercomputing (SC ’01) (Denver, CO, USA).
ACM Press, New York, NY, USA.

ALLCOCK, W. 2003. Gridftp protocol specification. (Global Grid Forum Recommendation
GFD.20).

ALONSO, R. AND BARBARA, D. 1989. Negotiating data access in federated database systems. In
Proceedings of the 5th International Conference on Data Engineering (Los Angeles, CA, USA).
IEEE CS Press, Los Alamitos, CA, USA, 56–65.

ANDERSEN, D., BALAKRISHNAN, H., KAASHOEK, F., AND MORRIS, R. 2001. Resilient overlay
networks. In Proceedings of the 18th ACM symposium on Operating systems principles(SOSP
’01) (Banff, Alberta, Canada). ACM Press, New York, NY, USA, 131–145.

49

ANDERSON, D. P., COBB, J., KORPELA, E., LEBOFSKY, M., AND WERTHIMER, D. 2002.
Seti@home: an experiment in public-resource computing. Commun. ACM 45, 11, 56–61.

ANTONIOLETTI, M. ET AL. 2005. Web services data access and integration (ws-dai). Tech. rep.,
GGF DAIS Working Group. June. Informational Document.

ARDAIZ, O., ARTIGAS, P., EYMANN, T., FREITAG, F., NAVARRO, L., AND REINICKE, M. 2003.
Self-organizing resource allocation for autonomic networks. In Proceedings of the 1st Interna-
tional Workshop on Autonomic Computing Systems (Prague, Czech Republic). IEEE CS Press,
Los Alamitos, CA, USA.

AVERY, P. AND FOSTER, I. 2001. The GriPhyN Project: Towards Petascale Virtual-Data Grids.
Tech. Rep. GriPhyN 2001-14, The GriPhyN Collaboration.

BAKER, M., BUYYA, R., AND LAFORENZA, D. 2002. Grids and Grid Technologies for Wide-Area
Distributed Computing. Softw. Pract. Exper. 32, 15 (Dec.), 1437–1466. Wiley Press, USA.

BARU, C., MOORE, R., RAJASEKAR, A., AND WAN, M. 1998. The SDSC Storage Resource
Broker. In Proceedings of CASCON’98. IBM Press, Toronto, Canada.

BASSI, A., BECK, M., FAGG, G., MOORE, T., PLANK, J., SWANY, M., AND WOLSKI, R.
2002. The Internet Backplane Protocol: A Study in Resource Sharing. In Proceedings of the
2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID 2002)
(Berlin, Germany). IEEE CS Press, Los Alamitos, CA, USA.

BELL, W. H., CAMERON, D. G., CARVAJAL-SCHIAFFINO, R., MILLAR, A. P., STOCKINGER,
K., AND ZINI, F. 2003. Evaluation of an Economy-Based File Replication Strategy for a Data
Grid. In Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and
the Grid, 2003 (CCGrid 2003) (Tokyo, Japan). IEEE CS Press, Los Alamitos, CA, USA.

BESTER, J., FOSTER, I., KESSELMAN, C., TEDESCO, J., AND TUECKE, S. 1999. GASS: A Data
Movement and Access Service for Wide Area Computing Systems. In Proceedings of the 6th
Workshop on I/O in Parallel and Distributed Systems (Atlanta, USA). ACM Press, New York,
NY, USA.

BIOGRID PROJECT, JAPAN. 2005. http://www.biogrid.jp/.

BIOMEDICAL INFORMATICS RESEARCH NETWORK (BIRN). 2005.
http://www.nbirn.net.

BRADY, M., GAVAGHAN, D., SIMPSON, A., PARADA, M. M., AND HIGHNAM, R. 2003. Wi-
ley Press, London, UK, Chapter eDiamond: A Grid-Enabled Federated Database of Annotated
Mammograms, 923–943.

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., MALER, E., AND YERGEAU, F. 2004. Ex-
tensible markup language (xml) 1.0 (3rd edition). W3C Recommendation.

BUNN, J. AND NEWMAN, H. 2003. Grid Computing: Making the Global Infrastructure a Reality.
Wiley Press, London, UK, Chapter Data Intensive Grids for High Energy Physics.

BUYYA, R. AND VAZHKUDAI, S. 2001. Compute Power Market: Towards a Market-Oriented Grid.
In Proceedings of the 1st International Symposium on Cluster Computing and the Grid (CCGRID
’01). IEEE CS Press, Los Alamitos, CA, USA, 574.

50

http://www.biogrid.jp/
http://www.nbirn.net

CASANOVA, H., LEGRAND, A., ZAGORODNOV, D., AND BERMAN, F. 2000. Heuristics for
Scheduling Parameter Sweep Applications in Grid environments. In Proceedings of the 9th Het-
erogeneous Computing Systems Workshop (HCW 2000) (Cancun,Mexico). IEEE CS Press, Los
Alamitos, CA, USA.

CERI, S. AND PELAGATTI, G. 1984. Distributed databases : principles and systems. McGraw-Hill,
New York, USA.

CHAPIN, S., KARPOVICH, J., AND GRIMSHAW, A. 1999. The Legion resource management
system. In Proceedings of the 5th Workshop on Job Scheduling Strategies for Parallel Processing.
IEEE CS Press, Los Alamitos, CA, USA.

CHERVENAK, A., DEELMAN, E., FOSTER, I., GUY, L., HOSCHEK, W., IAMNITCHI, A., KESSEL-
MAN, C., KUNST, P., RIPEANU, M., SCHWARTZKOPF, B., STOCKINGER, H., STOCKINGER,
K., AND TIERNEY, B. 2002. Giggle: A framework for constructing scalable replica location
services. In Proceedings of the 2002 IEEE/ACM Conference on Supercomputing (SC ’02) (Balti-
more,USA).

CHERVENAK, A., FOSTER, I., KESSELMAN, C., SALISBURY, C., AND TUECKE, S. 2000. The
Data Grid: Towards an architecture for the distributed management and analysis of large scientific
datasets. Journal of Network and Computer Applications 23, 3, 187–200.

CHOON-HOONG, D., NUTANONG, S., AND BUYYA, R. 2005. Peer-to-Peer Computing: Evolution
of a Disruptive Technology. Idea Group Publishers, Hershey, PA, USA, Chapter Peer-to-Peer
Networks for Content Sharing, 28–65.

CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W. 2001. Freenet: a distributed anony-
mous information storage and retrieval system. In International workshop on Designing privacy
enhancing technologies (Berkeley, CA, USA). Springer-Verlag, London, UK, 46–66.

COOPER, K., DASGUPATA, A., KENNEDY, K., KOELBEL, C., MANDAL, A., MARIN, G., MAZ-
INA, M., MELLOR-CRUMMEY, J., BERMAN, F., CASANOVA, H., CHIEN, A., DAIL, H., LIU,
X., OLUGBILE, A., SIEVERT, O., XIA, H., JOHNSSON, L., LIU, B., PATEL, M., REED, D.,
DENG, W., MENDES, C., SHI, Z., YARKHAN, A., AND DONGARRA, J. 2004. New Grid
Scheduling and Rescheduling Methods in the GrADS Project. In Proceedings of NSF Next Gen-
eration Software Workshop:International Parallel and Distributed Processing Symposium (Santa
Fe, USA). IEEE CS Press, Los Alamitos, CA, USA.

CZAJKOWSKI, K., FOSTER, I. T., KARONIS, N. T., KESSELMAN, C., MARTIN, S., SMITH, W.,
AND TUECKE, S. 1998. A Resource Management Architecture for Metacomputing Systems. In
Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing(IPPS/SPDP
’98) (Orlando, Florida, USA). Springer-Verlag, London, UK.

CZAJKOWSKI, K., KESSELMAN, C., FITZGERALD, S., AND FOSTER, I. 2001. Grid information
services for distributed resource sharing. In Proceedings of the 10th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC-10) (San Francisco, CA). IEEE CS
Press, Los Alamitos, CA, USA.

DAIL, H., CASANOVA, H., AND BERMAN, F. 2002. A Decoupled Scheduling Approach for the
GrADS Environment. In Proceedings of the 2002 IEEE/ACM Conference on Supercomputing
(SC’02) (Baltimore, USA). IEEE CS Press, Los Alamitos, CA, USA.

51

DAIL, H., SIEVERT, O., BERMAN, F., CASANOVA, H., YARKHAN, A., VADHIYAR, S., DON-
GARRA, J., LIU, C., YANG, L., ANGULO, D., AND FOSTER, I. 2004. Grid resource manage-
ment: state of the art and future trends. Kluwer Academic Publishers, Cambridge, MA, USA,
Chapter Scheduling in the Grid application development software project, 73–98.

DAVISON, B. D. 2001. A web caching primer. IEEE Internet Computing 5, 4, 38–45.

DEELMAN, E., BLYTHE, J., GIL, Y., AND KESSELMAN, C. 2003. Grid Resource Management:
State of the Art and Future Trends. Kluwer Academic Publishers, Cambridge, MA, USA, Chapter
Workflow Management in GriPhyN, 99–117.

DILLEY, J., MAGGS, B., PARIKH, J., PROKOP, H., SITARAMAN, R., AND WEIHL, B. 2002.
Globally distributed content delivery. IEEE Internet Computing 6, 5, 50– 58.

DULLMANN, D., HOSCHEK, W., JAEN-MARTINEZ, J., SEGAL, B., SAMAR, A., STOCKINGER,
H., AND STOCKINGER, K. 2001. Models for Replica Synchronisation and Consistency in a
Data Grid. In Proceedings of the 10th IEEE International Symposium on High Performance
Distributed Computing (HPDC-10’) (San Francisco, CA). IEEE CS Press, Los Alamitos, CA,
USA.

DUMITRESCU, C. AND FOSTER, I. 2004. Usage Policy-Based CPU Sharing in Virtual Orga-
nizations. In Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(GRID’04) (Pittsburgh, PA, USA). IEEE CS Press, Los Alamitos, CA, USA.

ELLERT, M., KONSTANTINOV, A., KONYA, B., SMIRNOVA, O., AND WAANANEN, A. 2002.
Performance Evaluation of GridFTP within the NorduGrid Project. Tech. Rep. cs.DC/0205023,
NorduGrid Project. Jan.

ENABLING GRIDS FOR E-SCIENCE (EGEE). 2005. http://public.eu-egee.org/.

FERRARI, A., KNABE, F., HUMPHREY, M., CHAPIN, S. J., AND GRIMSHAW, A. S. 1999. A
Flexible Security System for Metacomputing Environments. In Proceedings of the 7th Inter-
national Conference on High-Performance Computing and Networking (HPCN ’99). Springer-
Verlag, London, UK, 370–380.

FINKELSTEIN, A., GRYCE, C., AND LEWIS-BOWEN, J. 2004. Relating Requirements and Archi-
tectures: A Study of Data-Grids. Journal of Grid Computing 2, 3, 207–222.

FOSTER, I. 2005. Globus Toolkit Version 4: Software for Service-Oriented Systems. Lecture Notes
in Computer Science 3779, 2–13.

FOSTER, I., CZAJKOWSKI, K., FERGUSON, D., FREY, J., GRAHAM, S., MAGUIRE, T.,
SNELLING, D., AND TUECKE, S. 2005. Modeling and managing State in distributed systems:
the role of OGSI and WSRF. Proceedings of the IEEE 93, 3 (March), 604– 612.

FOSTER, I. AND IAMNITCHI, A. 2003. On death, taxes, and the convergence of peer-to-peer
and grid computing. In Proceedings of the 2nd International Workshop on Peer-to-Peer Sys-
tems(IPTPS) (Berkeley, CA, USA). Lecture Notes in Computer Science, vol. 2735. Springer-
Verlag, London, UK, 118 – 128.

52

http://public.eu-egee.org/

FOSTER, I. AND KARONIS, N. 1998. A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems. In Proceedings of the IEEE/ACM SuperComputing Conference
1998 (SC’98) (San Jose, CA, USA). IEEE CS Press, Los Alamitos, CA, USA.

FOSTER, I. AND KESSELMAN, C. 1998. The Globus Project: A Status Report. In Proceedings of
IPPS/SPDP’98 Heterogeneous Computing Workshop. IEEE CS Press, Los Alamitos, CA, USA,
4–18.

FOSTER, I. AND KESSELMAN, C. 1999. The Grid: Blueprint for a Future Computing Infrastruc-
ture. Morgan Kaufmann Publishers, San Francisco, USA.

FOSTER, I., KESSELMAN, C., NICK, J. M., AND TUECKE, S. 2002. Grid services for distributed
system integration. Computer 35, 6, 37–46.

FOSTER, I., KESSELMAN, C., TSUDIK, G., AND TUECKE, S. 1998. A security architecture for
computational grids. In Proc. 5th ACM Conference on Computer and Communications Security
Conference (San Francisco, CA, USA.). ACM Press, New York, NY, USA.

FOSTER, I., KESSELMAN, C., AND TUECKE, S. 2001. The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of High Performance Computing Applications 15, 3,
200–222.

FOSTER, I., TUECKE, S., AND UNGER, J. 2003. OGSA Data Services. Global Grid Forum 9.

FOX, G. AND PALLICKARA, S. 2002. The Narada Event Brokering System: Overview and Ex-
tensions. In Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications(PDPTA ’02). CSREA Press, Las Vegas, USA, 353–359.

GALBRAITH, J., SAARENMAA, O., YLONEN, T., AND LEHTINEN, S. 2005. SSH File Transfer
Protocol (SFTP). Internet Draft. Valid upto September 2005.

GARDNER, R. ET AL. 2004. The Grid2003 Production Grid: Principles and Practice. In Proceed-
ings of the 13th Symposium on High Performance Distributed Computing (HPDC 13) (Honolulu,
USA). IEEE CS Press, Los Alamitos, CA, USA.

GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. 1996. The dangers of replication and a
solution. In Proceedings of the 1996 ACM SIGMOD international conference on Management of
data (SIGMOD ’96) (Montreal, Quebec, Canada). ACM Press, New York, NY, USA, 173–182.

GRAY, J. AND REUTER, A. 1993. Transaction processing : concepts and techniques. Morgan
Kaufmann Publishers, San Mateo, Calif.

HETHMON, P. AND ELZ, R. 1998. RFC 2389: Feature negotiation mechanism for the File Transfer
Protocol. Proposed Standard.

HEY, T. AND TREFETHEN, A. E. 2002. The UK e-Science Core Programme and the Grid. Journal
of Future Generation Computer Systems(FGCS) 18, 8, 1017–1031.

HOCKAUF, R., KARL, W., LEBERECHT, M., OBERHUBER, M., AND WAGNER, M. 1998. Exploit-
ing Spatial and Temporal Locality of Accesses: A New Hardware-Based Monitoring Approach
for DSM Systems. In Proceedings of the 4th International Euro-Par Conference on Parallel
Processing(Euro-Par ’98) (Southhampton, UK). Lecture Notes in Computer Science, vol. 1470.
Springer-Verlag, London, UK, 206 – 215.

53

HOLLIDAY, J., AGRAWAL, D., AND ABBADI, A. E. 2000. Database replication using epidemic
update. Tech. Rep. TRCS00-01, University of California at Santa Barbara. Jan.

HOLTMAN, K. ET AL. 2001. CMS Requirements for the Grid. In Proceedings of 2001 Conference
on Computing in High Energy Physics(CHEP 2001) (Beijing, China). Science Press.

HOROWITZ, M. AND LUNT, S. 1997. RFC 2228: FTP security extensions. Proposed Standard.

HOSCHEK, W., JAEN-MARTINEZ, F. J., SAMAR, A., STOCKINGER, H., AND STOCKINGER,
K. 2000. Data Management in an International Data Grid Project. In Proceedings of the 1st
IEEE/ACM International Workshop on Grid Computing (GRID ’00) (Bangalore, India). Springer-
Verlag, London,UK.

HOUSLEY, R., POLK, W., FORD, W., AND SOLO, D. 2002. RFC 3280: Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List Profile. STANDARD.

HUFFMAN, B. T., MCNULTY, R., SHEARS, T., DENIS, R. S.,
AND WATERS, D. 2002. The CDF/D0 UK GridPP Project.
http://www.gridpp.ac.uk/datamanagement/metadata/SubGroups/UseCases/docs/cdf5858.ps.gz.
CDF Internal Note.

HUMPHREY, M., WASSON, G., MORGAN, M., AND BEEKWILDER, N. 2004. An early evaluation
of WSRF and WS-Notification via WSRF.NET. In Proceedings of the 5th IEEE/ACM Inter-
national Workshop on Grid Computing (GRID’04) (Pittsburgh, PA, USA). IEEE CS Press, Los
Alamitos, CA, USA, 172–181.

IN, J.-U., ARBREE, A., AVERY, P., CAVANAUGH, R., KATAGERI, S., AND RANKA, S. 2003.
Sphinx: A Scheduling Middleware for Data Intensive Applications on a Grid. Tech. Rep. Gri-
PhyN 2003-17, GriPhyn(Grid Physics Network). May.

IN, J.-U., AVERY, P., CAVANAUGH, R., AND RANKA, S. 2004. Policy based scheduling for
simple quality of service in grid computing. In Proceedings of the 18th International Parallel
and Distributed Processing Symposium 2004 (IPDPS ’04). (Santa Fe, NM, USA). IEEE CS Press,
Los Alamitos, CA, USA.

JABBER PROJECT. 2005. Jabber Protocols. Available at
http://www.jabber.org/protocol/.

KARLSSON, M. AND MAHALINGAM, M. 2002. Do we need replica placement algorithms in
content delivery networks? In Proceedings of the 2002 Web Content Caching and Distribution
Conference (WCW ’02) (Boulder, Colorado). http://www.iwcw.org/.

KIM, S. AND WEISSMAN, J. 2003. A GA-based Approach for Scheduling Decomposable Data
Grid Applications. In Proceedings of the 2004 International Conference on Parallel Processing
(ICPP 04) (Montreal, Canada). IEEE CS Press, Los Alamitos, CA, USA.

KOSSMANN, D. 2000. The state of the art in distributed query processing. ACM Comput.
Surv. 32, 4, 422–469.

KOUTRIKA, G. 2005. Heterogeneity in digital libraries: Two sides of the same coin. DELOS
Newsletter.

54

http://www.gridpp.ac.uk/datamanagement/metadata/SubGroups/UseCases/docs/cdf5858.ps.gz
http://www.jabber.org/protocol/

KOUZES, R. T., MYERS, J. D., AND WULF, W. A. 1996. Collaboratories: Doing science on the
internet. IEEE Computer 29, 8, 40–46.

KRAUTER, K., BUYYA, R., AND MAHESWARAN, M. 2002. A taxonomy and survey of grid
resource management systems for distributed computing. International Journal of Software:
Practice and Experience (SPE) 32, 2, 135–164.

KRISHNAMURTHY, B., WILLS, C., AND ZHANG, Y. 2001. On the use and performance of con-
tent distribution networks. In Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement(IMW ’01) (San Francisco, CA, USA). ACM Press, New York, NY, USA, 169–182.

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P., GEELS, D., GUM-
MADI, R., RHEA, S., WEATHERSPOON, H., WELLS, C., AND ZHAO, B. 2000. Oceanstore: an
architecture for global-scale persistent storage. In Proceedings of the 9th international confer-
ence on Architectural support for programming languages and operating systems(ASPLOS-IX)
(Cambridge, MA, USA). ACM Press, New York, NY, USA, 190–201.

LAMEHAMEDI, H., SHENTU, Z., SZYMANSKI, B., AND DEELMAN, E. 2003. Simulation of
Dynamic Data Replication Strategies in Data Grids. In Proceedings of the 17th International
Symposium on Parallel and Distributed Processing(IPDPS ’03) (Nice, France). IEEE CS Press,
Los Alamitos, CA, USA.

LAMEHAMEDI, H., SZYMANSKI, B., SHENTU, Z., AND DEELMAN, E. 2002. Data replication
strategies in grid environments. In Proceedings of the 5th International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP’02). IEEE CS Press, Los Alamitos, CA, USA.

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY. 2005.
http://www.ligo.caltech.edu/.

LEBRUN, P. 1999. The Large Hadron Collider, A Megascience Project. In Proceedings of the 38th
INFN Eloisatron Project Workshop on Superconducting Materials for High Energy Colliders
(Erice, Italy).

LEDLIE, J., SHNEIDMAN, J., SELTZER, M., AND HUTH, J. 2003. Scooped, again. In Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS 2003) (Berkeley, CA, USA,).
Lecture Notes in Computer Science, vol. 2735. Springer-Verlag, London,UK.

LEE, B.-D. AND WEISSMAN, J. B. 2001. Dynamic Replica Management in the Service Grid.
In Proceedings of the 10th IEEE International Symposium on High Performance Distributed
Computing (HPDC-10’) (San Francisco, CA). IEEE CS Press, Los Alamitos, CA, USA.

LEE, J., GUNTER, D., TIERNEY, B., ALLCOCK, B., BESTER, J., BRESNAHAN, J., AND TUECKE,
S. 2001. Applied techniques for high bandwidth data transfers across wide area networks. In
Proceedings of International Conference on Computing in High Energy and Nuclear Physics
(Beijing, China).

LHC COMPUTING GRID. 2005. http://lcg.web.cern.ch/LCG/.

LIN, H. 2005. Economy-Based Data Replication Broker Policies in Data Grids. Tech. rep., Univer-
sity of Melbourne, Australia. Jan. BSc Honours Thesis.

55

http://www.ligo.caltech.edu/
http://lcg.web.cern.ch/LCG/

MAGOWAN, J. 2003. A view on relational data on the Grid. In Proceedings of the 17th International
Symposium on Parallel and Distributed Processing(IPDPS ’03) (Nice, France). IEEE CS Press,
Los Alamitos, CA, USA.

MAHESWARAN, M., ALI, S., SIEGEL, H. J., HENSGEN, D., AND FREUND, R. F. 1999. Dynamic
Mapping of a Class of Independent Tasks onto Heterogeneous Computing Systems. Journal of
Parallel and Distributed Computing(JPDC) 59, 107–131.

MATTMANN, C. A., MEDVIDOVIC, N., RAMIREZ, P., AND JAKOBAC, V. 2005. Unlocking the
Grid. In Proceedings of the 8th ACM SIGSOFT Symposium on Component-based Software En-
gineering (CBSE8) (St. Louis, USA). ACM Press, New York, NY, USA.

MCKINLEY, K. S., CARR, S., AND TSENG, C.-W. 1996. Improving data locality with loop trans-
formations. In ACM Trans. Program. Lang. Syst. Vol. 18. ACM Press, New York, NY, USA,
424–453.

MILOJICIC, D. S., KALOGERAKI, V., LUKOSE, R., NAGARAJA, K., PRUYNE, J., RICHARD, B.,
ROLLINS, S., AND XU, Z. 2002. Peer-to-peer computing. Tech. Rep. HPL-2002-57, HP Labs,
Palo Alto, CA, USA.

MOORE, R., JAGATHEESAN, A., RAJASEKAR, A., WAN, M., AND SCHROEDER, W. 2004. Data
Grid Management Systems. In Proceedings of the 12th NASA Goddard, 21st IEEE Conference on
Mass Storage Systems and Technologies (College Park, MD, USA). IEEE CS Press, Los Alami-
tos, CA, USA.

MOORE, R. AND MERZKY, A. 2002. Persistent archive basic components. GGF Document Series
GFD.26, Global Grid Forum. July.

MOORE, R., PRINCE, T. A., AND ELLISMAN, M. 1998. Data-intensive computing and digital
libraries. Commun. ACM 41, 11, 56–62.

MOORE, R., RAJASEKAR, A., AND WAN, M. 2005. Data Grids, Digital Libraries and Persistent
Archives: An Integrated Approach to Publishing, Sharing and Archiving Datas. Proceedings of
the IEEE (Special Issue on Grid Computing) 93, 3.

NCSA GRIDFTP CLIENT. 2005. http://dims.ncsa.uiuc.edu/set/uberftp/.

NEUMAN, B. C. AND TS’O, T. 1994. Kerberos: An authentication service for computer networks.
IEEE Communications 32, 9 (Sept.), 33–38.

ORAM, A. 2001. Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly &
Associates, Inc., Sebastopol,CA,USA.

OZSU, M. T. AND VALDURIEZ, P. 1999. Principles of distributed database systems, 2 ed. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

PAPAZOGLOU, M. P. AND GEORGAKOPOULOS, D. 2003. Service-oriented computing. Commun.
ACM 46, 10.

PARASHAR, M. AND HARIRI, S. 2004. Autonomic grid computing. In Proceedings of the 2004
International Conference on Autonomic Computing (ICAC ’04) (New York, USA). IEEE CS
Press, Los Alamitos, CA, USA. Tutorial.

56

http://dims.ncsa.uiuc.edu/set/uberftp/

PARK, S.-M. AND KIM, J.-H. 2003. Chameleon: A Resource Scheduler in a Data Grid Environ-
ment. In Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and
the Grid, 2003 (CCGrid 2003) (Tokyo, Japan). IEEE CS Press, Los Alamitos, CA, USA.

PEARLMAN, L., KESSELMAN, C., GULLAPALLI, S., SPENCER JR., B., FUTRELLE, J., KATH-
LEEN, R., FOSTER, I., HUBBARD, P., AND SEVERANCE, C. 2004. Distributed hybrid earth-
quake engineering experiments: Experiences with a ground-shaking grid application. In Pro-
ceedings of the 13th IEEE Symposium on High Performance Distributed Computing (HPDC-13)
(Honolulu, HI, USA). IEEE CS Press, Los Alamitos, CA, USA.

PHAN, T., RANGANATHAN, K., AND SION, R. 2005. Evolving toward the perfect schedule: Co-
scheduling job assignments and data replication in wide-area systems using a genetic algorithm.
In Proceedings of the 11th Workshop on Job Scheduling Strategies for Parallel Processing (Cam-
bridge, MA). Springer-Verlag, London, UK.

PITOURA, E. AND BHARGAVA, B. 1999. Data consistency in intermittently connected distributed
systems. IEEE Transactions on Knowledge and Data Engineering 11, 6, 896–915.

PLANK, J., BECK, M., ELWASIF, W. R., MOORE, T., SWANY, M., AND WOLSKI, R. 1999.
The Internet Backplane Protocol: Storage in the Network. In Proceedings of the 1999 Net-
work Storage Symposium (NetStore99) (Seattle, WA, USA). University of Tennessee, Knoxville,
http://loci.cs.utk.edu/dsi/netstore99/.

PLANK, J. S., MOORE, T., AND BECK, M. 2002. Scalable Sharing of Wide Area Storage Resource.
Tech. Rep. CS-02-475, University of Tennessee Department of Computer Science. Jan.

POLYCHRONOPOULOS, C. D. AND KUCK, D. J. 1987. Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers. IEEE Transactions on Computers 36, 12, 1425–
1439.

POSTEL, J. AND REYNOLDS, J. K. 1985. RFC 959: File transfer protocol. STANDARD.

QIN, X. AND JIANG, H. 2003. Data Grids: Supporting Data-Intensive Applications in Wide Area
Networks. Tech. Rep. TR-03-05-01, University of Nebraska, Lincoln. May.

RAJASEKAR, A., MOORE, R., LUDASCHER, B., AND ZASLAVSKY, I. 2002. The GRID Adven-
tures: SDSC’S Storage Resource Broker and Web Services in Digital Library Applications. In
Proceedings of the 4th All-Russian Scientific Conference (RCDL’02) Digital Libraries: Advanced
Methods and Technologies, Digital Collections.

RAJASEKAR, A., WAN, M., MOORE, R., KREMENEK, G., AND GUPTIL, T. 2003. Data Grids,
Collections, and Grid Bricks. In Proceedings of the 20 th IEEE/11 th NASA Goddard Conference
on Mass Storage Systems and Technologies (MSS’03) (San Diego, CA, USA). IEEE CS Press,
Los Alamitos, CA, USA.

RAJASEKAR, A., WAN, M., MOORE, R., AND SCHROEDER, W. 2004. Data Grid Federation. In
Proceedings of the 11th International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA 2004) (Las Vegas, USA). CSREA Press, Las Vegas, USA.

RANGANATHAN, K. AND FOSTER, I. 2002. Decoupling Computation and Data Scheduling in
Distributed Data-Intensive Applications. In Proceedings of the 11th IEEE Symposium on High

57

http://loci.cs.utk.edu/dsi/netstore99/

Performance Distributed Computing (HPDC) (Edinburgh, Scotland). IEEE CS Press, Los Alami-
tos, CA, USA.

RANGANATHAN, K., IAMNITCHI, A., AND FOSTER, I. 2002. Improving data availability through
dynamic model-driven replication in large peer-to-peer communities. In Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’02) (Berlin,
Germany). IEEE CS Press, Los Alamitos, CA, USA.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. 2001. A scalable
content-addressable network. In Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications (SIGCOMM ’01). ACM Press,
New York, NY, USA, 161–172.

ROWSTRON, A. I. T. AND DRUSCHEL, P. 2001. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware 2001) (Heidelberg, Germany). Springer-
Verlag, London, UK, 329–350.

SAMAR, A. AND STOCKINGER, H. 2001. Grid Data Management Pilot (GDMP): A Tool for
Wide Area Replication. In Proceedings of the IASTED International Conference on Applied
Informatics (AI2001) (Innsbruck, Austria). ACTA Press, Calgary, Canada.

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access
control models. Computer 29, 2, 38–47.

SAROIU, S., GUMMADI, K. P., DUNN, R. J., GRIBBLE, S. D., AND LEVY, H. M. 2002. An
analysis of internet content delivery systems. SIGOPS Operating Systems Review 36, Special
Issue: Network behaviour, 315–327.

SHATDAL, A., KANT, C., AND NAUGHTON, J. F. 1994. Cache conscious algorithms for rela-
tional query processing. In Proceedings of the 20th International Conference on Very Large
Data Bases(VLDB ’94) (Santiago, Chile). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 510–521.

SHETH, A. P. AND LARSON, J. A. 1990. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv. 22, 3, 183–236.

SLOAN DIGITAL SKY SURVEY. 2005. http://www.sdss.org/.

STOCKINGER, H., SAMAR, A., ALLCOCK, B., FOSTER, I., HOLTMAN, K., AND TIERNEY, B.
2001. File and object replication in data grids. In Proceedings of the 10th IEEE Symposium
on High Performance and Distributed Computing (HPDC-10) (San Francisco, USA). IEEE CS
Press, Los Alamitos, CA, USA.

STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER, D. R., KAASHOEK, M. F., DABEK,
F., AND BALAKRISHNAN, H. 2003. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking 11, 1, 17–32.

STONEBRAKER, M., DEVINE, R., KORNACKER, M., LITWIN, W., PFEFFER, A., SAH, A., AND

STAELIN, C. 1994. An Economic Paradigm for Query Processing and Data Migration in Mari-
posa. In Proceedings of 3rd International Conference on Parallel and Distributed Information
Systems (Austin, TX, USA). IEEE CS Press, Los Alamitos, CA, USA.

58

http://www.sdss.org/

SZALAY, A. AND GRAY, J. 2001. The World-Wide Telescope. Science 293, 5537, 2037–2040.

SZALAY, A. S., Ed. 2002. Proceedings of SPIE Conference on Virtual Observatories (Waikoloa,
HI, USA). Vol. 4846. SPIE.

TAKEFUSA, A., TATEBE, O., MATSUOKA, S., AND MORITA, Y. 2003. Performance Analysis of
Scheduling and Replication Algorithms on Grid Datafarm Architecture for High-Energy Physics
Applications. In Proceedings of the 12th IEEE international Symposium on High Performance
Distributed Computing(HPDC-12) (Seattle, USA). IEEE CS Press, Los Alamitos, CA, USA.

TATEBE, O., MORITA, Y., MATSUOKA, S., SODA, N., AND SEKIGUCHI, S. 2002. Grid Datafarm
Architecture for Petascale Data Intensive Computing. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid 2002) (Berlin, Germany).
IEEE CS Press, Los Alamitos, CA, USA.

TATEBE, O., OGAWA, H., KODAMA, Y., KUDOH, T., SEKIGUCHI, S., MATSUOKA, S., AIDA,
K., BOKU, T., SATO, M., MORITA, Y., KITATSUJI, Y., WILLIAMS, J., AND HICKS, J. 2004.
The Second Trans-Pacific Grid Datafarm Testbed and Experiments for SC2003. In Proceedings
of 2004 International Symposium on Applications and the Internet - Workshops (SAINT 2004
Workshops) (Tokyo, Japan). IEEE CS Press, Los Alamitos, CA, USA.

TATEBE, O., SODA, N., MORITA, Y., MATSUOKA, S., AND SEKIGUCHI, S. 2004. Gfarm v2:
A Grid file system that supports high-performance distributed and parallel data computing. In
Proceedings of the 2004 Computing in High Energy and Nuclear Physics (CHEP04) Conference
(Interlaken, Switzerland).

THAIN, D., BASNEY, J., SON, S.-C., AND LIVNY, M. 2001. The Kangaroo Approach to Data
Movement on the Grid. In Proc. of the 10th IEEE Symposium on High Performance Distributed
Computing (HPDC10) (San Francisco, CA). IEEE CS Press, Los Alamitos, CA, USA.

THAIN, D., BENT, J., ARPACI-DUSSEAU, A., ARPACI-DUSSEAU, R., AND LIVNY, M. 2001.
Gathering at the well: Creating communities for grid I/O. In Proceedings of Supercomputing
2001 (Denver, Colorado). IEEE CS Press, Los Alamitos, CA, USA.

THOMAS, R. K. AND SANDHU, R. K. 1997. Task-Based Authorization Controls (TBAC): A
Family of Models for Active and Enterprise-Oriented Authorization Management. In Proceedings
of the IFIP TC11 WG11.3 11th International Conference on Database Securty XI (Lake Tahoe,
CA, USA). Chapman & Hall, Ltd., London, UK, 166–181.

TRANSACTION MANAGEMENT RESEARCH GROUP (GGF). 2005.
http://www.data-grid.org/tm-rg-charter.html.

VENUGOPAL, S. AND BUYYA, R. 2005. A Deadline and Budget Constrained Scheduling Algo-
rithm for e-Science Applications on Data Grids. In Proceedings of the 6th International Con-
ference on Algorithms and Architectures for Parallel Processing (ICA3PP-2005) (Melbourne,
Australia.). Lecture Notes in Computer Science, vol. 3719. Springer-Verlag, London, UK.

VICKREY, W. 1961. Counter-speculation, auctions, and competitive sealed tenders. Journal of
Finance 16, 1, 9 – 37.

59

http://www.data-grid.org/tm-rg-charter.html

VRAALSEN, F., AYDT, R., MENDES, C., AND REED, D. 2001. Performance contracts: Predicting
and monitoring grid application behavior. In Proceedings of the 2nd International Workshop
on Grid Computing (GRID 2001) (Denver, CO). Lecture Notes in Computer Science, vol. 2242.
Springer-Verlag, Berlin, Germany.

WAGNER, D. AND SCHNEIER, B. 1996. Analysis of the SSL 3.0 Protocol. In Proceedings of the
2nd USENIX Workshop on Electronic Commerce. USENIX Press, Berkeley, CA, USA.

WASSON, G. AND HUMPHREY, M. 2003. Policy and enforcement in virtual organizations. In
Proceedings of the 4th International Workshop on Grid Computing (Phoenix, Arizona). IEEE CS
Press, Los Alamitos, CA, USA.

WHITE, B. S., GRIMSHAW, A. S., AND NGUYEN-TUONG, A. 2000. Grid-Based File Access:
The Legion I/O Model. In Proceedings of the 9th IEEE International Symposium on High Per-
formance Distributed Computing (HPDC’00) (Pittsburgh, USA). IEEE CS Press, Los Alamitos,
CA, USA.

WINTON, L. 2003. Data grids and high energy physics - A Melbourne perspective. Space Science
Reviews 107, 1–2, 523–540.

YAMAMOTO, N., TATEBE, O., AND SEKIGUCHI, S. 2004. Parallel and Distributed Astronomical
Data Analysis on Grid Datafarm. In Proceedings of 5th IEEE/ACM International Workshop on
Grid Computing (Grid 2004) (Pittsburgh, USA). IEEE CS Press, Los Alamitos, CA, USA.

YU, J. AND BUYYA, R. 2004. A novel architecture for realizing grid workflow using tuple spaces.
In Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing (GRID’04)
(Pittsburgh, PA, USA). IEEE CS Press, Los Alamitos, CA, USA.

ZHAO, B. Y., KUBIATOWICZ, J. D., AND JOSEPH, A. D. 2001. Tapestry: An infrastructure
for fault-tolerant wide-area location and. Tech. Rep. CSD-01-1141, University of California at
Berkeley.

60

	Introduction
	Overview
	Terms and Definitions
	Data Grids
	Layered Architecture
	Related Data-Intensive Research Paradigms
	Content Delivery Network
	Peer-to-Peer Network
	Distributed Databases

	Analysis of Data-Intensive Networks

	Taxonomy
	Data Grid Organization
	Data Transport
	Data Replication and Storage
	Resource Allocation and Scheduling

	Mapping of Taxonomy to Various Data Grid Systems
	Data Grid Projects
	Data Transport Technologies
	GASS
	IBP
	FTP
	GridFTP
	Kangaroo
	Legion I/O model
	SRB I/O

	Data Replication and Storage
	Grid DataFarm
	RLS
	GDMP
	SRB
	Other Replication Strategies

	Resource Allocation and Scheduling

	Discussion
	Future Trends

	Summary and Conclusion

