
Resource Co-Allocation based on Application Profiling:

A Case Study in Multi-Objective Evolutionary Computations

Marco A. S. Netto1, Christian Vecchiola1, Michael Kirley1, Carlos A. Varela2, and Rajkumar Buyya1

1Grid Computing and Distributed Systems Laboratory

Dept. of Computer Science and Software Engineering

The University of Melbourne, Australia

{netto, csve, mkirley, raj}@csse.unimelb.edu.au

2Computer Science Department

Rensselaer Polytechnic Institute

Troy, NY 12180, USA

cvarela@cs.rpi.edu

Abstract

Several scientific experiments require coordinated re-

source allocation in multi-cluster environments. Reschedul-

ing these experiments can reduce applications’ response

time and increase system utilization. However, existing al-

location models, which are based on user run time esti-

mates, limit rescheduling due to environment heterogeneity.

This paper introduces a resource co-allocation model based

on application profiling to enable automatic reschedul-

ing in multi-cluster environments. Using a multi-objective

evolutionary application as a case study, we demonstrate

how to generate run time predictions and their impact on

rescheduling. The evaluation is on Grid’5000; a large-

scale platform comprising clusters with heterogeneous ca-

pabilities. From the evolutionary research field, this paper

presents and compares the synchronous and asynchronous

models for the target application. Our main findings are:

it is possible to generate run time predictions to enable

rescheduling by using a simple and practical approach with

7% error; and the asynchronous model for multi-objective

evolutionary computations produces better optimization re-

sults and is faster than its synchronous counterpart.

1 Introduction

The use of multiple clusters for scientific experiments

is fundamental to reduce application’s response time. Not

only large-scale experiments require multiple clusters, but

also small and medium size experiments enjoy better re-

sponse times by grouping resources that would be otherwise

wasted due to fragmentation in scheduling queues [8]. Mes-

sage passing parallel applications and workflows require co-

ordinated access to these resources; a problem known as

resource co-allocation [3]. Bag-of-Tasks applications may

also require co-allocation as scientists need the completion

of all tasks to post-process or analyze the results [13].

Applications waiting for resources may need to be

rescheduled due to inaccurate usage estimations, request

cancellations and modifications, and resource failures.

Rescheduling of both single and multi-cluster applications

reduces their response time and increases system utilization

[12]. However, current allocation models limit reschedul-

ing of multi-cluster applications due to environment hetero-

geneity. As these models are based on users specifying the

estimated usage time for each cluster, applications may be

aborted when rescheduled to slower resources; unless users

provide high run time overestimations. When applications

are rescheduled to faster resources, backfilling [11] may not

be explored if estimated run times are not reduced. There-

fore, system-generated predictions [16] can play an impor-

tant role for automatic rescheduling.

This paper introduces a resource co-allocation model

based on application profiling. Schedulers use applica-

tion profiling to predict execution times for a given a set

of resources. These predictions assist schedulers to check

whether the execution of an application can fit into the clus-

ters’ scheduling queues during the rescheduling phase. We

use a Parallel Multi-Objective Evolutionary Application as

a case study and perform experiments on the Grid’5000

platform, which comprises clusters with heterogeneous ca-

pabilities. This paper contributes to two research fields:

• Resource Co-allocation: We show a simple and prac-

tical approach to generate run time predictions for a

multi-cluster application and evaluate their impact on

rescheduling. Predictions rely on observing the appli-

cation’s behavior with a short partial execution in each

cluster. This is particularly possible for iterative ap-

plications with regular execution steps such as genetic

algorithms and simulated annealing.

• Multi-Objective Evolutionary Computations: We

introduce a framework to enable the execution of both



Figure 1. Deployment of EMO in multiple clusters using synchronous and asynchronous models.

synchronous and asynchronous models for the target

application, and compare these models using execution

time and quality of the optimization results as metrics.

Results show that the asynchronous model for multi-

objective evolutionary computations produces better

optimization results and is faster than its counterpart

synchronous model. The investigation of techniques

to speed up these computations is important for sev-

eral fields in science and engineering.

This work is a step towards more dynamic schedul-

ing approaches for scientific experiments requiring multi-

ple clusters with guaranteed response times. The use of

application profiling presented here can also be applied

when rescheduling single-cluster applications among mul-

tiple clusters.

2 Application Description

The case study application is EMO (Evolutionary Multi-

objective Optimizer), which uses Genetic Algorithms [4]

and introduces the concept of topology to drive the evolu-

tionary process [10]. A topology is a graph interconnect-

ing individuals of a population and is characterized by: (i)

the node degree representing the average number of con-

nections for each individual; and (ii) the path line defining

the number of hops to be crossed on average to connect in-

dividuals. Individuals are chosen to exchange their infor-

mation according to the topology links; process that deter-

mines how the current solutions of the approximation sets

are selected to produce a new generation of solutions. The

use of topologies provides better solutions in general but re-

quires a large number of elements in the approximation sets,

which becomes compute intensive for non-trivial problems.

Moreover, topologies have impact on the execution time:

sparsely connected topologies imply faster execution times

than fully connected ones, but propagate more slowly the

updates in the approximation set.

An initial implementation of EMO was provided for a

single machine [10], whereas a distributed deployment was

developed to reduce the computation time for non-trivial

problems [17]. This work introduces two execution models

for heterogeneous multi-cluster environments: synchronous

and asynchronous (Figure 1).

EMO is an application that runs from the operating sys-

tem shell and can be controlled by a set of 25 command

line parameters. The main input parameters for our case

study are: the topology used to produce the new solutions,

the number of iterations, the size of the approximation set,

and the optimization multi-objective function. As execu-

tion outcome, EMO produces: the final solution set (Pareto

Front) and the approximation set that generated this solu-

tion. For the distributed version of EMO, we introduced a

coordination layer that reiterates EMO processes by feed-

ing them with updated information on the approximation

set. An additional component, called EMOMerge, was used

to merge and partition the approximation sets generated at

each iteration of EMO processes.

In a multi-cluster environment, the clusters’ computing

power controls the upper bound execution time of each it-

eration and introduces gaps into the schedule of the EMO

processes. In order to address this issue, we developed two

new deployment models for EMO: synchronous and asyn-

chronous (Figure 1). Note that as processes execute in mul-

tiple clusters, the impact of wide-area communication has to

be minimized as much as possible [1]. Indeed, asynchrony

masks communication and computation, and therefore min-

imizes this impact. Resource co-allocation is important for

both models since: for the synchronous model, it prevents

processes from being idle and thus completes the execution

faster; whereas for the asynchronous model, it increases in-

teraction among results of EMO processes executing with

different topologies.



Epsilon Indicator. Multi-objective functions identify a

multi-dimensional space whose properties are difficult to vi-

sualize effectively. It is then necessary to adopt synthetic

measures that generally aggregate information about the

quality of a solution into one number called indicator. In our

case study, which has been configured with a 10-objective

optimization function, we use a quality indicator called Ep-

silon [19]. This indicator is based on the distance between

a reference solution and the pareto front. The indicator is

calculated after the execution of the application. As future

work we will also use the indicator to control the merge and

split operation performed by the EMOMerge component.

2.1 Synchronous model

In this model, EMO processes are distributed to ma-

chines and merged once they have completed the number

of iterations specified by the user (Figure 1). We call stage

a set of processes followed by a merging process. When a

stage finishes, its results are redistributed to the machines,

which execute the next processes. The execution completes

when all processes achieved the total number of iterations

specified by the user. As topologies and machines are het-

erogeneous, processes finish at different times. In order to

avoid idle processor time, we keep iterating all processes

in a stage until they reach the minimum number of required

iterations. Therefore, EMO processes running on faster ma-

chines and/or using sparsely connected topologies iterate

more than the others.

Each cluster involved in the execution has a master node,

named cluster coordinator, responsible for merging the re-

sults of nodes in its cluster. This coordinator sends the re-

sults to the cluster coordinator with better aggregate CPU,

called global coordinator, which merges all the results and

sends the merged result to all clusters. After that, EMO pro-

cesses start the new stage (Figure 1).

2.2 Asynchronous model

For this model, when an EMO process finishes, it dis-

tributes its results to other EMO processes asynchronously,

merges its results with the last results from other processes,

and continues its execution (Figure 1). This prevents any

idle time, and provides better support for heterogeneous ma-

chines and processor fault tolerance.

3 Profiling-based Resource Co-allocation

Cluster management systems rely on system schedulers

responsible for scheduling requests. A co-allocation request

is therefore a set of single cluster requests, called sub re-

quests, which start in a coordinated fashion; in our case,

they start at the same time. These sub requests mainly com-

prise the number of resources, such as nodes or cores, and

the usage time for each cluster. As users can access het-

erogeneous resources, it is difficult for them to know the

usage time that needs to be allocated. From the system

schedulers’ side, it is difficult to reschedule sub requests

since all of them should have the same start and completion

time in all clusters, and they have to fit into the schedul-

ing queues. Therefore, in order to simplify the schedul-

ing and rescheduling processes, we introduce a resource co-

allocation model based on application profiling.

A resource co-allocation request based on application

profiling can be re-targeted to different resource sets in

an automatic fashion. This is particularly important when

rescheduling applications on multiple clusters. Note that

rescheduling is allowed when requests are still in the wait-

ing queues, and hence is different from migrating pro-

cesses at run time. The profiling-based co-allocation re-

quest relies on four components, which can be located in

a metascheduler responsible for allocating resources from

multiple clusters (Figure 1):

• Machine list: contains the resources to be used by the

application and is provided by system schedulers to the

user or to the metascheduler.

• Performance model: users define the performance of

the machines in terms of execution time, and the cost

of inter-process communication. Processes can be on

the same node, different nodes, or different clusters.

Section 4 details how the model can be built.

• User preferences: users can specify application pa-

rameters such as the number of processes, number of

objectives to be minimized, and other parameters as

described in Section 2.

• Application Scheduler: uses the machine list, per-

formance model, and user preferences to generate a

schedule of the application’ processes. This compo-

nent generates a set of scripts used to deploy the ap-

plication. It is outside the application’s code; differ-

ent from the application-level scheduler presented by

Berman et al. [2].

The system scheduler uses the application scheduler to

obtain the application’s estimated run time. This estima-

tion can be used for both the initial scheduling and the

rescheduling.

3.1 System and application’s scheduler in-
teraction

The interaction between system and application’s sched-

ulers takes place during the initial scheduling or reschedul-

ing of a request. The initial scheduling is triggered by a

user or a metascheduler requesting for machines, whereas

the rescheduling is triggered by the system scheduler or a

meta-scheduler that is coordinating a co-allocation request.



For both cases, interaction between system and applica-

tion’s scheduler comprises three steps:

1. The application scheduler asks the system scheduler

for the earliest n machines available;

2. The application scheduler generates a schedule con-

taining the application’s estimated execution time;

3. The metascheduler, or a system scheduler, verifies with

the other system scheduler(s) whether it is possible to

commit requests;

4. Step 1 is repeated if it is not possible to commit re-

quests. A maximum number of trials can be specified.

Note that by using this algorithm, resource providers can

keep their schedules private. Alternatively, in Step 1, the ap-

plication scheduler could ask system schedulers for all free

time slots (which are available time intervals for resources)

and then minimize interactions between the metascheduler

and the application scheduler. Elmroth and Tordsson dis-

cuss the advantages and drawbacks of keeping schedules

private or asking for free time slots [7].

3.2 Application schedulers

We developed two application schedulers for EMO, one

for synchronous and the other for the asynchronous model.

The input arguments for them are: list of resources, number

of iterations per process, number of processes, number of

topologies, performance model for computation and inter-

process communication. For the synchronous model (Algo-

rithm 1), the scheduler sorts resources by their computing

power, which is determined during the application profiling

phase (Lines 1) and assigns EMO processes according to

their topologies (more CPU consuming ones first) for each

stage (Lines 6-12). The number of stages is determined by

the total number of resources and total number of EMOs

specified by the user (Line 3). As machines and topologies

make the process execution times vary, more iterations are

added to processes that would be waiting for slower pro-

cesses (Lines 13-14). For the asynchronous model (Algo-

rithm 2), the scheduler assigns one process of each topology

to the resource with the earliest completion time (Lines 3-

6). The scheduler gives priority to topologies that require

more CPU (Line 1), however each topology receives one

resource per round (Line 4).

4 Evaluation

The experiments evaluate the run time predictions and

their impact on rescheduling co-allocation requests. In

addition, we compare the synchronous and asynchronous

models of EMO and the importance of using multiple

topologies to improve optimization results.

Algorithm 1: Pseudo-code for generating the schedule

using the synchronous model.

Sort resources by decreasing order of computing power1

Sort EMO processes by their topologies. Decreasing order2

of CPU demand

Stages← nProcs / nResources3

ProcsPerTopology← nResources / nTopologies4

MaxCompletionT ime← 05

for each stage do6

r← 07

for each topology do8

for 0 to ProcsPerTopology do9

Schedule EMO of this topology to resource r10

Update MaxCompletionT ime11

r← r + 112

for each resource do13

Make last EMO process on this resource complete14

at MaxCompletionT ime by increasing the

number of iterations

Algorithm 2: Pseudo-code for generating the schedule

using the asynchronous model.

Sort topologies by decreasing order of CPU demand1

n← 02

while n < nProcs do3

for each topology do4

Select resource r with earliest completion time5

Schedule EMO process to resource r

n← n + nTopologies6

4.1 Experimental configuration

The evaluation has been performed in Grid’5000, which

consists of a set of clusters across France dedicated to large-

scale experiments. We used seven clusters located in three

cities in France with different computing capabilities. Table

1 presents an overview of the node configurations, including

cores per node, for these clusters1. Machines in the same

location share the same file system, which simplifies file

transfer between nodes of clusters in the same site.

Application configuration. We configured EMO for solv-

ing the DTLZ6 function with a setup of 10 objectives. This

function is one of the most compute intensive functions in

the benchmark proposed by Deb et al. [5]. We have used

four topologies: Regular 2D, Scale-Free, Small-World, and

Random [10]; and 1024 individuals for each EMO process

with a minimum of 200 iterations each process. The appli-

cation was deployed on 40 cores using 480 EMO processes,

i.e. 120 processes for each topology in order to optimize 10

objective functions.

1More details about the machines in Grid’5000 can be found at

https://www.grid5000.fr



0 500 1000 1500
Number of Iterations

200

400

600

800

1000

E
xe

cu
ti

o
n

 T
im

e 
(s

)

Regular 2D lattice

Scale-Free
Small-World
Random

(a) Paramount.

0 500 1000 1500
Number of Iterations

200

400

600

800

1000

E
xe

cu
ti

o
n

 T
im

e 
(s

)

Regular 2D lattice

Scale-Free
Small-World
Random

(b) Bordemer.

0 500 1000 1500
Number of Iterations

200

400

600

800

1000

E
xe

cu
ti

o
n

 T
im

e 
(s

)

Regular 2D lattice

Scale-Free
Small-World
Random

(c) Bordeplage.

Figure 2. Execution times as a function of the topologies for three machine types in Grid’5000.

Table 1. Overview of the node configurations.

Cluster Location CPUs’ Configuration Cores per Node

azur Sophia AMD Opteron 246 2.0GHz 2

sol Sophia AMD Opteron 2218 2.6GHz 4

bordemer Bordeaux AMD Opteron 248 2.2 GHz 2

bordeplageBordeaux Intel Xeon EM64T 3GHz 2

paraquad Rennes Intel Xeon 5148 2.33 Ghz 4

paramountRennes Intel Xeon 5148 2.33 Ghz 4

paradent Rennes Intel Xeon L5420 2.5 Ghz 8

Application profiling. We executed the stand alone ver-

sion of EMO on a single core of each cluster using four

topologies varying the number of iterations. EMO has a pre-

dictable behavior as we can see in Figure 2, which shows the

execution times as a function of the topologies and number

of iterations for three machine types in Grid’5000. One im-

portant decision when profiling the application is to choose

the number of iterations EMO needs to be executed in order

to capture the application’s behavior. Figure 3 represents

the throughput (iterations/second) of an EMO execution us-

ing the Regular 2D topology on a single core of seven ma-

chine types as a function of number of iterations. After 250

iterations, the throughput becomes steady. Therefore, by

executing 250 iterations, we can identify the application’s

behavior in each machine type. We obtained the same be-

havior for the other three topologies. Table 2 contains the

performance model, in our case EMO’s throughput, for each

cluster and topology. We observe that sparsely connected

networks, such as the Regular 2D and the Scale-Free net-

works, imply a faster iteration time than more connected

networks, such as the Random topology. For the Random

topology, the value of the path line was around five times

smaller than the path line of the Regular 2D. This means

that, on average, the selection of the individual to exchange

information requires traversing a list five times smaller than

for the Random topologies; and this reflects the execution

time difference.

Inter-process communication profiling. Communication

is based on file transfer between EMO processes during the

merging phases. The files transferred among the sites are

0 100 200 300 400 500 600 700 800
Number of Iterations

4

6

8

10

12

14

16

18

20

T
h

ro
u

g
h

p
u

t 
(I

te
ra

ti
o

n
s

/S
e

c
o

n
d

)

Throughput stabilized after 250 iterations

paradent
paramount

sol
bordemer
azur
bordeplage

Figure 3. Throughput for Regular 2D topology

on each machine type.

Table 2. Performance model (iterations/sec.)
of each machine type and topology.

Regular 2D Scale-Free Small-World Random

paradent 10.87 11.36 3.57 3.29

paramount 10.00 10.42 3.33 3.05

paraquad 10.00 10.42 3.33 3.05

sol 9.26 9.62 3.09 2.81

bordemer 7.81 7.81 2.60 2.38

azur 7.14 7.35 2.34 2.14

bordeplage 5.81 6.10 1.89 1.68

500 Kbytes on average. Therefore, the cost of transferring

the files is minimum compared to EMO’s execution, which

takes minutes. However, file transfer relies on secure copy

(scp) command, which requires authentication. Therefore,

inter-site file transfer is around 800 ms.

Resource sets. We executed the EMO application using

synchronous and asynchronous models on seven clusters in

Grid’5000. Table 3 presents the list of clusters and number

of cores used in each resource set.

Metrics. To evaluate co-allocation based on application

profiling and its importance on rescheduling, we analyze

the difference between actual and predicted execution times.

The prediction for each resource set assists schedulers to



know whether they can reschedule the new sub requests into

the scheduling queues of other schedulers. For comparison

between the synchronous and asynchronous models, we use

execution time and the Epsilon indicator (Section 2).

Table 3. Resource sets on seven clusters.

Clusters/Resource Sets 1 2 3 4 5 6 7

paradent 32

paramount 04 20 04

paraquad 04 20

sol 12 12 20 20 12

bordemer 02 08 20 08 06 20

azur 06 06 10

bordeplage 06 08 20

4.2 Results and Analysis

Execution time predictions. Figure 4 presents predicted

and actual execution times for synchronous and asyn-

chronous models. Actual execution times are averages of

five executions for each resource set. We observe that ex-

ecution time for the asynchronous model is shorter than

the synchronous model for all resource sets. For the asyn-

chronous model, all EMO processes execute the minimum

required number of iterations, whereas for the synchronous

model, EMO processes may execute more iterations in or-

der to wait for processes that take longer. In addition, the

difference between actual and predicted execution is on av-

erage 8.5% for synchronous and 7.3% for the asynchronous

model. These results highlight that (i) it is possible to

reschedule processes on multiple clusters since schedulers

can predict the execution time for different resource sets;

and (ii) the prediction for the asynchronous model is slightly

better than for the synchronous model since the merging

phases take less time for the first model.

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Resource Sets for Synchronous and Asynchronous Models

400

600

800

1000

1200

E
xe

cu
ti

o
n

 T
im

e 
(s

)

Actual-Sync
Predicted-Sync
Actual-Async
Predicted-Async

Figure 4. Predicted execution times.

For the quality of the predictions, resource sets 2 and 3

present better results compared to the other sets for the syn-

chronous model. This happens because the merging phase

is split by sites (locations in France). For these sets, three

sites are used, and therefore the load for merging results is

well balanced. Resource set 6 also comprises three sites,

but only four resources in one of the sites. For the asyn-

chronous model, the worst prediction is for resource set 7

since 20 resources from the worst cluster (bordeplage) are

used, which makes the merging process slower.

 
2 3 4 5 6 7

 
2 3 4 5 6 7

Resource Sets for Synchronous and Asynchronous Models

0

10

20

30

40

50

60

R
u

n
 T

im
e 

O
ve

re
st

im
at

io
n

 (
%

) Overestimation-Sync
Overestimation-Async

Figure 5. Overestimation required to avoid

application being aborted due to reschedul-
ing from resource set 1 to other sets without
co-allocation based on application profiling.

Importance of predictions to rescheduling. When remap-

ping processes from one resource set to another, the ap-

plication run time may remain the same, increase or de-

crease. When it remains the same, schedulers just have

to redefine the number of resources in each cluster; which

can be performed by the metascheduler or by the system

schedulers themselves. This is the case for remapping pro-

cesses from, for example, resource set 1 to 2 and 2 to 3

or 4 for synchronous and asynchronous model respectively.

When the run time increases, the prediction generated by

the application-scheduler may avoid the application to be

aborted due to underestimations. A rescheduling from a

shorter to longer execution time is desired when the ap-

plication can start earlier than expected. This is the case

for remapping processes from resource set 1 to 7. Figure 5

shows that overestimation is required to avoid the applica-

tion to be killed when rescheduling from resource set 1 to

the other resource sets. For the synchronous model, 35%

of overestimation is required, whereas for the asynchronous

model 57%. When rescheduling a request from a longer

to shorter run time, predictions assist schedulers to increase

the chances of backfilling sub requests [11]. This is the case

when rescheduling processes from resource set 7 to 1 for

synchronous and asynchronous model.

Synchronous versus asynchronous models. In order to

understand the output produced by the application, we have

also compared the quality of the optimization results be-

tween synchronous and asynchronous models. Figure 6

shows the Epsilon indicator (the lower the better) for syn-

chronous and asynchronous models under three resource

sets. The asynchronous model reaches faster and produces

better results than the synchronous model. This happens

because the asynchronous model is able to mix more results

from different EMO processes, which might have different

topologies, in relation to the synchronous model. For re-

source set 3, the synchronous model produces similar result

for the Epsilon indicator as the asynchronous model, but

the Epsilon values get closer after a considerable execution

time. Figure 7 illustrates the importance of mixing results



0 100 200 300 400 500 600 700 800 900
Execution Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
E

p
si

lo
n

 In
d

ic
at

o
r

Epsilon for Sync: 0.161
Epsilon for Async: 0.154

Synchronous

Asynchronous

(a) Resource set 3.

0 100 200 300 400 500 600 700 800 900 1000
Execution Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
p

si
lo

n
 In

d
ic

at
o

r

Epsilon for Sync: 0.231
Epsilon for Async: 0.168

Synchronous

Asynchronous

(b) Resource set 5.

0 100 200 300 400 500 600 700 800 900 10001100
Execution Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
p

si
lo

n
 In

d
ic

at
o

r

Epsilon for Sync: 0.234
Epsilon for Async: 0.157

Synchronous

Asynchronous

(c) Resource set 6.

Figure 6. Epsilon indicator for three resource sets using synchronous and asynchronous models.

50 100 150 200 250 300
Execution Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
p

si
lo

n
 In

d
ic

at
o

r

Epsilon for Sync: 0.235
Epsilon for Async: 0.204

Synchronous

Asynchronous

(a) Only Scale-Free topology.

100 200 300 400 500 600 700 800 900 1000
Execution Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
E

p
si

lo
n

 In
d

ic
at

o
r

Epsilon for Sync: 0.173
Epsilon for Async: 0.184

Synchronous

Asynchronous

(b) Only Random topology.

100 200 300 400 500 600 700 800 900
Execution Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
p

si
lo

n
 In

d
ic

at
o

r

Epsilon for Sync: 0.196
Epsilon for Async: 0.151

Synchronous

Asynchronous

(c) Four topologies together.

Figure 7. Epsilon indicator for resource set 1 showing the importance of mixing topologies.

from different topologies. The results show that although

Random, which is the most CPU consuming topology, has

the greatest impact on the Epsilon indicator, the less CPU

consuming Scale-Free topology contributes to the function

optimization. Moreover, even for one-topology executions,

asynchronous produces better optimization results and it

converges faster than its synchronous counterpart. Similar

results were obtained for the other resource sets but are not

included due to space constraints.

5 Related Work

Yang et al. [18] introduced a performance translation

based on relative performance between two platforms. Sim-

ilar to our work, their approach relies on a short execution

of the application in each target platform in order to predict

its execution time. The main difference is that their work is

for applications running in a single cluster.

Sanjay and Vadhiyar [15] developed a set of performance

modeling strategies to predict execution times of parallel

applications for single-cluster executions. As their target

platform comprises non-dedicated clusters, their strategies

require more and longer executions of the application and

rely on more parameters. For our application, we just need

a short execution for each topology on each target cluster.

Jarvis et al. [9] studied performance prediction of appli-

cations using their PACE (Performance Analysis and Char-

acterization Environment) toolkit. Their model relies on

source code analysis, which differs from our approach.

Tsafrir et al. [16] introduced system-generated predictions

for single-cluster applications. Their technique relies on

previous execution of applications, whereas ours relies on

partial short executions.

Closer to our work, Romanazzi and Jimack [14] pro-

posed a prediction performance model for parallel numer-

ical software systems on multi-cluster environments. Pre-

dictions for large-scale experiments are generated based on

executing applications with fewer processors for short time

periods. The main difference of their work is that the appli-

cation has a different structure in terms of computation and

communication model and the predictions are used only for

scheduling, and not for rescheduling.

Regarding our application, the closest work is the asyn-

chronous model for genetic search developed by Desell et

al. [6]. The comparison results between synchronous and

asynchronous model showed in this paper corroborate the

results for their application in the astronomy field; i.e. asyn-

chronous model has better convergence rates, especially

when heterogeneous resources are in place.

6 Conclusions

The coordinated use of multiple clusters for scientific ex-

periments speeds up executions and reduces resource access

time. However, current allocation models limit reschedul-

ing of these experiments, which is important due to nec-

essary updates in clusters’ scheduling queues. In this

work we have introduced a resource co-allocation model

based on application profiling. Predictions enable automatic

rescheduling of parallel applications; in particular they pre-



vent applications from being aborted due to run time under-

estimations and increase backfilling chances when execut-

ing in faster resources.

From the application’s side, we have developed a frame-

work to execute synchronous and asynchronous models,

and compared them using execution time, prediction fea-

sibility, and quality of optimization results as metrics. The

asynchronous model performs better for all these metrics in

relation to the synchronous model. This is a result of faster

interactions between multiple EMO processes, in particu-

lar those with different topologies. We have also shown the

impact of merging results from multiple topologies on opti-

mization results.

Thus, our main findings are: it is possible to generate run

time predictions to enable rescheduling of a multi-cluster

application using a simple and practical approach with 7%

error; and the asynchronous model for multi-objective evo-

lutionary computations not only executes faster but also

produces better optimization solutions than its synchronous

counterpart. As future work, we will investigate reschedul-

ing for other multi-cluster applications.

Acknowledgments

We thank Marcos Dias de Assunção and Mukaddim

Pathan for their comments on this paper. Experiments pre-

sented in this paper were carried out using the Grid’5000 ex-

perimental testbed, being developed under the INRIA AL-

ADDIN development action with support from CNRS, RE-

NATER and several Universities as well as other funding

bodies (see https://www.grid5000.fr). This work is partially

supported by research grants from the Australian Research

Council (ARC) and Australian Dept. of Innovation, Indus-

try, Science and Research (DIISR). It is also partially sup-

ported by U.S.A. NSF CAREER CNS Grant No: 0448407.

References

[1] H. E. Bal, A. Plaat, M. G. Bakker, P. Dozy, and R. F. H. Hof-

man. Optimizing parallel applications for wide-area clus-

ters. In Proc. of the 12th International Parallel Process-

ing Symposium / 9th Symposium on Parallel and Distributed

Processing (IPPS/SPDP ’98), 1998.
[2] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail,

M. Faerman, S. M. Figueira, J. Hayes, G. Obertelli, J. M.

Schopf, G. Shao, S. Smallen, N. T. Spring, A. Su, and

D. Zagorodnov. Adaptive computing on the grid using ap-

ples. IEEE Transactions on Parallel and Distributed Sys-

tems, 14(4):369–382, 2003.
[3] K. Czajkowski, I. Foster, and C. Kesselman. Resource

co-allocation in computational grids. In Proc. of the 8th

HPDC’99, pages 219–228, Redondo Beach, USA, 1999.
[4] K. Deb. Multi-Objective Optimization Using Evolutionary

Algorithms. John Wiley & Sons, 2001.
[5] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable

test problems for evolutionary multiobjective optimization.

Evolutonary Multiobjective Optmization, 2005.

[6] T. J. Desell, B. K. Szymanski, and C. A. Varela. Asyn-

chronous genetic search for scientific modeling on large-

scale heterogeneous environments. In Proceedings of the

17th Heterogeneity in Computing Workshop (HCW’08), in

conjuction with 22nd IEEE International Symposium on

Parallel and Distributed Processing (IPDPS’08), 2008.

[7] E. Elmroth and J. Tordsson. A standards-based grid resource

brokering service supporting advance reservations, coalloca-

tion and cross-grid interoperability. Concurrency and Com-

putation: Practice and Experience (to appear), 2009.

[8] C. Ernemann, V. Hamscher, U. Schwiegelshohn,

R. Yahyapour, and A. Streit. On advantages of grid

computing for parallel job scheduling. In Proc. of the 2nd

CCGrid, pages 39–, Berlin, Germany, 2002.

[9] S. A. Jarvis, D. P. Spooner, H. N. L. C. Keung, J. Cao,

S. Saini, and G. R. Nudd. Performance prediction and its

use in parallel and distributed computing systems. Future

Generation Computer Systems, 22(7):745–754, 2006.

[10] M. Kirley and R. Stewart. Multiobjective evolutionary al-

gorithms on complex networks. In Proceedings of 4th In-

ternational Conference Evolutionary Multi-Criterion Opti-

mization, Lecture Notes Computer Science 4403, 2007.

[11] A. W. Mu’alem and D. G. Feitelson. Utilization, predictabil-

ity, workloads, and user runtime estimates in scheduling the

IBM SP2 with backfilling. IEEE Transactions on Parallel

and Distributed Systems, 12(6):529–543, 2001.

[12] M. A. S. Netto and R. Buyya. Rescheduling co-allocation re-

quests based on flexible advance reservations and processor

remapping. In Proc. of 9th IEEE/ACM International Confer-

ence on Grid Computing (GRID’08), Tsukuba, Japan, 2008.

[13] M. A. S. Netto and R. Buyya. Offer-based scheduling

of deadline-constrained bag-of-tasks applications for utility

computing systems. In Proc. of the 18th International Het-

erogeneity in Computing Workshop (HCW’09), in conj. with

the 23rd IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS’09), Rome, Italy, 2009.

[14] G. Romanazzi and P. K. Jimack. Parallel performance pre-

diction for numerical codes in a multi-cluster environment.

In Proc. of the 2008 International Multiconference on Comp.

Science and Information Technology (IMCSIT’08), 2008.

[15] H. A. Sanjay and S. S. Vadhiyar. Performance modeling of

parallel applications for grid scheduling. Journal of Parallel

and Distributed Computing, 68(8):1135–1145, 2008.

[16] D. Tsafrir, Y. Etsion, and D. Feitelson. Backfilling using

system-generated predictions rather than user runtime esti-

mates. IEEE Transactions on Parallel and Distributed Sys-

tems, 18(6):789–803, 2007.

[17] C. Vecchiola, M. Kirley, and R. Buyya. Multi-objective

problem solving with offspring on enterprise clouds. In

Proc. of the 10th International Conf. on High-Performance

Computing in Asia-Pacific Region (HPC Asia’09), 2009.

[18] L. T. Yang, X. Ma, and F. Mueller. Cross-platform perfor-

mance prediction of parallel applications using partial exe-

cution. In Proc. of the ACM/IEEE SC’05, 2005.

[19] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G.

da Fonseca. Performance assessment of multiobjective op-

timizers: An analysis and review. IEEE Transactions on

Evolutionary Computation, 7(2):117–132, 2003.


