
Reliability-Driven Reputation Based Scheduling for Public-Resource Computing
Using GA

Xiaofeng Wang#1, Chee Shin Yeo*1, Rajkumar Buyya*2, Jinshu Su# 2

#College of Computer, National University of Defence Technology
Changsha, 410073, Hunan, China

{xf_wang1, sjs2}@nudt.edu.cn
*GRIDS Laboratory, Department of Computer Science and Software Engineering

The University of Melbourne, VIC 3010, Australia
 {csyeo1, raj2}@csse.unimelb.edu.au

Abstract— For an application in public-resource
computing environments, providing reliable scheduling
based on resource reliability evaluation is becoming
increasingly important. Most existing reputation models
used for reliability evaluation ignore the time influence.
And very few works use a robust genetic algorithm to
optimize both time and reliability for a workflow
application. Hence, in this paper, we propose the
reliability-driven (RD) reputation, which is time
dependent and can be used to evaluate a task’s reliability
directly using the exponential failure model. Based on
the RD reputation, we also propose Knowledge-Based
Genetic Algorithm (KBGA) to optimize both time and
reliability for a workflow application. KBGA uses
heuristics to accelerate the evolution process without
giving invalid solutions. Our experiments show that the
RD reputation can improve the reliability of a workflow
application with more accurate reputation, while the
KBGA can evolve to better scheduling solutions more
quickly than traditional genetic algorithms.

Keywords— reliability, reputation, workflow
scheduling, genetic algorithm, heuristic
1. Introduction

Public-resource computing which combines elements
of Peer-to-Peer (P2P) and Grid computing is an
important technology, and is used in many applications
such as SETI@Home and BOINC [3]. Usually, public-
resource computing comprises a large number of
unsupervised resources which have no prior trust and are
more susceptible to unreliability. Hence, many factors
may lead to failures for an application. For example, a
resource may be overloaded, slow connected,
misconfigured or malicious. Thus, in public-resource
computing, the scheduling of an application must also
account for reliability, besides execution time (makespan)
which is normally considered. To enable reliable
scheduling, two important issues need to be considered:
(i) how to evaluate a resource’s reliability and (ii) how to
perform reliable scheduling based on the resource’s
reliability information.

Reputation systems are commonly used to evaluate a
resource’s reliability [1,2,9,11,13]. But, most existing
reputation systems have two problems. Firstly, from the
resource perspective, most reputation models [1,2,9,11]
evaluate a resource’s reputation according to its ratio of
successfully completed tasks. They do not consider the
influence of the task’s runtime (size). For example, peer
A has a higher task failure rate (task failures per unit
time) than peer B, so peer B should have a better
reputation. But, traditional reputation models will instead
predict a better reputation for peer A when peer A
executes more short runtime tasks and peer B executes
more tasks with longer runtime. This is because peer A
may complete more short tasks successfully than peer B.
Secondly, from the task perspective, existing reputation
models assigned the same reliability (success probability)
[1,13] to all the tasks on a resource based on the
resource’s reputation. But, the longer a task runs on an
unreliable resource, the lower success probability it
should have.

Given the resource reliability information, it is known
to be a NP-hard problem to optimize both makespan and
reliability for a workflow application with task
dependencies [19]. Several list heuristics have been
proposed for this problem in non-genetic algorithms
[7,15,16]. Usually, genetic algorithms (GAs) can provide
better quality solutions than list heuristics [6,12].
Although GA is more time consuming, it is acceptable
for applications with long runtime. Moreover, the speed
of GA can be accelerated by adopting parallel genetic
algorithm technology [14]. Currently, bi-objective
genetic algorithm (BGA) [17] is the only GA that we
know can give both makespan and reliability optimized
scheduling solutions for workflow applications. But
BGA may give invalid solutions which violate the
dependence between tasks. In addition, most GAs
[8,10,17] evolve the scheduling solutions randomly,
which may lead to slow convergence of the algorithm.

In this paper, we propose the novel reliability-driven
(RD) reputation model for resource reliability evaluation.
RD reputation considers the runtime of tasks by using
the resource’s task failure rate (task failures per unit time)

2009 International Conference on Advanced Information Networking and Applications

1550-445X/09 $25.00 © 2009 IEEE

DOI 10.1109/AINA.2009.21

411

to define the reputation. It also provides a real time
reputation that can be used to evaluate a task’s reliability
directly using the exponential failure model. Based on
RD reputation, we then define the reliability-driven
scheduling problem and two scheduling heuristics which
aim to optimize makespan and reliability for a workflow
application. Finally, we design the knowledge-based
genetic algorithm (KBGA) to provide scheduling
solutions. KBGA evolves the task execution order
according to the task’s importance value, so that the
scheduling will not violate the dependency between
tasks. The mutation of KBGA has two operators namely
swapping mutation and reassigning mutation which
evolve the solutions intelligently based on our heuristics.

The remainder of this paper is organized as follows.
Section 2 introduces related work. Section 3 presents the
scheduling system model. Section 4 defines the RD
reputation and its calculation algorithm. Section 5
defines the scheduling problem and two heuristics, while
KBGA is presented in Section 6. Experimental results
are presented in Section 7, followed by the conclusions
in Section 8.

2. Related Work
The real time resource reliability can be monitored by

the resource’s reputation, which can be defined as the
probability that the resource can deliver the expected
utility service [2]. For P2P systems, two popular
reputations EigenTrust [9] and PowerTrust [11] were
designed. They compute the local trust value based on
the normalized number of successful transactions
between two participants. For public-resource computing
systems, Sonnek et al. [1] calculated a worker’s
reliability as the ratio of correct responses. Neither the
normalized number nor the ratio of correct responses
considered the time influence. Song et al. [13] used
fuzzy logic to evaluate the reputation. Although task
runtime is included in their model, they did not specify
how the task runtime affects the reputation. The time
related performance can also be evaluated by the
resource availability [4]. But it focused on the hardware
analysis, not including the task level behaviour analysis.
Moreover, most existing works did not give methods or
algorithms to predict the real time task failure rate for a
resource, which is needed for task scheduling. However,
our reliability-driven reputation is specially defined to be
time dependent, and our reputation calculation algorithm
can provide a real time failure rate evaluation for a
resource.

Optimizing both makespan and reliability for a
workflow application is known to be a NP-hard problem.
Many list heuristics have been proposed [7,15,16].
Dongarra et al. [15] proved that tasks should be
scheduled to the node with the minimum multiplication
value of the instruction execution time γ and reliability λ.
Marek et al. [7] proposed a general bi-criteria scheduling

heuristic which divides the scheduling into primary and
secondary scheduling. Generally, a genetic algorithm can
give better scheduling solutions than list heuristics [12].
Dogan et al. proposed a bi-objective genetic algorithm
(BGA) for workflow applications [17]. BGA evolves the
scheduling solutions randomly which may give invalid
solutions violating the dependency between tasks. Wang
et al. [10] represented a scheduling solution as two
strings: the task-resource assignment string and the task
execution order string. Although this method can solve
the invalid solution problem, they did not consider
reliability. Most existing GAs [8,10,17] also evolve the
scheduling solutions randomly, which may lead to slow
convergence of the algorithm. In contrast, our KBGA
evolves the task execution order according to the task’s
importance value and mutates a solution based on our
two heuristics. Thus, our KBGA can evolve the
scheduling solutions intelligent without giving invalid
solutions.

3. Models and Assumptions
In the typical public-resource computing model [1] as

shown in Fig. 1, there is a central server which assigns
jobs submitted by the clients to the resource providers.
We model a workflow job as a Directed Acyclic Graph
(DAG):),(EVJob = . V is the set of nodes

)1(nivi ≤≤ which denotes the tasks of the workflow
job. E is the set of edges)1)(,(njijie ≤<≤ which
represents the dependence between tasks iv and jv ,

iv is the parent task and jv is the child task. For each

task node iv , its weight iv is the number of instructions
of this task which is assumed to be known using
compiling technology [15]. The length of a path in the
DAG is the sum of the weights of all nodes along the
path.

Fig. 1. System Model.

There are some resource volunteers in the system,
which are not centrally controlled and will join or leave
the system dynamically. Let },{ 21 mrrrR = be the m

resources available in the system. Each resource ir is
associated with two values: irdr , the resource’s RD

reputation and iγ , the resource’s computing speed

412

illustrated by unitary instruction execution time (i.e. the
time to execute one instruction). Given the resource’s
information, the central server can schedule the
workflow job. Let RVM →: denotes the mapping
function, and then jriM =)(means task iv is assigned to
resource jr .

We assume that the central server can only schedule at
most one task to one resource at any time. We also
assume that the central server can monitor the task
execution, hence if a task successfully finishes or fails
before completion, the server can detect it and send a
reputation report. Several technologies have been
proposed to deal with this problem such as checkpoint
and quizzes verification [18].

4. Reliability Evaluation as Reputation
In public-resource computing, many discrete events

may lead to failures of an application such as non-
availability of required services, overloaded resource
conditions and malicious activities. All these events are
independent and may happen randomly, hence we use
the commonly used Poisson Distribution [15,16,17] to
model the failure of a resource provider. The failure
density function is)0()(≥= − tetf tλλ , where λ is the
failure rate of a resource. Let num_fails be the number of
failures within a resource during the job runtime period
of run_time. We can compute the failure rate by
Equation 1 which is the inverse of Mean Time To
Failure (MTTF).

timerun
failsnum

MTTFdxxe x _
_11

0

===
∫

∞ −λλ
λ . (1)

To enable reliable scheduling, the resource’s real time
failure rate should be monitored. Although traditional
reputation systems can be used to monitor the resource’s
reliability, they neither predict the failure rate for a
resource directly nor consider the time influence. Here,
our time dependent reputation is directly related to the
failure rate, which can be defined as:

Reliability-Driven (RD) Reputation (irdr) of a resource

ir is the generally said or believed probability of task
failure per unit time, with which the resource provider
will fail to complete the tasks assigned to it.

4.1 Calculation of Real time RD Reputation
A resource’s RD reputation represents its real time

failure rate λ introduced above. To maintain the RD
reputation, we divide the successive time into time
intervals which last a window time windowT . For each
time interval, the server maintains a reputation statistic

),,,(_ iiiii cruntimefsstarepu = for each resource ir .
The variables is and if are the start and finish times for

an interval respectively, iruntime is the total CPU time

that resource ir donates for task execution in the interval,

and ic is the number of failures experienced by tasks.
Algorithm 1 shows the RD reputation calculation
algorithm. It begins with initializing each resource’s
reputation statistic istarepu _ for the first time interval
(line 1~6).

Let us assume that the algorithm comes to time
interval it for resource ir . After a task jv assigned to

resource ir successfully finishes or fails, the server gives

a reputation report),,(i
j

i
j

i
j

i
j cfstestimony = , where i

js

and i
jf are the start and finish times of task jv

respectively, and i
jc is the number of failures during this

task. If a task fails, we simply assign i
jc to be 1,

otherwise it is 0. The server uses this report to update the
reputation statistic istarepu _ (line 9~11).

After each update of the reputation statistic
istarepu _ , a real time statistical failure rate

statistic
i

λ for resource ir can be computed using Equation

1. Here, the whole length of the current time interval
is ii sf − . During the iruntime of the resource’s donated
task execution time in the current interval, the resource
has ic task failures. During the remaining
time iii runtimesf −− in the current interval, the
resource is assumed to work with a reputation observed
in the last time interval 1−it . Thus the assumed number
of task failures for the remaining time in the current
interval is)(1

iii
t

i runtimesfrdr i −−− , where 1−it
irdr

is the recorded RD reputation for resource ir in the last
time interval 1−it . And we can get the real time statistic
failure rate by:

ii

iii
t
iistatistic

sf
runtimesfrdrc i

i −
−−+

=
−)(1

λ . (2)

The reputation should decay over time, thus the real
time RD reputation for resource ir in the current time
interval it can be defined as:

)10(,)1(1 <≤−+⋅= − αλαα statistic
i

t
ii

irdrrdr (3)
where α is the decay factor. If α is zero, the real time RD
reputation will be equal to statistic

i
λ , which means it is

totally decided by the current statistical failure rate.

413

At the end of the current time interval it , the real

time RD reputation irdr is recorded as it
irdr for

resource ir (line 16), and the server starts another
reputation statistic for the next time interval 1+it (line
17~19). For the initial time interval, we assume that the
RD reputation 0

irdr for each resource ir is initialrdr (line

2). initialrdr is the initial RD reputation for all the
resources. It should be set to a relatively high failure rate.
In this way, it gives resource providers incentives to
supply good quality services to improve their reputation.

Algorithm 1 RD Reputation Calculation Algorithm

1 for each resource ir do
2 initial

i rdrrdrrdr
i

== 0

3 1←it
4 timecurrentfs ii _==
5 0 ;0 ←← ii cruntime
6 end for
7 while there is a reputation record i

jtestimony do

8 if (windowsi
i
j Tsf +<) then //current interval

9 i
jii ccc +←

10)(i
j

i
jii sfruntimeruntime −+←

11),max(i
i
ji fff ←

12 Remove the record i
jtestimony

13 Compute statistic
i

λ by Equation 2

14 Compute irdr by Equation 3
15 else //next interval
16 i

t
i rdrrdr i ←

17 1+← ii tt
18 windowsiii Tsfs +==
19 0 ;0 ←← ii cruntime
20 end if
21 end while

5. Reliability-Driven Scheduling Problem
In this section, the reliability-driven scheduling

problem based on RD reputation is formalized first.
Then two heuristics are defined for genetic algorithms to
improve the scheduling solutions.

5.1 Problem Representation
In a workflow application, each task could be

executed only after all its parent tasks have been
completed. Thus the available start time for a task iv is:

e
j

Eije
avail
i tt

∈
=

),(
max , (4)

where e
jt is the end time for task jv . If task iv has no

parent tasks, its available starting time is 0. Let function
)(jridle be the time when resource jr is idle. Then the

beginning and ending times of task iv can be defined as:

jji
b
i

e
i

avail
i

b
i

rM(i)wherevtt

iMidlett

=+=

=

))}((,max{

γ
, (5)

where)(iM is the resource to which task iv is assigned,

and jγ is the instruction speed of resource jr . Let j
st be

the time when resource jr finishes all the tasks assigned
to it in scheduling S, which can be defined as:

}{max)(|
e
iriMi

j
s tt

j== . (6)

The reliability of a workflow application is the
probability that all its tasks complete successfully. It can
be given by the probability that all the resources remain
functional until all the tasks assigned to it are completed
[15]. Since irdr represents the failure rate for

resource ir , the probability that resource ir can
successfully complete all its tasks in scheduling S is

i
i
s rdrti

s eR ⋅−= . Thus the success probability sR for
an application in scheduling S can be computed as the
product of all i

sR , which is illustrated in Equation 7. We
can see that to maximize the reliability, we need to
minimize the failure factor i

i

s

m

i rdrtSfal 1)(=∑= .

i
i
s

m
i rdrt

m

i

i
ss e RR ⋅∑−

=

=∏ == 1

1
. (7)

The reliability-driven scheduling of a workflow
application is to maximize the reliability and minimize
the makespan for the application within the time
constraint of the deadline D. Therefore the scheduling
problem can be formalized as:

DStime

tStime

rdrtSfal

i
s

Rr

m

i
i

i
s

i

<

=

⋅=

∈

=
∑

)(

)(max)(

)()(

Subject to

Minimize

1
 Minimize

 . (8)

5.2 Heuristic rules
To maximize the reliability, Heuristic 1 can be applied

[15]. It has been proved that to maximize the reliability,
the task should be scheduled to the resource with
minimal ii rdrγ whenever it is possible.

Heuristic 1

414

Let S be a schedule where all the tasks are assigned to a
resource with minimum ii rdrγ . Then any schedule

SS ≠′ with reliability of sR ′ is such that ss RR <′ .
To minimize the makespan for an application, we

should give higher priority to tasks that can start earlier
and to tasks that have a bigger influence to the makespan
of the application. Thus the second heuristic can be
defined as:
Heuristic 2
Let the importance of a task iv be the length of the
longest path beginning from the task in the DAG graph,
which can be denoted as:

⎪⎩

⎪
⎨
⎧

+
∉∀

=
∈

otherwisejimptv
Ejiejv

iimpt
Ejie

i

i

)(max
),(,

)(
),(

. (9)

And the task iv ’s priority)(ip is:

)))((,max()()()(iMidletiimptEip avail
i−⋅= γ , (10)

where)(γE is the mean instruction speed of all resources.
Then, if there are two tasks scheduled to the same
resource, the one with the higher priority should be
scheduled first.

6. Reliability-driven Scheduling using
Genetic Algorithm

For the scheduling problem of workflow applications,
a GA can usually give better solutions than list heuristics
[12]. A typical GA consists of the following steps: (1)
create an initial population consisting of randomly
generated solutions which are also called chromosomes;
(2) evaluate the fitness of each solution and remove poor
solutions from the population; (3) generate a new
generation of solutions by applying two evolution
operators, namely crossover and mutation; and (4) repeat
step 2 and 3 until the population converges. In order to
make a GA converge to better solutions more quickly
without giving invalid solutions, we design the
knowledge-based genetic algorithm (KBGA). KBGA
evolves the task execution order according to the task’s
importance value. It also optimizes the typical GA by
applying two new mutation operators based on our two
heuristics. The details of KBGA are presented in the
following sections.

6.1 Chromosome Encoding and Crossover
For workflow applications, a chromosome is a data

structure into which a scheduling solution is encoded.
We use a two-dimensional encoding string [8] to
represent a scheduling solution. As illustrated in Fig. 2c,
one dimension of the string represents the index of
resources, while the other dimension shows the order of
tasks on each resource. The two-dimensional string can
be converted into a one-dimensional string according to

the resource’s index and task’s order. The one-
dimensional string comprises a list of ordered pairs (i, j),
also called a gene. The pair (i, j) denotes task iv is
scheduled to resource jr . The order between tasks in the
one-dimensional string only makes sense when tasks are
scheduled to the same resource.

c) chromosome strings

time

b) real schedulea) workflow example

d) crossover operation

r1

r2

r3

r4

0v

1v

7v3v

2v

5v

4v

6v

(0,1)(3,1)(7,1) (1,2)(6,2) (5,3) (4,4)(2,4)

r1:v0-v3-v7

r2:v1-v6

r3:v5

r4:v4-v2

One-dimensional string

Two-dimensional string before crossover

after crossover

(0,1)(3,1)(7,1)(1,2)(6,2)(5,3)(4,4)(2,4)

(3,1)(4,2)(5,2)(0,3)(1,3)(7,3)(2,4)(6,4)

(0,1)(3,1) (5,2) (1,3)(7,3) (4,4)(2,4)(6,4)
(3,1)(7,1) (1,2)(4,2)(6,2) (0,3)(5,3) (2,4)

2

1

11

2

1

1.5

1
0v

7v

6v5v

4v2v

3v1v

Fig. 2. Encoding and Crossover Example.

The crossover operation creates new chromosomes by
randomly exchanging part genes of the existing
chromosomes. As illustrated in Fig. 2d, our algorithm
performs the crossover operation on the one-dimensional
string as follows: (1) Two chromosomes are randomly
chosen from the current population, and two random
genes are selected from one of the chromosomes; (2) All
the genes between the selected two genes are chosen as
crossover genes, and the resource allocation for all the
tasks related to the crossover genes are exchanged
between the selected two chromosomes; and (3) For each
resource in the two new chromosomes, the tasks
assigned to it are rescheduled in the descending order of
their importance value)(iimpt . In this way, the parent
tasks are always scheduled before their child tasks, thus
avoiding the invalid solution problem [17]. After
crossover, two new offspring are generated by
combining task assignments taken from the two parents.

6.2 Mutation
Typically, a mutation operation changes some of the

genes in a chromosome randomly, which causes the
algorithm to search randomly around the good solutions.
We obtain two new mutation operators, namely
reassigning mutation and swapping mutation. They use
the two defined heuristics to help the algorithm evolve
more directly to the good solutions.

The reassigning mutation improves the reliability for a
scheduling using Heuristic 1. First, it chooses a task in
one scheduling solution randomly. Then it reassigns the
task to a resource with a lower ii rdrγ , and schedules the

415

task order according to its importance value)(iimpt . In
Fig. 3a, task 6v is originally scheduled to

resource 2r whose ii rdrγ is 2. The reassigning mutation

reassigns it to resource 1r with a lower ii rdrγ of 1 as
shown in Fig. 3b. Hence the reliability of the workflow
application has been improved, although the makespan
remains the same.

The swapping mutation improves the makespan for a
scheduling according to Heuristic 2. It randomly chooses
a resource in one scheduling, and compares the priority
of two successive tasks on the resource. It swaps the
execution order of the two tasks if the preceding task has
a lower priority. In Fig. 3a, task 4v is scheduled before

2v because it has a higher importance value, but has a
lower priority. Therefore the swapping mutation
exchanges their execution order. Fig. 3c shows the new
scheduling where the makespan of the application has
been reduced.

22,12 == rdrγ

5.1)2(=h1)4(=h

0v

1v

7v3v

2v

5v

4v

6v

11,11 == rdrγ

0v

1v

7v3v

2v

5v

4v

6v

6v

0v

1v

7v3v

2v

5v

4v

6v

Fig. 3. Mutation Operation.

6.3 Evaluation
In the evolutionary-based optimization methods,

fitness functions are used to measure the quality of a
solution according to the optimization objectives. As our
goal is to optimize the reliability and makespan for a
workflow application under the time constraint, the
fitness value)(sf for a scheduling solution S can be

defined as:

 if 1
 if 0

)(where

)1()(

)()()(

21

minTimemaxTime
minTime

2minFalmaxFal
minFal

1

⎩
⎨
⎧

>
<

=

=++

⋅+⋅=
−
−

−
−

Dtime(s)
Dtime(s)

sf

sf

stimesfalsf

penalty

penalty ωω
ωω

. (11)

Here, maxFal and minFal are the maximum and
minimum failure factors for the solutions in the current
population respectively, while maxTime and minTime

are the maximum and minimum makespan respectively.
The first two elements of)(sf encourage the algorithm

to choose the solutions with minimum failure factor and
minimum makespan. Both these two objectives are
assigned a weight according to the user’s trade-off
requirement. The third element)(sf penalty is to handle

the time constraint. If the makespan of a scheduling
exceeds the time deadline D, the function will give a
penalty to its fitness value.

7. Experiments
We use GridSim [5] to simulate a public-resource

computing environment for our experiments. There are
200 resource providers in the system. They donate
various numbers of CPU cycles whose speed is

uniformly distributed in [310,4105 −−×] milliseconds per
instruction. The actual failure rates for resource
providers are assumed to be uniformly distributed from

h/10 3− ψto h/10 4− [17]. The structure of a workflow
application can be categorized into balanced and
unbalanced [8]. Like other previous works [8,16,17], we
use a random DAG generator to simulate the application.
Our simulated workflow application consists of 300
tasks. The mean outdegree for a task node is 2. The
task’s size is chosen uniformly between 3105 × Million
instructions (MI) and MI1072 5× . The reputation decay
factor is 0.2, while the fitness evaluation weight 1ω
and 2ω are both set to be 0.5 so that the algorithm gives
the same priority to both reliability and makespan.

a) RD reputation compared with traditional
reputation: The traditional reputation model uses the
ratio of successfully completed tasks as a resource’s
reputation. To compare the difference between RD and
traditional reputations, we test the two reputations under
several extreme conditions: the size of all the test tasks
in the system are {12,24,36,48,60,72} MI105×
respectively, the resource provider has a high failure rate
of h/10 3− or a low failure rate of h/10 4− , and the
resource provider donates resources of a fast speed of
1000MIPS or a slow speed 500MIPS. To facilitate the
comparison, we derive the task failure probabilities for a
medium-sized task based on the traditional and RD
reputation. Fig. 4 shows the two failure probabilities
normalized by the standard task failure probability based
on the resource’s actual failure rate. The task failure
probabilities based on RD reputation remain consistently
close to the standard task failure probability. The
traditional reputation based task failure probability gets
close to the standard task failure probability only when
the test tasks in the system also have the medium task
size. Otherwise, the failure probability also increases as
the size of the test tasks increases. And when the
resources have a faster speed (Fig. 4a) or lower failure

416

rate (Fig. 4b), the task failure probability based on
traditional reputation will have a greater deviation from
the correct one. This is because the normalized failure
probability based on traditional reputation obeys a
negative exponential function. The lower failure rate and
faster speed will contribute to a smaller exponent which
results in greater deviation.

b) RD reputation’s influence to scheduling: To
compare the scheduling results based on traditional and
RD reputation, half of the resources in the simulation
have the actual failure rate, while the other half of the
resources have either RD reputation based failure rate or
traditional reputation based task failure probability. Fig.

5 shows both the traditional reputation based scheduling
and RD reputation based scheduling have almost the
same makespan under various conditions. The RD
reputation based scheduling also has a consistently lower
failure probability, while the traditional reputation based
scheduling has a higher failure probability, especially
when the reputations are computed under conditions
when the task’s size is very small or very large. This is
because under such conditions, the traditional reputation
gives a different resource failure rate from the standard
one, and tasks are scheduled to more unreliable
resources.

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

12 24 36 48 60 72
Task Size (E+5 MI)

N
or

m
al

iz
ed

 F
ai

lu
re

 P
ro

ba
bi

lit
y

RD_Fast
RD_Slow
Traditional_Fast
Traditional_Slow

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

12 24 36 48 60 72

Task Size (E+5 MI)
N

or
m

al
iz

ed
 F

ai
lu

re
 P

ro
ba

bi
lit

y

RD_High
RD_Low
Traditional_High
Traditional_Low

 a. Varying Resource Speed b. Varying Resource Failure Rate

Fig. 4. Normalized failure probability of a medium-sized task based on traditional reputation and RD reputation.

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

12 24 36 48 60 72
Task Size (E+5 MI)

Fa
ilu

re
 P

ro
ba

bi
lit

y

RD_Low
Traditional_Low
RD_High
Traditional_High

1.60

1.65

1.70

1.75

1.80

12 24 36 48 60 72
Task Size (E+5 MI)

N
or

m
al

iz
ed

 M
ak

es
pa

n RD
Traditional

Fig. 5. Failure probability and makespan of a workflow application based on traditional reputation and RD reputation.

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

0 100 200 300 400 500 600 700

Th
ou

sa
nd

s

Number of Iterations

M
ak

es
pa

n
(S

ec
on

ds
) BGA

KBGA

0.60

0.65

0.70

0.75

0.80

0 100 200 300 400 500 600

Number of Iterations

R
el

ia
bi

lit
y

BGA

KBGA

Fig. 6. Makespan and reliability given by BGA and KBGA in terms of iterations.

417

c) KBGA’s performance: We compare KBGA with
BGA [17] which also optimizes makespan and reliability
for an application by evolving solutions randomly. The
average makespan and reliability of all the solutions are
computed after each iteration. Fig. 6 shows KBGA
improves the makespan and the reliability for an
application more quickly than BGA. After some
iterations, it becomes very difficult for BGA to find a
better solution by randomly evolving solutions, while it
is easier for KBGA to evolve with heuristics. At the end
of the algorithm, KBGA can give a better quality
solution than BGA, in particular, the heuristics of KBGA
can optimize reliability more than makespan.

8. Conclusions
In this paper, we studied the reliability-driven

scheduling problem in public-resource computing
environments. We proposed the time-dependent RD
reputation for resource reliability evaluation. The RD
reputation uses the failure rate to define a resource’s
reputation so that it can be used to evaluate a task’s
reliability directly using the exponential failure model.
Our RD reputation calculation algorithm can also
monitor the real-time changes of the reputation
dynamically.

Based on the RD reputation, we defined the
reliability-driven scheduling problem and two heuristics
that aim to optimize makespan and reliability for a
workflow application. We proposed the KBGA to evolve
the scheduling solutions intelligently using the heuristics.
KBGA addresses the invalid solution problem by
evolving the order between tasks according to their
importance value. Simulation results show that the RD
reputation model can improve the reliability of a
workflow application with more accurate reputation. The
KBGA algorithm also outperforms the typical GA in
evolving scheduling solutions.

Acknowledgments
Xiaofeng’s visit to the GRIDS Lab at the University of
Melbourne is supported by the Chinese Scholarship
Council. We thank Marco A. S. Netto and Sungjin Choi
for their comments.

References
[1] J. Sonnek, A. Chandra, and J. Weissman. Adaptive

Reputation-Based Scheduling on Unreliable Distributed
Infrastructures. IEEE Transactions on Parallel and
Distributed Systems, 18(11):1151-1564, 2007.

[2] A. Jøsang, R. Ismail, and C Boyd. A Survey of Trust and
Reputation Systems for Online Service Provision.
Decision Support Systems, 43(2):618-644, 2007.

[3] I. Foster, and A. Iamnitchi. On Death, Taxes, and the
Convergence of Peer-to-Peer and Grid Computing. 2nd
Int’l. Workshop on P2P Systems, 2003.

[4] D. Kondo, G. Fedak, F. Cappello, A.A. Chien, and H.
Casanova: Characterizing resource availability in

enterprise desktop grids. Future Generation Comp. Syst.
23(7):888-903, 2007.

[5] A. Sulistio, G. Poduval, R. Buyya, and C. Tham, On
Incorporating Differentiated Levels of Network Service
into GridSim, Future Generation Computer Systems
(FGCS), 23(4):606-615, 2007.

[6] X. Wang, R. Buyya and J. Su, Reliability-Oriented
Genetic Algorithm for Workflow Applications Using
Max-Min Strategy, 9th IEEE International Symposium
on Cluster Computing and the Grid, 2009.

[7] M. Wieczorek, S. Podlipnig, R. Prodan, and T. Fahringer.
Bi-criteria Scheduling of Scientific Workflows for the
Grid. IEEE Symposium on Cluster Computing and the
Grid, May, 2008.

[8] J. Yu, M. Kirley, and R. Buyya, Multi-objective Planning
for Workflow Execution on Grids, IEEE/ACM
Conference on Grid Computing, 2007.

[9] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The
Eigentrust Algorithm for Reputation Management in P2P
Networks,” ACM World Wide Web Conf. (WWW ’03),
May, 2003.

[10] L. Wang, H. J. Siegel, V. P. Roychowdhury, et al., Task
matching and scheduling in heterogeneous computing
environments using a genetic-algorithm-based approach,
J. Parallel Distrib. Comput. 47(1):8-22, 1997.

[11] R. Zhou and K. Hwang, "PowerTrust: A Robust and
Scalable Reputation System for Trusted Peer-to-Peer
Computing, IEEE Trans. on Parallel and Distributed
Systems, 18(5):460-473, 2006.

[12] T. D. Braun, H. J. Siegel, N. Beck et al, A comparison of
eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed
computing systems, J. of Parallel and Distributed
Computing, 61(6):810-837, 2001.

[13] S. Song, K. Hwang, and Y.K. Kwok, Risk-Resilient
Heuristics and Genetic Algorithms for Security-Assured
Grid Job Scheduling, IEEE Trans. on Computers,
55(6):703-719, 2006.

[14] D. Lim, Y. Ong, Y. Jin, B. Sendhoff, B. Lee, Efficient
Hierarchical Parallel Genetic Algorithms using Grid
computing, Future Generation Computer Systems,
23(4):658-670, 2007.

[15] J. Dongarra, E. Jeannot, E. Saule, and Z. Shi. Bi-
objective Scheduling Algorithms for Optimizing
Makespan and Reliability on Heterogeneous Systems.
ACM Symp. on Parallelism in Algorithms and
Architectures 2007.

[16] M. Hakem, and F. Butelle, Reliability and Scheduling on
Systems Subject to Failures. International Conference on
Parallel Processing(ICPP), Sept. 2007.

[17] A. Dogan and F. Ozguner. Bi-objective Scheduling
Algorithms for Execution Time-Reliability Trade-off in
Heterogeneous Computing Systems. The Computer
Journal. 48(3):300-314, 2005.

[18] S. Zhao and V. Lo, Result Verification and Trust-based
Scheduling in Open Peer-to-Peer Cycle Sharing systems,
IEEE Conference on Peer-to-Peer Systems, Sept. 2005.

[19] R. Duan, R. Prodan, and T. Fahringer, Performance and
Cost Optimization for Multiple Large-scale Grid
Workflow Applications, ACM/IEEE Conference on
Supercomputing, November, 2007

418

