
Critical-Path and Priority based Algorithms for Scheduling Workflows with
Parameter Sweep Tasks on Global Grids

Tianchi Ma and Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
Email:{tcma,raj}@cs.mu.oz.au

Abstract

Parameter-sweep has been widely adopted in large num-
bers of scientific applications. Parameter-sweep fea-
tures need to be incorporated into Grid workflows so
as to increase the scale and scope of such applica-
tions. New scheduling mechanisms and algorithms are
required to provide optimized policy for resource allo-
cation and task arrangement in such a case. This pa-
per addresses scheduling sequential parameter-sweep
tasks in a fine-grained manner. The optimization is pro-
duced by pipelining the subtasks and dispatching each of
them onto well-selected resources. Two types of schedul-
ing algorithms are discussed and customized to adapt the
characteristics of parameter-sweep, as well as their effec-
tiveness has been compared under multifarious scenar-
ios.

1. Introduction

The emergence of Grid computing has largely expanded
the scale of scientific applications [1]. Among the program-
ming models designed for Grid computing, combining de-
pendent tasks into workflow systems [2] has received atten-
tion in recent past.

Related research efforts on workflow management
have focused on how to define and manipulate the work-
flow model, compose distributed software components
and data/documents together, as well as how to re-
duce the global execution time or to fully utilize avail-
able resources to achieve stated objectives [3]. However,
within Grid scale scientific applications, the presence of re-
peated tasks have motivated introduction for mechanism to
group and manage such tasks. Let us consider the follow-
ing scenario:

Suppose a data-analysis application consists of three
steps. Firstly, the experiments will gather data from a re-

mote sensor array. Each sensor in the array will be required
to collect data under the configuration of specific parame-
ters. Then, the result data will be staged to several data
process centers. These centers will filter the raw data to
structured data, according to the locally deployed knowl-
edge databases on associated computational resources. The
remote filtering operation needs to be divided into smaller
tasks and carried out in parallel – staging it as one work-
load can cause overloading of both the selected computa-
tional resource and the database. At last, the filtered data
will be gathered to a scientific computing visualization clus-
ter for post-processing (e.g. visualization).

Now the scientist is going to establish a workflow in or-
der to automate the experiment. From the designer’s point
of view, the simplest definition is to assign each step as a
single task, hence a (pipeline) task-graph representing the
workflow would be:

Collecting(A)− > Filtering(B)− > V isualization(C)

The taskA andB are collections of one or more subtasks
representing repeated execution of a job. In this case, op-
erations within data collection and filtering tasks are per-
formed over different sets of data. Such individual tasks are
calledparameter-sweeptasks [4].

A characteristic of parameter-sweep task is that there is
no inter-communication between its subtasks. However, it
introduces a new challenge as it requires optimization of
the execution of such parameter-sweep tasks within work-
flow. In a workflow application scenario shown in Figure 1,
it is clear that a subtask in taskB need not wait for all the re-
sults from taskA to be generated before it’s starting. A sub-
task inB can be launched once a certain portion of the re-
sults fromA is available. In this manner, the makespan of
the application execution could be reduced substantially.

In this paper, we focus on the mechanisms and al-
gorithms that implement thefine-grained optimization
mentioned above. We discuss both the static and dy-
namic scheduling methodologies, while extending two

c1 c2 c3

Data Collecting

f1 f2 f3

Data Filtering
f4

Data Visualization

v3

v1

v4

v2

c1

c2

c3

f1

f2

f4

f3

v1

v3

v2

v4
Time

Tasks

A

B

C

Figure 1. Optimizing the example parameter-
sweep workflow.

well-known algorithms and customizing them to achieve
the best effectiveness under task graphs with parameter-
sweep tasks. The extended algorithms, called xDCP
and pM-S, are derived from the existing Dynamic Criti-
cal Path (DCP)[5] and Master-Slave (M-S)[6] algorithms
respectively. The xDCP extends the original DCP in or-
der to support the scheduling among resources with
different capabilities. The pM-S tries to give higher pri-
ority to the sub-task-graph which is estimated to com-
plete earlier. Finally, we analyze the proposed algorithms
by comparing their behaviors under different experimen-
tal scenarios.

The rest of the paper is organized as follows. A for-
mal definition of the optimization problem is presented in
section 2. Section 3 will discuss about the possible opti-
mization toward parameter-sweep tasks in workflow. Exper-
iments and data are given in section 4. Section 5 discusses
the related work. Section 6 presents the conclusion with the
direction for future work.

2. Optimization Problem

2.1. Problem statement

This sub-section gives the formal description of the op-
timization problem.

Let Γ =
⋃K

i=1 Ti be the task space, includingK se-
quential parameter-sweep tasks andN(Ti) refers to the
number of subtasks inTi. Hence, for eachTi, there are
Ti = {tij |j = 1..N(Ti)}. The length of subtasktij is
referred byl(tij), while L(Ti) = {l(tij)|j = 1..N(Ti)}.
For eachi where 1 < i ≤ K, we define the task de-
pendency ofTi: D(Ti) = {d(tij)|j = 1..N(Ti)}, where
d(tij) = {k|t(i−1)k ≺ tij}. The symbol≺ is a newly de-
fined binary relation that≺ (ta, tb) (also marked asta ≺ tb)
means tasktb must be put into execution strictly after the
accomplishment of taskta. Based on the task dependency,
we can define a subtask’s parents and children. The func-

tion Parents(t) : Γ → ⋃K
i=1 T ∗i (whereT ∗i is Ti’s closure)

refers to the set of all the subtasks that subtaskt directly de-
pends on, formally:

Parents(tij) =
{

φ, if i = 1
{t′|t′ ∈ Ti−1, t

′ ≺ tij}, if i 6= 1.

Also we haveChildren(t) : Γ → ⋃K
i=1 T ∗i that

Children(tij) =
{

φ, if i = K
{t′|t′ ∈ Ti+1, tij ≺ t′}, if i 6= K.

The resources are defined corresponding to the tasks. As-
sumeΩ =

⋃K
i=1 Ri to be the resource space, in which

Ri = {rij |j = 1..N(Ri)} refers to the array of resources
specially for running all the subtasks inTi, whereN(Ri)
refers to the number of individual resources in the resource
array. Note the resource here refers tovirtual resource in-
stead of physical resources like clusters or supercomput-
ers with one or more nodes. For physical resources, we
could havef = {<j |j = 1..M} representing the resource
space available. Each virtual resource presents a share of a
physical resource that is available for executing a particular
parameter-sweep task. A physical resource could be shared
by multiple virtual resources, providing different services
to different tasks in the workflow. In the following sections,
the term ”resources” is used to represent virtual resources.

We define the throughput of a single resourcerij to be
marked asp(rij), so that for a subtasktix and one of its cor-
responding resourcesriy, the time forriy to finish tix will
be

ω(tix, riy) =
l(tix)
p(riy)

Let P (Ri) = {p(rij)|j = 1..N(Ri)}.
The optimization lies on the problem of resource queue-

ing. In most cases, the length of resource array will be
much less than the number of subtasks in a parameter-sweep
task. That means, some subtasks are required to be executed
on the same resource. We assume all the resources follow
the rule of exclusive. That is, resources are allocated us-
ing space-shared scheduling policy. All resources are non-
preemptive and exclusive in execution (e.g., using queueing
system such as PBS for managing resources).

Having defined all the related concepts, the problem
statement is defined as follows:

Problem: Given {(Ti, Ri, D(Ti), L(Ti), P (Ri))|i =
1..K}. Select the mappingf(t) : Γ → Ω to mini-
mize Time(Γ, Ω) under the rule-of-exclusive, where
Time(Γ,Ω) refers to the total execution time.

3. Mechanisms and Algorithms

There exist two types of scheduling mechanisms,
namely, static scheduling and dynamic scheduling. In this

section, we discuss the scheduling and optimization un-
der both the two scenarios.

3.1. Static scheduling

The simplest solution of a static schedule is to allocate
all the subtasks in a shuffle way, namely assign tasktij to
ri(j%N(Ri)). However, due to the irregularity of both the
subtasks and the resources, shuffle scheduling might lead to
the inefficient result as less powerful resources may be as-
signed heavy subtasks leading to imbalance in completion
time of various tasks.

Numerous works [8][9] have addressed the topic of static
scheduling of task graphs. However, task graphs/workflows
with parameter-sweep tasks have some special fea-
tures compared to normal task graphs:

1. Subtasks and resources are grouped in layers
(parameter-sweep tasks). A subtasktij is allowed to
be scheduled toRi.

2. There is no dependency between subtasks in the same
layer.

3. Every subtask depends (if there exist dependency) on
only the subtasks in its parent layer, as it is specified in
section 2.

Based on these criteria, we modified the DCP algorithm,
so that it could be adopted well for scheduling workflows
with parameter-sweep tasks. For convenience, we denote
the proposed algorithm byxDCP(extendedDCP).

The DCP algorithm based on the principle of continu-
ously shortening the longest path (also calledcritical path
(CP)) in the task graph, by scheduling tasks in the current
CP to an earlier start time. The algorithm was designed for
scheduling all tasks to the same set of homogeneous re-
sources. However, the workflow scenario we defined in sec-
tion 2 is about scheduling different sets of tasks onto differ-
ent sets of irregular/heterogeneous resources.

To tackle with the above conflict, basically we import the
following extensions into the original DCP algorithm:

1. The initialization of DCP algorithm is to queue all
tasks sequentially in one resource, while leaving other
resources empty. In xDCP, we first initialize the tasks
in a shuffle way. Experiments show that this adjust-
ment can improve the effectiveness of DCP by 30% in
workflows with parameter-sweep tasks.

2. The DCP algorithm uses the termabsolute ear-
liest/latest start time (AEST/ALST), which means
the possible earliest/latest start time of a sub-
task on its current resource. In particular, if a cer-
tain task can have a smaller AEST on resource A
than resource B, then assignment to A will be re-
garded as a better schedule for this task. However,

in a scenario with heterogenous resources, the ex-
ecuting time of the same task on each resource is
different. Therefore we have to use another termab-
solute earliest/latest finish time (AEFT/ALFT)(means
the possible earliest/latest finish time of a sub-
tasks on its current resource) to evaluate the sched-
ule.

3. The DCP algorithm ends if all the tasks have been
scheduled once. However, we found that under work-
flow with parameter-sweep tasks it will deliver an ex-
tra 10%-20% effectiveness if we further run DCP again
on the scheduled result.

4. DCP considers the communication overhead incurred
in implementing the task dependency. However, there
is no inter-process communication between the sub-
tasks of a parameter-sweep task. Therefore we simply
remove the terms in DCP that related to the communi-
cation cost. Also, we removed the deadlock checking
in DCP algorithm according to the nature of parame-
ter sweep tasks.

Now we provide a formal description of the xDCP algo-
rithm. First, we will discuss the definition of the previous
and next subtask of a certain subtask in its resource queue:

In a given resource mappingf(σ) : Γ → Ω, for any sub-
taskt, we have its previous and next subtasks mapped in the
same resource queue. Formally:

Prev(t) =

ψ, if ∀t′ ∈ Γ,@f(t′) = f(t) ∧ t′ ¹ t

t′, if f(t′) = f(t) ∧ t′ ¹ t
∧(∀t′′ ∈ Γ, @t′ ¹ t′′ ¹ t)

Next(t) =

ψ, if ∀t′ ∈ Γ, @f(t′) = f(t) ∧ t ¹ t′

t′, if f(t′) = f(t) ∧ t ¹ t′

∧(∀t′′ ∈ Γ,@t ¹ t′′ ¹ t′)

Then comes the definition ofAEFT, DCPL (dynamic
critical path length) and ALFT (absolute latest finish time):

A subtask can be started only after all its parent sub-
tasks are finished, and all the previous tasks in the same re-
source queue are also finished. The earliest finish time can
be calculated by adding the execution time on the current re-
source onto the earliest start time. In a given resource map-
ping f(σ) : Γ → Ω, the absolute earliest finish time of any
subtaskt, denoted byAEFT (t) is recursively defined as
follows:

AEFT (t) =

0, if t = ψ ∨ (Parents(t) = φ ∧ Prev(t) = ψ)

max{max∀τ∈Parents(t){AEFT (τ) + ω(t, f(t))},
AEFT (Prev(t)) + ω(t, f(t))}, otherwise

The dynamic critical path length of the task graph is another
form for defining the termTime(C,R) in section 2 by us-
ing the AEFT:

DCPL(f, Γ,Ω) = max
τ∈Γ

{AEFT (τ)}

Having the DCPL, we can define the latest finish time of a
subtask. The DCPL is the summation of the execution time
of all the subtasks on the critical path of the task graph.
Therefore, if we want to finish the whole execution by the
time of DCPL, all the subtasks on the critical path should
be finished at exactly their AEFT. The absolute latest fin-
ish time of subtaskt should be no later than the latest start
time of all its children subtasks and its next subtask in the
same resource queue. We define it as:

ALFT (t) =

DCPL(f, Γ,Ω),
if t = ψ ∨ (Childrens(t) = φ ∧Next(t) = ψ)

max{max∀τ∈Children(t){ALFT (τ)− ω(τ, f(τ))},
ALFT (Next(t))− ω(Next(t), f(Next(t)))},

otherwise

The xDCP algorithm is listed below:

1. Shuffle all the subtasks inΓ onto the resources inΩ.
Let DCPL = 0;

2. ∀t ∈ Γ, sett to be unallocated;

3. ∀t ∈ Γ, computeAEFT (t) andALFT (t);

4. Let t be the subtasktij selected fromΓ which, orderly,
follow the three criterions below:

(a) Minimize the value of ALFT (tij) −
AEFT (tij);

(b) Minimize the value ofi;

(c) Minimize the value ofAEFT (tij);

5. ∀r ∈ Ω, selectr and the slot inr’s queue that, assum-
ing t is allocated onto this slot, orderly satisfying:

(a) ALFT (t)−AEFT (Prev(t)) ≥ ω(t, f(t));

(b) Minimize the value ofAEFT (t);

If there exists such a resource and slot, movet onto the
selected slot ofr, or else not move anything;

6. Settij allocated. If∃t ∈ Γ unallocated, goto 3);

7. If DCLP (f, Γ,Ω)/DCLP ∗ 100% < 95%, goto 2);
or else the algorithm ends.

t11

1

t14

1

t12

4

t13

4

t21

4

t24

4

t22

1

t23

1

t31 1 8t32

Figure 2. An example task graph.

3.2. Dynamic scheduling

A most-commonly used dynamic scheduling mechanism
is theMaster-Slave (M-S) model. The M-S model is proven
to be quite efficient under most scenarios. For the work-
flow applications with parameter-sweep tasks, we employ
K masters corresponding toK parameter-sweep tasks. For
each master there are two queues instead of only one queue
in the original M-S model. Initially, all the subtasks are
stored in theUnscheduledqueue. There is another queue
called theReadyqueue. Only subtasks in the Ready queue
can be directly dispatched to slave nodes. At the start of
scheduling, all the subtaskst with Parents(t) = φ can
be put into the Ready queue, and then some of them (on the
head of the Ready queue) will be dispatched. On the accom-
plishment of subtaskt, the master will check all the subtasks
in theChildren(t). We put all the subtasks in the set

UtoR(t) =
{t′|t′ ∈ Children(t) ∧ (∀t′′ ∈ Parents(t′),
@Queue(t′′) = Unscheduled)}

into their Ready queue respectively. There are two threads
for a master. One of them is responsible for dispatching sub-
tasks in the Ready queue onto slaves, while the other is to
stage subtasks from the Unscheduled queue to the Ready
queue.

However, the M-S model will still fail to achieve effec-
tiveness under some cases. Consider the task graph shown
in Figure 2 (with the lengthl(t) of each subtask indicated).
Suppose inR1 = {r11}, R2 = {r21, r22}, R3 = {r31},
where∀r ∈ Ω, p(r) = 1. From Figure 4 we can see that
there should be possibility of a parallelization between the
two subtasks inT1 with the length of 4 and the longest
subtask inT3, namelyt32. However, by following the M-
S model, the master have to execute the subtasks inT1 se-
quentially (because there is only one resource inR1), which
holdst32 from being dispatched earlier (due to its indirect
dependency tot14).

+1 +2 +2

+1

� �
+1

+1

� �
Finished Subtask

Children

Children’s Ancestor

Figure 3. An example of priority calculation.

A priority based mechanism is proposed in this paper
to deal with the above problem. In this mechanism, we as-
sume that it would be effective to bring forward the subtasks
whose children’s ancestors (refer to Figure 3) have been par-
tially finished or already being put into execution. Base on
this assumption, we define the priority of each subtask ac-
cording to how much its children’s ancestors have been fin-
ished.

Before we list the new algorithm, a termAncestors(t)
should be defined, which refers to all the subtasks thatt di-
rectly or indirectly depends on:

Ancestors(t) =
{

φ, if Parents(t) = φ
(
⋃

t′∈Parents(t) Ancestors(t′)) ∪ Parents(t), otherwise

Also the term of the priority and two types of queues: Let
Pri(t) denotes the priority of subtaskt. Let the Ready
queue to be denoted byQR(Ti, 4), the Unscheduled queue
is denoted byQU (Ti, 4), where4 (x, y) is a binary rela-
tion that∀x, y = 1..N(Ti),

Pri(tix) ∗N(Ti)+x < Pri(tiy) ∗N(Ti)+ y ⇔ tix 4 tiy

means lower the value ofPri(t), higher the prior-
ity. For both the queues, thehead subtask is defined as
Head(Q(T, 4)) = t, wheret ∈ T ∧ (∀t′ ∈ T, @t′ 4 t).
The head refers to the subtask with the highest prior-
ity, and will be scheduled first.

The priority of subtasks will be updated on the event
of any subtask being finished. As it is shown in Figure
3, once a subtask has been finished, the master first col-
lects all its children into a set. Then it parses all the ele-
ments of the set. For each children subtask, all its ances-
tors will receive an unit-increment on their priority (namely
Pri(t) = Pri(t) − 1). After the priority adjustment, the
master will retrieve a certain number of tasks, according to
the allocation status, from the head of the Ready queue and
then dispatch them into execution.

The new algorithm, denoted bypM-S, is listed below:

1. ∀t ∈ Γ, P ri(t) = 0. ∀Ti ∈ Γ, QR(Ti,4) = {t|t ∈
Ti ∧ Parents(t) = φ}, QU (Ti, 4) = {t|t ∈ Ti ∧
Parents(t) 6= φ}.

2. For i = 1 to K, do

t11

t12

r
11

r
21

r
22

r
31

r
11

r
21

r
22

r
31

t13

t14

t21 t24

t22 t23

t32

t31

t11
t14

t12

t13

t21 t24

t32

t22 t23

t31

0

5

10

15

20

22

0

5

10

15

M-S model pM-S model

Figure 4. Comparison of the finish time of
subtasks in Figure 2 under M-S model and
pM-S model.

(a) For j = 1 to N(Ri), if QR(Ti, 4) = φ then
break the current for-j-loop; if rij is not empty,
continue the current for-j-loop; or else dispatch
the subtaskHead(QR(Ti, 4)) to the resource
rij .

3. If all subtasks inΓ have been scheduled, then algo-
rithm ends;

4. Wait for the event of any subtask t’s execution being
finished;

5. For each subtaskτ ∈ ⋃
∀t′∈Children(t) Ancestors(t′),

Pri(τ) = Pri(τ)− 1;

6. Stage subtasks inUtoR(t) to their Ready queues re-
spectively, goto 2).

The right part of Figure 4 shows the schedule result pro-
duced by pM-S algorithm. It only costs 15 time units while
the M-S schedule costs 22.

4. Performance evaluation

In this section, we present the comparative evaluation of
static and dynamic algorithms (shuffle, xDCP, M-S and pM-
S).

4.1. Metrics and important factors

Since we use randomly generated task graphs in the ex-
periments with factors discussed in sub-section 4.2, a sta-

tistical analysis will be adopted in this paper by calculating
and presenting the mean value for a large number of scenar-
ios. Basically we have two metrics for this simulation.

Average Scheduling Effectiveness (ASE): The ASE refers
to a ratio (in the format of percentage) between the to-be-
measured algorithm and the shuffle algorithm in terms of
the simulated total execution time of the whole application
after the schedule. Lower the ASE value, higher the effec-
tiveness resulted.

Average Beat-down Time (BDT): A beat-downof an al-
gorithm means the algorithm has produced the best schedul-
ing result out of all the to-be-measured algorithms under
certain task graph. For each experiment we try 30 randomly
generated task graphs. The algorithm which wins the low-
est ASE in the competition is supposed to have the highest
BDT.

There are also some important factors which can affect
the schedule effectiveness:

Range of subtask size (RSS) and of resource through-
put (RRT): The range of subtask size can be presented as
the ratio between the size of the longest subtasks and the
shortest one in the same parameter-sweep task. Let the RSS
value for all the parameter sweep tasks to be the same. RRT
is similar to RRS, substituting the subtask size to resource
throughput. Let the RRT value for all the parameter sweep
tasks to be the same. We set the RSS and RRT as the bound-
ary of generating random task size and resource throughput.
Then we multiply the random value by a base value (each
parameter-sweep task has its own base valuel̄ for task and
p̄ resource respectively), to get the final value of individ-
ual subtask size and resource throughput.

Ratio #Subtask/#Resource (RSR): This ratio will also be
calculated inside the parameter-sweep task. As the value of
RSR increases, the size of resource queue will be also in-
creased.

Number of parameter-sweep tasks (#PST): As the work-
flow has more and more parameter-sweep tasks (namely the
task graph owns more and more layers), the dependency
structure will get more complicated; a shuffle algorithm will
leave more gaps in its output schedule, hence the space for
optimization will be enlarged.

Average number of the dependencies per subtask (ADPS:
This value can be presented as:

ADPS =
∑

i=2..K N(D(Ti))∑
i=2..K N(Ti)

The indexi starts from 2 becauseT1 has no dependency at
all, thus it will not be counted in either the numerator or the
denominator.

Factor #PST RSS RRT RSR ADPS l̄ p̄
#PST 3-12 5 5 5 2 20 10
RSS 5 1-10 5 5 2 20 10
RRT 5 5 1-10 5 2 20 10
RSR 5 5 5 1-10 2 20 10
ADPS 5 5 5 5 1.0-

5.5
20 10

Table 1. The configuration of all the measured
factors.

4.2. Measurement for randomly generated task
graphs

We consider about the randomly generated task graphs.
For fairness, the total number of subtasks is fixed at 512,
although the number of subtasks in each parameter-sweep
tasks might be randomly generated.

For the random task graphs, we observe how the ASE
(Figure 5) and BDT (Figure 6) value varies with the fac-
tors listed above, for the algorithm xDCP, M-S and pM-S.
When we change the value of a factor, the other factors will
remain constant at a default value. The configuration of all
the factors are shown in Table 1. From the Figure 5, we can
conclude:

1. The increment of #PST slightly raises the effectiveness
of algorithm M-S and pM-S, while drops the effective-
ness of algorithm xDCP.

2. The increment of RSS almost has no effect on the ef-
fectiveness of algorithm M-S and pM-S, but slightly
raises the effectiveness of algorithm xDCP.

3. The increment of RRT raises the effectiveness of all
the three algorithms in a large extent.

4. The increment of RSR dramatically raises the effec-
tiveness of all the three algorithms.

5. The increment of ADPS drops the effectiveness of all
the three algorithms, but it affects to the xDCP more
than the other two algorithms.

By comparing algorithms in Figure 6, we find that in
most measured cases, the pM-S will be the best choice for
scheduling. However, under the cases of the #PST and RSR
decreases, or RRT increases to a certain value, or the ADPS
equals to 1, the xDCP may become more effective. That is,
the M-S algorithm is always not the best choice.

5. Related Work

In [10], a dynamic, adaptive algorithm is proposed for
adjusting the scheduling queue in Grid based task farming
applications. The algorithm can keep the queue size to fit

 25

 30

 35

 40

 45

 50

 3 4 5 6 7 8 9 10 11 12

A
S

E
(%

)

PST

ASE-PST

pM-S
M-S

xDCP

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10

A
S

E
(%

)

RSS

ASE-RSS

pM-S
M-S

xDCP

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 1 2 3 4 5 6 7 8 9 10

A
S

E
(%

)

RRT

ASE-RRT

pM-S
M-S

xDCP

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

A
S

E
(%

)

RSR

ASE-RSR

pM-S
M-S

xDCP

 30

 35

 40

 45

 50

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

A
S

E
(%

)

ADPS

ASE-ADPS

pM-S
M-S

xDCP

Figure 5. Average Scheduling Effectiveness (ASE) varies with PST, RSS, RRT, RSR and ADPS.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8 9 10 11 12 13

B
D

T

PST

BDT-PST

pM-S
M-S

xDCP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11

B
D

T

RSS

BDT-RSS

pM-S
M-S

xDCP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11

B
D

T

RRT

BDT-RRT

pM-S
M-S

xDCP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11

B
D

T

RSR

BDT-RSR

pM-S
M-S

xDCP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

B
D

T

ADPS

BDT-ADPS

pM-S
M-S

xDCP

Figure 6. Average Beat-down Time (BDT) varies with PST, RSS, RRT, RSR and ADPS.

the computational capability of current environment. This
is a type of implementation of the M-S algorithm, and can
certainly be also adopted in our pM-S algorithm.

A pipeline model has been proposed in [11] for task
farming in Grid. However, the mechanism it discusses is ac-
tually conventional Master-Slave based, with no priority in-
volved. According to the experiment results in section 4,
there is still a gap between the effectiveness of M-S and
our pM-S algorithm. Also, [11] has not mentioned about
optimizing the scenario of multiple parameter-sweep tasks
linked together.

The work in [12] focuses on how many slave resources
needed in a task farming application where the number of
subtasks is given, to achieve the certain effectiveness. Sev-
eral factors are used to construct the model. Similarly, in
this paper we use more elaborate factors like RSS, RRT and
RSR to establish our metrics model, in order to give more
precise evaluation on the algorithm’s effectiveness.

In [13], a model of Resource Efficiency (RE) is given to
help evaluating the effectiveness of task farming schedul-
ing algorithms. In our work, we use the average ratio (ASE)
between the total waiting time of the to-be-measured algo-
rithm and the shuffle algorithm. We adopt ASE value in-
stead of RE because even under the same configuration of
factors, the topology of task graph might still result a re-
markable influence on the performance of algorithms, hence
gives the distribution of waiting time a large deviation and
makes the average value meaningless. By using ASE, the in-
fluence of task graph topology could be shielded by the per-
formance of the shuffle algorithm, hence will do little inter-
ference on the evaluation result.

6. Conclusion and future work

In this paper, we have presented two algorithms that ad-
dress the problem of optimal scheduling of workflow ap-
plications with parameter-sweep tasks. The experiment re-
sults shown in section 4 have indicated the effectiveness of
the proposed algorithms. Also, we compared the algorithms
under different configuration and sample task graphs, which
shows our effort on comprehensively examining the use-
ability of each algorithm.

In the paper, we assume every parameter-sweep task con-
sume its resource array exclusively. This constraint can be
removed by letting each task of workflow utilize multi-
ple resources from Grid resource space, which makes the
scheduling optimization more complicated, because the al-
gorithm need to consider not only the transverse subtasks in
the same parameter-sweep task, but also vertical subtasks
sharing the same set of resources.

Acknowledgment

We would like to thank Srikumar Venugopal, Shushant
Goel, Jia Yu and Prof. Chen-Khong Tham for their critical
comments that helped us in improving the quality of paper
presentation.

References

[1] D. Bhardwaj, J. Cohen, S. McGough, and S. Newhouse. A
Componentized Approach to Grid Enabling Seismic Wave
Modeling Application.The International Conference on Par-
allel and Distributed Computing, Applications and Tech-
nologies (PDCAT), Singapore, Dec. 2004.

[2] Meichun Hsu, editor.Special Issue on Workflow and Ex-
tended Transaction Systems, volume 16(2) of Bulletin of the
IEEE Technical Committee on Data Engineering. June 1993.

[3] Jia Yu and Rajkumar Buyya, A Taxonomy of Workflow Man-
agement Systems for Grid Computing, Technical Report,
GRIDS-TR-2005-1, Grid Computing and Distributed Sys-
tems Laboratory, University of Melbourne, Australia, March
10, 2005.

[4] D. Abramson, J. Giddy and L. Kotler. High Performance
Parametric Modeling with Nimrod/G: Killer Application for
the Global Grid?IPDPS 2000, Cancun, Mexico, 2000.

[5] Y.K. Kwok and I. Ahmad, ”Dynamic Critical-Path Schedul-
ing: an Effective Technique for Allocating Task Graphs to
Multiprocessors”,IEEE Transaction on Parallel and Distrib-
uted Systems, V7, N5, 1996, pp. 506-521.

[6] G. Riccardi, B. Traversat, U. Chandra, A Master-Slaves Par-
allel Computation Model,Supercomputer Research Institute
Report, Florida State University, June 1989.

[7] J. Yu and R. Buyya: A Novel Architecture for Realizing Grid
Workflow using Tuple Spaces.GRID 2004: 119-128.

[8] D. Nicol and J. Saltz. Dynamic remapping of parallel com-
putations with varying resource demands.IEEE Transaction
on Computers, 37(9):1073-1087, 1988.

[9] D. Brent Weatherly, David K. Lowenthal, Mario Nakazawa,
Franklin Lowenthal: Dyn-MPI: Supporting MPI on Non
Dedicated Clusters.SC 2003, Phoenix, Arizona, USA, Nov.
2003.

[10] H. Casanova and M. Kim and J. S. Plank and J. Dongarra.
Adaptive Scheduling for Task Farming with Grid Middle-
ware.5th International Euro-Par Conference, Toulouse, Aug
1999.

[11] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robin-
son, M. Shields, I. Taylor and I. Wang. Programming Scien-
tific and Distributed Workflow with Triana Services. InGrid
Workflow 2004 Special Issue of Concurrency and Computa-
tion: Practice and Experience, 2005.

[12] M. A. Robers, L. P. Kondi, and A. K. Katsaggelos. SNR scal-
able video coder using progressive transmission of DCT co-
efficients.Proc. SPIE, pp. 201–212, 1998.

[13] G. Shao, R. Wolski, F. Berman. Performance effects of
scheduling strategies for master/slave distributed applica-
tions. InProc. PDPTA’99, CSREA, Sunnyvale, CA, 1999.

