

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 739–749, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Visual Parameteric Modeler for Rapid Composition of
Parameter-Sweep Applications for Processing on Global

Grids

Shoaib Burq1, Steve Melnikoff1, Kim Branson2, and Rajkumar Buyya1,*

1 Grid Computing and Distributed Systems Lab
Dept. of Computer Science and Software Engg.

The University of Melbourne, Australia
2 Structural Biology

Walter and Eliza Hall Institute
Parkville, Melbourne, Australia

Abstract. Grids are emerging as a platform for the next-generation parallel and
distributed computing. Large-scale parametric studies and parameter sweep ap-
plications find a natural place in the Grid’s distribution model. There is little or
no communication between jobs. The task of parallelising and distributing ex-
isting applications is conceptually trivial. These properties of parametric studies
make it an ideal place to start developing integrated development environments
(IDEs) for rapidly Grid-enabling applications. However, there is a lack of the
availability of IDEs for scientists to Grid-enable their applications, without the
need of developing them as parallel applications explicitly. This paper presents
a Java based IDE called Visual Parameteric Modeler (VPM), developed as part
of the Gridbus project, for rapid creation of parameter sweep applications. It
supports automatic creation of parameter script and parameterisation of input
data files, which is compatible with the Nimrod-G parameter specification lan-
guage. The usefulness of VPM is demonstrated by a case study on a composi-
tion of molecular docking application as a parameter sweep application. Such
applications can be deployed on clusters using the Nimrod/enFuzion system and
on global Grids using the Nimrod-G grid resource broker.

1 Introduction
As high-speed networks become ubiquitous and research in middleware technologies
matures, new windows of opportunity for application scientists to run their applica-
tions on parallel and distributed computing environments, such as clusters and Grids
[3], are increasing. The underlying infrastructure, providing the low-level facilities to
run applications in a heterogeneous and distributed environment; and high-level tools
that facilitate the creation of Grid applications and their deployment on distributed
resources, makes up the Grid.

 There exist a number of models for the construction of parallel and distributed
applications. Parameter sweep is one of the simplest and most practical of the models
that can yield powerful results. Parameter sweep applications consist of programs that

* Correspondence to: Rajkumar Buyya, email: raj@cs.mu.oz.au

Verwendete Distiller 4.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Hoch Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Hoch Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 1800 dpi Downsampling für Bilder über: 2700 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier /ZapfDingbats /Courier-BoldOblique /Helvetica-BoldOblique /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Beibehalten Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Ja Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Ja Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 4050 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 4.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings true /CalGrayProfile (Adobe Gray - 20% Dot Gain) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /AutoFilterColorImages true /ColorImageDepth -1 /sRGBProfile (sRGB IEC61966-2.1) /PreserveOverprintSettings true /AutoRotatePages /None /CompatibilityLevel 1.3 /EmbedAllFonts true /UCRandBGInfo /Preserve /StartPage 1 /AntiAliasColorImages false /CreateJobTicket true /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /QFactor 0.55 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorACSImageDict << /QFactor 0.55 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Preserve /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /Binding /Left /CalCMYKProfile (Adobe CMYK) /MonoImageResolution 1800 /AutoFilterGrayImages true /AlwaysEmbed [/Courier /ZapfDingbats /Courier-BoldOblique /Helvetica-BoldOblique /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /OPM 1 /DefaultRenderingIntent /Default /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ASCII85EncodePages false /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /CompressPages true /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

740 S . Burq et al.

are run independently on different nodes with different input parameters or data sets.
There are numerous application areas where parametric studies find a use. Some ap-
plication scenarios include:

• molecular biologist (drug designer) looking for compounds, in a large
chemical data sets , that best dock with a particular protein [8];

• geologist looking at the change in the density and depth of ore-body and the
overlying rock’s density to optimize cost and production;

• aerospace engineer understanding the role of geometry parameters in the
aerodynamic design and optimization process [11];

• high energy physicist investigating on the origin of mass by analysing
petabytes of data generated by high-energy accelerators such as the LHC
(Large Hadron Collider) [14]; and

• neuroscientist performing brain activity analysis by conducting pair-wise
cross co-relation analysis of MEG (Magneto-EncephaloGraphy) sensors data
[13].

The practical implications of performing parametric studies make it difficult for
an application scientist, who has little or no knowledge of distributed computing, to
use it effectively. The vision of the Grid is precisely to bridge this gap by providing a
seamless access to compute and other scientific resources without the need of users
concerning about the lower-level details of the computing infrastructure or the re-
source management issues [1]. High-level tools for creation of distributed applications
and their deployment on the Grid make up an essential part of this vision. Currently,
there is still lack of the availability of integrated development environments (IDEs)
with visual interface for scientists to rapidly Grid-enable their existing applications.

This paper presents a Java based IDE called Visual Parameteric Modeler (VPM),
developed as part of the Gridbus project, for rapid creation of parameter sweep appli-
cations. VPM provides a simple visual interface for the manipulation of scripts or
input files of existing applications. Users can assign parameters to certain values by
highlighting them. They can select from a number of different data types and domains
to describe their parameters. VPM also incorporates a task editor for creating the tasks
carried out by different jobs during different stages of a distributed execution. The
parameters and tasks together provide the basis of each run. VPM allows the rapid
creation and manipulation of the parameters. While being flexible, it is also simple
enough for a non-expert to create a parameter script, known as a plan file. The pa-
rameter sweep applications composed using VPM can be deployed on global Grids
using the Nimrod-G resource broker that supports scheduling based on the user’s
quality of service (QoS) requirements – such as the deadline, budget, and optimization
preference – and the access price of resources.

The rest of this paper is organised as follows. Section 2 presents related tools and
their capabilities including differences. The VPM architecture is discussed in Sect. 3
and the design and implementation is discussed in Sect. 4. The use of VPM for com-
posing molecular docking application as a parameter sweep application is presented in
Sect. 5, followed by a conclusion in Sect. 6.

 Visual Parameteric Modeler for Rapid Composition of Parameter-Sweep Applications 741

2 Related Work

VPM draws inspiration from or builds on the concepts developed in Nimod [2] and its
commercial version (Enfuzion [1]); and its Grid-enabled version (Nimrod-G [9]) that
support the creation and execution of parametric applications on clusters and Grids
respectively. A declarative language, called parameter specification language, sup-
ported by Nimrod describes the parameters and the tasks that make up the plans.

For the creation of plans, Enfuzion takes a wizard approach. Enfuzion will take a
user through the operation of creating a job specification file step-by-step, because it
is too complex for novice users to create parameter script on their own. In the input
file to the application, the user must change the value assigned to a parameter to a
place marker. Although simple and less prone to error, this approach is too rigid, slow
and cumbersome for someone working on several input files at the same time. As the
parameter script and parameterized input data files generated by VPM confirm to the
Nimrod parameter specification language, it serves as a complimentary tool. This en-
sures that VPM can be used by EnFuzion and Nimrod-G users.

Using VPM, the users can select all application input data/configuration files and
parameterise easily. The users can drag and select the value in the input file that they
wish to assign a parameter to, or they can create parameters independent of an input
file. This gives the user a great deal of flexibility and control. By giving the user fields
to input their parameter configuration and then generating the plan specification
automatically we can prevent errors. Even if the users create parameter script in their
favorite editor, VPM allows them to import and make use of its capabilities. Once the
plan specification is created, the users proceed to execution phase during which they
have an option of changing values assigned parameters. Like enFuzion, the VPM will
automatically create application jobs each with different parameter values will be cre-
ated. Such jobs can be analysed on clusters or Grids using enFuzion or Nimrod-G
respectively.

Other related works include, APST (AppLeS Parameter Sweep Template) [10]
and NASA IPG (Information Power Grid) parameter process specification tool [11].
APST expects application scientists to explicitly create jobs and assign parameter
values to them. IPG provides graphical environment for parameterising the data files.
Both the APST and IPG schedulers use traditional system centric policies for resource
allocation. As VPM confirms to the Nimrod-G parameter specification language, it
enables the users to harness Grid resources using the Nimrod-G resource broker de-
pending on their QoS requirements and the access price of resources. Thus, it supports
the Grid economy, which is essential for management and allocation of resources
based on the supply and demand.

3 Architecture

The visual parameteric modeler architecture and parameter sweep application creation
flow model is shown in Fig. 1. VPM supports the creation of a new parameter sweep
applications from scratch or the utilisation of the existing parameterised application
plans with further update. In the first case, the users can add all those files to be pa-

742 S . Burq et al.

rameterised and use VPM to parameterise data items of interest. In the second case,
the users can import the existing parameteric plans and pass through the VPM scanner
and parser that identify parameters and make them available for further update. The
users can use the VPM task editor to create a task to be associated with jobs. Based on
parameter types and their values a number of jobs, each representing a different pa-
rameter scenario, are generated automatically.

(Task definition)
GBTask Creation

(Parameterization)
ParamObject Creation

Experiment
Editor

ProjectObject
Input files

GBTaskParamObject

Via Task Editor

Import input
file

Input file
dependent

File independent Via Import Plan
Specification

Via Import Plan
Specification

PFScanner

Import Plan
Specification

Plan spec.PFParser

Tokens

Generate Plan
Spec.

Generate Run

…

Jobs
Jobs

Jobs
Jobs

Fig. 1. The visual parameteric modeler architecture

VPM consists of three major visual components: Project, Input Files and Tasks.
These components are represented as Project Window, Input File Window and Task
Editor, respectively. The design of VPM, shown in Fig. 2, allows a single project to
have several input data files and tasks.

These visual components provide the user access to the objects that encapsulate
the plan’s information-model, namely to ParamObject and GBTask. ParamObject is
created and manipulated from the project window or input file window, while the
GBTask is created and manipulated using the TaskEditor.

A plan consists of parameters and task. In VPM, parameters are internally repre-
sented as ParamObjects and tasks as GBTasks. ParamObjects are created by any of
the following three methods.

 Visual Parameteric Modeler for Rapid Composition of Parameter-Sweep Applications 743

Project Task Editor1 1

Input File

0..*

1

• File dependent parameterization
• File independent parameterization
• Via imported plan specification

File Dependent Parameterization
Once an input file or a script file is imported into VPM, values that have to be as-
signed parameters are highlighted and the parameter defined and assigned by a simple
click of mouse.

Fig. 2. Basic visual components of VPM

File Independent Parameterization
New parameters may also be created by simply defining its properties.

Via Imported Plan Specification
VPM contains a LALR (Look Ahead, Left to Right) parser for plan specification that
confirms to the Nimrod parameter specification language. This allows the reuse of an
existing plan file (parameter script). The parser translates each parameter definition
into a ParamObject and each task description into a GBTask (see Figure 1).

Experiment Editor and Job Generation
Once a plan specification is completed, VPM can generate a run specification. This
enumerates every value lying within the range of the parameters described by the
plan, and a description of the jobs in terms of the values assigned to them. Hence, the
run specification describes the distribution model of the application parameterized
using VPM.

4 Design and Implementation

VPM is coded in Java and MVC (Model-View-Controller) architecture [12] design
pattern that decouples the data model from the component that represents it on the
screen. The graphical user interfaces are created using the Java Swing component set
that uses MVC architecture consistently.

744 S . Burq et al.

Besides the above-mentioned objects, VPM has various components that facili-
tate the creation of a plan specification (parameter script) and parameterisation on
input data files. VPM consists of many packages and associations and reverse-
associations between them are shown in Fig. 3. The arrow heads point at the depend-
ent packages. Notice, a single class, Jobs, in GBJobs package, is responsible for the
production of Grid enabled jobs. This can be extended to support creation of job
specification for different scheduling systems.
ExperimentEditor
This contains the GUI classes for the ExperimentEdior. It also contains a controller
class (following the classic MVC architecture) that processes the user input.

GridBusVPM

ExperimentEditor

GenRunControler

ParamObject

ParamObject

GBTasks

GBJobs

Jobs

ObserverPattern

PFParser

PFScanner

ProjectObject

java_cup.runtime

interface

VPM package

Non-VPM package

Associations/Reverse Associations

Fig. 3. VPM package associations and reverse-associations

GBJobs

This contains a single class, Jobs. “Jobs” takes as its input a count (N) of those
parameters that have a range of values and an array of integers of size N containing
the maximum value taken by each of these parameters.
GBTask

This package contains a single class, GBTask. It is a serializable object. It encapsu-
lates the commands that execute during different phases of the distributed run.
GridBus
This is the largest package containing mostly the GUI classes for VPM. Following the
MVC architecture, it contains all the “view” components. It also includes a utility
class, called GBFileManager, for handling all file operations within VPM. In addi-
tion, this package contains the class that has VPM’s main method, named Project.

 Visual Parameteric Modeler for Rapid Composition of Parameter-Sweep Applications 745

ObserverPattern

This package contains two interfaces Observer and Subject. This facilitates the
implementation of MVC architecture, by decoupling related objects [4]. A subject
may have a number of observers. All observers are notified when the subject under-
goes a state change. In response, the observer may query the subject to synchronize its
state with the subject. The observer implements the update() method while the
subject implements the addObserver() and removeObserver() method. On a
state change, the subject calls each observer’s update method.

ParamObject

This package contains a single class: ParamObject. The ParamObject is the
heart of VPM. It is a serializable object encapsulating the state of a parameter, it con-
tains two key methods: makePlanStep() and makeRunStep(). These methods
are responsible for automating the process of plan and run specification creation. The
makePlanStep method converts the fields of the ParamObject into a line of the
simple declarative language following the grammar of Fig. 4. makeRunStep con-
verts a parameter’s declaration into a statement of a run specification. This declaration
identifies the possible value(s) taken by the parameter. Currently makeRunStep
generates a Nimrod-G readable statement.

RPARENexpr LPAREN|NUMBERfactor

factor|factor TIMES termterm

term| termMINUSexpr | termPLUSexpr expr

NUM |QUOTE |IDvalue_opt

 | value_optSTEP | value_optPOINTS domain2

value_opt|value_listvalue_opt tsdefault_op

| value_optPOINTSpoints_opt

jitp_expr JITP |

expr COMPUTE|

 points_opt_|

__|

__|

domain2_|

_

|||

||

||

||

→
→
→

→
→

→
→

→

→
→

→
→
→

ε

ε

ε

ε

valuesrangeRANDOM

optdefaultlistvalueSELECTONE

optsdefaultlistvalueSELECTANY

valuesrangeRANGE

optvalueDEFAULTdomain

FILETEXTFLOATINTEGERtype

QUOTEQUOTELABELlabel

SEMIdomaintypelabelIDPARAMETERplanStep

newlinetaskBlockplanSteprest

errorrestplanplan

Fig. 4. Context free grammar for plan specification

746 S . Burq et al.

PFScanner
PFScanner, (plan file scanner) created using an open source tool called JLex [5], per-
forms lexical analysis of the plan specification. It comes into play when the user
wishes to import an existing plan specification into VPM. It interfaces with the
PFParser (discussed below) providing it with a stream of identified tokens.

PFParser
PFParser, (plan file parser) written using an open source tool called CUP [6], inter-
faces with the PFScanner and attempts to match the stream of tokens to a complete
parameter or task definition as described by the A context-free grammar shown in
grammar in Fig. 4. All caps denote the terminals. In doing so, it generates new Pa-
ramObjects or GBTasks. It contains two public methods for the retrieval of Pa-
ramObject and GBTasks: getParams() and getTasks().

ProjectObject
ProjectObject encapsulates all the attributes necessary to describe a VPM pro-
ject. It contains the ParamObjects, GBTasks, paths to input files and other attrib-
utes that uniquely identify a project.

5 Use Case Study – Molecular Docking Application

Molecular modeling for drug design involves screening millions of ligand records or
molecules of compounds in a chemical database (CDB) to identify those that are po-
tential drugs. This process is called molecular docking [7]. It helps scientists explore
how two molecules, such as a drug and an enzyme or protein receptor, fit together.
Docking each molecule in the target chemical database is both a compute and data
intensive task. In [8], a virtual laboratory environment has been developed and dem-
onstrated distributed execution of molecular docking application on Global Grids. The
application has been formulated as a parameter sweep application using a simple pa-
rameter specification language and deployed on global Grids using the Nimrod-G
resource broker.

We now discuss how the application has been parameterized (i.e., the creation of
parameter script and parameterisation of data files) using the VPM. In [8], the crea-
tion of parameter script and parameterisation of data/configuration files has been car-
ried out manually using a text editor. Although this task is simple, it becomes cum-
bersome when an application contains multiple data files and has a large number of
data entries to be parameterised. This approach is also prone to creating parameter
script with syntax errors. The use of visual modeler helps overcome these limitations
and aids in the rapid parameterisation of the molecular docking application such as
the “Dock” [7] software package.

Fig. 5 shows the parameterisation of docking application configuration input file
using VPM. First, the configuration input file is imported into the VPM. When the
value of a data item to be parameterised is selected (see the highlighted text “S_1” in
Fig. 5), it appears in the dialogue box where the parameter name can be defined along
with the attributes (data type and values). In this example, the name of a data item,
“ligand_atom_file”, indicates the molecule to be screened. As the aim of parameteri-

 Visual Parameteric Modeler for Rapid Composition of Parameter-Sweep Applications 747

sation is to screen multiple molecules, this parameter need to be defined as the
“range” data type and then assign values for index start, end, step. For example, to
screen the first 2000 molecules in the chemical data base, the initial values to be as-
signed are 1, 2000, and 1 respectively. VPM will automatically create a parameter
statement and add to the script (see the highlighted statement in Figure 6). A task
specification creation module provides dialogue facility selection of appropriate
commands associated with the execution of a parametric job (see a small window in
Fig. 6).

Fig. 5. The parameterisation of docking configuration input file

Fig. 6. The creation of docking parameter script

748 S . Burq et al.

6 Conclusion

In this paper, we outlined the need for the development of IDEs and other applications
and tools in order to provide the applications scientist with user-friendly environments
to run their code on the Grid. We introduced VPM developed to provide one such
environment for parameter sweep applications. We identified its key features, while
giving some of its implementation details. Finally, we showed how application scien-
tists can use VPM to parameterise their applications. Such parameterised applications
can be deployed on Global Grids using the Nimrod-G resource broker.

Acknowledgements. We thank Srikumar Venugopal, Elan Kovan, Anthony Sulistio,
and Sarana Nutanong for their comments. We thank anonymous reviewers for provid-
ing excellent comments.

References

[1] D. Abramson et. al., EnFuzion Tutorial, Chapter 4, EnFuzion Manual, 2002. Available at:
http://www.csse.monash.edu.au/cluster/enFuzion/tutorial.htm

[2] D. Abramson, R. Sosic, J. Giddy, and B. Hall, Nimrod: A Tool for Performing Parameter-
ised Simulations using Distributed Workstations, Proceedings of the 4th IEEE Symposium
on High Performance Distributed Computing, Virginia, August 1995.

[3] I. Foster and C. Kesselman (editors), The Grid: Blueprint for a Future Computing Infra-
structure, Morgan Kaufmann Publishers, USA, 1999.

[4] G. Krasner and S. Pope, A cookbook for using the model-view controller user interface
paradigm in Smalltalk-80, Journal of Object-Oriented Programming, 1(3):26–49, Au-
gust/September 1988.

[5] E. Berk, JLex: A lexical analyzer generator for Java(TM), Department of Computer Sci-
ence, Princeton University Version 1.2.5, September 6, 2000
http://www.cs.princeton.edu/~appel/modern/java/JLex/

[6] S. E. Hudson, CUP: LALR Parser Generator for Java(TM), GVU Center, Georgia Tech.
Version 0.10, July 1999 http://www.cs.princeton.edu/~appel/modern/java/CUP

[7] T. Ewing (editor), DOCK Version 4.0 Reference Manual, University of California at San
Francisco (UCSF), USA, 1998. Online version:
http://www.cmpharm.ucsf.edu/kuntz/dock.html

[8] R. Buyya, K. Branson, J. Giddy, and D. Abramson, The Virtual Laboratory: Enabling
Molecular Modelling for Drug Design on the World Wide Grid, Journal of Concurrency
and Computations: Practice and Experience, Wiley, USA, Jan 2003.

[9] R. Buyya, D. Abramson, and J. Giddy, Nimrod-G: An Architecture for a Resource Man-
agement and Scheduling System in a Global Computational Grid, The 4th International
Conference on High Performance Computing in Asia-Pacific Region (HPC Asia 2000),
Beijing, China, May 2002.

[10] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid, Proceedings of the Super Computing (SC
2002) Conference, Dallas, USA.

[11] M. Yarrow, K. McCann, R. Biswas, and R. Van der Wijngaart, An Advanced User Inter-
face Approach for Complex Parameter Study Process Specification on the Information
Power Grid, Proceedings of the 1st Workshop on Grid Computing (GRID 2002), Banga-
lore, India, Dec. 2000.

 Visual Parameteric Modeler for Rapid Composition of Parameter-Sweep Applications 749

[12] Java and MVC architecture,
http://javanook.tripod.com/patterns/java-mvc.html

[13] R. Buyya, S. Date, Y. Mizuno-Matsumoto, S. Venugopal, and D. Abramson, Economic
and On Demand Brain Activity Analysis on Global Grids, Technical Report, Grid Comput-
ing and Distributed Systems (GRIDS) Lab, The University of Melbourne, Australia, Jan.
2002.

[14] CERN, the LHC Grid Project, http://lcg.web.cern.ch/LCG/

	1 Introduction
	2 Related Work
	3 Architecture
	4 Design and Implementation
	5 Use Case Study – Molecular Docking Application
	6 Conclusion

