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Abstract— Large-scale graph analytics has gained attention 
during the past few years. As the world is going to be more 
connected by appearance of new technologies and applications 
such as social networks, Web portals, mobile devices, Internet 
of things, etc, a huge amount of data are created and stored 
every day in the form of graphs consisting of billions of vertices 
and edges. Many graph processing frameworks have been 
developed to process these large graphs since Google 
introduced its graph processing framework called Pregel in 
2010. On the other hand, cloud computing which is a new 
paradigm of computing that overcomes restrictions of 
traditional problems in computing by enabling some novel 
technological and economical solutions such as distributed 
computing, elasticity and pay-as-you-go models has improved 
service delivery features. In this paper, we present iGiraph, a 
cost-efficient Pregel-like graph processing framework for 
processing large-scale graphs on public clouds. iGiraph uses a 
new dynamic re-partitioning approach based on messaging 
pattern to minimize the cost of resource utilization on public 
clouds. We also present the experimental results on the 
performance and cost effects of our method and compare them 
with basic Giraph framework. Our results validate that 
iGiraph remarkably decreases the cost and improves the 
performance by scaling the number of workers dynamically. 

Keywords-cloud computing; graph processing; partitioning; 
public clouds; cost-efficient processing; graph analytics 

I.  INTRODUCTION 
As Internet continues to grow, the world is becoming a 

more connected environment and the number of data 
resources is increasing beyond what had been predicted 
before [1]. Amongst various data modeling approaches to 
store huge data, graphs are widely adopted to model complex 
relationships among objects. A graph consists of sets of 
vertices and edges which demonstrate the pairwise 
relationship between different objects. Many applications 
and technologies such as social networks, search engines, 
banking applications, smart phones and mobile devices, 
computer networks, the semantic web, etc, are modeling and 
using data in the form of graphs [2]. These applications 
generate massive amounts of data which are represented by 
graphs. Facebook [3], for example, has more than one billion 
users that are considered as the vertices of a huge graph 
where the relationships between them are considered as the 
edges of the graph. To gain an insight and discover 
knowledge from these applications, the graph that represents 

them should be processed. However, the scale of these 
graphs poses challenges to their efficient processing [4].  

In order to process large graph problems, every solution 
confronts with some challenges due to the intrinsic properties 
of graphs. These properties include data-driven computation, 
unstructured problems, poor locality and high data access to 
computation ratio [5]. Therefore, graph problems are not 
well matched with existing processing approaches and 
usually prevent efficient parallelism. MapReduce [6], for 
example, which addresses many shortcomings in previous 
parallel and distributed computing approaches, is not an 
appropriate solution for large graph processing. This is 
because first, MapReduce uses a two phased computational 
model (map and reduce) which is not well suited for iterative 
characteristic of graph algorithms. Second, its tuple-based 
approach is poorly suited for most of graph applications [7].  

Cloud computing is a new paradigm of computing that 
has changed software, hardware and datacenters design and 
implementation. It overcomes restrictions of traditional 
problems in computing by enabling some novel 
technological and economical solutions like using distributed 
computing, elasticity and pay-as-you-go models which make 
service providers free from previous challenges to deliver 
services to their customers [8]. Cloud computing presents 
computing as a utility that users access various services 
based on their requirements without paying attention to how 
the services are delivered or where they are hosted. Public 
cloud computing services, for instance, offer Platform as a 
Service (PaaS) or Infrastructure as a Service (IaaS) for large 
distributed processing, are becoming more popular among 
companies who want to focus on their business instead of 
being concerned about technical issues. Rapid on-demand 
compute resource provisioning brings cost scalability based 
on utilization. As an example, Amazon EC2 provides three 
cost models for its customers based on their requirements –
spot, on-demand and reserved provisioning. Using these 
commercial services, the customer may choose to pay more 
to achieve better performance or reliability. So, making a 
proper decision between using the number of resources the 
user wants to use and the money that the user wants to pay 
for the service is an issue while using public clouds. 

Some graph processing frameworks such as Surfer [9] 
and Pregel.Net [10] were developed to support processing 
large graphs on public clouds, but they have considered 
some specific issues on these frameworks and do not address 
the impact of their solutions on the monetary cost of the 
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system. For example, Surfer has proposed a graph 
partitioning method based on network latency and 
Pregel.Net, which is the .Net-based implementation of 
Pregel, has analyzed the impact of BSP graph processing 
models on public clouds using Microsoft Azure. On the other 
hand, there are some services such as Amazon relational 
database service (RDS) which is designed for traditional 
relational databases [11]. It is aimed at facilitating the set-up, 
operation and scaling a relational database and comes with 
two reserved and on-demand instance packages. According 
to a recent report [12], graph databases are getting more and 
more attentions every day and many companies are going to 
use this kind of database for their businesses. So, in the near 
future, public cloud providers will introduce new graph 
processing services on their infrastructures. 

However, current frameworks for graph processing have 
limitations that hinder their adoption in cloud platforms. 
First, the majority of them have been designed and tested on 
cluster environments and not clouds, hence they have not 
considered monetary optimization, which is a very important 
factor for service selection on clouds. Second, many graph 
processing frameworks focus on reducing the operation’s 
execution time, reducing memory utilization, considering 
task priorities and so on to reduce the cost of processing, but 
considering a static pool of resources with known size. On 
the other hand, cloud computing provides high scalability 
on-demand resources that can help users to perform their 
tasks using various services. Therefore, a graph processing 
approach with performance guarantees and optimal cost is a 
must in a cloud setting. 

In this paper, we propose a graph processing framework 
called iGiraph. It uses a cost-efficient dynamic re-
partitioning approach that utilizes network traffic message 
pattern to reduce the number of virtual machines (workers) 
during the processing by migrating partitions and vertices to 
minimize the cost. The new repartitioning method also 
mitigates network traffic results in faster execution. Our 
work, iGiraph makes the following key contributions: 

• iGiraph repartitions the graph dynamically across 
workers considering network traffic pattern to 
reduce the communication between compute 
nodes. 

• iGiraph uses high degree vertices concept in 
partition level, with the convergent level of the 
algorithms that are running on the system. iGiraph 
manages the number of compute nodes using a 
proper combination of these methods. 

• While cost is a very critical factor in service 
selection procedure for any user on a public cloud, 
iGiraph significantly reduces the cost of processing 
large-scale graphs with reasonably close runtimes 
to Giraph by its new approach.  

The rest of the paper is organized as follow: section 2, 
explains the basic Apache Giraph framework and its features 
following by the vertex and algorithm categorization is used 
for our work. Section 3 gives details about iGiraph solutions. 
Section 4 shows iGiraph’s implementation. Performance 
evaluation of the system is discussed in section 5 and finally,  
 

Fig 1. Giraph’s Architecture 

related works and conclusions and future works are 
explained in sections 6 and 7, respectively 

II. BACKGROUND 
In this section, we first introduce Apache Giraph [13] 

which is the fundamental framework for our system. Then, 
we explain Bulk Synchronous Parallel (BSP) [14] model  
following by describing a vertex categorization that is 
effectively used for our re-partitioning model. Finally, we 
explain the graph algorithm classification we used in this 
paper which has a great impact on choosing the right strategy 
to reduce the cost of the whole system. 

A. Giraph 
Apache Giraph is an open-source implementation of 

proprietary Pregel. It is a distributed graph processing 
framework that uses a set of machines (workers) to process 
large graph datasets. One of the machines plays the role of 
master to coordinate with other slave workers. The master is 
also responsible for global synchronization, error handling, 
assigning partitions to workers and aggregating aggregator 
values. Giraph is a Hadoop-based framework that runs 
workers as map-only jobs and uses Hadoop data file system 
(HDFS) for data I/O. It also employs Apache ZooKeeper 
[15] for checkpointing, coordination and failure recovery 
scheme. Giraph added many features beyond the basic Pregel 
including sharded aggregators, out-of-core computation, 
master computation, edge-oriented input and more. Finally, 
having a growing community of users and developers 
worldwide, Giraph has become a popular graph processing 
framework that even big companies such as Facebook are 
using it to process their huge datasets [16]. 

Giraph utilizes vertex-centric programming model like 
Pregel in which each vertex of the graph is identified by a 
unique ID. Each vertex also has other information such as a 
vertex value, a set of edges with an edge value for each edge, 
and a set of messages sent to it. To process a large graph in 
vertex-centric model, it should be partitioned into smaller 
parts by a partitioner where each partition is connected to 
other partitions by cross-edges between them. The partitioner 
also distributes partitions to a set of worker machines. In 
Giraph, a partitioner determines which partition a vertex 
belongs to based on its ID. Giraph uses a default hash 
function on the vertex ID to partition a graph while other 
customized partitioners also can be used. To improve the 
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Fig 2. Internal vertices and border vertices 

load balancing, the number of partitions is often greater than 
the number of workers. 

Using simple static partitioning methods makes Giraph to 
run and process various graph algorithms slower and with 
more costs than other Pregel-like frameworks such as GPS 
[17] or Giraphx [18]. These systems have shown that using 
more complicated static partitioning algorithms such as 
METIS [19], rather than using a simple hash partitioning  
method, can remarkably improve the performance. GPS for 
example, uses a combination of a static partitioning 
algorithm to partition the graph and a dynamic re-
partitioning algorithm during the computation to distribute 
the remaining non-processed vertices to idle workers to 
reduce the execution time within a superstep. In this paper, 
we choose the hash partitioning algorithm to start 
partitioning the graph with, but during the computation we 
replace that with a dynamic traffic-aware re-partitioning 
algorithm to reduce the cost of the whole processing 
operation and improve the performance of the system. 

B. Bulk Synchronous Parallel Model 
Bulk Synchronous Parallel (BSP) is a vertex-centric 

computational model in which every single vertex of the 
graph can carry two states of active or inactive. All vertices 
are active when the computation starts. The processing 
consists of a series of iterations, called supersteps, followed 
by global synchronization barriers between them. In each 
iteration, every vertex that is involved in computation, 1) 
receives its neighbors updated values from previous iteration, 
2) the vertex then will be updated by received values, 3) and 
finally, the vertex sends its updated value to its adjacent 
vertices that will be available to them in the next superstep 
and changes its state to inactive. 

The advantage of using BSP model in Giraph is that all 
the aforementioned operation is executed by a user-defined 
Compute() function of the Vertex class. After all the vertices 
completed executing Compute() function in a superstep, data 
will be aggregated during the synchronization phase and the 
messages generated by each vertex will be available to their 
destinations at the beginning of next superstep. If a vertex 
does not receive any messages during a superstep, it can 
deactivate itself by calling voteToHalt() function. However, 
a deactivated vertex can be activated by receiving messages 
from its neighbors. If there is not any active vertex, the 
computation is finished. 

C. Internal Vertices and Border Vertices 
A graph G=(V,E) consists of a set of vertices V={v1, v2, 

…, vn} and a set of edges E={e1,e2, …, em} where E ⊂ V×V. 

In the vertex-centric graph processing approach, the graph is 
divided into smaller partitions based on vertex divisions so 
that P1 � P2 � … � Pk = V are k partitions of V where 
Pi� Pj=∅ , ∀ i ≠ j. Therefore, each vertex basically belongs 
to only one particular partition [20].  

An internal vertex is a vertex that all its adjacent vertices 
are inside the same partition as this particular vertex is. So, 
the messages coming out from an internal vertex only flow 
within the partition. On the other side, a border vertex is a 
vertex that at least one of its neighbors is placed in another 
partition. Hence, a border vertex’s outgoing messages need 
to be sent to at least one different partition than the partition 
this particular vertex belongs to. Passing messages between 
partitions leads to increasing network traffic which results in 
longer execution time, inefficient resource utilization and 
higher costs in turn. Internal vertices and border vertices are 
shown in figure 2. One of the approaches for avoiding 
message passing side effects is to partition the graph in a 
way that reduces the number of border vertices and cross-
edges between partitions so that the number of messages 
passing between partitions will be reduced. 

D. Graph Algorithms 
Different research use different classification of 

algorithms. For example, one may classify graph algorithms 
into traversal algorithms, graph aggregation algorithms, 
random walk algorithms and so on, while another one 
classifies them as global queries and targeted queries [21]. In 
this paper we use our own classification which categorizes 
graph algorithms based on their behavior in network traffic 
making and generating messages during the processing. We 
classify algorithms into two groups as follow: 

• Non-Convergent Algorithms: Non-convergent 
algorithms are the algorithms that generate almost 
the same number of messages during processing. 
They complete the processing by passing the same 
number of messages in the last superstep as the 
number of messages they passed during first 
supersteps. So, the number of messages are 
generated using these applications never tends to 
become zero. PageRank [22], for instance, is a non-
convergent algorithm. 

• Convergent Algorithms: In contrast to non-
convergent algorithms, the number of messages are 
generated using convergent algorithms tend to fall 
down to zero by the end of processing operations. 
Computing shortest paths [23] and connected 
components [24] algorithms are among convergent 
algorithms. 

Here, we give a brief explanation of the algorithms we 
use from each category. 

1) PageRank 
PageRank is an algorithm which is used to measure the 

significance of website pages. PageRank works by 
measuring the number of links (hyperlinks) to a page to 
specify an importance estimation of a website. The more 
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important the page is, the more links it receives from other 
pages. PageRank does not rank a website as a whole, but is 
assessed by each page exclusively. The PageRank of page Pi 
does not impress the PageRank of a typical page P 
uniformly because of different weights that each page has. 
The summation of weighted PageRanks of all pages Pi then 
is multiplied by an alleviation factor ‘d’ that usually is set 
between 0 and 1. PageRank is also a non-convergent 
algorithm according to above classification because it 
produces the same number of messages in each superstep 
during a processing operation. 

2) Connected Components 
A connected component algorithm finds different sub-

graphs of a particular graph in which there is a path between 
any two vertices and that is not connected to any further 
vertices in the super-graph. We use HCC that starts with 
having all vertices in an initial active state. Each vertex 
starts computing by considering its ID as its component ID 
and update this component ID when it receives a smaller 
component ID. The vertex then propagates the updated 
value to its adjacent vertices. Connected component is a 
convergent algorithm because the number of passing 
messages between vertices tends to fall down to zero as the 
states of vertices change to inactive until the end of 
computation. 

3) Single Source Shortest Paths 
The shortest path in graph theory is the problem of 

discovering a path between two nodes such that the 
summation of the weights of its edge components is 
minimized. This is a well-known problem in graph theory 
and there are different approaches and applications applying 
various solutions to various problems in this field. 

Single source shortest path (SSSP) problem is one 
derivation of the main shortest path problem. This problem 
needs to find a shortest path between a single source node 
and all other vertices in the graph. In this algorithm, each 
vertex initializes its value (distance) to INF (�), while the 
source node put 0 as its distance. INF is larger than any 
possible path from the source node in the graph. In the first 
superstep, only the source node updates its neighbors; in the 
next superstep, the updated neighbors will send messages to 
their own neighbors and so on. The algorithm completes 
when there is no more updates happening and the states of 
vertices also changed to inactive. So, SSSP is a convergent 
algorithm according to the aforementioned definition. 

E. Graph Processing Challenges on Clouds 
A large-scale graph processing operation that includes a 

series of iterations to process a graph usually causes 
considerable overheads due to its large memory 
consumption, CPU utilization, error handling, etc. 
Accordingly, various frameworks are proposed to optimize 
and improve the performance of graph processing 
operations. Although many of these frameworks offer 
specified scalability improvements on high performance 
clusters with fast interconnections, their performance on 

cloud environments in which some critical factors such as 
service cost is determinative, is less studied. So, there are 
not many works that considered monetary optimizations. 
Besides, many existing frameworks consider memory 
utilization, runtime reduction, tasks prioritization and so on 
by using constant number of resources. So, they are not 
utilizing clouds elasticity and scalability that are important 
characteristics of cloud environments and can have 
significant impact on monetary costs. Our work is scoped to 
reduce the monetary cost of processing large-scale graphs 
on public clouds by proposing a Pregel-like framework.  

III. IGIRAPH 

A. Motivation 
iGiraph utilizes a distributed architecture on top of 

Hadoop and uses its distributed file system for data I/O. It is 
a Pregel-like graph processing system which means it 
employs vertex-centric processing solutions to process a 
graph and follows Pregel-like systems’ behaviors. The 
problem with many of existing graph processing systems, 
particularly Pregel-like frameworks, is that although they 
propose methods to run the processing faster and improve 
the performance of the system, resource utilization and 
monetary cost factors are less studied. Nonetheless, cost is a 
crucial factor for every business that wants to use public 
cloud infrastructure. As cloud providers are using pay-as-
you-go models for the services they are providing, 
considering the factors that have impacts on the cost of the 
services is very important for customers to choose the right 
services. There are many factors that influence the whole 
processing costs in a cloud environment including: 

• Execution time: The longer the operation takes, the 
more user has to pay.  

• Resource costs: Every resource has its own price. 
So, choosing the right number of machines with the 
right size can make huge differences. 

• Communication: Sending and receiving data in a 
cloud environment is not free hence reducing the 
cost of communication for each operation is vital. 

• Storage: Storing data could also become costly 
specially, for big data related services. 

One of the most important parts of a graph processing 
system is the partitioning method that is used to partition 
and distribute data across the workers. Choosing between 
various static partitioning methods or between static and 
dynamic partitioning approaches can affect the system 
performance and cost. iGiraph uses a dynamic graph re-
partitioning method which considers the main cost factors 
and improves the processing performance. 

B. iGiraph’s Dynamic Re-partitioning Approach 
iGiraph’s repartitioning algorithm uses the concept of 

high degree vertices in partition level and merges the 
partitions to reduce the number of cross-edges between them 
by migrating partitions from one worker to another. During 
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this process, some workers (resources) gradually become 
empty and can be released to decrease the cost of resource 
utilization. 

In many real world graphs only a few number of nodes 
contains a large fraction of all the edges in the graph [17]. 
These vertices are known as high degree vertices. While the 
number of edges connecting to a vertex states the degree of 
that vertex, a high degree vertex has much more connected 
edges compared to majority of the vertices in a graph. For 
example, in a social network, a singer, an actor or celebrities 
can have millions of followers in comparison with the 
average of tens or hundreds of friends and followers for an 
ordinary user. 

High degree vertices can play an important role in 
causing network traffic and delaying the execution time 
specially when they are placed as border vertices in 
partitions or close to border vertices. That is, putting high 
degree vertices as close as possible to their neighbors can 
significantly improve the network and system performance. 
Figure 3 shows the importance of this issue. In Figure 3.a 
vertex v from partition P1 is connected to many vertices in 
P2 results in huge network traffic while passing messages 
between two partitions and therefore delays the run-time and 
increases the cost. But as is shown in Figure 3.b, moving v to 
P2 can remarkably reduce the cross-edges between two 
partitions. 

 

 
Fig 3. The role of high degree border vertices in reducing network traffic 

iGiraph uses high degree vertex concept in partition level 
not vertex level. It means that as there are vertices with 
higher degree than other vertices in the graph, there are also 
partitions that send or receive more messages than other 
partitions in the graph of system workers. In order to store 
the information about which partition has sent or received 
more messages, iGiraph uses two separate lists. One stores 
the number of outgoing messages from each partition and the 
other, stores the number of incoming messages to each 
partition. We also define �, which is a threshold that is an 
average value for the number of messages that are 
transferring between each pairs of partitions. � is defined as 
follows: 
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In the above formula, Nm(Pj,Pj+1) shows the number of 
messages between partition j and partition j+1, NP shows the 

number of partitions that are involved in each superstep and 
n is calculated based on the number of partitions to show the 
number of pairs in each superstep. This formulation is 
calculated between each supersteps in iGiraph. According to 
this:  
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If the number of messages received by a partition is equal 
or greater than �, then that partition is a potential candidate 
for migration, otherwise the program looks at the number of 
outgoing messages at that partition to see if it can host 
vertices from other partitions or merge with them. Using 
factor � alone, border vertices can migrate between 
partitions. 

Although � is a determinative factor to specify which 
partitions are suitable for migration and merging, there are 
other important factors that can influence the final decision 
as well. One factor is the number of total messages 
transferred between all partitions in a particular superstep 
compared to the number of total messages transferred 
between all partitions in previous superstep. Merging (not 
migration) only can occur if this proportion is decreasing. As 
long as the number of messages is growing during the 
processing, no merging will happen. 

Another factor that determines whether partitions can 
merge is the size of partitions and workers’ capacities. As the 
processing continues, for convergent algorithm such as 
connected components and shortest path, the vertices that 
complete the computation change their states to inactive. So, 
instead of keeping these vertices in the memory until the end 
of processing operation, iGiraph deletes them temporarily 
from memory to provide room for partition merging. On the 
other side, if a removed vertex is invoked during the 
computation, iGiraph can bring it back to the memory. So, 
before merging two partitions, the system checks if the 
destination worker has enough space or not. 

When all above conditions are true, then migrating a 
partition from one worker to another worker to merge it with 
the other partition is possible. This has influences on the total 
cost of the service. For example, according to Figure 4, 
partition P1 is a high degree partition, which means it has the 
greatest number of incoming messages among other 
partitions, and is placed on worker W1. Partition P2 which is 
placed on worker W2 has sent the greatest number of 
messages to P1, P3 is in the second place after P2, P4 is next 
and so on. In addition, total number of transferred messages 
in current superstep (i+1) is less than transferred messages in 
previous superstep (i) and the workers have sufficient 
memory after removing inactive vertices. At this time, P1 
will merge with P2 until there is free space on W2. 
Additional vertices will be migrated to W3 and so on. A load 
balancer balances the number of vertices in each partition on 
remaining workers. 
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Fig 4. Worker W2 has sent more messages to W1 than other workers 

According to our experiment results, using the proposed 
re-partitioning algorithm for convergent applications can 
reduce the cost of resource utilization while the execution 
time is close to Giraph’s experiment results or with only a bit 
of increasing in some cases, but still do not affect the whole 
results. 

For non-convergent applications, iGiraph does not merge 
the partitions. So, the number of workers will remain the 
same from beginning of the processing to the end. Instead, 
only border vertices from high degree partitions will be 
migrated to reduce the cross-edges between partitions. In this 
case, the total average number of transferred messages is 
mitigated which leads to faster execution compared to 
Giraph. 

IV. IGIRAPH IMPLEMENTATION 
 

Fig 5. System architecture and components 

Figure 5 shows the iGiraph’s system architecture and 
components added to basic Giraph. The components that are 
surrounded by simple lines are basic Giraph’s that are used 
in iGiraph too. The components that are surrounded by 
dashed lines are the components which are added to the 
basic framework. Like Giraph, data is loaded and stored on 
HDFS. Then, an initial partitioner function will partition the 
graph and prepare the partitions for being distributed across 
workers. In this paper we use only a simple hash function as 
initial partitioner. The hash function partitioning method is 
proved that results in worst performance compared to other 
complicated initial partitioning methods. Hence, we want to 
reach a better performance using this approach to show that 
our method can work very well even in this case. In the next 
step, partitions will be distributed across workers. The 
policy selector selects the appropriate computation method 
based on the type of application. For example, if the 
algorithm is convergent it enables partition migration. Code 
executer is the main Compute() function that executes the 
algorithm on each active vertex. After that, according to the 
number of messages transferred between partitions during 

the superstep, a network measurement component will 
determine which partitions have sent or received messages 
in a descent order. Then the repartitioner chooses vertices or 
partitions to migrate or merge according to the policy is 
selected. This will be done by the partitions migrant. This 
process will continue until all the vertices in the graph 
change their states to inactive and there is no more vertices 
to be computed. Finally, the results will be written back to 
HDFS. 

V. PERFORMANCE EVALUATION 

A. Experimental Setup 
We chose shortest path and connected components 

algorithms among convergent applications and PageRank 
among non-convergent applications for our experiment. We 
also use three real datasets [25] of varying sizes: Amazon, 
YouTube and Pokec which is a Slovak social network.  

TABLE I.  EVALUATION DATASETS AND THEIR PROPERTIES [25] 

Graph Vertices Edges
Amazon (TWEB) 403,394 3,387,388
YouTube Links 1,138,499 4,942,297
Pokec 1,632,803 30,622,564

 
We use m1.medium NECTAR VM instances for all 

partition worker roles. NECTAR is Australian national cloud 
infrastructure facilities [26]. Medium instances have 2-cores 
with 8GB RAM and 70GB disk including 10GB root disk 
and 60GB ephemeral disk. All the instances are in the same 
zone and use the same security policies. We also installed 
NECTAR Ubuntu 14.04 (Trusty) amd64 on each instance. 
We use Apache Hadoop version 0.20.203.0 and Apache 
Giraph version 1.1.0 with its checkpointing characteristic 
turned off. All experiments run using 16 instances where one 
takes the master role and others are set up as workers. 

B. Evaluation and Results 
First, we investigate the impact of our proposed approach 

on convergent algorithms and compare the results with basic 
Giraph. Then, we investigate non-convergent PageRank 
algorithm on both frameworks. 

1) Evaluation of Convergent Algorithms 
Figure 6 and 7 show the results of comparison 

experiments between Giraph and iGiraph on Amazon and 
Pokec datasets respectively. Considering that the size of 
every network message is the same in all experiments, here 
the computation can converge faster using iGiraph while the 
number of messages passing through network is reduced 
significantly. In Figure 7, after using factor � the number of 
messages increased a bit at first superstep, but noticeably 
decreased after that and still shows significant network 
message reduction compared to Giraph. 
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Fig 6. Number of network messages transferred between partitions across 
supersteps for the Amazon graph using connected components algorithm 

Fig 7. Number of network messages transferred between partitions across 
supersteps for the Pokec graph using connected components algorithm 

Fig 8. Number of machines varying during supesteps while running 
connected component algorithms on different datasets on iGiraph 

Fig 9. Total time taken to perform connected components algorithm 

In contrast to Giraph in which the number of workers is 
kept intact during the whole operation, iGiraph releases 
compute nodes as the graph get converged. That is because 
by keeping only active vertices for the operation and doing 
repartitioning between each supersteps, less computation 
resources are required to continue the processing. We 
observed that by removing inactive vertices after each 
superstep, we could merge more partitions to use the 
capacities of each worker’s memory efficiently. So, the more 

partition merge, the more resources can be freed which 
results in more money saving. But this claim only can be true 
when we consider both resource reduction and execution 
time together. 

 

      (3) 
 
According to the above formulation, total cost of using 

resources on a cloud environment is equal to the summation 
of the price of each resource P(VMi) multiplied by total time 
of using that resource Ttotal(VMi). To calculate the final cost 
for the whole processing operation beside reducing the 
number of resources, we need to measure the system run-
time too. Note that although data transfer also has impact on 
the final cost calculation, we have not considered that here, 
but we will take it into consideration for our future works. 
Figure 9 shows the execution time for processing 
aforementioned datasets using connected components 
algorithm. It shows that in addition to decreasing the cost of 
resource utilization, the run time for the operation is also 
reduced. Therefore, according to formula 3, the total cost of 
the operation falls down too.  

Similar to previous evaluations for connected component 
algorithm, we repeated experiments using shortest path 
algorithm for both Giraph and iGiraph. From the network 
traffic point of view, the difference between shortest path 
and connected component is that the former starts with 
passing a few number of messages at the beginning of 
computation and gradually increases until reach a maximum 
and then starts converging, but connected component starts 
with passing great number of messages hence it immediately 
starts the convergence process. Figure 10 shows the results 
of a comparison experiment between Giraph and iGiraph on 
Amazon dataset using connected components algorithm. It 
takes 37 supersteps for this process to be completed on 
Giraph while it converges around superstep 23 using 
iGiraph. This is because in contrast to Giraph in which the 
number of messages starts falling down from superstep 14, 
using factor �, this happens to iGiraph after superstep 8. 
From this point onwards in iGiraph, three conditions for 
partition merging are provided and according to Figure 13 it 
can be seen that the number of active workers are decreasing. 
The results for Pokec and YouTube are shown in Figure 11 
and 12, respectively. 

 

Fig 10. Number of network messages transferred between partitions across 
supersteps for the Amazon graph using shortest path algorithm 
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Fig 11. Number of network messages transferred between partitions across 
supersteps for the Pokec graph using shortest path algorithm 

Fig 12. Number of network messages transferred between partitions across 
supersteps for the YouTube graph using shortest path algorithm 

Fig 13. Number of machines varying during supesteps while running 
connected component algorithms on different datasets on iGiraph 

Fig 14. Total time taken to perform shortest path algorithm 

The above figure shows that the time taken to complete 
shortest path algorithm on 16 machines using iGiraph is not 
significantly different than Giraph. As a result, considering 

total execution time and decreasing number of active 
workers in each experiment, iGiraph is more cost-effective 
than Giraph for convergent algorithms on public clouds. 

2) Evaluation of Non-Convergent Algorithms 
Processing non-convergent algorithms such as PageRank 

shows that the number of messages generated in each 
superstep is almost the same as other supersteps during the 
whole processing. In PageRank for example, vertices always 
update their neighbors during the computation hence as long 
as the number of vertices is the same, the number of 
messages is also the same. But it is still possible to reduce 
the network messages by using � factor. � determines the 
partitions that receive more messages through network than 
the other partitions (high degree partitions). Then, to balance 
the messaging pattern, iGiraph selects a number of border 
vertices from high degree partitions to relocate based on the 
aforementioned algorithm in section 4. After relocating the 
vertices, a load balancer method will balance the number of 
vertices in each partition. It can be seen that the average 
number of network messages falls down a bit in iGiraph 
results in faster computation. Figure 15 shows the average 
number of network messages in both Giraph and iGiraph. 
The total execution time for each experiment also can be 
seen in figure 16. According to these figures, although we 
did not decrease the number of workers like what was done 
for convergent algorithms, total runtime of the system 
decreased because there are few messages passing through 
network compared to Giraph.  

 

Fig 15. The average number of network messages in each experiment 

Fig 16. Total time taken to perform PageRank algorithm 
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VI. RELATED WORK 
According to The National Research Council of the 

National Academies of the United States [27], graph 
processing is one of the seven computational giants of 
massive data analysis. Google’s Pregel [28] is the first graph 
processing framework in the literature that uses a bulk 
synchronous parallel (BSP) model [14] for graph 
computation based on a vertex-centric approach. Public 
implementations of this framework include Giraph [13], 
GoldenOrb [29], Apache Hama [30], etc. These frameworks 
are developed based on distributed architectures in which 
usually one machine acts as the master and one or several 
other machines act as workers. In the master-worker 
approach, the input graph is split into partitions and each 
partition assigns to a worker to process it. Many of graph 
processing frameworks use a simple hash function for 
partitioning the graph. However, such simple partitioning 
leads to huge network traffic in a graph processing task that 
consequently affects the system performance. To improve 
the partitioning efficiency, various approaches are proposed 
in different frameworks [31] [32] [33]. While most graph 
processing systems offer some specified improvements on 
HPC clusters with fast interconnects, their conduct on 
virtualized commodity hardware which is provided by cloud 
computing paradigm and is accessible to a wider population 
of users is less investigated [10]. 

Frameworks designed to process large-scale graphs based 
on Pregel are called Pregel-like frameworks. They are 
designed based on distributed architecture on high 
performance computing systems such as distributed clusters. 
Although graph processing systems created to overcome 
previous large data processing solutions such as MapReduce, 
some of distributed frameworks use series of MapReduce 
jobs iteratively. Giraph [13] and Surfer [9] are examples of 
these systems. Other features of Pregel-like frameworks 
include using bulk synchronous parallel (BSP), message 
passing communication method and global synchronization 
barrier between supersteps. However, systems such as 
GraphLab [34] provide asynchronous computations. Since 
iGiraph is a Pregel-like system and developed based on 
Giraph, it contains all of these specifications with some 
additional features such as dynamic repartitioning and cost 
minimization. There are many non-Pregel graph processing 
frameworks developed on distributed architecture. Among 
these frameworks are Trinity [35] and Presto [36]. 

GPS [23] is the most similar to our work. It has an 
optimization called LALP (large adjacency-list partitioning) 
by which stores high degree vertices and use the list to send 
one message, instead of thousands for instance, to the 
partitions are containing those vertices. After the message 
gets to the destination, it will be replicated thousands times 
to the message queues of each vertex in its outgoing 
neighbors list. Instead of storing the list of vertices, iGiraph 
stores two lists of the number of outgoing and incoming 
messages from/to each partition that show which partitions 
are sending or receiving more messages. These lists are 
noticeably smaller than GPS’s adjacency lists. 

Another difference between our system and GPS is that 
high degree vertices in GPS are defined by the programmer, 
but in iGiraph, the decisions about migrating the partitions 
are making based on an automatic formula. In GPS, the 
programmer specifies a parameter .τ If the number of 
outgoing messages for any vertex is more than ,τ it will be 
considered as high degree. Here, selecting the right value 
forτ is very important and can directly affect the system’s 
performance.  

There are previous studies on the performance effects of 
different partitionings of graphs on other systems. The main 
challenge in partitioning a graph is to find how to partition 
the data to gain better vertex or edge cuts with considering 
the simplicity of computation. Pregel, Giraph and GraphLab 
partition the graph by cutting the edges while PowerGraph 
[37] and X-Stream [38] cut vertices for partitioning. From 
another point of view, the majority of graph processing 
frameworks only use static partitioning approaches that 
means they only partition the graph once before the 
processing starts or they do it once during the computation. 
On the other hand, some frameworks such as GPS use 
dynamic repartitioning approach that allows them to 
repartition the graph multiple times during the computation 
based on some pre-defined features to achieve better 
performance. 

VII. CONCLUSIONS AND FUTURE WORK 
Huge amount of data is created and stored in the form of 

graphs every day. In this paper, we presented iGiraph, a 
Pregel-like system developed based on Giraph for processing 
large-scale graphs on public clouds. iGiraph uses a new 
repartitioning method to reduce the number of messages 
passing through network by decreasing the number of cross-
edges between partitions. It utilizes high degree concept in 
partition level for both convergent and non-convergent types 
of algorithms. iGiraph also considers processing large graphs 
as a service on public clouds. Therefore, it reduces the cost 
of resource utilization by decreasing the number of workers 
that are using for the operation and executes the applications 
within a period which is reasonably close to Giraph’s time.  

We plan to extend iGiraph to use other critical network 
factors such as network bandwidth and topology, and study 
the impacts of these factors on system performance. We also 
want to use other graph partitioning methods such as METIS 
instead of a simple hash partitioning approach to see how 
effective are those methods in iGiraph. To investigate the 
graph processing as a service (GPaaS) more, we will study 
the factors that affect quality of services for large graph 
processing services on cloud environment as well. 
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