
iGiraph: A Cost-efficient Framework for Processing Large-scale Graphs on
Public Clouds

Safiollah Heidari, Rodrigo N. Calheiros and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Lab

Department of Computing and Information Systems
The University of Melbourne, Australia

E-mail: sheidari@student.unimelb.edu.au, rbuyya@unimelb.edu.au

Abstract— Large-scale graph analytics has gained attention
during the past few years. As the world is going to be more
connected by appearance of new technologies and applications
such as social networks, Web portals, mobile devices, Internet
of things, etc, a huge amount of data are created and stored
every day in the form of graphs consisting of billions of vertices
and edges. Many graph processing frameworks have been
developed to process these large graphs since Google
introduced its graph processing framework called Pregel in
2010. On the other hand, cloud computing which is a new
paradigm of computing that overcomes restrictions of
traditional problems in computing by enabling some novel
technological and economical solutions such as distributed
computing, elasticity and pay-as-you-go models has improved
service delivery features. In this paper, we present iGiraph, a
cost-efficient Pregel-like graph processing framework for
processing large-scale graphs on public clouds. iGiraph uses a
new dynamic re-partitioning approach based on messaging
pattern to minimize the cost of resource utilization on public
clouds. We also present the experimental results on the
performance and cost effects of our method and compare them
with basic Giraph framework. Our results validate that
iGiraph remarkably decreases the cost and improves the
performance by scaling the number of workers dynamically.

Keywords-cloud computing; graph processing; partitioning;
public clouds; cost-efficient processing; graph analytics

I. INTRODUCTION
As Internet continues to grow, the world is becoming a

more connected environment and the number of data
resources is increasing beyond what had been predicted
before [1]. Amongst various data modeling approaches to
store huge data, graphs are widely adopted to model complex
relationships among objects. A graph consists of sets of
vertices and edges which demonstrate the pairwise
relationship between different objects. Many applications
and technologies such as social networks, search engines,
banking applications, smart phones and mobile devices,
computer networks, the semantic web, etc, are modeling and
using data in the form of graphs [2]. These applications
generate massive amounts of data which are represented by
graphs. Facebook [3], for example, has more than one billion
users that are considered as the vertices of a huge graph
where the relationships between them are considered as the
edges of the graph. To gain an insight and discover
knowledge from these applications, the graph that represents

them should be processed. However, the scale of these
graphs poses challenges to their efficient processing [4].

In order to process large graph problems, every solution
confronts with some challenges due to the intrinsic properties
of graphs. These properties include data-driven computation,
unstructured problems, poor locality and high data access to
computation ratio [5]. Therefore, graph problems are not
well matched with existing processing approaches and
usually prevent efficient parallelism. MapReduce [6], for
example, which addresses many shortcomings in previous
parallel and distributed computing approaches, is not an
appropriate solution for large graph processing. This is
because first, MapReduce uses a two phased computational
model (map and reduce) which is not well suited for iterative
characteristic of graph algorithms. Second, its tuple-based
approach is poorly suited for most of graph applications [7].

Cloud computing is a new paradigm of computing that
has changed software, hardware and datacenters design and
implementation. It overcomes restrictions of traditional
problems in computing by enabling some novel
technological and economical solutions like using distributed
computing, elasticity and pay-as-you-go models which make
service providers free from previous challenges to deliver
services to their customers [8]. Cloud computing presents
computing as a utility that users access various services
based on their requirements without paying attention to how
the services are delivered or where they are hosted. Public
cloud computing services, for instance, offer Platform as a
Service (PaaS) or Infrastructure as a Service (IaaS) for large
distributed processing, are becoming more popular among
companies who want to focus on their business instead of
being concerned about technical issues. Rapid on-demand
compute resource provisioning brings cost scalability based
on utilization. As an example, Amazon EC2 provides three
cost models for its customers based on their requirements –
spot, on-demand and reserved provisioning. Using these
commercial services, the customer may choose to pay more
to achieve better performance or reliability. So, making a
proper decision between using the number of resources the
user wants to use and the money that the user wants to pay
for the service is an issue while using public clouds.

Some graph processing frameworks such as Surfer [9]
and Pregel.Net [10] were developed to support processing
large graphs on public clouds, but they have considered
some specific issues on these frameworks and do not address
the impact of their solutions on the monetary cost of the

2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-1-5090-2453-7/16 $31.00 © 2016 IEEE

DOI 10.1109/CCGrid.2016.38

301

system. For example, Surfer has proposed a graph
partitioning method based on network latency and
Pregel.Net, which is the .Net-based implementation of
Pregel, has analyzed the impact of BSP graph processing
models on public clouds using Microsoft Azure. On the other
hand, there are some services such as Amazon relational
database service (RDS) which is designed for traditional
relational databases [11]. It is aimed at facilitating the set-up,
operation and scaling a relational database and comes with
two reserved and on-demand instance packages. According
to a recent report [12], graph databases are getting more and
more attentions every day and many companies are going to
use this kind of database for their businesses. So, in the near
future, public cloud providers will introduce new graph
processing services on their infrastructures.

However, current frameworks for graph processing have
limitations that hinder their adoption in cloud platforms.
First, the majority of them have been designed and tested on
cluster environments and not clouds, hence they have not
considered monetary optimization, which is a very important
factor for service selection on clouds. Second, many graph
processing frameworks focus on reducing the operation’s
execution time, reducing memory utilization, considering
task priorities and so on to reduce the cost of processing, but
considering a static pool of resources with known size. On
the other hand, cloud computing provides high scalability
on-demand resources that can help users to perform their
tasks using various services. Therefore, a graph processing
approach with performance guarantees and optimal cost is a
must in a cloud setting.

In this paper, we propose a graph processing framework
called iGiraph. It uses a cost-efficient dynamic re-
partitioning approach that utilizes network traffic message
pattern to reduce the number of virtual machines (workers)
during the processing by migrating partitions and vertices to
minimize the cost. The new repartitioning method also
mitigates network traffic results in faster execution. Our
work, iGiraph makes the following key contributions:

• iGiraph repartitions the graph dynamically across
workers considering network traffic pattern to
reduce the communication between compute
nodes.

• iGiraph uses high degree vertices concept in
partition level, with the convergent level of the
algorithms that are running on the system. iGiraph
manages the number of compute nodes using a
proper combination of these methods.

• While cost is a very critical factor in service
selection procedure for any user on a public cloud,
iGiraph significantly reduces the cost of processing
large-scale graphs with reasonably close runtimes
to Giraph by its new approach.

The rest of the paper is organized as follow: section 2,
explains the basic Apache Giraph framework and its features
following by the vertex and algorithm categorization is used
for our work. Section 3 gives details about iGiraph solutions.
Section 4 shows iGiraph’s implementation. Performance
evaluation of the system is discussed in section 5 and finally,

Fig 1. Giraph’s Architecture

related works and conclusions and future works are
explained in sections 6 and 7, respectively

II. BACKGROUND
In this section, we first introduce Apache Giraph [13]

which is the fundamental framework for our system. Then,
we explain Bulk Synchronous Parallel (BSP) [14] model
following by describing a vertex categorization that is
effectively used for our re-partitioning model. Finally, we
explain the graph algorithm classification we used in this
paper which has a great impact on choosing the right strategy
to reduce the cost of the whole system.

A. Giraph
Apache Giraph is an open-source implementation of

proprietary Pregel. It is a distributed graph processing
framework that uses a set of machines (workers) to process
large graph datasets. One of the machines plays the role of
master to coordinate with other slave workers. The master is
also responsible for global synchronization, error handling,
assigning partitions to workers and aggregating aggregator
values. Giraph is a Hadoop-based framework that runs
workers as map-only jobs and uses Hadoop data file system
(HDFS) for data I/O. It also employs Apache ZooKeeper
[15] for checkpointing, coordination and failure recovery
scheme. Giraph added many features beyond the basic Pregel
including sharded aggregators, out-of-core computation,
master computation, edge-oriented input and more. Finally,
having a growing community of users and developers
worldwide, Giraph has become a popular graph processing
framework that even big companies such as Facebook are
using it to process their huge datasets [16].

Giraph utilizes vertex-centric programming model like
Pregel in which each vertex of the graph is identified by a
unique ID. Each vertex also has other information such as a
vertex value, a set of edges with an edge value for each edge,
and a set of messages sent to it. To process a large graph in
vertex-centric model, it should be partitioned into smaller
parts by a partitioner where each partition is connected to
other partitions by cross-edges between them. The partitioner
also distributes partitions to a set of worker machines. In
Giraph, a partitioner determines which partition a vertex
belongs to based on its ID. Giraph uses a default hash
function on the vertex ID to partition a graph while other
customized partitioners also can be used. To improve the

302

Fig 2. Internal vertices and border vertices

load balancing, the number of partitions is often greater than
the number of workers.

Using simple static partitioning methods makes Giraph to
run and process various graph algorithms slower and with
more costs than other Pregel-like frameworks such as GPS
[17] or Giraphx [18]. These systems have shown that using
more complicated static partitioning algorithms such as
METIS [19], rather than using a simple hash partitioning
method, can remarkably improve the performance. GPS for
example, uses a combination of a static partitioning
algorithm to partition the graph and a dynamic re-
partitioning algorithm during the computation to distribute
the remaining non-processed vertices to idle workers to
reduce the execution time within a superstep. In this paper,
we choose the hash partitioning algorithm to start
partitioning the graph with, but during the computation we
replace that with a dynamic traffic-aware re-partitioning
algorithm to reduce the cost of the whole processing
operation and improve the performance of the system.

B. Bulk Synchronous Parallel Model
Bulk Synchronous Parallel (BSP) is a vertex-centric

computational model in which every single vertex of the
graph can carry two states of active or inactive. All vertices
are active when the computation starts. The processing
consists of a series of iterations, called supersteps, followed
by global synchronization barriers between them. In each
iteration, every vertex that is involved in computation, 1)
receives its neighbors updated values from previous iteration,
2) the vertex then will be updated by received values, 3) and
finally, the vertex sends its updated value to its adjacent
vertices that will be available to them in the next superstep
and changes its state to inactive.

The advantage of using BSP model in Giraph is that all
the aforementioned operation is executed by a user-defined
Compute() function of the Vertex class. After all the vertices
completed executing Compute() function in a superstep, data
will be aggregated during the synchronization phase and the
messages generated by each vertex will be available to their
destinations at the beginning of next superstep. If a vertex
does not receive any messages during a superstep, it can
deactivate itself by calling voteToHalt() function. However,
a deactivated vertex can be activated by receiving messages
from its neighbors. If there is not any active vertex, the
computation is finished.

C. Internal Vertices and Border Vertices
A graph G=(V,E) consists of a set of vertices V={v1, v2,

…, vn} and a set of edges E={e1,e2, …, em} where E ⊂ V×V.

In the vertex-centric graph processing approach, the graph is
divided into smaller partitions based on vertex divisions so
that P1 � P2 � … � Pk = V are k partitions of V where
Pi� Pj=∅ , ∀ i ≠ j. Therefore, each vertex basically belongs
to only one particular partition [20].

An internal vertex is a vertex that all its adjacent vertices
are inside the same partition as this particular vertex is. So,
the messages coming out from an internal vertex only flow
within the partition. On the other side, a border vertex is a
vertex that at least one of its neighbors is placed in another
partition. Hence, a border vertex’s outgoing messages need
to be sent to at least one different partition than the partition
this particular vertex belongs to. Passing messages between
partitions leads to increasing network traffic which results in
longer execution time, inefficient resource utilization and
higher costs in turn. Internal vertices and border vertices are
shown in figure 2. One of the approaches for avoiding
message passing side effects is to partition the graph in a
way that reduces the number of border vertices and cross-
edges between partitions so that the number of messages
passing between partitions will be reduced.

D. Graph Algorithms
Different research use different classification of

algorithms. For example, one may classify graph algorithms
into traversal algorithms, graph aggregation algorithms,
random walk algorithms and so on, while another one
classifies them as global queries and targeted queries [21]. In
this paper we use our own classification which categorizes
graph algorithms based on their behavior in network traffic
making and generating messages during the processing. We
classify algorithms into two groups as follow:

• Non-Convergent Algorithms: Non-convergent
algorithms are the algorithms that generate almost
the same number of messages during processing.
They complete the processing by passing the same
number of messages in the last superstep as the
number of messages they passed during first
supersteps. So, the number of messages are
generated using these applications never tends to
become zero. PageRank [22], for instance, is a non-
convergent algorithm.

• Convergent Algorithms: In contrast to non-
convergent algorithms, the number of messages are
generated using convergent algorithms tend to fall
down to zero by the end of processing operations.
Computing shortest paths [23] and connected
components [24] algorithms are among convergent
algorithms.

Here, we give a brief explanation of the algorithms we
use from each category.

1) PageRank
PageRank is an algorithm which is used to measure the

significance of website pages. PageRank works by
measuring the number of links (hyperlinks) to a page to
specify an importance estimation of a website. The more

303

important the page is, the more links it receives from other
pages. PageRank does not rank a website as a whole, but is
assessed by each page exclusively. The PageRank of page Pi
does not impress the PageRank of a typical page P
uniformly because of different weights that each page has.
The summation of weighted PageRanks of all pages Pi then
is multiplied by an alleviation factor ‘d’ that usually is set
between 0 and 1. PageRank is also a non-convergent
algorithm according to above classification because it
produces the same number of messages in each superstep
during a processing operation.

2) Connected Components
A connected component algorithm finds different sub-

graphs of a particular graph in which there is a path between
any two vertices and that is not connected to any further
vertices in the super-graph. We use HCC that starts with
having all vertices in an initial active state. Each vertex
starts computing by considering its ID as its component ID
and update this component ID when it receives a smaller
component ID. The vertex then propagates the updated
value to its adjacent vertices. Connected component is a
convergent algorithm because the number of passing
messages between vertices tends to fall down to zero as the
states of vertices change to inactive until the end of
computation.

3) Single Source Shortest Paths
The shortest path in graph theory is the problem of

discovering a path between two nodes such that the
summation of the weights of its edge components is
minimized. This is a well-known problem in graph theory
and there are different approaches and applications applying
various solutions to various problems in this field.

Single source shortest path (SSSP) problem is one
derivation of the main shortest path problem. This problem
needs to find a shortest path between a single source node
and all other vertices in the graph. In this algorithm, each
vertex initializes its value (distance) to INF (�), while the
source node put 0 as its distance. INF is larger than any
possible path from the source node in the graph. In the first
superstep, only the source node updates its neighbors; in the
next superstep, the updated neighbors will send messages to
their own neighbors and so on. The algorithm completes
when there is no more updates happening and the states of
vertices also changed to inactive. So, SSSP is a convergent
algorithm according to the aforementioned definition.

E. Graph Processing Challenges on Clouds
A large-scale graph processing operation that includes a

series of iterations to process a graph usually causes
considerable overheads due to its large memory
consumption, CPU utilization, error handling, etc.
Accordingly, various frameworks are proposed to optimize
and improve the performance of graph processing
operations. Although many of these frameworks offer
specified scalability improvements on high performance
clusters with fast interconnections, their performance on

cloud environments in which some critical factors such as
service cost is determinative, is less studied. So, there are
not many works that considered monetary optimizations.
Besides, many existing frameworks consider memory
utilization, runtime reduction, tasks prioritization and so on
by using constant number of resources. So, they are not
utilizing clouds elasticity and scalability that are important
characteristics of cloud environments and can have
significant impact on monetary costs. Our work is scoped to
reduce the monetary cost of processing large-scale graphs
on public clouds by proposing a Pregel-like framework.

III. IGIRAPH

A. Motivation
iGiraph utilizes a distributed architecture on top of

Hadoop and uses its distributed file system for data I/O. It is
a Pregel-like graph processing system which means it
employs vertex-centric processing solutions to process a
graph and follows Pregel-like systems’ behaviors. The
problem with many of existing graph processing systems,
particularly Pregel-like frameworks, is that although they
propose methods to run the processing faster and improve
the performance of the system, resource utilization and
monetary cost factors are less studied. Nonetheless, cost is a
crucial factor for every business that wants to use public
cloud infrastructure. As cloud providers are using pay-as-
you-go models for the services they are providing,
considering the factors that have impacts on the cost of the
services is very important for customers to choose the right
services. There are many factors that influence the whole
processing costs in a cloud environment including:

• Execution time: The longer the operation takes, the
more user has to pay.

• Resource costs: Every resource has its own price.
So, choosing the right number of machines with the
right size can make huge differences.

• Communication: Sending and receiving data in a
cloud environment is not free hence reducing the
cost of communication for each operation is vital.

• Storage: Storing data could also become costly
specially, for big data related services.

One of the most important parts of a graph processing
system is the partitioning method that is used to partition
and distribute data across the workers. Choosing between
various static partitioning methods or between static and
dynamic partitioning approaches can affect the system
performance and cost. iGiraph uses a dynamic graph re-
partitioning method which considers the main cost factors
and improves the processing performance.

B. iGiraph’s Dynamic Re-partitioning Approach
iGiraph’s repartitioning algorithm uses the concept of

high degree vertices in partition level and merges the
partitions to reduce the number of cross-edges between them
by migrating partitions from one worker to another. During

304

this process, some workers (resources) gradually become
empty and can be released to decrease the cost of resource
utilization.

In many real world graphs only a few number of nodes
contains a large fraction of all the edges in the graph [17].
These vertices are known as high degree vertices. While the
number of edges connecting to a vertex states the degree of
that vertex, a high degree vertex has much more connected
edges compared to majority of the vertices in a graph. For
example, in a social network, a singer, an actor or celebrities
can have millions of followers in comparison with the
average of tens or hundreds of friends and followers for an
ordinary user.

High degree vertices can play an important role in
causing network traffic and delaying the execution time
specially when they are placed as border vertices in
partitions or close to border vertices. That is, putting high
degree vertices as close as possible to their neighbors can
significantly improve the network and system performance.
Figure 3 shows the importance of this issue. In Figure 3.a
vertex v from partition P1 is connected to many vertices in
P2 results in huge network traffic while passing messages
between two partitions and therefore delays the run-time and
increases the cost. But as is shown in Figure 3.b, moving v to
P2 can remarkably reduce the cross-edges between two
partitions.

Fig 3. The role of high degree border vertices in reducing network traffic

iGiraph uses high degree vertex concept in partition level
not vertex level. It means that as there are vertices with
higher degree than other vertices in the graph, there are also
partitions that send or receive more messages than other
partitions in the graph of system workers. In order to store
the information about which partition has sent or received
more messages, iGiraph uses two separate lists. One stores
the number of outgoing messages from each partition and the
other, stores the number of incoming messages to each
partition. We also define �, which is a threshold that is an
average value for the number of messages that are
transferring between each pairs of partitions. � is defined as
follows:

1 1
1(,)

PN

m j

n

j
i

P

j
N P P

N
α =

+
==

� �
 , (1)

In the above formula, Nm(Pj,Pj+1) shows the number of
messages between partition j and partition j+1, NP shows the

number of partitions that are involved in each superstep and
n is calculated based on the number of partitions to show the
number of pairs in each superstep. This formulation is
calculated between each supersteps in iGiraph. According to
this:

 n=
2

P
P

NN � �× � �� �

 If Np is odd

(2)
(1)

2
P

P
NN � �− × � �� �

 If Np is even

If the number of messages received by a partition is equal
or greater than �, then that partition is a potential candidate
for migration, otherwise the program looks at the number of
outgoing messages at that partition to see if it can host
vertices from other partitions or merge with them. Using
factor � alone, border vertices can migrate between
partitions.

Although � is a determinative factor to specify which
partitions are suitable for migration and merging, there are
other important factors that can influence the final decision
as well. One factor is the number of total messages
transferred between all partitions in a particular superstep
compared to the number of total messages transferred
between all partitions in previous superstep. Merging (not
migration) only can occur if this proportion is decreasing. As
long as the number of messages is growing during the
processing, no merging will happen.

Another factor that determines whether partitions can
merge is the size of partitions and workers’ capacities. As the
processing continues, for convergent algorithm such as
connected components and shortest path, the vertices that
complete the computation change their states to inactive. So,
instead of keeping these vertices in the memory until the end
of processing operation, iGiraph deletes them temporarily
from memory to provide room for partition merging. On the
other side, if a removed vertex is invoked during the
computation, iGiraph can bring it back to the memory. So,
before merging two partitions, the system checks if the
destination worker has enough space or not.

When all above conditions are true, then migrating a
partition from one worker to another worker to merge it with
the other partition is possible. This has influences on the total
cost of the service. For example, according to Figure 4,
partition P1 is a high degree partition, which means it has the
greatest number of incoming messages among other
partitions, and is placed on worker W1. Partition P2 which is
placed on worker W2 has sent the greatest number of
messages to P1, P3 is in the second place after P2, P4 is next
and so on. In addition, total number of transferred messages
in current superstep (i+1) is less than transferred messages in
previous superstep (i) and the workers have sufficient
memory after removing inactive vertices. At this time, P1
will merge with P2 until there is free space on W2.
Additional vertices will be migrated to W3 and so on. A load
balancer balances the number of vertices in each partition on
remaining workers.

305

Fig 4. Worker W2 has sent more messages to W1 than other workers

According to our experiment results, using the proposed
re-partitioning algorithm for convergent applications can
reduce the cost of resource utilization while the execution
time is close to Giraph’s experiment results or with only a bit
of increasing in some cases, but still do not affect the whole
results.

For non-convergent applications, iGiraph does not merge
the partitions. So, the number of workers will remain the
same from beginning of the processing to the end. Instead,
only border vertices from high degree partitions will be
migrated to reduce the cross-edges between partitions. In this
case, the total average number of transferred messages is
mitigated which leads to faster execution compared to
Giraph.

IV. IGIRAPH IMPLEMENTATION

Fig 5. System architecture and components

Figure 5 shows the iGiraph’s system architecture and
components added to basic Giraph. The components that are
surrounded by simple lines are basic Giraph’s that are used
in iGiraph too. The components that are surrounded by
dashed lines are the components which are added to the
basic framework. Like Giraph, data is loaded and stored on
HDFS. Then, an initial partitioner function will partition the
graph and prepare the partitions for being distributed across
workers. In this paper we use only a simple hash function as
initial partitioner. The hash function partitioning method is
proved that results in worst performance compared to other
complicated initial partitioning methods. Hence, we want to
reach a better performance using this approach to show that
our method can work very well even in this case. In the next
step, partitions will be distributed across workers. The
policy selector selects the appropriate computation method
based on the type of application. For example, if the
algorithm is convergent it enables partition migration. Code
executer is the main Compute() function that executes the
algorithm on each active vertex. After that, according to the
number of messages transferred between partitions during

the superstep, a network measurement component will
determine which partitions have sent or received messages
in a descent order. Then the repartitioner chooses vertices or
partitions to migrate or merge according to the policy is
selected. This will be done by the partitions migrant. This
process will continue until all the vertices in the graph
change their states to inactive and there is no more vertices
to be computed. Finally, the results will be written back to
HDFS.

V. PERFORMANCE EVALUATION

A. Experimental Setup
We chose shortest path and connected components

algorithms among convergent applications and PageRank
among non-convergent applications for our experiment. We
also use three real datasets [25] of varying sizes: Amazon,
YouTube and Pokec which is a Slovak social network.

TABLE I. EVALUATION DATASETS AND THEIR PROPERTIES [25]

Graph Vertices Edges
Amazon (TWEB) 403,394 3,387,388
YouTube Links 1,138,499 4,942,297
Pokec 1,632,803 30,622,564

We use m1.medium NECTAR VM instances for all

partition worker roles. NECTAR is Australian national cloud
infrastructure facilities [26]. Medium instances have 2-cores
with 8GB RAM and 70GB disk including 10GB root disk
and 60GB ephemeral disk. All the instances are in the same
zone and use the same security policies. We also installed
NECTAR Ubuntu 14.04 (Trusty) amd64 on each instance.
We use Apache Hadoop version 0.20.203.0 and Apache
Giraph version 1.1.0 with its checkpointing characteristic
turned off. All experiments run using 16 instances where one
takes the master role and others are set up as workers.

B. Evaluation and Results
First, we investigate the impact of our proposed approach

on convergent algorithms and compare the results with basic
Giraph. Then, we investigate non-convergent PageRank
algorithm on both frameworks.

1) Evaluation of Convergent Algorithms
Figure 6 and 7 show the results of comparison

experiments between Giraph and iGiraph on Amazon and
Pokec datasets respectively. Considering that the size of
every network message is the same in all experiments, here
the computation can converge faster using iGiraph while the
number of messages passing through network is reduced
significantly. In Figure 7, after using factor � the number of
messages increased a bit at first superstep, but noticeably
decreased after that and still shows significant network
message reduction compared to Giraph.

306

Fig 6. Number of network messages transferred between partitions across
supersteps for the Amazon graph using connected components algorithm

Fig 7. Number of network messages transferred between partitions across
supersteps for the Pokec graph using connected components algorithm

Fig 8. Number of machines varying during supesteps while running
connected component algorithms on different datasets on iGiraph

Fig 9. Total time taken to perform connected components algorithm

In contrast to Giraph in which the number of workers is
kept intact during the whole operation, iGiraph releases
compute nodes as the graph get converged. That is because
by keeping only active vertices for the operation and doing
repartitioning between each supersteps, less computation
resources are required to continue the processing. We
observed that by removing inactive vertices after each
superstep, we could merge more partitions to use the
capacities of each worker’s memory efficiently. So, the more

partition merge, the more resources can be freed which
results in more money saving. But this claim only can be true
when we consider both resource reduction and execution
time together.

 (3)

According to the above formulation, total cost of using

resources on a cloud environment is equal to the summation
of the price of each resource P(VMi) multiplied by total time
of using that resource Ttotal(VMi). To calculate the final cost
for the whole processing operation beside reducing the
number of resources, we need to measure the system run-
time too. Note that although data transfer also has impact on
the final cost calculation, we have not considered that here,
but we will take it into consideration for our future works.
Figure 9 shows the execution time for processing
aforementioned datasets using connected components
algorithm. It shows that in addition to decreasing the cost of
resource utilization, the run time for the operation is also
reduced. Therefore, according to formula 3, the total cost of
the operation falls down too.

Similar to previous evaluations for connected component
algorithm, we repeated experiments using shortest path
algorithm for both Giraph and iGiraph. From the network
traffic point of view, the difference between shortest path
and connected component is that the former starts with
passing a few number of messages at the beginning of
computation and gradually increases until reach a maximum
and then starts converging, but connected component starts
with passing great number of messages hence it immediately
starts the convergence process. Figure 10 shows the results
of a comparison experiment between Giraph and iGiraph on
Amazon dataset using connected components algorithm. It
takes 37 supersteps for this process to be completed on
Giraph while it converges around superstep 23 using
iGiraph. This is because in contrast to Giraph in which the
number of messages starts falling down from superstep 14,
using factor �, this happens to iGiraph after superstep 8.
From this point onwards in iGiraph, three conditions for
partition merging are provided and according to Figure 13 it
can be seen that the number of active workers are decreasing.
The results for Pokec and YouTube are shown in Figure 11
and 12, respectively.

Fig 10. Number of network messages transferred between partitions across
supersteps for the Amazon graph using shortest path algorithm

()()
1

)(final i total i

n

i
Cost P VM T VM

=

= ×�

307

Fig 11. Number of network messages transferred between partitions across
supersteps for the Pokec graph using shortest path algorithm

Fig 12. Number of network messages transferred between partitions across
supersteps for the YouTube graph using shortest path algorithm

Fig 13. Number of machines varying during supesteps while running
connected component algorithms on different datasets on iGiraph

Fig 14. Total time taken to perform shortest path algorithm

The above figure shows that the time taken to complete
shortest path algorithm on 16 machines using iGiraph is not
significantly different than Giraph. As a result, considering

total execution time and decreasing number of active
workers in each experiment, iGiraph is more cost-effective
than Giraph for convergent algorithms on public clouds.

2) Evaluation of Non-Convergent Algorithms
Processing non-convergent algorithms such as PageRank

shows that the number of messages generated in each
superstep is almost the same as other supersteps during the
whole processing. In PageRank for example, vertices always
update their neighbors during the computation hence as long
as the number of vertices is the same, the number of
messages is also the same. But it is still possible to reduce
the network messages by using � factor. � determines the
partitions that receive more messages through network than
the other partitions (high degree partitions). Then, to balance
the messaging pattern, iGiraph selects a number of border
vertices from high degree partitions to relocate based on the
aforementioned algorithm in section 4. After relocating the
vertices, a load balancer method will balance the number of
vertices in each partition. It can be seen that the average
number of network messages falls down a bit in iGiraph
results in faster computation. Figure 15 shows the average
number of network messages in both Giraph and iGiraph.
The total execution time for each experiment also can be
seen in figure 16. According to these figures, although we
did not decrease the number of workers like what was done
for convergent algorithms, total runtime of the system
decreased because there are few messages passing through
network compared to Giraph.

Fig 15. The average number of network messages in each experiment

Fig 16. Total time taken to perform PageRank algorithm

308

VI. RELATED WORK
According to The National Research Council of the

National Academies of the United States [27], graph
processing is one of the seven computational giants of
massive data analysis. Google’s Pregel [28] is the first graph
processing framework in the literature that uses a bulk
synchronous parallel (BSP) model [14] for graph
computation based on a vertex-centric approach. Public
implementations of this framework include Giraph [13],
GoldenOrb [29], Apache Hama [30], etc. These frameworks
are developed based on distributed architectures in which
usually one machine acts as the master and one or several
other machines act as workers. In the master-worker
approach, the input graph is split into partitions and each
partition assigns to a worker to process it. Many of graph
processing frameworks use a simple hash function for
partitioning the graph. However, such simple partitioning
leads to huge network traffic in a graph processing task that
consequently affects the system performance. To improve
the partitioning efficiency, various approaches are proposed
in different frameworks [31] [32] [33]. While most graph
processing systems offer some specified improvements on
HPC clusters with fast interconnects, their conduct on
virtualized commodity hardware which is provided by cloud
computing paradigm and is accessible to a wider population
of users is less investigated [10].

Frameworks designed to process large-scale graphs based
on Pregel are called Pregel-like frameworks. They are
designed based on distributed architecture on high
performance computing systems such as distributed clusters.
Although graph processing systems created to overcome
previous large data processing solutions such as MapReduce,
some of distributed frameworks use series of MapReduce
jobs iteratively. Giraph [13] and Surfer [9] are examples of
these systems. Other features of Pregel-like frameworks
include using bulk synchronous parallel (BSP), message
passing communication method and global synchronization
barrier between supersteps. However, systems such as
GraphLab [34] provide asynchronous computations. Since
iGiraph is a Pregel-like system and developed based on
Giraph, it contains all of these specifications with some
additional features such as dynamic repartitioning and cost
minimization. There are many non-Pregel graph processing
frameworks developed on distributed architecture. Among
these frameworks are Trinity [35] and Presto [36].

GPS [23] is the most similar to our work. It has an
optimization called LALP (large adjacency-list partitioning)
by which stores high degree vertices and use the list to send
one message, instead of thousands for instance, to the
partitions are containing those vertices. After the message
gets to the destination, it will be replicated thousands times
to the message queues of each vertex in its outgoing
neighbors list. Instead of storing the list of vertices, iGiraph
stores two lists of the number of outgoing and incoming
messages from/to each partition that show which partitions
are sending or receiving more messages. These lists are
noticeably smaller than GPS’s adjacency lists.

Another difference between our system and GPS is that
high degree vertices in GPS are defined by the programmer,
but in iGiraph, the decisions about migrating the partitions
are making based on an automatic formula. In GPS, the
programmer specifies a parameter .τ If the number of
outgoing messages for any vertex is more than ,τ it will be
considered as high degree. Here, selecting the right value
forτ is very important and can directly affect the system’s
performance.

There are previous studies on the performance effects of
different partitionings of graphs on other systems. The main
challenge in partitioning a graph is to find how to partition
the data to gain better vertex or edge cuts with considering
the simplicity of computation. Pregel, Giraph and GraphLab
partition the graph by cutting the edges while PowerGraph
[37] and X-Stream [38] cut vertices for partitioning. From
another point of view, the majority of graph processing
frameworks only use static partitioning approaches that
means they only partition the graph once before the
processing starts or they do it once during the computation.
On the other hand, some frameworks such as GPS use
dynamic repartitioning approach that allows them to
repartition the graph multiple times during the computation
based on some pre-defined features to achieve better
performance.

VII. CONCLUSIONS AND FUTURE WORK
Huge amount of data is created and stored in the form of

graphs every day. In this paper, we presented iGiraph, a
Pregel-like system developed based on Giraph for processing
large-scale graphs on public clouds. iGiraph uses a new
repartitioning method to reduce the number of messages
passing through network by decreasing the number of cross-
edges between partitions. It utilizes high degree concept in
partition level for both convergent and non-convergent types
of algorithms. iGiraph also considers processing large graphs
as a service on public clouds. Therefore, it reduces the cost
of resource utilization by decreasing the number of workers
that are using for the operation and executes the applications
within a period which is reasonably close to Giraph’s time.

We plan to extend iGiraph to use other critical network
factors such as network bandwidth and topology, and study
the impacts of these factors on system performance. We also
want to use other graph partitioning methods such as METIS
instead of a simple hash partitioning approach to see how
effective are those methods in iGiraph. To investigate the
graph processing as a service (GPaaS) more, we will study
the factors that affect quality of services for large graph
processing services on cloud environment as well.

ACKNOWLEDGMENTS
We want to thank NECTAR research cloud for their

support through providing infrastructures for this research.
We also thank Amir Vahid Dastjerdi, Adel Nadjaran Toosi
and Chenhao Qu for their comments on improving this
work. This work is partially supported by ARC Future
Fellowship grant.

309

REFERENCES
[1] C. Snijders, U. Matzat and U.-D. Reips, “Big Data: Big gaps of

knowledge in the field of Internet,” International Journal of Internet
Science, vol. 7, no. 1, pp. 1-5, 2012

[2] R. Sedgewick and K. Wayne, Algorithms (4th Edition), Upper Saddle
River, NJ: Addison-Wesley Professional, 2011

[3] M. Prigg, “Facebook hits one billion users in a single day: Mark
Zuckerberg reveals one in seven people on earth used the social
network on Monday,” [Online]. Available:
http://www.dailymail.co.uk/sciencetech/article-3213456/Facebook-s-
billion-user-day-Mark-Zuckerberg-reveals-one-seven-people-
EARTH-used-social-network-Monday.html. [Accessed 01 09 2015].

[4] F. Pellegrini , “Current challenges in parallel graph partitioning”,
Comptes Rendus Mécanique, vol. 339, no. 2-3, pp. 90-95, 2011

[5] A. Lumsdaine, D. Gregor, B. Hendrickson and J. Berry, “Challenges
in Parallel Graph Processing”, Parallel Processing Letters, vol. 17,
no. 1, pp. 5-20, 2007

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters”, Proceedings of Sixth Symposium on Operating
Systems Design and Implementation, San Francisco, California, USA
, 2004

[7] F. N. Afrati, A. Das Sarma, S. Salihoglu and J. D. Ullman, “Vision
Paper: Towards an Understanding of the Limits of Map-Reduce
Computation”, Proceedings of Cloud Futures 2012 Workshop,
Berkeley, California, USA, 2012

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility”, Future Generation Computer
Systems, vol. 25, no. 6, pp. 599-616, 2009

[9] R. Chen, X. Weng, B. He and M. Yang, “Large Graph Processing in
the Cloud”, Proceedings of ACM SIGMOD International Conference
on Management of data, Indianapolis, Indiana, USA, 2010

[10] M. Redekopp, Y.Simmhan, V. Parasanna, :Optimizations and
Analysis of BSP Graph Processing Models on Public Clouds”,
Proceedings of 27th IEEE International Symposium on Parallel and
Distributed Processing, Boston, MA, 2013

[11] “Amazon Relational Database Service (RDS)”, [Online], Available:
https://aws.amazon.com/rds/

[12] “DB-Engines Ranking Per Database Model Category”, [Online].
Available: http://db-engines.com/en/ranking_categories.

[13] “Apache Giraph”, [Online]. Available: http://giraph.apache.org/
[14] L. G. Valiant, “A bridging model for parallel computation”,

Communications of the ACM, vol. 33, no. 8, pp. 103-111, 1990
[15] “Apache ZooKeeper”, [Online]. Available:

https://zookeeper.apache.org/
[16] A, Ching, “Scaling Apache Giraph to a Trillion Edges”, 2013,

[Online], Availavle: https://www.facebook.com/notes/facebook-
engineering/scaling-apache-giraph-to-a-trillion-
edges/10151617006153920

[17] S. Salihoglu and J. Widom, “GPS: A Graph Processing System”,
Proceedings of 25th International Conference on Scientific and
Statistical Database Management, Baltimore, Maryland, 2013

[18] S. Tasci and M. Demirbas, “Giraphx: Parallel Yet Serializable Large-
Scale Graph Processing”, Proceedings of 19th international
conference on Parallel Processing (Euro-Par'13), Aachen, Germany,
2013

[19] G. Karypis and V. Kumar, “Multilevel Graph Partitioning Schemes”,
Proceedings of The International Conference on Parallel Processing,
Raleigh, NC, US, 1995

[20] Y. Tian, A. Balmin, S. Andreas Corsten, S. Tatikond and J.
McPherson, “From "Think Like a Vertex" to "Think Like a Graph"”,
Proceedings of the VLDB Endowment, vol. 7, no. 3, pp. 193-204,
2013

[21] U. Kang, H. Tong, J. Sun, C.-Y. Lin and C. Faloutsos, “GBASE: A
Scalable and General Graph Management System”, Proceedings of
17th ACM SIGKDD international conference on Knowledge
discovery and data mining, San Diego, California, 2011

[22] L. Page, S. Brin, R. Motwani and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web”, Stanford InfoLab,
1998

[23] P. Roy, “A new memetic algorithm with GA crossover technique to
solve Single Source Shortest Path (SSSP) problem”, Proceedings of
2014 Annual IEEE India Conference, Pune, India, 2014

[24] S. Salihoglu and J. Widom, “Optimizing Graph Algorithms on
Pregel-like Systems”, VLDB Endowment, vol. 7, no. 7, pp. 577-588,
2014

[25] J. Kunegis, “KONECT - The Koblenz Network Collection”,
Proceedings of International.Web Observatory Workshop, 2013.

[26] “NECTAR Cloud”, [Online], Availavle: http://nectar.org.au/research-
cloud/

[27] Committee on the Analysis of Massive, Committee on Applied and
Theoretical Statistics, Board on Mathematical Sciences and Their
Applications, Division on Engineering and Physical Sciences and
National Research Council, Frontiers in Massive Data Analysis, The
National Academies Press, 2013

[28] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N.
Leiser and G. Czajkowski, “Pregel: A System for Large-Scale Graph
Processing”, Proceedings of The 2010 ACM SIGMOD International
Conference on Management of Data, 2010

[29] L. Cao , “GoldenOrb”, 2011. [Online]. Available:
https://github.com/jzachr/goldenorb. [Accessed 25 July 2015]

[30] “Apache Hama”, [Online], Available: https://hama.apache.org/
[31] U. Elsner, Static and Dynamic Graph Partitioning. A Comparative

Study of Existing Algorithms, Berlin, Germany: Logos Verlag Berlin,
2002

[32] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders and C. Schulz, “Recent
Advances in Graph Partitioning”, arXiv preprint arXiv:1311.3144,
2013

[33] D. A. Bader, H. Meyerhenke, P. Sanders and D. Wagner, Graph
Partitioning and Graph Clustering, Atlanta, GA, US: American
Mathematical Society, 2013

[34] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin and J. M.
Hellerstein, “Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud”, VLDB Endowment, vol. 5,
no. 8, pp. 716-727,2012

[35] B. Shao, H. Wang and Y. Li, “Trinity: A Distributed Graph Engine
on a Memory Cloud”, Proceedings of ACM SIGMOD International
Conference on Management of Data, New York, USA,2013

[36] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung and R. S.
Schreiber, “Presto: Distributed Machine Learning and Graph
Processing with Sparse Matrices”, Proceedings of 8th ACM European
Conference on Computer Systems, Prague, Czech Republic, 2013

[37] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson and C. Guestrin,
“PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs”, Proceedings of 10th USENIX conference on Operating
Systems Design and Implementation, Hollywood, CA, 2012.

[38] A. Roy, I. Mihailovic and W. Zwaenepoel, “X-Stream: Edge-centric
Graph Processing using Streaming Partitions”, Proceedings of 24th
ACM Symposium on Operating Systems Principles, Farmington,
USA, 2013.

310

