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Abstract— Grid computing technologies are increasingly being
used to aggregate computing resources that are geographically
distributed across different locations. Commercial networks are
being used to connect these resources, and thus serve as a
fundamental component of grid computing. Since these grid
resources are connected over a shared infrastructure, it is
essential that we consider their effect during simulation. In this
paper, we discuss how new additions to the GridSim simulation
toolkit can be used to explore network effects in grids. We
also investigate techniques to incorporate differentiated service,
background traffic and collecting information from the network
during runtime in GridSim. As a result, these features enable
GridSim to realistically model grid computing experiments.

I. INTRODUCTION

Grid computing has emerged as the next-generation par-
allel and distributed computing methodology that aggregates
dispersed heterogeneous resources for solving various kinds
of large-scale parallel applications in science, engineering and
commerce [1]. In order to evaluate the performance of a grid
environment, we need to conduct repeatable and controlled
experiments, which are difficult due to grid’s inherent hetero-
geneity and its dynamic nature. Additionally, grid testbeds are
limited and creating an adequately-sized testbed is expensive
and time consuming. Moreover, it needs to handle different
administration policies at each resource. Due to these reasons,
it is easier to use simulation as a means of studying complex
scenarios.

The GridSim toolkit [2] has been developed to overcome
the above problems. It is a Java-based discrete-event grid
simulation package that provides features for application
composition, information services for resource discovery, and
interfaces for assigning applications to resources. GridSim
also has the ability to model heterogeneous computational
resources of varied configurations. The GridSim toolkit has
been applied successfully to simulate a Nimrod-G [3] like
grid resource broker and to evaluate the performance of
deadline and budget constrained cost- and time- optimization
scheduling algorithms.

Communication networks serve as a fundamental compo-
nent of grid computing. Resources, connected over commer-
cial networks, share bandwidth with other users. A realistic

simulation of grid environments should include the effects of
sending data over shared communication lines. Earlier versions
of GridSim did not have the ability to specify a network
topology, nor the functionality to connect resources through
network links in the experiment. Resources and grid users had
all-to-all connections with specifiable bandwidth. Hence, the
simulations did not capture the entire details of an actual grid
testbed.

In this work, GridSim has been extended to address the
above problems with the ability to simulate realistic network
models by: (1) allowing users to create a network topology,
(2) packetizing a data into smaller chunks for sending it
over a network, (3) generating background traffic, and (4)
incorporating different level of services for sending packets.

The rest of this paper is organized as follows: Section II
provides background on GridSim. Section III presents the
design and implementation of GridSim network, while Sec-
tion IV illustrates the use of GridSim for simulating a Grid
computing environment. Section V mentions related work.
Finally, Section VI concludes the paper and suggests some
further work to be done on GridSim network models.

II. BACKGROUND

There has been a significant work in the past on GridSim
ver3.0 to incorporate more functionality and extensibility
into it, such as extending the GridSim infrastructure to support
advance reservation as discussed in [4]. This allows resources
to have their own schedulers and policies for reservation-based
systems. However, no work has been done into improving the
existing network model. Therefore, in the latest GridSim
ver3.1 release, a new package is incorporated to provide
better capabilities for the existing network model. Inside this
package, it contains core network components, such as links
and routers. Details of these components will be discussed in
Section III. Also, GridSim denotes version 3.1 of the software
throughout.

GridSim is based on SimJava2 [5], a general purpose
discrete-event simulation package implemented in Java. In
SimJava, each simulated system (e.g. resource and user),
that interacts with others, is referred to as an entity. An
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Fig. 1. A class diagram showing the relationship between GridSim and
SimJava entities

entity runs in parallel in its own thread by inheriting from
the class Sim entity, while its desired behavior must be
implemented by overriding a body() method.

SimJava requires each entity to have two ports for commu-
nication: one for sending events to other entities, whereas the
other port is used for receiving incoming events. In GridSim,
this is done via class Input and Output. Both classes have
their own body() method to handle incoming and outgoing
events respectively. Similar to SimJava, GridSim entities must
inherit from the class GridSimCore and override a body()
method. The relationship between Sim entity and GridSim
classes is shown in figure 1. In a class diagram, attributes
and methods are prefixed with characters + indicating access
modifiers public. Note that the class GridSimCore does not
have the body() method because it is not necessary since its
subclass will override the method.

III. DESIGN AND IMPLEMENTATION OF GRIDSIM
NETWORK

The flow of information among GridSim entities happens
via their Input and Output (I/O) entities. Upon creating a
GridSim entity with a specified bandwidth, it automatically
creates both instances of class Input and Output, and links
them to this entity. Hence, sending a data must go through to
a sender’s Output entity before going into a recipient’s Input
entity for collection.

The use of separate entities for I/O provides a simple
mechanism for a GridSim entity to communicate with each
other, and allows modeling of a communications delay [2].
In addition, this existing design provides a clean interface
between the network entities and others. Therefore, most of
the changes were incorporated into class Input and Output
for transparent and minimal modification to the existing code.

The new addition to the existing network architecture allows
GridSim entities to be connected using links and routers, with
different packet scheduling policies for realistic experiments
as shown in figure 2. Detailed explanation of this figure will be
explained later in Section III-D. The network architecture has
also been designed to be extensible and backwards compatible
with existing codes written on older GridSim releases.

A. Network Components

Important addition to the existing GridSim network architec-
ture are link, router, packet, packet scheduler and background
traffic generator components. The relationships among these
network components in Unified Modeling Language (UML)
notations [6] are depicted in figure 3 and 4. Note that the
background traffic generator component will be discuss in
Section III-C.

1) Link: A link in GridSim is represented as an abstract
class Link for extensibility. SimpleLink, a subclass of
Link as shown in figure 3 (a), requires information like
the propagation delay, bandwidth and Maximum Transmission
Unit (MTU) for packet delivery.

2) Input and Output: When GridSim entities want to send a
data over the network, each of them has Input and Output (I/O)
entities attached to it, as previously mentioned. The Output
entity is responsible for splitting the data into MTU sized
packets, whereas the Input entity is accountable to collate the
different packets in a stream altogether, and send them as one
piece of data to the GridSim entity. In addition, these I/O
entities act as a buffer to hold the packets until a link is free.

3) Router: A router in GridSim is represented as an
abstract class Router for flexibility as shown in figure 3
(a). Therefore, this design allows a subclass of Router in
determining the forwarding table at the start of the simulation,
and implementing any routing algorithms.

Routing can be done using static tables or dynamic methods,
such as Routing Information Protocol (RIP) [7] and Open
Shortest Path First (OSPF) [8]. An implementation of a router
in class FloodingRouter uses a flooding algorithm to
setup its forwarding tables automatically. Since routers and
other GridSim entities can not be created and added after the
simulation has started, the flooding algorithm is a sufficient
method to setup a router’s forwarding tables.

4) Packet: A network packet in GridSim is represented
as an interface class Packet as shown in figure 3 (b).
Currently, there are two classes that belongs to this category,
i.e. NetPacket and InfoPacket. A NetPacket class
is used to encapsulate data passing through the network,
whereas class InfoPacket is devoted to gather network
information during runtime which is equivalent to Internet
Control Message Protocol (ICMP) [9] in physical networks.

5) Packet Scheduler: A packet scheduler is responsible for
deciding the order in which one or more packets will be sent
downlink. Implementing a packet scheduler requires extending
from class PacketScheduler as depicted in figure 3 (c).

Two implementations of a packet scheduler are
provided in GridSim, i.e. class FIFOScheduler and
SCFQScheduler. The class FIFOScheduler uses a
simple First In First Out (FIFO) policy, whereas the class
SCFQScheduler adopts a variation of Weighted Fair
Queuing (WFQ) [10], called Self Clocked Fair Queuing
(SCFQ) [11] policy, which will be discussed next.
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B. Support for Network Quality of Service & Runtime Infor-
mation

Jobs on grids may have different requirements with respect
to bandwidth and latency. Systems like fire or earthquake
detection require low latency and reliable delivery. Other
jobs like protein folding experiments require high processing
power, and may tolerate some network errors. Also, in some
cases, grid resource providers may wish to charge for priority
access to their resources. Thus grid resource providers need
mechanisms to provide users with different Quality of Service
(QoS) for using their networks [12]. In order to support this
functionality, every packet in GridSim contains a Type of Ser-
vice (ToS) attribute with a default value of zero weight. This
attribute will be used by routers or packet schedulers to provide
a differentiated service to heterogeneous links or connections
for incoming packets. In GridSim, class SCFQScheduler

can be configured with different weights. Packets belonging
to a class with higher weight receive higher priority according
to the SCFQ algorithm.

GridSim also supports requesting network status during
runtime, such as number of hops to destination, round trip
time (RTT), bottleneck bandwidth and all bandwidths that a
packet has traversed for current or future simulation time. This
feature is similar to an ICMP ping message. The result is
captured inside class InfoPacket.

To enable this functionality, a GridSim entity must use
either blocking or non-blocking method calls from class
GridSimCore. A blocking call requires to use only a
pingBlockingCall() method, where it waits for a result
to come back while preventing other entity’s activities. In
contrast, a non-blocking call needs to use a combination
of ping() and getPingResult() methods while doing
something else in between. Both pingBlockingCall()



and getPingResult() method return an object of class
InfoPacket.

C. Simulating with Background Traffic

In commercial or even academic networks, users expect to
experience network traffic that does not belong to them. In
order to capture this real world scenario into a simulation,
GridSim supports modeling of background traffic. This can be
done by creating an instance of class TrafficGenerator,
and storing it as a class Output attribute, as shown in
figure 4 (b). The class TrafficGenerator generates inter-
arrival time, packet size, and number of packets for each
interval according to various distributions that are supported
by SimJava2 [5] [13]. Some of the distributions are Bernoulli,
negative exponential, and binomial. Then, these generated
values are used by an Output entity to send background traffic
packets to one or all other entities in the experiment.

D. Interaction among GridSim Network Components

When a simulation starts, routers send out advertisement
packets to all neighboring router, advertising any other Grid-
Sim entities they are connected to. Later on, the neighboring
routers adjust their forwarding tables upon receiving these
packets. Then, they forward the packets to all neighboring
routers except the source. Depending on the complexity of a
network topology and number of GridSim entities created, this
process might take a while.

Once the forwarding tables have been completed, a GridSim
entity, named User from following an example shown in
figure 2, can start sending jobs to a GridResource entity. Each
GridSim entity has I/O entities attached to it that act as a
buffer. Therefore, when a job is to be sent out by a User
entity, it is first buffered at the Output entity (step 1). Here,
the job is split into multiple packets if it is larger than the
MTU of a link connected to the Output entity. The packets
are then given sequence numbers, enqueuing in a buffer, and
sent to the router down the link one by one. The link takes
the packet, delays it by the propagation delay specified, and
dequeues it at the other end (step 2).

Routers receive the packet from the link, and decide the
packet scheduler that the packet should be sent to (step 3). If
the outgoing interface has a MTU less than the packet size,
it splits the packet into smaller ones, similar to what Output
entity does. Next, these packets are enqueued at the packet
scheduler. The packet scheduler uses its own algorithm, such
as FIFO or WFQ to decide the order in which the packets
should be dequeued (step 4). When a link attached to the
packet scheduler is free, the router dequeues one packet from
the packet scheduler, and sends it down the link (step 5).
Similar approach is required if the other end of the link is
another router entity (step 6–8).

When the final link is traversed and the packet reaches the
GridResource entity, all packets in a sequence are collated
back together into the job (step 9). This is done by the Input
entity. The job is then passed to the GridResource entity for
processing. Once processing is complete, the GridResource

entity passes the completed job to its Output entity, which
follows a similar path until it reaches the Input entity that
created this job.

The current protocol used for sending packets is a datagram
oriented protocol, which is similar to User Datagram Protocol
(UDP). There is no support for acknowledging each packets
and packet reordering. Since there is no support for recovering
lost packets, I/O buffers are considered to be unlimited in order
to ensure no packets are lost.

IV. EXPERIMENTS AND RESULTS

A. Experiment Aim

The main aim of this experiment is to show GridSim’s
ability to simulate an adequate-size grid testbed. Therefore,
we create a network topology based on a Belle Analysis Data
Grid (BADG) testbed in Australia in collaboration with IBM,
as shown in figure 5. The BADG tested is used by scientists
to analyze high-energy physics experiment data [14], similar
to the grids running under the e-Science programme [15].

For this experiment, we are mainly concern about the
network behavior in a grid environment. Hence, we are trying
to look at:

• how background traffic might affect network loads and
overall execution time;

• how differentiated QoS for packets might help in a heavy
load situation; and

• how much the costs, in terms of actual time for running
the experiment are required to achieve an accurate and
realistic simulation.

B. Experiment Setups

Table I summarizes all the resource relevant information.
Five resources are created in four different locations: Canberra,
Adelaide, Melbourne and Sydney. The processing ability of a
resource’s CPU is measured in the form of Million Instructions
Per Second (MIPS) rating as per SPEC (Standard Performance
Evaluation Corporation) CPU (INT) 2000 [16] benchmarks.
A space shared policy or First Come First Served (FCFS)
algorithm is used to compute incoming jobs in all resources.

All resources, except for the Adelaide one, are connected via
GrangeNet [17], a Gigabit wide-area network within Australia.
However, to simplify the experiment setups, all resources and
users have the same set of network properties for connection
to GrangeNet, as shown in figure 5. In addition, all links share
same characteristics, i.e. MTU size of 1,500 bytes and latency
of 10 milliseconds.

There are 5 users located on each of the four locations,
sharing the same characteristics:

• bandwidth: 100 Mbps connected to a leaf router of each
testbed site

• total number of jobs: 20 each
• job data size: 1 MB each
• job processing power: 100 Million Instructions (MI) each
• job submission: uniformly distributed among five re-

sources as mentioned in Table I



Fig. 5. Network topology

TABLE I
AUSTRALIAN BELLE ANALYSIS DATA GRID TESTBED SIMULATED USING GRIDSIM

Name Location Resource Type & Characteristics Num CPU A SPEC Rating

R0 Dept. of Physics, Univ. of Melbourne PC with Intel Pentium 2.0 Ghz, 512 MB RAM 1 684
R1 GRIDS Lab, Univ. of Melbourne IBM eServer with dual Intel Xeon 2.6 Ghz, 2 GB RAM 4 1050

R2 Dept. of Physics, Univ. of Sydney IBM eServer with dual Intel Xeon 2.6 Ghz, 2 GB RAM 4 1050
R3 Dept. of Computer Science, Univ. of Adelaide IBM eServer with dual Intel Xeon 2.6 Ghz, 2 GB RAM 4 1050

R4 Australia National Univ. (ANU), Canberra IBM eServer with dual Intel Xeon 2.6 Ghz, 2 GB RAM 4 1050

• background traffic: submits to all resources and other
users, with inter-arrival time using a Poisson distribution
approach with mean of 5 minutes. Total number of pack-
ets for each interval is uniformly distributed in [1...10].
The size of each packet is 1,500 bytes.

To investigate the advantage of having network QoS, one
user from each site is chosen with a higher ToS weight. High
priority users have a weight of 2 while normal users are
assigned a weight of 1. Therefore high-priority users will be
treated better if a SCFQScheduler is used.

C. Analysis

The result in table II shows the advantage of having net-
work QoS in a shared network environment. As mentioned
previously, only 4 out of 20 users are given a higher priority
for sending their jobs. On average, they manage to finish all
of their execution jobs faster by more than 3%.

Table III shows the average amount of time spent by one
packet in a router’s queue, in this case the leaf router at
Melbourne. This router is chosen because it links two grid
resources, hence more traffic than other leaf routers. We
compare two users, one of whom has been set to a high

TABLE II
NETWORK QOS USING SCFQ PACKET SCHEDULER

Priority With background traffic
(in simulation minutes)

High 22.82
Normal 23.57

TABLE III
AN AVERAGE PACKET LIFETIME AT THE MELBOURNE LEAF ROUTER

Priority With FIFO scheduler With SCFQ scheduler
(in simulation seconds) (in simulation seconds)

High 3.60 x 10−6 1.20 x 10−6

Normal 2.38 x 10−6 2.38 x 10−6

priority, while the other sends packets at a normal priority. It
can be seen that high priority packets in the SCFQ router are
dequeued faster than normal priority packets, thus providing
better QoS to high priority users.
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Fig. 7. Comparison between actual running time vs more features

Figure 6 shows the number of packets passing by for
the Melbourne leaf router. The effect of background traffic
is clearly shown in the beginning of the simulation. The
background traffic decreases over time because when a user
entity collects all the jobs, it will exit the simulation, hence
not sending any other network packets.

It can be seen from figure 7 that using the SCFQ scheduler
increases the run time of the experiment. This is because of the
extra overheads associated with SCFQ as mentioned earlier.
The FIFO scheduler, on the other hand, simply enqueues
at the tail and dequeues at the head. With no background
traffic on, the difference between FIFOScheduler and
SCFQScheduler is quite small around 4%. The gap, how-
ever, is bigger around 7% with the addition of background
traffic. The experiments were conducted on a Pentium 4
machine running at 2.4Ghz and equipped with 512MB RAM.

V. RELATED WORK

Simulation is very much used in the networking re-
search area. Examples of such simulators include NS–2 [18],

DaSSF [19], OMNET++ [20] and J–Sim [21]. Though their
support for network protocols is extensive, they are not tar-
geted at studying grid computing. This is because simulating
grids requires modeling the effects of scheduling algorithms
on grid resources and investigating user’s QoS requirements
for application processes.

There are some tools available, apart from GridSim, for
application scheduling simulation in Grid computing envi-
ronments, such as Bricks [22], MicroGrid [23] [24], Sim-
Grid [25] [26], and OptorSim [27]. All of these simulators
also have an underlying network infrastructure, with the ability
to simulate realistic experiments by using background traffic.
Differences among the grid simulators, except for Bricks, in
terms of network functionalities and features are highlighted
in Table IV. Note that for Routing Table Entry column, an
automatic entry means filling in a router’s forwarding table
automatically during runtime. In contrast, a manual entry
means filling in the forwarding table by reading from an
external file that defines a router’s connection with others, or
by manually entering the information into the table.

Bricks [22] is able to specify a network topology, band-
width, throughput and variance of the throughput over time.
The background traffic functionality is modeled by using a
probabilistic distribution, which is similar to GridSim. How-
ever, at the time this article is being written, this package is
not available to download from its website [28]. As a result,
we are not able to compare it with our work in more details.
Therefore, it is not included in Table IV.

MicroGrid [23] [24] allows complex network modeling,
such as transport and routing protocols, and large-scale ex-
periments since it is based on DaSSF [19]. Hence, in terms
of network capabilities, MicroGrid is the most complete of all
grid simulators. However, it is actually an emulator, meaning
that actual application code is executed on the virtual grid
modeled after Globus [29].

SimGrid [25] [26] has a good network infrastructure that
supports Transmission Control Protocol (TCP) transport pro-
tocol for a reliable service. It also models background traffic
by reading from a trace file generated by Network Weather
Service (NWS) [30]. NWS is used to monitor current available
bandwidth between two machines over the network. How-
ever, SimGrid does not make any distinction between a job
computation and a data transfer, since they are modeled as
a resource performing a specific task. Therefore, it does not
support data packetization. In addition, requesting network
status functionalities during runtime in SimGrid are limited to
latency and bandwidth of a link. In contrast, GridSim reports
more network information than SimGrid, such as number of
hops to a destination and RTT as mentioned in Section III-B.

OptorSim [27] has a very simple network infrastructure
compared to other simulation tools, since it does not support
routing and transport protocol nor data packetization. The
background traffic functionality is modeled by using a Landau
distribution only. In addition, simulating with background
traffic requires a configuration file that describes a network
topology in a matrix format.



TABLE IV
LISTING OF NETWORK FUNCTIONALITIES AND FEATURES FOR EACH GRID SIMULATOR

Simulation Tool Routing Table Entry Type of Transport Protocol Data Packetization Runtime Network Status Network QoS

GridSim Automatic a datagram oriented protocol Supported Supported Supported
similar to UDP

MicroGrid Automatic TCP and UDP Supported Supported Not supported

SimGrid Manual TCP Not supported Supported Not supported
OptorSim Manual Not supported Not supported Not supported Not supported

From the above discussion and Table IV, GridSim incorpo-
rated QoS into a network for scheduling packets, which are
not supported by other grid simulators. In addition, GridSim
provides a good set of network functionalities and features,
which some of them are not supported in the other grid
simulators.

VI. CONCLUSION AND FURTHER WORK

Network serves as a fundamental component in grid com-
puting since resources and users are connected over a network
topology with shared bandwidth. Previously, GridSim does
not have the ability to specify a network topology nor the
functionality to connect resources through network links in
the experiment. In this work, modifications into an existing
network architecture have been incorporated into GridSim
ver3.1 to address the above problems.

With the addition of this network functionality, users can
study the effects that both the network topology and grid
resources can have on their jobs. This paper explores the var-
ious types of network elements in GridSim like routers, links,
packet schedulers; and how they can be extended to add more
functionalities. Moreover, GridSim has new exciting features
such as generating background traffic during an experiment,
requesting network information during runtime and providing
differentiated service for packets based on users’ Quality of
Service (QoS) requirements. We believe these features help
make GridSim a comprehensive package to simulate a realistic
grid environment.

Our experiment has shown how GridSim can be used to
simulate a medium-sized grid testbed. It has shown how
schedulers, which provide differentiated service, can help high
priority users achieve better QoS than normal users. However,
providing differentiated service at the network level only may
not be enough. Grid resources will also be required to support
it in order to achieve end-to-end QoS.

In the future, we are planning to incorporate additional
features into GridSim, such as having different types of routing
algorithms, schedulers and reservation of network resources.
We are also planning to add other type of network building
blocks like switches and domain gateways. Support will be
added for non work-conserving routers. In addition to this,
we are also planning an ability to design the network topology
using scripts similar to ns-2.

SOFTWARE AVAILABILITY

The latest GridSim toolkit with source code and examples
can be downloaded from the following website:

http://www.gridbus.org/gridsim/
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