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Abstract
Scientific applications like neuroscience data analysis

are usually compute and data-intensive. With the use of
globally distributed resources and suitable middlewares, we
can achieve much shorter execution time, distribute com-
pute and storage load, and add greater flexibility to the ex-
ecution of these scientific applications than we could ever
achieve in a single compute resource.

In this paper, we present the processing of Image Reg-
istration (IR) for Functional Magnetic Resonance Imaging
(fMRI) studies on global Grids. We characterize the ap-
plication, list its requirements and transform it to a work-
flow. We then execute the application on Grid’5000 plat-
form and present extensive performance results. We show
that the IR application can have 1) significantly improved
makespan, 2) distribution of compute and storage load
among resources used, and 3) flexibility when executing
multiple times on global Grids.

1 Introduction
Nowadays, many scientific experiments such as struc-

tural biology and chemistry, neuroscience data analysis, dis-
aster recovery, etc., are conducted through complex and
distributed scientific computations that are represented and
structured as scientific workflows [11]. Scientific work-
flows usually need to process huge amount of data and com-
putationally intensive activities. Neuroscience data analysis
is one such application that has been a focus of much re-
search in recent years (NIFTI, BIRN) (see Section 2).

The neuroscience data analysis application we present
in this paper has several tasks that need to be structured
according to their data dependencies for correct execution.
Both the data and computation requirements are very high.

Given the typically large number of subjects’ data being an-
alyzed, it takes significant amount of time for this applica-
tion to produce results when executed as a sequential pro-
cess on limited resources. Moreover, scientists may need to
re-run the application by varying run-time parameters. Of-
ten researchers and users around the globe may share the
results produced. To facilitate these requirements the ap-
plication may leverage the power of distributed resources
presented by platforms such as Grids. By executing this
application on distributed resources execution time can be
minimized, repeated executions can be performed with lit-
tle overhead, reliability of execution can be increased, and
resource usage can be distributed. It is a very demanding
task for researchers to handle these complex applications
directly on global Grids without proper management sys-
tems, interfaces, and utilities.

A scientific workflow management system is one of the
popular approaches that provide an environment for manag-
ing scientific experiments, which have data dependent tasks,
by hiding the orchestration and integration details inherent
while executing workflows on distributed resources.

The Gridbus Workflow Engine (GWFE) [18], is one such
Grid-based workflow management system that aids scien-
tists by enabling their applications to be represented as a
workflow and then execute on the Grid from a higher level
of abstraction. The GWFE provides an easy-to-use work-
flow editor for application composition, an XML-based
workflow language for structured representation, and a user-
friendly portal with discovery, monitoring, and scheduling
components that enables users to select resources, upload
files and keep track of the application’s progress.

In this paper, we present IR process for fMRI applica-
tions. We first characterize the application and identify



its requirements. We then execute it on global Grids with
the help of GWFE and present detailed analysis of the re-
sults. Our performance results and technology used could
directly assist neuroscientists using brain imaging technol-
ogy in clinical areas such as epilepsy, stroke, brain trauma
and mental health.

The rest of the paper is structured as follows: Section 2
presents related work, Section 2 describes the application
scenario, its components, and requirements. In Section 4
we describe the life cycle of execution of a workflow and
the major components that users can use to interact with the
system. Section 5 presents an experimental evaluation of
the performance of the neuroscience application. Section 6
concludes the paper and discusses some future work.

2 Related Work
Several projects are investigating workflow and Grid

scheduling techniques. We categorize these under appli-
cation and Workflow Management Systems.

Application: Olbarriaga et al. [13] present the Virtual
Laboratory for fMRI (VL-fMRI) project, whose goal is to
provide an IT infrastructure to facilitate management, anal-
ysis, and sharing of data in neuroimaging research with a
focus on functional MRI. We share a common objective to
facilitate the data logistics and management in fMRI anal-
ysis via workflow automation. Their system could use our
workflow management system as a pluggable component.

Neurobase [8] uses grid technology for the integration
and sharing of heterogeneous sources of information in neu-
roimaging from both data and computing aspects.

Buyya et al. [3] studied instrumentation and distribu-
tion analysis of brain activity data on global Grids. They
described the composition and on-demand deployment of
the neuroscience application as a parameter-sweep model
on global Grids. They also designed and developed a Mag-
netoencephalography (MEG) data analysis system.

Ellis et al. [7] executed their IR algorithm by registering
several couples of T1 MRI images coming from different
subjects in 5 minutes on a Grid consisting of 15 2GHz Pen-
tium IV PCs linked through a 1Gigabit/s network.

The LONI Pipeline [15] was developed to facilitate ease
of workflow construction, validation and execution like
many similar workflow environments, primarily used in the
context of neuroimaging.

The NIMH Neuroimaging Informatics Technology Ini-
tiative (NIFTI1) was formed to aid in the development
and enhancement of informatics tools for neuroimaging.
Likewise, the Biomedical Informatics Research Network
(BIRN2) is another high profile effort working to develop
standards (eg. LONI) among its consortia members.

1http://nifti.nimh.nih.gov
2http://nbhirn.net

(a) Berkeley's 4T fMRI scanner. (b) Subject's Brain Image before IR

(c) Subject's Brain Image after IR

(d) Comparison of Image fit with the Standard Image

(e) Further fMRI analysis 

Figure 1: Image Registration and fMRI.

Workflow Management Systems: Deelman et al. [6]
have done considerable work on planning, mapping and
data-reuse in the area of workflow scheduling. They pro-
pose Pegasus [6], which is a framework that maps complex
scientific workflows onto distributed resources such as the
Grid. DAGMan, together with Pegasus, schedules tasks to
Condor system. With the integration of Chimera [9] and
Pegasus based mapping, it can execute complex workflows
based on pre-planning. The Taverna project [12] has devel-
oped a tool for the composition and enactment of bioinfor-
matics workflows for the life science community. It pro-
vides GUI for the composition of workflows. Other well-
known projects on workflow systems include GridFlow [4],
ICENI [10], GridAnt [2] and Triana [16].

3 Scientific Workflow Applications:
A Scenario and Requirements

We describe the IR process for fMRI studies as a work-
flow application. We construct the IR workflow and de-
scribe each of its tasks, and tabulate the execution require-
ments of each task in the workflow.

fMRI and IR: fMRI attempts to determine which
parts of the brain are active in response to some given stimu-
lus. For instance, a person (referred as subject), in the Mag-
netic Resonance (MR) scanner, would be asked to perform
a task, e.g., finger-tap at regular intervals. As the subject
performs the task, researchers effectively take 3-D MR im-
ages of his brain. The goal is to identify those parts of the
brain responsible for processing the information the stimu-
lus provides.

IR is the process of estimating an optimal transforma-



tion between two images, also known as “Spatial Normal-
ization” in functional neuroimaging [14]. When register-
ing images we are determining a geometric transformation,
which aligns one image to fit another. The aim is to es-
tablish a one-to-one continuous correspondence between
the brain images of different individuals. The transforma-
tion will reduce the anatomical variability between high-
resolution anatomical brain images from different subjects.
This enables analysts to compute a single activation map
representing the entire group of subjects or to compare the
brain activation between two different groups of subjects.

The IR procedure and its relation to fMRI is depicted in
Figure 1. The scanner acquires high-resolution images of
each subject’s brain. Due to subject movement the images
can be oriented in different positions at the time of scanning.
One such image of a subject before registration is shown in
Figure 1 (b). The registration process ensures that all the
images of different subjects are normalized against a stan-
dard image and in a common 3D space. The normalized
image of the subject is shown in Figure 1 (c). After normal-
ization, the subject’s normalized image is compared with
the atlas (reference image) for the quality of fit. This com-
parison is shown in Figure 1 (d). The workflow we study in
this paper, first produces the atlas, then produces the com-
parison image (Figure 1 (d)) as output for each subject.

Application Description: Figure 2 shows the IR pro-
cedure expressed as a workflow. Tasks in the workflow
are linked according to their data dependencies. Individual
tasks in the workflow are described below [1].

BET: (Brain Extraction Tool) deletes non-brain tissue from
an image of the whole head.

FSLMATHS: allows mathematical manipulation of im-
ages.

MAKEAHEADER: generates a header (.hdr) file based on
the parameters (type, x-y-z dimensions and size).

ALIGNLINEAR: is a general linear intra modality regis-
tration tool. It generates .air files that can be used to
reslice data set to match a standard data set. We use
affine 12-parameter model.

DEFINECOMMONAIR: defines .air files for a standard
file that defines the “average” position, size and shape
of the various reslice files.

RESLICE: takes a .air file, uses it to load an image file and
generates a new, realigned file.

SOFTMEAN: averages together a series of files.

ALIGN WARP: is a nonlinear registration tool that gener-
ates a .warp file that can be used to reslice data set to
match a standard data set.

RESLICE WARP: takes a .warp file, uses it to load the
corresponding image file and generates a new, re-
aligned file.

FLIRT: performs affine registration. It produces an output
volume, where the transformation is applied to the in-
put volume to align it with the reference volume (atlas
created in previous steps).

SLICER: takes a 3D image and produces 2D pictures of
slices.

PNGAPPEND: processes addition/subtraction of .png im-
ages.
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Figure 2: Image Registration Workflow.

Application Requirements: According to Zhao et.al
[19], in a typical year the Dartmouth Brain Imaging Cen-
ter about 60 researchers pre-process and analyze data from
about 20 concurrent studies. The raw fMRI data for a typi-
cal study would consist of three subject groups with 20 sub-
jects per group, five experimental runs per subject, and 300
volume images per run, yielding 90,000 volumes and over
60 GB of data. Intensive analysis begins once the images
are processed. IR forms a part of the image pre-processing
step using only the high-resolution data, which represents a
minor portion of the entire workflow’s execution time.

Table 1 lists each task, its input files and sizes, its aver-
age computation time (w̄i) on a single machine, and stan-
dard deviation (σ) computed over 40 subjects on a set of 10
random machines in Grid’5000 [5].

A complete execution of the workflow of 40 subjects on
a single CPU with single core (without local load) takes two
and a half days to complete. The total storage space needed
for the complete execution of 40 subjects exceeds 20GB on
a single machine when the intermediate files are retained.



Moreover, the computation time and storage requirements
limit the number of subjects that can be used for execution
at one time on a single machine.

When the application is executed on distributed re-
sources with no resource scarcity the application should
take as much time to execute all the subjects as a single ma-
chine would take to execute a single subject workflow with-
out local load. However, the real execution time is higher
than the ideal case (∼69 minutes) for 1 subject as shown in
Table 1, due to the significant amount of time taken to trans-
fer the intermediate files from one resource to another. We
can decrease the transfer time by allowing multiple tasks to
run on a single machine (grouping of tasks). Also, the syn-
chronizing tasks take longer to execute when there are more
subjects. The coordination time taken by the middleware
also adds to the overall increase in total execution time.

4 Workflow Management on the Grid
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Figure 3: Deployment Cycle.
The life cycle of deployment of the workflow is depicted

in Figure 3. In the collection phase, scientists provide the
input data, batch scripts, sample output files, and applica-
tion requirements. In order to run the application on the
Grid, the executables are required to be compiled and in-
stalled (can be submitted at runtime) at both remote and
local sites for quality assurance or initial results verifica-
tion. This step involves the testing of conformance of our
execution with that of the sample results provided by the
scientists. Once the initial results are verified, the workflow
structure and its dataflow need to be designed. The genera-
tion of the workflow in terms of the workflow language used
could to be automated. However, it should also take users’
run-time parameters into account.

In the Execution phase, compute and data resources need
to be setup, where the application can be executed. The re-
source list, its credentials and the services provided by each
resource could be obtained from a catalogue. With chang-
ing resource availability and conditions, resource list is re-
quired to be updated dynamically. The application is then
executed on the Grid. Usually debugging and testing is done
while the application is being executed, but this depends on

the software development process model being used. De-
pending on the performance analysis of the execution, the
design of a workflow can be further optimized.

We now describe the components of the Gridbus work-
flow management system.

Grid Portal: The primary user interface for our IR ap-
plication is a Web Portal that encompasses the following
functionalities:

1. A workflow editor, which enables users to compose
new workflows and modify existing ones.

2. A submission page, through which users can upload
to the system, all necessary input files to run a work-
flow including the workflow description file, creden-
tials, and services files (Figure 4 (b)).

3. A monitoring and output visualization page, which al-
lows users to monitor multiple workflow executions in
progress. The most common monitoring activity con-
sists of keeping track the status of each task through
the workflow monitor, which provides a real-time up-
dated graphical representation of workflow tasks. The
application’s output is presented in the form of images
(Figure 4 (d), 1 (d)).

4. A resource information page, which shows the charac-
teristics of all available grid resources.

5. An application specific page, which in the current im-
plementation, helps generate .xml file for the IR work-
flow by taking the number of subjects as input.

Although the current incarnation of this Grid Portal is
targeted at an IR application, our design is in no means lim-
ited to such application. Apart from few parts of the output
visualization page and the application specific page, the por-
tal infrastructure is generic enough to allow the porting of
almost any workflow application into the portal.

Workflow Editor: The Gridbus workflow editor pro-
vides a Graphical User Interface (GUI) that enables users
to create and modify existing workflows. The definition of
the workflow is based on an XML-based workflow language
(xWFL). Using the editor users design and create the work-
flows for complex scientific procedures by dragging and
dropping boxes and arrows, connecting them, and defining
their properties (input, output, parameters etc.). Boxes and
directed arrows represent workflow tasks and data depen-
dencies between them, respectively.

The GUI isolates users from the complexity of compos-
ing and editing XML entries in the files. However, for ad-
vance users, editor provides direct access to the XML de-
tails of the workflow design. As the workflow editor can be
accessed through the workflow portal, users can create or
edit and save the workflows both locally and on the server.
Common editing operations such as cut, copy, paste can be
performed on multiple workflows.

Workflow Monitor: The Gridbus Workflow Monitor
provides a GUI for viewing the status of each task in the



Table 1: Characteristics of tasks for a single subject.
note: X = hires, ‘–’ = not applicable (depends on # of subjects), taskname(*) = same task but different execution instance, N = subject index (N ∈ Z)
# Task Name Input Files Source Tasks Size of i/p (MB) w̄i(sec) σ
1 bet(1) X.{hdr,img} Staging server 16 45 11.91
2 fslmaths bX.{hdr,img} bet(1) 16 1 0.42
3 makeaheader bX.{hdr,img} fslmaths 16 � 1 –
4 alignlinear(1) bX.{hdr,img} fslmaths 16 2 0.47
5 definecommonair X.air, bX.{hdr,img} alignlinear(1) 16 94 –
6 reslice X.air.aircommon, bX.{hdr,img} definecommonair 16 5 0.5
7 softmean(1) X-reslice.{hdr,img} reslice 20 140 –
8 alignwarp(1) atlas-linear.{hdr,img}, X-reslice.{hdr,img} softmean(1) 40 971 620.17
9 reslicewarp(1) atlas-linear.{hdr,img}, X-reslice.{hdr,img,warp} alignwarp(1) 40 9 1.88
10 softmean(2) X-reslice-warp.{hdr,img} reslicewarp(1) 20 111 –
11 bet(2) atlas.{hdr,img} softmean(2) 20 11 1.5
12 alignlinear(2) bX.{hdr,img}, atlas.{hdr,img} definecommonair, softmean(2) 36 23 10.25
13 alignwarp(2) X.air, atlas.{hdr,img}, bX.{hdr,img} alignlinear(2) 36 2656 1501
14 reslicewarp(2) bX.{hdr,img,warp} alignwarp(2) 16 9 1.88
15 bet(3) nX.{hdr,img} reslicewarp(2) 16 15 1.3
16 flirt batlas.{hdr,img}, nbX.{hdr,img} bet(2), bet(3) 56 6 0.44
17 slicer(1) batlas.{hdr,img}, N-fit.{hdr,img} bet(2), flirt 80 8 0.44
18 pngappend(1) {sla,slb,...,slk,sll}.png slicer(1) 0.3 4 0.51
19 slicer(2) batlas.{hdr,img}, N-fit.{hdr,img} bet(2), flirt 80 8 0.44
20 pngappend(2) {sla,slb,...,slk,sll}.png slicer(2) 0.3 4 0.28
21 pngappend(3) {N-fit1, N-fit2}.png pngappend(1),pngappend(2) 0.8 4 0.28
22 OUTPUT N-fit.png pngappend(3) (o/p size) 0.8

Average data volume and computation time required for a single subject registration: 558.2 MB ∼ 69 min

(a) (c)

(b) (d)

1

Figure 4: Grid Portal. (a) Workflow editor. (b) The submission interface. (c) Workflow monitor showing status of tasks in colors (cyan =
ready, yellow = submitting, green = executing, blue = done). (d) Multiple workflow runs and output.

workflow. Users can easily view the ready, executing, stage-
in, and completed tasks as depicted in Figure 4. Task status

is represented using different colors. Users can also view
the site of execution of each task, the number of tasks being



executed (in case of a parameter sweep type of application)
and the failures for each task, if any. The workflow structure
is editable such that users can drag tasks and separate tasks
of interest when there are numerous tasks in the workflow.

Gridbus Workflow Engine: Scientific application
portals submit the task definitions along with their depen-
dencies in the form of the workflow language to GWFE.
Then the GWFE schedules the tasks in the workflow appli-
cation through Grid middleware services and manages the
execution of tasks on the Grid resources. The key compo-
nents of GWFE are: workflow submission, workflow lan-
guage parser, resource discovery, dispatcher, data move-
ment and workflow scheduler.

GWFE is designed to support an XML-based WorkFlow
Language (xWFL). This facilitates user level planning at the
submission time. The workflow language parser converts
workflow description from XML format to Tasks, Param-
eters, Data Constraint (workflow dependency), Conditions,
etc., that can be accessed by the workflow scheduler. The
resource discovery component of GWFE can query Grid
Information Services such as Globus MDS, directory ser-
vice, and replica catalogues, to locate suitable resources
for execution of the tasks in the workflow by coordinat-
ing with middleware technologies such as Gridbus Broker
[17]. GWFE uses Gridbus Broker for deploying and man-
aging task execution on various middlewares as a dispatcher
component. Gridbus Broker mediates access to distributed
resources by (a) discovering resources, (b) deploying and
monitoring task execution on selected resources, (c) access-
ing data from local or remote data source during task exe-
cution, and (d) collating and presenting results.

GWFE is designed to be loosely-coupled and flexible
using a tuple spaces model, event-driven mechanism, and
subscription/notification approach in the workflow sched-
uler, which is managed by the workflow coordinator com-
ponent. The data movement component of GWFE enables
data transfers between Grid resources by using SFTP and
GridFTP protocols. The workflow executor is the cen-
tral component in GWFE. With the help from dispatcher
component it interacts with the resource discovery compo-
nent to find suitable Grid resources at run time, submits a
task to resources, and controls input data transfer between
task execution nodes. In addition to random and round-
robin scheduling policies, GWFE also has a Just-In-Time
scheduling policy that allows the resource allocation deci-
sion to be made at the time of task submission in order to
better adapt to the changing dynamic Grid environment.

5 Experimental Evaluation
The IR application together with GWFE was demon-

strated at the First IEEE International Scalable Computing
Challenge (SCALE 2008) in conjunction with CCGrid ’08,
May 19-22, 2008, using resources provided by SUNY at

Binghamton and the University of Melbourne. For this pa-
per we executed the application on Grid’5000 [5]. We now
describe the experiment setup, results, and observations.
5.1 Experiment Setup

We executed the IR workflow with 40, 20, 10, and 2
subjects. By varying the number of subjects, we calculated
the makespan of the workflow, total storage space required
for execution, and parallelism that can be achieved. We
grouped the tasks when there was more than one sequential
task between two synchronizing tasks, as depicted in Figure
2. Grouping tasks implicitly demands more than one task to
be executed at the same site where it is submitted, unlike
the ungrouped version where all tasks would be distributed.

We used the resources provided by Grid’5000. The
Grid’5000 project provides a highly reconfigurable, con-
trollable, and monitorable experimental Grid platform gath-
ering 9 sites geographically distributed in France featuring
a total of 5000 processors [5]. Table 2 lists the Grid’5000
sites used for the experiment. The resources were reserved
for the duration of the experiment. The reservation ensured
that the Grid resources were dedicated to our experiment.
We used resources with the ‘x86 64’ CPU architecture with
AMD Opteron Processors-246, 248, 250, 252, and 275. We
used 8 out of the 9 sites (excluding Grenoble). The dis-
tributed resources across 8 sites have varying network in-
terconnection bandwidth, number of cores per CPU, CPU
frequency, memory, and storage space available [5] .

As a measure of performance, we used average
makespan as a metric. Makespan of each workflow is mea-
sured by taking the difference between the submission time
of the first submitted task and the output arrival time of the
last exit task to be executed on the system. This time in-
cludes the staging-in of the input files to the entry tasks and
the staging-out of the results from the exit tasks.
5.2 Results and Observations

Table 2 lists the number of cores used at each site, num-
ber of tasks submitted to a site and the average computa-
tion time at each site for each experiment. Figure 5 de-
picts the total makespan for different subjects, comparison
of makespan between grouped and un-grouped tasks of the
workflow, size of data produced during the execution, and
parallelism of tasks executed in time by the GWFE.

Execution of the IR workflow on the Grid showed signif-
icant advantages over a single machine. The total makespan
of the workflow decreased considerably from 2.5 days in a
single machine to approximately 3 hours on the Grid. The
storage requirements were distributed among the resources
used. As the number of subjects used was increased, the
makespan increased slightly. This can be attributed to the
increase in execution time of synchronizing tasks and the
coordination time required by the system for additional
tasks. The main point to be noted is that as the number
of subjects was increased, the average makespan remained



Table 2: Grid5000 sites used; # cores, # tasks executed and average computation time (C̄) taken on each site for each experimental group.
Name 10Sub 10Sub (G) 20Sub 20Sub (G) 40Sub 40Sub (G)

#Cores #Tasks C̄ (sec) #Cores #Tasks C̄ (sec) #Cores #Tasks C̄ (sec) #Cores #Tasks C̄ (sec) #Cores #Tasks C̄ (sec) #Cores #Tasks C̄ (sec)
G

ri
d5

00
0

Si
te

s

bordeaux 32 19 189.09 16 10 83.27 20 58 140.63 0 0 0.00 20 114 235.48 62 76 305.95
lille 16 22 267.36 12 14 586.20 64 76 187.09 16 45 382.61 20 121 282.03 44 105 297.35
lyon 6 12 17.37 6 8 443.08 24 43 225.83 8 22 671.63 6 62 226.42 6 18 626.19
nancy 10 31 120.50 0 0 0.00 14 70 125.62 0 0 0.00 10 88 131.01 0 0 0.00
orsay 10 36 25.82 8 16 337.12 0 0 0.00 4 10 53.91 10 79 289.06 20 83 431.44
rennes 10 13 38.20 0 0 0.00 14 57 97.41 0 0 0.00 0 0 0.00 0 0 0.00
sophia 12 24 121.45 40 24 137.55 0 0 0.00 28 58 174.56 20 135 178.10 28 121 467.98
toulouse 20 27 219.53 12 12 639.25 20 60 249.36 20 29 586.94 20 125 373.87 0 0 0.00
TOTAL 116 184 94 84 156 364 76 164 106 724 160 403
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Figure 5: (a) Comparison of makespan of workflow according to the number of subjects used. (b) Comparison of makespan between
grouped and ungrouped tasks (see Figure 2 for grouping of tasks). (c) Data size according to the number of subjects used. (d) # of tasks
executed vs. Time: Parallelism that was achieved in the system.

within similar bounds and did not increase exponentially, as
can be seen for 40, 20, and 10 subjects in Figure 5 (a). By
inference for more than 40 subjects the makespan should
not increase by more than double the difference between
the 40 subject and 20 subject makespan.

Grouping of tasks reduced the transmission of data be-
tween individual tasks as they were executed on the same
machine the group was submitted to. Also, no coordi-
nation was required for the individual tasks in the group.
This contributed to the reduced makespan in the case of
grouped tasks. Figure 5(b) shows that the grouping of tasks
that have higher value of standard deviation of execution
did not yield an optimized makespan. Ungrouping tasks
with higher execution time and a higher standard deviation
value gave lower makespan than the grouped version (cen-
ter of the graph) of that set of tasks. Tasks with lower ex-
ecution time and lower standard deviation value had lower
makespan value when grouped than when ungrouped.

The size of data produced during the execution of the

workflow increased when the number of subjects was in-
creased. The input data size (16MB per subject) was low in
comparison to the total data produced during the execution
as shown in Figure 5(c).

Due to the use of highly available resources, almost all
the workflow’s ready tasks were executed in parallel, as de-
picted in Figure 5(d). The graph shows the plot of tasks that
finished execution versus time. At a certain interval in the
beginning of execution most of the tasks finished execution
at the same time showing the parallelism of execution of
tasks. Most of the grouped tasks finished execution at the
beginning of the execution interval unlike ungrouped tasks.
This early execution behaviour helped reduce the makespan
of the whole workflow as the grouped tasks executed more
than one task at a time through a bash script, which is seen
as a single task by the resource. In the case of ungrouped
tasks each task needed to be mapped onto a resource and
as the resource approached its maximum job limit, no more
tasks could be submitted to it. This is also the reason that



fewer grouped tasks were executed on the system than un-
grouped tasks after 100 seconds.

We used a Just-In-Time scheduling algorithm to sched-
ule the tasks. As the tasks became ready the scheduler was
able to find the best available resource and then submitted
the task to it for execution. Failure of tasks was handled on
a per task basis. When tasks failed, they were re-submitted
to another resource, which did not have a failure history for
those tasks. Although some tasks failed to execute and were
rescheduled, their total count was very small.

The workflow was executed multiple times by changing
input parameters. This feature provided flexibility while ex-
ecuting grouped and ungrouped versions of the workflow
for each of the 40,20,10 and 2 subjects. Without this fea-
ture, orchestrating the whole experiment manually would
have taken longer time than executing the application on a
single machine.

6 Conclusions
In this work, we presented the processing of a compute

and data-intensive scientific application in the form of a
workflow on the Grid. We implemented the components in
the context of executing Image Registration (IR) for fMRI
studies. We used the Gridbus Workflow Engine as workflow
management system and the Gridbus Broker as the medi-
ator to access the distributed resources. Our experiments
demonstrated that the IR procedure can have significantly
reduced makespan, greater distribution of storage space and
increased flexibility when executed on the Grid. Our anal-
ysis and the results of this neuroscience application show
that there exists a greater motive and higher potential in
strengthening collaboration between eScience communities
and industry.

As part of our continuing efforts, we are enhancing the
GWFE to support SLA based workflow scheduling. We are
also working on the efficient scheduling of compute and
data-intensive scientific workflows on global Grids.
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