
An SCP-based Heuristic Approach for

Scheduling Distributed Data-Intensive

Applications on Global Grids

Srikumar Venugopal ∗ and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, VIC 3010, Australia.

Abstract

Data-intensive Grid applications need access to large datasets that may each be
replicated on different resources. Minimizing the overhead of transferring these
datasets to the resources where the applications are executed requires that appro-
priate computational and data resources be selected. In this paper, we consider the
problem of scheduling an application composed of a set of independent tasks, each
of which requires multiple datasets that are each replicated on multiple resources.
We break this problem into two parts: one, to match each task (or job) to one
compute resource for executing the job and one storage resource each for accessing
each dataset required by the job and two, to assign the set of tasks to the selected
resources. We model the first part as an instance of the well-known Set Covering
Problem (SCP) and apply a known heuristic for SCP to match jobs to resources.
The second part is tackled by extending existing MinMin and Sufferage algorithms
to schedule the set of distributed data-intensive tasks. Through simulation, we ex-
perimentally compare the SCP-based matching heuristic to others in conjunction
with the task scheduling algorithms and present the results.

Key words: Grid Computing, Data-Intensive Applications, Task Mapping

∗ Corresponding author.
Email addresses: srikumar@csse.unimelb.edu.au (Srikumar Venugopal),

raj@csse.unimelb.edu.au (Rajkumar Buyya).

(c) Elsevier 2008. J. of Parallel and Distributed Computing, Vol. 68, No. 4, pp: 471-487, ISSN: 0743-7315

1 Introduction

Grids [1] aggregate computational, storage and network resources to provide
pervasive access to their combined capabilities. In addition, Data Grids [2,3]
provide services such as low latency transport protocols and data replication
mechanisms to distributed data-intensive applications that need to access,
process and transfer large datasets stored in distributed repositories. Such
applications are commonly used by communities of researchers in domains
such as high-energy physics, astronomy and biology.

...
.

Data Hosts

...
.

...
.

...
.

...
.

...
.

Compute Jobs Datasets

<<submit>> <<requires>>

<<stored on>>
f1

f2

fk
j

d1

d2

dP

Fig. 1. Mapping Problem.

The work in this paper is concerned with scheduling data-intensive applica-
tions that can be considered as a collection of independent tasks, each of
which requires multiple datasets, onto a set of Grid resources. An astronomy
image-processing application following this model is described by Yamamoto,
et al. [4]. Each task is translated into a job that is scheduled on to a com-
putational resource and requests datasets from the storage resources (or data
hosts). Each of these datasets may be replicated at several locations that
are connected to each other and to the computational sites (or compute re-
sources) through networks of varying capability. This scenario is illustrated in
Figure 1. This paper makes two contributions: first, it introduces the problem
of matching a task to a set of resources that consists of one compute resource
for executing the job and a data host each to access each dataset required
for the job and models this problem as an instance of the well-known Set
Covering Problem (SCP) and second, it applies a known heuristic for SCP
to perform the matching and evaluates it against other strategies in conjunc-
tion with MinMin and Sufferage task scheduling algorithms through extensive
simulations.

The rest of the paper is structured as follows: the next section presents a
detailed resource model and the application model that is targeted in the
research presented in this paper. The mapping heuristic is presented in the
following section and is succeeded by details of experimental evaluation and
the consequent results. Finally, the related work is presented and the paper is

2

concluded.

2 Model

The target data-intensive computing environment is modeled based on existing
production Grid testbeds such as the European DataGrid testbed [3] or the
United States Grid3 testbed [5]. As an example, Figure 2 shows a subset of
European DataGrid Testbed 1 derived from Bell, et. al [6]. The resources in
the figure are spread across 7 countries and belong to different autonomous
administrative domains.

Imperial College

RAL

Lyon

 NorduGrid

NIKHEF

CERN

 Milano

 Torino

Catania

Padova
Bologna

45Mb/s

45Mb/s

100Mb/s

100Mb/s

155Mb/s

10Gb/s

10Gb/s

10Gb/s
10Gb/s

10Gb/s

155Mb/s

10Gb/s

155Mb/s

2.5Gb/s

2.5Gb/s 2.5Gb/s

622Mb/s

155Mb/s

2.5Gb/s

2.5Gb/s

1Gb/s

1Gb/s

2.5Gb/s

- Router

- Site

Fig. 2. European Data Grid Testbed 1 [6].

A data-intensive computing environment can be considered to consist of a set
of M compute resources, R = {r1, r2, . . . , rM} and a set of P data hosts, D =
{d1, d2, . . . , dP}. Within production Grids, a compute resource is commonly a
high performance computing platform such as a cluster consisting of processing
nodes that are connected in a private local area network and are managed
by a batch job submission system hosted at the “head” or “front-end” node
connected to the public Internet. Jobs submitted to a cluster are assigned
to processing nodes by the batch system or are held in queues. Such queues
may have a limited capacity counted as the number of “slots” that can be
filled by jobs. If all the slots in a queue are filled, further job submissions
will not be allowed. A data host can be a dedicated storage resource such as
a Mass Storage Facility connected to the Internet. At the very least, it may
be a storage device attached to a compute resource in which case it inherits
the network properties of the latter. It is important to note that even in the
second case, the data host is considered separate from the compute resource.
Figure 3 shows a simplified data-intensive computing environment consisting

3

of four compute resources and an equal number of data hosts connected by
links of different bandwidths.

d2

d1

r1

r2

f
3

f
1

f
2

f
1

r4

f
3

d3

f
2

r3d4

4

3

8

7

5

64

6

3

Fig. 3. A data-intensive environment.

The physical network between the resources consists of entities such as routers,
switches, links and hubs. However, the model presented here abstracts the
physical network to consider the logical network topology wherein each com-
pute resource is connected to every data host by a distinct network link as
shown in Figure 3. This logical link is denoted by Link(rm, dp), rm ∈ R, dp ∈
D. The bandwidth of the logical link between two resources is the bottle-
neck bandwidth of the actual physical network between the resources and is
given by BW (Link(rm, dp)). This information may be obtained from various
information sources such as the Network Weather Service [7]. The numbers
alongside the links in Figure 3 depict the bandwidths of the various logical
links in the network. The time taken by a compute resource to access data
through the Internet is assumed to be an order of magnitude higher than that
taken for it to access data on a storage resource at the same site (either a sep-
arate machine or a simple disk storage). Therefore, only remote access times
are taken into account in the model and datasets on local storage have zero
access times.

Data is organised in the form of datasets. A dataset can be an aggregated set
of files, a set of records or even a part of a large file. Datasets are replicated on
the data hosts by a separate replication process that follows a strategy such as
one of those described by Bell, et al. [6] which takes into consideration various
factors such as locality of access, load on the data host and available storage
space. Information about the datasets and their location is available through
a catalog such as the Storage Resource Broker Metadata Catalog [8].

The application is composed of a set of N atomic (indivisible) and non-
interdependent jobs, J = {j1, j2, . . . , jN} (Note: Since each task is translated
into a job, tasks and jobs are used interchangeably). Typically, N � M , the
number of compute resources. Each job, j ∈ J , requires a set of K datasets,

4

denoted by F j, that are distributed on a subset of D. Specifically, for a dataset
f ∈ F j, Df ⊆ D is the set of data hosts (each denoted by df) on which f
is replicated and from which it is available. Also, Df1 and Df2 need not be
pairwise disjoint for every f1, f2 ∈ F . In other words, a data host can serve
multiple datasets at a time.

Each job requires one processor in a compute resource for executing the job
and one data host each for accessing each of theK datasets required by the job.
The compute resource and the data hosts thus selected are collectively referred
to as the resource set associated with the job and is denoted by Sj = {Rj, Dj}
where Rj = {r}, r ∈ R represents the compute resource selected for executing
the job and Dj ⊆ ⋃

f∈F j Df is the set of data hosts chosen for accessing the
datasets required by the job.

The job execution time model followed here is extended from that presented
by Maheswaran, et. al [9]. Consider a job j that has been submitted for exe-
cution to a compute resource r. The time spent in waiting in the queue on the
compute resource is denoted by Tw(j, r) and the expected execution time of
the job is given by Te(j, r). Tw increases with increasing load on the resource.
Likewise, Te is the time spent in purely computational operations and depends
on the processing speed of the individual nodes within the compute resource.
For each dataset f ∈ F j, the time required to transfer f from df to r is given
by

Tt(f, df , r) = Response time(df) + Size(f)/BW (Link(df , r))

Response time(df) is the difference between the time when the request was
made to df and the time when the first byte of the dataset f is received at
r. This is an increasing function of the load on the data host. The estimated
completion time for the job, Tct(j), is the wallclock time taken for the job from
submission till eventual completion and is a function of these three times. Fig-
ure 4 shows two examples of data-intensive jobs with times involved in various
stages shown along a horizontal time-axis. In this figure, for convenience, the
time for transferring f1, f2, . . . , fk is denoted by Tf1 , Tf2 , . . . , Tfk

respectively.

The impact of the transfer time of the datasets is dependent on the manner in
which the dataset is processed by the job. For example, Figure 4(a) shows a
common scenario in which Grid applications request and receive the required
datasets in parallel before starting computation. In this case,

Tct(j) = Tw(j, r) + max
f∈F j

(Tt(f, df , r)) + Te(j, r)

However, the number of simultaneous transfers on a link determines the band-
width available for each transfer and therefore, the Tt.

Figure 4(b) shows a more generic data processing approach in which some
of the datasets are transferred completely prior to execution and the rest are

5

Tw

Tf2

Tfk

Te

Tf1

...

Time

(a)

Tw

f1T

Te

f3T

fkT

f2T

...

Time

(b)

Fig. 4. Job Execution Stages and Times (Gray areas denote overlaps between the

computation and data operations).

accessed as streams during the execution. The grey areas show the overlap
of computation and communication. In this case, the transfer time of the
streamed data is masked by the computation time of the application. However,
data access still affects the performance of the application. If there is a latency
associated with accessing the data, the application may still have to wait until
the first byte of the data is received at the compute resource.

This paper focuses on the application models of the first type, that is, appli-
cations that require all the datasets to be transferred to the actual compute
resource (or its associated data host) before execution. This is the most com-
mon model followed by data-intensive applications [10]. Also, the impact of
data transfer time is the highest in this model. However, it is possible that
lessons learnt from scheduling these type of applications may also be applicable
to the other types of data-intensive applications.

2.1 A Generic Scheduling Algorithm

The scheduling paradigm followed is that of offline or batch mode scheduling
of a set of independent tasks [9]. The general problem of creating a schedule
for a set of jobs to run on distributed resources is called list scheduling and
is considered to be NP -complete [11] in the general case. Many approximate
heuristics have been devised for this problem and a short survey of these have
been presented by Braun, et al. [11]. Algorithm 1 outlines a generic strategy
for batch mode scheduling of a set of jobs based on the skeleton presented by
Casanova, et al. [12].

The scheduler forms a part of a larger application execution framework such
as a Grid resource broker (e.g.[13],[14]). The resource broker is able to identify
resources that meet minimum requirements of the application such as archi-
tecture (instruction set), operating system, storage threshold and data access

6

Algorithm 1: A Generic Scheduling Algorithm.
while there exists unsubmitted jobs do1

Update the resource performance data based on job scheduled in previous2

intervals
Update network data between resources based on current conditions3

foreach unsubmitted job do4

Match the job to a resource set to satisfy the objective function at the5

job level
Order the jobs depending on the overall objective6

end7

repeat8

Assign mapped jobs to each compute resource heuristically9

until all jobs are submitted or no more jobs can be submitted10

Wait until the next scheduling event11

end12

permissions and these are provided as suitable candidates for job execution to
the scheduler. The scheduling is carried out at time intervals called scheduling
events [15]. These events can be determined to either run at regular intervals
(poll-based) or in response to certain conditions (event-based). There are two
parts in a scheduling strategy: mapping and dispatching. The jobs have to be
matched to a set of resources and ordered depending on the objective function
(mapping) and then sent to remote resources for execution (dispatching). Each
of the parts can be implemented independently and therefore, many strategies
are possible.

The sections that follow concentrate on matching jobs to distributed resources
where the selection of computational and data resources are interdependent.
The aim of the matching heuristic is to select a resource set that produces the
Minimum Completion Time (MCT) for a job. The general strategy adopted
here is to find a resource set with the least number of data hosts required
to access the datasets required for a job and then, find a suitable compute
resource to execute it. The goal here is to maximise the local access of datasets
and thus, reduce the data transfer times.

3 A Graph-based Approach to the Matching Problem

For a job j ∈ J , consider a graph Gj = (V,E) where V = (
⋃

f∈F j{Df}) ∪ F j

and E is the set of all directed edges {d, f} such that d ∈ Df . Figure 5(a)
shows an example of a job j that requires 3 datasets f1, f2 and f3 that are
replicated on data host sets {d1, d2}, {d2, d3} and {d1, d4} respectively. The
graph of data sets and data resources for job j is shown in Figure 5(b).

7

f
2

f
3

f
1

j

(a)

f
1

f
2

f
3

d1

d2

d3

d4

(b)

f
1

f
2

f
3

d1

d2

d3

d4

(c)

Fig. 5. Graph-based approach to the matching problem. (a)Job j dependent on 3
datasets. (b) Directed graph of data resources and data sets for job j. (c) A possible
minimal set for the data graph.

The intuition followed in this work is to assign a job to a compute resource that
is “closest” (in network terms) to a set of data hosts that contain the datasets
required by the job. The selection of the compute resource, however, should
not only be based on the proximity of the data but also on its availability and
performance as well. In terms of the graph model presented, the resource set
should therefore contain a set H of data hosts such that there exists atleast
one edge from a member of H to f for every f ∈ F j in Gj so that all the
datasets required for the job can be accessed. Figure 5(c) shows a possible set
for the graph of datasets and data hosts for job j shown in Figure 5(b). There
may be upto PK possible sets of data hosts (as there may be upto P data hosts
for each of the K datasets associated with a job) that can be combined with
each compute resource in R to produce MPK resource sets (where M is the
number of compute resources) with different values of total completion time.
Out of these, a combination of a set of data hosts and a compute resource
is to be selected such that the total completion time for j is minimised. This
problem is defined and referred to hereafter as the Minimum Resource Set
(MRS) problem.

3.1 Modelling the Minimum Resource Set as a Set Cover

For a graph Gj such as that shown in Figure 5(b), a reduced adjacency matrix
A = [aik], 1 ≤ i ≤ P, 1 ≤ k ≤ K can be constructed wherein aik = 1 if
data host di ∈ Dfk

for a dataset fk. Such an adjacency matrix is shown in
Figure 6(a). The rows that contain a 1 in a particular column are said to
“cover” the column. The problem of finding the minimal set of data hosts to
access all datasets in Gj is now equivalent to finding the set of the least number
of rows such that every column is covered, that is, every column contains an
entry of 1 in at least one of the rows. In other words, if each data host can

8

be considered as a set of datasets, then finding the minimal set of data hosts
is equivalent to finding the least number of such sets of datasets such that
all datasets are covered. This problem has been studied extensively as the Set
Covering Problem (SCP) [16].

f1 f2 f3

d1 1 0 1
d2 1 1 0
d3 0 1 0
d4 0 0 1

(a)

f1 f2 f3

d1 1 0 1
d2 1 1 0
− − − −
d2 1 1 0
d3 0 1 0
− − − −
d1 1 0 1
d4 0 0 1

(b)

Fig. 6. (a) Adjacency Matrix for the job example. (b) Tableau.

The SCP is an NP -complete problem and the most common approximation
algorithm applied to the SCP is the greedy strategy [17]. It is possible to
derive a set cover for the datasets by following the greedy strategy as outlined
below:
Step 1. Repeat until all the datasets have been covered.
Step 2. ↪→ Pick the data host that has the maximum number of uncovered
datasets and add it to the current candidate set.
It can be seen that such a greedy strategy will produce only one of the possible
set covers. This, however, excludes the other candidate sets from consideration.
It is also possible to arrive at an exhaustive search procedure that generates all
the possible covers. However, this is bound to be computationally-intensive.

The next subsection details a heuristic for matching jobs to resources based
on the approximate tree search algorithm provided by Christofides [18] for the
SCP. This heuristic restricts the search to a region where the solution is most
likely to be found. But, before applying that algorithm, it is possible to reduce
the size of the problem by taking advantage of the nature of the SCP. These
reductions are as follows:

(1) If a dataset required for a job is present on only one data host, then that
data host is part of any solution. Therefore, the problem can be reduced
by assigning the dataset to that data host and removing the dataset from
later consideration.

(2) For f1, f2 ∈ F j, if Df1 ⊆ Df2 , then f2 can be removed from consideration
as any solution that covers f1 must also cover f2.

9

3.2 The SCP Tree Search Heuristic

Algorithm 2 outlines the SCP tree search heuristic that consists of three dis-
tinct phases: initialisation, execution and termination. These are described in
the following paragraphs. Figure 7 shows an example of the heuristic in action
based on the job shown in Figure 5 using the tableau in Figure 6(b) and the
platform in Figure 3. At the bottom of each step, the candidate resource set
arrived at is depicted as well.

Algorithm 2: SCP Tree Search Matching Heuristic.
Begin Main

For a job j, create the adjacency matrix A with data hosts forming the rows1

and datasets forming the columns
Sort the rows of A in the descending order of the number of 1’s in a row2

Create the tableau T from sorted A and begin with initial solution set3

Bfinal = φ, B = φ, E = φ and z =∞
Search(Bfinal, B, T, E, z)4

Sj ← {{r}, Bfinal} where r ∈ R such that Sj produces MCT (Bfinal)5

End Main

Search(Bfinal, B, T, E, z)
Find the minimum k, such that fk /∈ E. Let Tk be the block of rows in T6

corresponding to fk. Set a pointer q to the top of Tk.
while q does not reach the end of Tk do7

FT ← {fi|tqi = 1, 1 ≤ i ≤ K}8

B ← B ∪ {dk
q}, E ← E ∪ FT9

if E = F j then10

if z > MCT (B) then11

Bfinal ← B, z ← MCT (B)12

else Search(Bfinal, B, T, E, z)13

B ← B − {dk
q}, E ← E − FT14

Increment q15

end16

MCT(B)
Find r ∈ R such that the completion time is minimum for the resource set17

Sj = {{r}, B} and return value

Initialisation (Lines 1-3)

The initialisation starts off with the creation of the adjacency matrix A for
a job. The rows of this matrix (that is, the data hosts) are then sorted in
the descending order of number of 1’s per column (or, the number of datasets
contained). This sorted matrix is used to create an augmented matrix that is
henceforth referred to as the tableau and is shown in Figure 6(b). The tableau

10

f1 f2 f3

d1 1 0 1

d2 1 1 0

− − − −

d2 1 1 0

d3 0 1 0

− − − −

d1 1 0 1

d4 0 0 1

(a)

f1 f2 f3

d1 1 0 1

d2 1 1 0

− − − −

d2 1 1 0

d3 0 1 0

− − − −

d1 1 0 1

d4 0 0 1

{{r1}, d1, d2}
(b)

f1 f2 f3

d1 1 0 1

d2 1 1 0

− − − −

d2 1 1 0

d3 0 1 0

− − − −

d1 1 0 1

d4 0 0 1

{{r1}, d1, d3}
(c)

f1 f2 f3

d1 1 0 1

d2 1 1 0

− − − −

d2 1 1 0

d3 0 1 0

− − − −

d1 1 0 1

d4 0 0 1

(d)

f1 f2 f3

d1 1 0 1

d2 1 1 0

− − − −

d2 1 1 0

d3 0 1 0

− − − −

d1 1 0 1

d4 0 0 1

{{r2}, d2, d1}
(e)

f1 f2 f3

d1 1 0 1

d2 1 1 0

− − − −

d2 1 1 0

d3 0 1 0

− − − −

d1 1 0 1

d4 0 0 1

{{r2}, d2, d4}
(f)

Fig. 7. Example of the SCP Tree Search Heuristic in action.

T consists of K blocks of rows (delineated by dashes in Figure 6(b)), where K
is the size of F j and the kth(1 ≤ k ≤ K) block consists of rows corresponding
to data hosts that contain fk, fk ∈ F j. The tableau is constructed in such a
manner that the rows within each block are in the same sorted order as the
rows in the sorted adjacency matrix. At any stage of execution, the set of
data hosts B keeps track of the current solution set of datahosts, the set E
contains the datasets already covered by the solution set and the variable z
keeps track of the value of the completion time offered by the current solution
set. The final solution set is stored in Bfinal. The procedure begins with the
partial solution set B = φ, E = φ, z =∞.

11

Execution (Lines 6-16)

During execution, the blocks are searched sequentially starting from the kth

block in T where k is the smallest index, 1 ≤ k ≤ K such that fk /∈ E. Within
the kth block, let dk

q mark the data host under consideration where q is a row
pointer within block k. The data host dk

q is added to B and all the datasets
for which the corresponding row contains 1 are added to E as they are already
covered by dk

q . These datasets are removed from consideration and the process
then moves to the next uncovered block until E = F j, that is, all the datasets
have been covered. At this point, B represents the corresponding candidate
set of data hosts that covers all the datasets. The function MCT(B) computes
the expected value of the completion time for each compute resource combined
with B and returns with the minimum of the values so found. If this is lower
than the existing value in z, then the solution set is replaced with the current
candidate set and z is assigned the returned value.

Whenever the heuristic enters a block that is not yet covered, it branches out
within the block by a recursive call that passes along the incomplete solution
set (line 13). The final solution set is returned in the variable Bfinal through
normal pass-by-reference methods. At the end of each loop, the heuristic back-
tracks to try the next data host in the block and repeat the branching with
that host (line 14).

Illustrating this using Figure 7, in the first step (Figure 7(a)), the heuristic
starts with the first block in the tableau. As f1 and f3 are covered by choosing
d1, the heuristic moves to the second block to cover f2. This gives us B =
{d1, d2} to cover all the datasets. For this B, r1 produces the lowest value of
MCT and therefore, the candidate resource set (or the resource set matched
to the job) at this moment is {{r1}, d1, d2}(Figure 7(b)). The heuristic then
backtracks and moves to the next row in the same block to produce B =
{d1, d3} and the consequent candidate resource set {{r1}, d1, d2}(Figure 7(c)).
The latter is then compared to the previous resource set and the B with lowest
MCT is selected for the next iteration. In a similar fashion (Figures 7(d)- 7(f)),
the rest of the resource sets are discovered and a final resource set selected.

Termination (Line 5)

Through the recursive procedure outlined in the listing, the heuristic then
backtracks and discovers other candidate sets. The solution set that guarantees
minimum makespan is then chosen as the final solution set. The compute
resource that provides the MCT is then combined with the solution set to
obtain the resource set for the job.

To reduce the scope of the tree traversal, the heuristic terminates when the
first block is exhausted. The data hosts with the maximum number of datasets
appear at the top of the tableau due to the initialisation process. Therefore,

12

most of the candidate sets will be covered by the search function by starting
at the rows in the first block.

4 Other Approaches to the Matching Problem

Algorithm 3: The Compute-First Matching Heuristic.
foreach j ∈ J do1.

Let Sj ← {Rj , Dj}, Rj ← φ, Dj ← φ2.

Let Rj ← {rfinal} such that Te(j, rfinal) is minimum for all r ∈ R3.

foreach f ∈ F j do4.

Dj ← Dj ∪ {df} where Tt(f, df , rfinal) is minimum for all df ∈ Df5.

end6.

end7.

Compute-First - In this mapping strategy, listed in Algorithm 3, the com-
pute resource that provides the least execution time is selected first. This step
is followed by choosing data hosts that have the highest bandwidths (and
therefore, the lowest transfer times) to the selected compute resource. The
running time of this heuristic is O(MKP).

Algorithm 4: The Exhaustive Search Matching Heuristic.
foreach j ∈ J do1.

Let Sj ← {Rj , Dj}, Rj ← φ, Dj ← φ2.

Let U ← R×Df1 ×Df2 × . . .×DfK
where f1, f2, . . . , fK ∈ F j3.

Find u ∈ U such that Tct(j) is minimum4.

end5.

Exhaustive Search - Algorithm 4 lists the exhaustive search strategy wherein
all the possible resource sets for a particular job are generated and the one
guaranteeing the least completion time is chosen for the job. While this heuris-
tic guarantees that the resource set selected will be the best for the job, it
searches through MPK resource sets at a time. This leads to unreasonably
large search spaces for higher values of K. For example, for a job requiring 5
datasets with 20 possible data hosts and 20 available compute resources, the
search space will consist of (20 ∗ 205) = 64 ∗ 106 resource sets.

Greedy Selection - This strategy, listed in Algorithm 5, builds the resource
set by iterating through the list of datasets and making a greedy choice for the
data host for accessing each dataset, followed by choosing the best compute
resource for that data host. At the end of each iteration, it checks whether
the compute resource so selected is better than the one selected in previous
iteration when the data hosts selected in previous iterations are considered.

13

Algorithm 5: Greedy Selection Strategy.
foreach j ∈ J do1.

Let Sj ← {Rj , Dj}, Rj ← φ, Dj ← φ2.

Let Rj
temp ← φ // A temporary variable3.

foreach f ∈ F j do4.

Let U ← {(df , r)}df∈Df
where r is the first element of ordered set5.

Rdf

Find (df , r) such that Tt(f, df , r) + Te(j, r) is minimum over U6.

if Sj = {φ, φ} then7.

Rj ← {r}, Dj ← {df}, Rj
temp ← {r}8.

else9.

Rj ← {r}, Dj ∪ {df}10.

Sj ← min{{Rj , Dj}, {Rj
temp, D

j}}11.

Rj
temp ← Rj

12.

end13.

end14.

This heuristic was presented by the authors [19] for deadline and budget con-
strained cost and time minimisation scheduling of distributed data-intensive
applications. The running time of this heuristic is O(MKP).

5 Scheduling Heuristics

While the mapping heuristic finds a resource set for a single job, the overall
objective is to minimize the total makespan [9], the total time from the start of
the scheduling to the completion of the last job, of the application consisting of
N such data-intensive jobs. To that end, we apply the well-known MinMin and
Sufferage heuristics, proposed by Maheswaran,et.al [9], for dynamic scheduling
of jobs on heterogeneous computing resources. These have been extended to
take into account the distributed data requirements of the target application
model.

Algorithm 6 outlines the extended MinMin scheduling heuristic. The basic
idea of this heuristic is to find the job that has the least value of completion
time among all the jobs and allocate it to the resource set that achieves it.
The intuition behind this is that such an allocation over all the jobs will
minimize the overall completion time. The term JU denotes the set of jobs
that have not been allocated to any resource set yet. In the beginning, it
matches all the jobs to a resource set that guarantees the MCT for that job
(line 4). This is produced through matching heuristics such as the SCP Tree
Search, Greedy Selection, Compute-First or Exhaustive Search, that have been
presented in previous sections. Then, the job with the MCT in the present

14

Algorithm 6: The MinMin Scheduling heuristic extended for distributed
data-intensive applications.

repeat1.

Begin Mapping

repeat2.

foreach j ∈ JU do3.

Find the resource set that achieves the MCT for j4.

end5.

Find the job j ∈ JU with the least value of Tct(j)6.

Assign j to its selected resource set and remove it from JU7.

Update the resource availability based on the allocation performed8.

in the previous step
until JU is empty9.

End Mapping

Dispatch the mapped jobs to the selected resources such that the job10.

allocation limit of each resource is not exceeded
Wait until the next scheduling event11.

foreach job completed in the previous interval do12.

For each dataset that has been transferred from a remote data host13.

for the job, add its eventual destination (compute resource) as a
future source of the dataset for the jobs remaining in JU

end14.

For each resource, revise its capability estimates (job allocation limit or15.

available queue slots) depending on various information sources such as
external performance monitors or the jobs completed in the previous
interval

until all jobs are completed16.

allocation is assigned to the compute resource in its chosen resource set (line 7).
This job is then removed from the unallocated job set. As job assignment
changes the availability of the compute resource with respect to the number of
available slots/processors, the resource information is updated and the process
is repeated until all the jobs in JU have been allocated to some resource set.

For each compute resource, the dispatching function (line 10) submits the
jobs mapped to it to the remote job management system (or the job queue)
until all the slots on the queue have been filled or the jobs exhausted. The
remaining jobs that were assigned to the compute resource but were not able
to be allocated to the remote queues, are returned back to the unallocated
jobs list. The scheduler then waits until the next scheduling event to resume.

When a job is scheduled for execution on a compute resource, all the datasets
that are required for the job and are not available local to the resource, are
transferred to the resource prior to execution. These datasets become repli-
cas that can be used by following jobs. Here, this is taken into account by
registering the compute resource in question (or its associated data host) as

15

Algorithm 7: The Sufferage heuristic extended for distributed data-
intensive applications.

Begin Mapping

repeat1.

foreach j ∈ JU do2.

Find the resource set that achieves the MCT for j3.

Find the second best completion time for j4.

sufferage value = second best value - best value5.

end6.

Find the job j ∈ JU with the maximum sufferage value7.

Assign j to its selected resource set and remove j from JU8.

Update the resource availability based on the allocation performed in9.

the previous step
until JU is empty10.

End Mapping

a source of the transferred datasets for succeeding allocation loops (line 13).
This enables exploiting both temporal and spatial locality of data access.

The motivation behind the Sufferage heuristic (listed in Figure 7) is to allocate
a resource set to a job that would be disadvantaged the most (or “suffer” the
most) if that resource set were not allocated to it. This is determined through
a sufferage value computed as the difference between the second best and the
best value of the completion time for the job.

For each job, the resource set that offers the least value of the completion time
is determined through the same mechanisms as that in MinMin. Then, the
compute resource in that resource set is removed from consideration and the
matching function is rerun to provide another minimal resource set with the
next best value for the completion time. The selection of the compute resource
determines both the execution time (Te) and the data transfer times (Tt) .
Therefore, removing it from consideration will produce the maximum impact
on the value of the completion time. After determining the sufferage value for
each job, the job with the largest sufferage value is then selected and assigned
to its chosen resource set. The rest of the heuristic including dispatching and
updating of compute resource and data host information proceeds in the same
manner as MinMin.

6 Evaluation of Scheduling Algorithms

Effective evaluation of scheduling algorithms requires the study of their per-
formance under different scenarios such as different user inputs and varying
resource conditions. Within Grid environments, resource loads and the number

16

of users vary continuously and the spread of resources among different admin-
istrative domains makes it nearly impossible to control the environment to
provide a stable configuration for evaluation. Furthermore, the network plays
a large role in the performance of scheduling algorithms for data-intensive
applications and it is impossible to create consistent conditions over public
networks. The scale of the evaluation is also limited by the number of Grid
resources that can be accessed.

Therefore, it was decided to evaluate the performance of algorithms on a sim-
ulated Grid environment to ensure a stable and repeatable configuration. Sim-
ulation has been used extensively for modelling and evaluation of distributed
computing systems and the popularity of this methodology for evaluation of
Grid scheduling algorithms have led to the availability of several Grid simula-
tion packages [20]. Some of the simulation systems available for data-intensive
computing environments such as Data Grids include GridSim [21], MONARC
simulator [22], OptorSim [6], ChicSim [23] and SimGrid [24]. GridSim enables
modelling and simulation of heterogeneous Grid resources with time-shared
and space-shared node allocation and different economic costs; Grid networks
with different routing topologies and QoS classes [25]; and Data Grid replica
catalogs that can be connected in different configurations [26]. Also, it presents
itself as a toolkit that allows creation of different applications such as resource
brokers having scheduling algorithms with different objectives. Hence, Grid-
Sim was used as the simulation system for evaluating the scheduling algorithms
for distributed data-intensive applications. Evaluation of the scheduling algo-
rithms in GridSim required modelling of Grid resources, their interconnections
and the data-intensive applications. The sections that follow describe in detail
how each of these were modeled.

6.1 Simulated Resources

The testbed modelled in this evaluation is shown in Figure 2. The modelled
testbed contains 11 resources spread across 6 countries connected via high
capacity network links. Each resource, except the one at CERN (Geneva),
was used both as a compute resource and as a data host. The resource at
CERN was used as a pure data source (data host) in the evaluation and
therefore, no jobs were submitted to it for execution. The resources in the ac-
tual testbed have gone through several configuration changes, not all of which
are publicly available, and hence it was impossible to model their layout and
CPU capability accurately. Instead, it was decided to create a configuration
for each resource such that the modelled testbed, in whole, would reflect the
heterogeneity of platforms and capabilities that is normally the characteristic
of Grids. All the resources were simulated as clusters of single CPU nodes
or Processing Elements (PEs) with a batch job management system using

17

Table 1
Resources within EDG testbed used for evaluation.

Resource Name
(Location)

No. of Nodes Single
PE
Rating
(MIPS)

Storage (TB) Mean
Load

RAL (UK) 41 1140 2.75 0.9

Imperial College
(UK)

52 1330 1.80 0.95

NorduGrid (Norway) 17 1176 1.00 0.9

NIKHEF (Nether-
lands)

18 1166 0.50 0.9

Lyon (France) 12 1320 1.35 0.8

CERN (Switzerland) – – 12 –

Milano (Italy) 7 1000 0.35 0.5

Torino (Italy) 4 1330 0.10 0.5

Catania (Italy) 5 1200 0.25 0.6

Padova (Italy) 13 1000 0.05 0.4

Bologna (Italy) 20 1140 5.00 0.8

space-shared policy. This modelled real world Grid resources that are generally
high performance clusters in which each job is allocated to a processing node
through a job submission queue. The processing capabilities of the PEs were
rated in terms of Million Instructions Per Sec (MIPS) so that the application
requirements can be modelled in Million Instructions (MI). The configuration
assigned to the resources in the testbed for the simulation are listed in Table 1.

To model resource contention caused by multiple users submitting jobs si-
multaneously and the resultant variation in resource availability, a load factor
was associated with each resource. The load factor is simply the ratio of the
number of PEs that are occupied to the total number of PEs available in a
resource. During simulation, the instantaneous load (or number of PEs oc-
cupied) for each resource was derived from a Gaussian distribution centered
around its mean load factor shown in Table 1.

Storage at the resources was modelled as the total disk capacity available at
the site. Site access latencies such as disk read time were ignored as these are
less than the network delays by an order of magnitude. The network between
the resources were modelled as the set of routers and links shown in Figure 2.
Variations of the available network bandwidth are simulated by associating
a link load factor, which is the ratio of the available bandwidth to the total

18

bandwidth for a network link. During simulation, the instantaneous measure
of the link load is derived from another Gaussian distribution centered around
a mean load assigned at random, at the start of the simulation, to each of the
links.

It was possible to keep track of the various load variations through information
services built into the simulation entities. For example, it was possible to query
the instantaneous bandwidth of the network link between any two resources.
It was also possible to determine resource availability information by querying
the resource for its instantaneous load and number of PEs available.

6.2 Distribution of Data

A universal set of 1000 datasets was used for this evaluation. Studies of similar
environments [27] have shown that the size of the datasets follow a heavy-tailed
distribution in which there are larger numbers of smaller size datasets and
vice versa. Therefore, the set of datasets are generated with sizes distributed
according to the logarithmic distribution in the interval [1GB, 6GB]. The
distribution of datasets in a Data Grid depends on many factors including
variations in popularity, the replication strategy employed and the nature of
the Grid fabric. To model this distribution, at the start of the simulation, each
of the datasets were replicated on one or more of the data hosts according
to a preset pattern of dataset distribution. Two common patterns of data
distribution considered in this evaluation are given below:

• Uniform : Here, the distribution of datasets is modelled on a uniform
distribution. Here, each dataset is equally likely to be replicated at any
site.
• Zipf : Zipf-like distributions follow a power law model in which the prob-

ability of occurrence of the ith ranked dataset in a list of datasets is
inversely proportional to i−a where a ≤ 1. In other words, a few datasets
are distributed widely whereas most of datasets are found in one or two
places. This models a scenario where the datasets are replicated on the
basis of popularity. It has been shown that Zipf-like distributions holds
true in cases such as requests for pages in World Wide Web where a few
of the sites are visited the most [28]. This scenario has been evaluated for
a Data Grid environment in related publications [29].

Henceforth, the distribution applied is described by the variable Dist. The
distribution of datasets was also controlled through a parameter called the
degree of replication which is the maximum possible number of replicas of
any dataset present in the Data Grid at the beginning of the simulation. For
example, a degree of replication of 3 means there can be up to 3 copies of

19

any dataset on the Grid resources. However, not all datasets are replicated
to the limit of the degree of replication. In a uniform distribution, a higher
percentage of the datasets are replicated up to the maximum limit than in the
Zipf distribution. The degree of replication in this evaluation is 5.

6.3 Application and Jobs

The simulated application models a Bag-of-Task application that can be con-
verted into a set of independent jobs. The size of the application was deter-
mined by the number of jobs in the set (or N). Each job translates to a Gridlet
object which is the smallest unit of execution in GridSim. The computational
size of a job or the job length, described by the term Size, is expressed in
terms of the time taken to run the job on a standard PE with a MIPS rat-
ing of 1000. That is, a job with length 100,000 MI runs for 100 seconds on
a standard resource. Each job requires as input, a pre-determined number of
datasets (or K datasets) selected at random from the universal set of datasets.
For the purpose of comparison, K is kept a constant among all the jobs in a
set although this is not a condition imposed on the heuristic itself.

An experiment is an execution of the all the heuristics for an application while
keeping the values for these parameters constant, and is therefore described
by the tuple (N,K, Size,Dist). At the beginning of each experiment, the set
of datasets, their distribution among the resources, and the set of jobs are gen-
erated. This configuration is then kept constant while each of the scheduling
heuristics are evaluated in turn. To keep the resource and network conditions
repeatable among evaluations, a random number generator is used with a con-
stant seed. The evaluation is conducted with different values for N,K, Size
and Dist to study the performance under different input conditions.

7 Experimental Results

7.1 Comparison between the Matching Heuristics

The performances of the matching heuristics discussed in the previous section
were compared with each other by pairing each of them with the MinMin
heuristic and conducting 50 simulation experiments with different values for
N , K, Size and Dist. Throughout this section, SCP and Greedy refer to
the SCP Tree Search and the Greedy Selection heuristics presented in the
previous section respectively. The objective of this evaluation was to reduce

20

the makespan [9] of the application which is the total wallclock time between
the submission of the first job to the completion of the last job in the set.

Table 2
Summary of Simulation Results.

Mapping
Heuristic

Geometric
Mean

Avg. deg. (SD) Avg. rank (SD)

Compute-First 37593.71 69.01 (19.4) 3.63 (0.48)

Greedy 36927.44 71.86 (50.55) 3.23 (0.71)

SCP 24011.17 7.68 (10.42) 1.67 (0.6)

Exhaustive
Search

23218.49 3.87 (6.46) 1.47 (0.58)

The results of the experiments are summarised in Table 2 and are based on the
methodology provided by Casanova, et. al [12]. For each matching heuristic,
the table contains three values:

(1) Geometric Mean of the makespans: The geometric mean is used as the
makespans vary in orders of magnitude depending on parameters such as
number of jobs per application set, number of files per job and the size
of each job. The lower the geometric mean, the better the performance
of the heuristic.

(2) Average degradation (Avg. deg.) from the best heuristic: In an experi-
ment, the degradation of a heuristic is the difference between its makespan
and the makespan of the best heuristic for that experiment and is ex-
pressed as a percentage of the latter measure. The average degradation is
computed as an arithmetic mean over all experiments and the standard
deviation of the population is given in the parentheses next to the means
in the table. This is a measure of how far a heuristic is away from the
best heuristic for an experiment. A lower number for a heuristic certainly
means that on an average that heuristic is better than the others.

(3) Average rank (Avg. rank) of each heuristic in an experiment: The ranking
is in the ascending order of makespans produced by the heuristics for each
experiment, that is, the lower the makespan, the lower the rank of the
heuristic. The average rank is calculated over all the experiments and the
standard deviation is provided alongside the averages in parantheses.

The three values together provide a consolidated view of the performance of
each heuristic. For example, it can be seen that on average Compute-First and
Greedy both perform worse than either SCP or Exhaustive Search. However,
the standard deviation of the population is much higher in the case of Greedy
than that of Compute-First. Therefore, Compute-First can be expected to per-
form as the worst heuristic most of time. Indeed, in a few of the experiments,
Greedy performed as good or even better than SCP while Compute-First never

21

came close to the performance of the other heuristics.

As is expected, between SCP and Exhaustive Search, the latter provides the
better results by having a consistently lower score than the former. However,
the nature of Exhaustive Search means that as the number of datasets per
job increases, the number of resource sets that need to be considered by the
heuristic increases dramatically. The geometric mean and average rank of SCP
is close to that of Exhaustive Search heuristic. The average rank is less than
2 for both heuristics which implies that in many scenarios, SCP provides a
better performance than Exhaustive Search.

7.1.1 Impact of Data Transfer on Performance

Figures 8-10 show a more fine-grained view of the experimental evaluation by
showing the effect of varying one of the variables (N , K, Size, Dist), all others
kept constant. Essentially, these are snapshots of the experimental results that
contributed to the summary data in Table 2. Along with the makespan, two
more measures of performance are considered within these figures. These are:

(1) Mean percentage of data time: For each job in an experiment, the share of
the data transfer time is calculated as a percentage of the total execution
time for that job. The average of this measure over all the jobs then
represents the mean impact of the data transfer time on the set of jobs or
the application as a whole. A lower number is better as one of the aims
of the scheduling algorithms presented so far has been to reduce the data
transfer time.

(2) Mean locality of access : For each job, the ratio of the number of datasets
accessed from the local disk storage of the compute resource to the total
number of datasets accessed by the job from all resources is calculated
as a percentage of the latter and is termed as the local access ratio. The
average of the local access ratio over all the jobs becomes a measure of
locality exploited by each of the algorithms. In this case, a higher number
is better as increased local access decreases the impact of remote data
transfer on the performance.

These two measures represent two slightly different perspectives on the data
access performed by the jobs. Consider a job that requires one dataset of size 6
GB and two datasets of size 1 GB each. The job may be scheduled such that the
larger-sized dataset is accessed locally, whereas the smaller-sized datasets may
be accessed from remote data hosts. In this case, the data transfer component
is small but the locality of access is low as well. However, when the sizes of the
datasets are more or less equal, the locality of access becomes an important
factor. These two measures, therefore, give an indication of the importance
given by the algorithms to the location of data. These can be correlated with

22

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(S

im
. U

ni
ts

)

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(S

im
. U

ni
ts

)

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

(a) Makespan vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

M
ea

n
%

 D
at

a
T

im
e

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

M
ea

n
%

 D
at

a
T

im
e

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

(b) Data Time vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

M
ea

n
%

 L
oc

al
 A

cc
es

s

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

M
ea

n
%

 L
oc

al
 A

cc
es

s

No. of Jobs

Compute-First
Greedy

SCP
Exhaustive Search

(c) Locality vs. No. of Jobs

Fig. 8. Evaluation with increasing number of jobs (Size=300000 MI, K=3, Left:
Dist=Uniform, Right: Dist=Zipf).

the makespan to judge the impact of the selection made by an algorithm on
its performance.

Figure 8 shows the impact of the number of jobs on the performance of the
algorithm. It can be seen that as the number of jobs increases, the makespan
of Compute-First and Greedy heuristic rise more steeply than the other two.
The impact of data time is lower for SCP and Exhaustive Search than it is
for Compute First and is a factor in their improved performance. Locality
of access is also higher for the former two algorithms and it increases as the
number of jobs in the set increases. This is because the probability of datasets
being shared increases with more jobs accessing the same global set of datasets

23

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4 5

T
im

e
(S

im
. U

ni
ts

)

No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 2 3 4 5

T
im

e
(S

im
. U

ni
ts

)

No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

(a) Makespan vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

M
ea

n
%

 D
at

a
T

im
e

No. of Datasets Per Job

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

M
ea

n
%

 D
at

a
T

im
e

No. of Datasets Per Job

Compute-First
Greedy

SCP
Exhaustive Search

(b) Data Time vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

M
ea

n
%

 L
oc

al
 A

cc
es

s

No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

M
ea

n
%

 L
oc

al
 A

cc
es

s

No. of Datasets per Job

Compute-First
Greedy

SCP
Exhaustive Search

(c) Locality vs. No. of Jobs

Fig. 9. Evaluation with increasing number of datasets per job (N=600, Size=300000
MI, Left: Dist=Uniform, Right: Dist=Zipf).

as was the case in this evaluation. This means that there is a greater chance for
transferred datasets to be reused with a higher number of jobs. In case of Zipf
distribution (right column), the locality is lower than in the case of Uniform
distribution which means that a job submitted to a compute resource is less
likely to find its required datasets locally. This can be attributed to the rarer
availability of datasets in Zipf distribution than in the Uniform distribution.

An interesting result here is that even with a high locality of access, the
Greedy heuristic performs significantly worse than Compute-First for Uniform
distribution (left column) while it performs better than the latter when the
datasets are replicated according to Zipf distribution. In the second case, there

24

 0

 10000

 20000

 30000

 40000

 50000

 60000

 100000 200000 300000 400000 500000 600000

T
im

e
(S

im
. U

ni
ts

)

Gridlet Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000 200000 300000 400000 500000 600000

T
im

e
(S

im
. U

ni
ts

)

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

(a) Makespan vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 100000 200000 300000 400000 500000 600000

M
ea

n
%

 D
at

a
T

im
e

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 100000 200000 300000 400000 500000 600000

M
ea

n
%

 D
at

a
T

im
e

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

(b) Data Time vs. No. of Jobs

 0

 20

 40

 60

 80

 100

 100000 200000 300000 400000 500000 600000

M
ea

n
%

 L
oc

al
 A

cc
es

s

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

 0

 20

 40

 60

 80

 100

 100000 200000 300000 400000 500000 600000

M
ea

n
%

 L
oc

al
 A

cc
es

s

Job Size (MI)

Compute-First
Greedy

SCP
Exhaustive Search

(c) Locality vs. No. of Jobs

Fig. 10. Evaluation with increasing computational size (N=600, Dist=Uniform,
Left: K=3, Right: K=5).

is a lower number of choices than in the first and thus, the greedy strategy has
a better probability of forming good resource sets. In this case, it can be seen
that the performance of Greedy comes close to or in some cases, becomes as
competitive as SCP mirroring the results of Table 2. With a higher number
of choices, the greedy strategy has a lower probability of arriving at the best
compute resource for a job and its performance is degraded.

Figure 9 shows the impact of changing only the number of datasets per job.
Some of the trends in the previous graphs are also reflected here. With only one
dataset per job, all algorithms except for Compute-First are able to produce
schedules with zero data time and full locality of access. With the jobs per

25

dataset increasing, the impact of data transfer time increases at a faster rate for
Greedy than for SCP and Exhaustive Search. Also, the locality reduces more
steeply in the Zipf distribution than in the Uniform distribution, because there
are fewer data hosts for each dataset. Finally, Figure 10 shows the impact of the
computation time on the performance of data-oriented scheduling algorithms.
The locality remains almost constant throughout the experiments. However,
as expected, the impact of data transfer is steadily reduced with increasing
size of computation.

Another interesting result here is that the performance of Exhaustive Search
is worse than that of SCP in certain cases. This runs contrary to expectations
that Exhaustive Search will produce the best results in every case. This is due
to the fact that MinMin itself is not guaranteed to give the best schedules in
every situation [9]. The assignment of resources to a job impacts the selection
of resources for jobs that are yet to be assigned. This leads to variations in
performance of all the algorithms.

7.2 Comparison between MinMin and Sufferage

Table 3
Summary of Comparison between MinMin and Sufferage.

Heuristic Geometric
Mean

Avg. deg Avg. rank

MinMin

Compute-First 19604.73 18.7 (12.84) 4.93 (1.0)

Greedy 25782.28 57.93 (28.51) 6.33 (1.45)

SCP 17353.87 5.2 (13.58) 1.73 (1.44)

Exhaustive
Search

18481.26 11.83 (11.39) 3.47 (1.41)

Sufferage

Compute-First 60631.56 269.31 (57.81) 8.0 (0)

Greedy 18558.61 12.06 (8.45) 4.2 (1.72)

SCP 17353.87 5.2 (13.58) 1.73 (1.44)

Exhaustive
Search

18584.88 12.47 (11.53) 3.67 (1.53)

Each of the matching heuristics were paired with both MinMin and Sufferage
scheduling algorithms and evaluated to determine if the latter provided a
better performance than the former. The results of the experiments carried

26

out within this evaluation is summarised using the same metrics as in the
previous section and are listed in Table 3. It can be seen that there is little
difference in the performance of both SCP and Exhaustive Search heuristics
when coupled with either MinMin or Sufferage scheduling algorithms. Also,
there is only a slight improvement in the performance for Greedy when coupled
with the Sufferage algorithm. However, the performance for Compute-First is
significantly degraded by coupling it with the Sufferage algorithm. On average,
it is about 2 1/2 times as worse as the best heuristic in any experiment. Also,
the Compute-First-Sufferage pair is ranked 8th in terms of performance in all
experiments (standard deviation is zero). In other words, it gives the worst
performance in every case.

8 Related Work

There has been a lot of work in scheduling interdependent tasks with com-
munication dependencies and an overview of strategies static allocation of
such tasks can be found in a survey published by Kwok and Ahmad [30].
One such strategy proposed by Kafil and Ahmad [31] adapts the well-known
A* search algorithm to search the entire space of possible task-processor map-
pings to identify one that provides optimal allocation with respect to processor
load and task intercommunication. As mentioned previously, the work in this
paper deals with a different model consisting of data-intensive independent
(non-communicating) tasks where the tasks are not only mapped to proces-
sors but to storage resources as well. The matching algorithms also perform
a bounded search within the task-resources (both compute and storage) map-
ping space but on a per task basis. Considering the entire space of all task to
compute and data resource mappings will make the problem computationally
intractable and hence, we have opted for a 2 stage mapping process.

Previous publications in scheduling distributed data-intensive applications on
Grids [6][32][10] have tackled the problem of replicating the data for a single
job depending on the site where the job is scheduled. However, the applica-
tion model applied here is closer to that of Casanova, et.al [12] who investigate
scheduling algorithms for a set of independent tasks that share files. They ex-
tend the MinMin and Sufferage algorithms to consider data requirements of
the tasks and introduce the XSufferage algorithm to take advantage of file
locality. However, in their article the source of all the files for the tasks is
the resource that dispatches the jobs. This work is extended by Giersch, et.
al [33] to consider the general problem of scheduling tasks that share multiple
files, each available from multiple sources. They focus on developing routing
algorithms for staging the input files through the network links on to data re-
sources, close to the selected compute resources, such that the total execution

27

time is minimised. Khanna, et al. [34] propose a hypergraph-based approach
for scheduling a set of independent tasks with a view to minimise the I/O
overhead by considering the sharing of files between the tasks. However, they
do not take into account the aspect of data replication as the files have only
a single source.

The scheduling model considered in this paper is distinct from those men-
tioned previously because it considers: a) the problem of selecting a resource
set for a job requiring multiple datasets in an environment where the data is
available from multiple sources due to prior replication and b) the selection
of computational and data resources in such a resource set to be intercon-
nected. This paper also extends MinMin and Sufferage algorithms similar to
that done by Casanova, et al. [12] and Giersch, et al. [33]. However, in the
algorithms presented in this paper, the focus of the effort remains on match-
ing or selection of resources which has not been given adequate weightage in
related work. The matching algorithms aim to select a resource set such that
both the computational and data transfer components of the execution time
are reduced simultaneously. This is different from the approach, followed by
most of the Data Grid scheduling algorithms of scheduling the jobs onto a
compute resource based on minimum execution time and then replicating the
data to minimise the access time. The latter approach was generalised and
extended to support the multiple datasets model in the previous sections, and
was evaluated as the Compute-First heuristic. Simulation results show that
Compute-First produces worse schedules when compared to a strategy giv-
ing weightage to both computational and data factors such as the SCP Tree
Search algorithm.

Mohamed and Epema [35] present a Close-to-Files algorithm for a similar ap-
plication model, though restricted to one dataset per job, that searches the en-
tire solution space for a combination of computational and storage resources to
minimise execution time. This strategy, extended to support multiple datasets
per job and evaluated as Exhaustive Search in the previous section, produces
good schedules but becomes unmanageable for large solution spaces that occur
when more than one dataset is considered per job.

Jain, et al. [36] proposed a set of heuristics for scheduling I/O operations so
as to avoid transfer bottlenecks in parallel systems. However, these heuris-
tics do not consider the problem of scheduling computational operations and
also, the problem of selecting data sources in case of data replication. Other
publications in parallel I/O optimisation [37][38][39] pay attention to improv-
ing performance through techniques such as interleaving and disk striping.
However, such optimisation techniques are not the focus of this paper.

28

9 Conclusion and Future Work

This paper presents the problem of mapping an application with a collection
of jobs that require multiple datasets that are each multiply replicated, to
compute resources and data hosts in a Grid. It models the problem of match-
ing the jobs as an instance of the SCP and proposes a tree-search heuristic
based on a solution to the SCP. This is then combined with the MinMin and
Sufferage algorithms for scheduling sets of independent jobs and evaluated
through simulation against other matching heuristics such as Compute-First,
Greedy Selection and Exhaustive Search. Experiments show that the SCP
and the Exhaustive Search heuristics provide the best performance among all
the four heuristics mainly because they exploit the locality of datasets, and
thereby reduce the amount of data transferred during execution. However,
the high computational complexity of Exhaustive Search means that it will
search through large spaces that may become infeasible for jobs requiring large
number of datasets. Also, the experimental results show that there is no gain
in performance by applying the Sufferage heuristic in place of MinMin for
scheduling the entire set of jobs.

As part of immediate future work, it is planned to evaluate the SCP mapping
heuristic using other task scheduling algorithms such as Max-min and Genetic
Algorithms. It would also be interesting to explore scheduling of distributed
data-intensive tasks where they are interdependent. In this case, the overall
mapping should not only take into account the location of distributed data
but also the communication between the tasks. In present-day Grids, scientific
applications are increasingly being composed as data-intensive workflows in-
volving tasks that process, share and manage large, distributed datasets [40].
These workflows are generally modeled as Directed Acyclic Graphs (DAGs)
and many scheduling strategies for interdependent tasks have been applied
for mapping workflows on to Grid resources [41][42]. A possible extension to
the work presented in this paper would be to use the SCP search heuristic
with a known DAG scheduling algorithm such as the Dynamic Critical Path
(DCP) [43] to schedule workflows with distributed data-intensive tasks.

The scheduling strategies in this paper are considered to be conventional in
the sense that the compute resources and data hosts serve all requests and
accept all jobs regardless of their source, and the scheduling is driven by the
need to improve traditional parameters of performance such as application
throughput. However, the emerging economy-based model of Grids [44] consid-
ers resource providers to be independent agents that are incentivized by profit
motives to contribute resources to a Grid. A consumer in this environment
would have a limited budget and would therefore, aim to execute her applica-
tion at resources that provide her the best service within her budget. In such
an environment, both resource providers and consumers aim to improve their

29

utility that may depend on non-system-centric metrics. Recent publications
by Kwok, Song and Hwang [45], and Khan and Ahmed [46] model interactions
between the participants in an economy-based Grid as games and analyse the
behaviour of different agents under different game-theoretic strategies. These
have been performed from a computational Grid perspective. Extending this
model to distributed data-intensive applications is also a possible future work.

References

[1] I. Foster, C. Kesselman, The Grid: Blueprint for a Future Computing
Infrastructure, Morgan Kaufmann Publishers, San Francisco, USA, 1999.

[2] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The Data Grid:
Towards an architecture for the distributed management and analysis of large
scientific datasets, Journal of Network and Computer Applications 23 (3) (2000)
187–200.

[3] W. Hoschek, F. J. Jaen-Martinez, A. Samar, H. Stockinger, K. Stockinger, Data
Management in an International Data Grid Project, in: Proceedings of the 1st
IEEE/ACM International Workshop on Grid Computing (GRID ’00), Springer-
Verlag, Berlin, Germany, Bangalore, India, 2000.

[4] N. Yamamoto, O. Tatebe, S. Sekiguchi, Parallel and Distributed Astronomical
Data Analysis on Grid Datafarm, in: Proceedings of 5th IEEE/ACM
International Workshop on Grid Computing (Grid 2004), IEEE CS Press,Los
Alamitos, CA, USA, Pittsburgh, USA, 2004.

[5] R. Gardner, et al., The Grid2003 Production Grid: Principles and Practice,
in: Proceedings of the 13th Symposium on High Performance Distributed
Computing (HPDC 13), IEEE CS Press, Los Alamitos, CA, USA, Honolulu,
HI, USA, 2004.

[6] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger,
F. Zini, Simulation of Dynamic Grid Replication Strategies in OptorSim, in:
Proceedings of the 3rd International Workshop on Grid Computing(GRID 02),
Springer-Verlag, Berlin, Germany, Baltimore,MD,USA, 2002, pp. 46–57.

[7] R. Wolski, N. Spring, J. Hayes, The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing, Journal of
Future Generation Computing Systems 15 (1999) 757–768.

[8] A. Rajasekar, M. Wan, R. Moore, MySRB & SRB: Components of a Data
Grid, in: Proceedings of the 11 th IEEE International Symposium on High
Performance Distributed Computing (HPDC-11), IEEE CS Press,Los Alamitos,
CA, USA, Edinburgh, UK, 2002.

[9] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, R. F. Freund, Dynamic
Mapping of a Class of Independent Tasks onto Heterogeneous Computing
Systems, Journal of Parallel and Distributed Computing 59 (1999) 107–131.

30

[10] K. Ranganathan, I. Foster, Decoupling Computation and Data Scheduling in
Distributed Data-Intensive Applications, in: Proceedings of the 11th IEEE
Symposium on High Performance Distributed Computing (HPDC), IEEE CS
Press, Los Alamitos, CA, USA, Edinburgh, UK, 2002.

[11] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, R. F. Freund,
A comparison of eleven static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing systems, Journal of Parallel
and Distributed Computing 61 (6) (2001) 810–837.

[12] H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Heuristics for Scheduling
Parameter Sweep Applications in Grid environments, in: Proceedings of the 9th
Heterogeneous Computing Systems Workshop (HCW 2000), IEEE CS Press,
Los Alamitos, CA, USA, Cancun, Mexico, 2000.

[13] E. Seidel, G. Allen, A. Merzky, J. Nabrzyski, GridLab: a grid application toolkit
and testbed, Future Gener. Comput. Syst. 18 (8) (2002) 1143–1153.

[14] S. Venugopal, R. Buyya, L. Winton, A Grid Service Broker for Scheduling
Distributed Data-Oriented Applications on Global Grids, in: Proceedings of
the 2nd Workshop on Middleware in Grid Computing (MGC 04), ACM Press,
New York, USA, Toronto, Canada, 2004.

[15] M. Maheshwaran, S. Ali, H. J. Siegel, D. Hengsen, R. F. Freund, Dynamic
Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous
Computing Systems, in: 8th Heterogeneous Computing Systems Workshop
(HCW ’99), San Juan, Puerto Rico, 1999.

[16] E. Balas, M. W. Padberg, On the Set-Covering Problem, Operations Research
20 (6) (1972) 1152–1161.

[17] T. H. Cormen, C. Stein, R. L. Rivest, C. E. Leiserson, Introduction to
Algorithms, McGraw-Hill Higher Education, 2001.

[18] N. Christofides, Graph Theory: An Algorithmic Approach, Academic
Publishers, London, UK, 1975, Ch. Independent and Dominating Sets – The
Set Covering Problem, pp. 30 – 57, iSBN 012 1743350 0.

[19] S. Venugopal, R. Buyya, A Deadline and Budget Constrained Scheduling
Algorithm for e-Science Applications on Data Grids, in: Proceedings of the
6th International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP-2005), Vol. 3719 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany, Melbourne, Australia., 2005.

[20] A. Sulistio, C. S. Yeo, R. Buyya, A taxonomy of computer-based simulations
and its mapping to parallel and distributed systems simulation tools, Software:
Practice and Experience (SPE) 34 (7) (2004) 653–673.

[21] R. Buyya, M. Murshed, GridSim: A Toolkit for the Modeling and Simulation
of Distributed Resource Management and Scheduling for Grid Computing,
Concurrency and Computation: Practice and Experience (CCPE) 14 (13-15)
(2002) 1175–1220.

31

[22] I. C. Legrand, H. B. Newman, The MONARC toolset for simulating
large network-distributed processing systems, in: Proceedings of the 32nd
Winter Simulation Conference (WSC ’00), Society for Computer Simulation
International, San Diego, CA, Orlando, FL, 2000.

[23] K. Ranganathan, I. Foster, Simulation studies of computation and data
scheduling algorithms for data grids, Journal of Grid Computing 1 (1) (2003)
53–62.

[24] H. Casanova, Simgrid: A Toolkit for the Simulation of Application Scheduling,
in: Proceedings of the 1st International Symposium on Cluster Computing and
the Grid (CCGRID ’01), IEEE CS Press , Los Alamitos, CA, USA, Brisbane,
Australia, 2001.

[25] A. Sulistio, G. Poduval, R. Buyya, C.-K. Tham, On Incorporating Differentiated
Network Service into GridSim, Tech. Rep. GRIDS-TR-2006-5, The University
of Melbourne, Australia (Mar. 2006).

[26] A. Sulistio, U. Cibej, B. Robic, R. Buyya, A Tool for Modelling and Simulation
of Data Grids with Integration of Data Storage, Replication and Analysis, Tech.
Rep. GRIDS-TR-2005-13, University of Melbourne, Australia (Nov. 2005).

[27] K. Park, G. Kim, M. Crovella, On the relationship between file sizes,
transport protocols, and self-similar network traffic, in: Proceedings of the 1996
International Conference on Network Protocols (ICNP ’96), IEEE CS Press,
Atlanta, GA, USA, 1996.

[28] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and zipf-
like distributions: evidence and implications, in: Proceedings of the 18th
Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM ’99.), New York, NY, USA, 1999.

[29] D. G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, C. Nicholson,
K. Stockinger, F. Zini, Evaluating Scheduling and Replica Optimisation
Strategies in OptorSim, in: Proceedings of the 4th International Workshop on
Grid Computing (Grid2003), IEEE CS Press, Los Alamitos, CA, USA, Phoenix,
AZ, USA, 2003.

[30] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task
graphs to multiprocessors, ACM Computing Surveys 31 (4) (1999) 406–471.

[31] M. Kafil, I. Ahmad, Optimal task assignment in heterogeneous distributed
computing systems, IEEE Concurrency 6 (3) (1998) 42–50.

[32] S.-M. Park, J.-H. Kim, Chameleon: A Resource Scheduler in a Data Grid
Environment, in: Proceedings of the 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid 2003), IEEE CS Press, Los
Alamitos, CA, USA, Tokyo, Japan, 2003.

[33] A. Giersch, Y. Robert, F. Vivien, Scheduling tasks sharing files from distributed
repositories, in: Proceedings of the 10th International Euro-Par Conference
(EuroPar ’04), Springer-Verlag, Berlin, Germany, Pisa, Italy, 2004.

32

[34] G. Khanna, N. Vydyanathan, T. Kurc, U. Catalyurek, P. Wyckoff, J. Saltz,
P. Sadayappan, A hypergraph partitioning-based approach for scheduling of
tasks with batch-shared I/O, in: Proceedings of the 2005 IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2005), IEEE CS
Press, Cardiff, UK, 2005.

[35] H. Mohamed, D. Epema, An evaluation of the close-to-files processor and
data co-allocation policy in multiclusters, in: Proceedings of the 2004 IEEE
International Conference on Cluster Computing, IEEE CS Press,Los Alamitos,
CA, USA, San Diego, CA, USA, 2004.

[36] R. Jain, K. Somalwar, J. Werth, J. C. Browne, Heuristics for Scheduling I/O
Operations, IEEE Transactions on Parallel and Distributed Systems 8 (3)
(1997) 310–320.

[37] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon, J. Hollingsworth,
J. Saltz, A. Sussman, Tuning the performance of i/o-intensive parallel
applications, in: Proceedings of the fourth workshop on I/O in parallel and
distributed systems (IOPADS ’96), ACM Press, Philadelphia, PA, USA, 1996.

[38] K. Salem, H. Garcia-Molina, Disk striping, in: Proceedings of the Second
International Conference on Data Engineering (ICDE-86), IEEE CS Press ,
Los Alamitos, CA, USA, Los Angeles, USA, 1986.

[39] R. Thakur, A. Choudhary, R. Bordawekar, S. More, S. Kuditipudi, Passion:
Optimized I/O for Parallel Applications, Computer 29 (6) (1996) 70–78.

[40] E. Deelman, et al., Mapping abstract complex workflows onto grid
environments, Journal of Grid Computing 1 (1) (2003) 25–39.

[41] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, K. Kennedy, Task
scheduling strategies for workflow-based applications in grids, in: Proceedings
of the 5th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2005), Cardiff, UK, IEEE CS Press, Los Alamitos, CA, USA, 2005.

[42] Z. Shi, J. J. Dongarra, Scheduling workflow applications on processors with
different capabilities, Future Generation Computer Systems 22 (6) (2006) 665–
675.

[43] Y.-K. Kwok, I. Ahmad, Dynamic Critical-Path Scheduling: An Effective
Technique for Allocating Task Graphs to Multiprocessors, IEEE Trans. Parallel
Distrib. Syst. 7 (5) (1996) 506–521.

[44] R. Buyya, Economic-based Distributed Resource Management and Scheduling
for Grid Computing, Ph.D. thesis, Monash University, Australia (2002).

[45] Y.-K. Kwok, S. Song, K. Hwang, Selfish grid computing: game-theoretic
modeling and nas performance results, in: Proceedings of the Fifth IEEE
International Symposium on Cluster Computing and the Grid (CCGrid’05),
IEEE Computer Society, Washington, DC, USA, 2005, pp. 1143–1150.

33

[46] S. Khan, I. Ahmad, Non-cooperative, semi-cooperative, and cooperative games-
based grid resource allocation, in: Proceedings of the 20th International Parallel
and Distributed Processing Symposium (IPDPS 2006), Rhodes island, Greece,
IEEE CS Press, Los Alamitos, CA, USA, 2006.

34

