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Abstract 

Although Grids have been used extensively for executing 
applications with compute-intensive jobs, there exist 
several applications with a large number of lightweight 
jobs. The overall processing undertaking of these 
applications involves high overhead time and cost in 
terms of (i) job transmission to and from Grid resources 
and, (ii) job processing at the Grid resources. Therefore, 
there is a need for an efficient job grouping-based 
scheduling system to dynamically assemble the individual 
fine-grained jobs of an application into a group of jobs, 
and send these coarse-grained jobs to the Grid resources. 
This dynamic grouping should be done based on the 
processing requirements of each application, Grid 
resources’  availability and their processing capability.  

In this paper, we present a scheduling strategy that 
performs dynamic job grouping activity at runtime and 
convey the detailed analysis by running simulations. In 
addition, job processing granularity size is introduced to 
facilitate the job grouping activity in determining the total 
amount of jobs that can be processed in a resource within 
a specified time.  

Keywords€: job grouping, grid computing, and scheduling. 

1 Introduction 

The emerging computational Grids, as mentioned by 
Foster and Kesselman (1999), provide a new platform for 
executing large-scale resource intensive applications on a 
number of heterogeneous computing resources across 
political and administrative domains. Typically, an 
application requires an execution set that consists of 
several jobs, where each job is considered as the atomic 
unit of computation. In a Grid computing environment, 
Berman, Fox and Hey (2002) describe that a scheduler is 
responsible for selecting the best suitable machines or 
computing resources in the Grid for processing jobs to 
achieve high system throughput. 
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Grids consist of resources connected over high latency 
networks. Thus, they implicitly favour coarse-grained 
jobs with a heavy computational component, so that the 
computation-communication ratio (CCR) encourages 
distributing them for processing on remote resources as 
referred to in Gray (2003). In the case of an application 
with a large number of jobs with small scale processing 
requirements, the total communication time between each 
job and the resource seems to be more than the total 
computation time of each job at the resource. However, 
coarse-grained jobs (meta-jobs) can be created by 
aggregating a suitable number of jobs at the user-level, 
and submitted the aggregated jobs to the scheduler for 
deployment as stated in Buyya, Date, et. al. (2004).  This, 
however, creates a programming burden on the 
application developer as he/she will have to be aware of 
the complexities of Grid environment. Alternatively, the 
small scaled jobs can be submitted individually. This 
option leads to high communication time and cost, since 
each small job is associated with transmitting and 
processing overhead time and cost. Consequently, the 
CCR for such an execution tends to be unfavourable. 
Moreover, this also leads to poor utilization of the 
resources. Therefore, there is a need for a scheduling 
strategy to group the jobs at the scheduling level 
according to the processing capabilities of the available 
resources, and proceed with the job scheduling and 
deployment activities. 

This paper presents and evaluates a dynamic scheduling 
strategy that maximizes the utilization of Grid resource 
processing capabilities, and reduces the overhead time 
and cost taken to execute the jobs on the Grid. The 
proposed job scheduling strategy takes into account: (i) 
the processing requirements for each job, (ii) the 
grouping mechanism of these jobs, known as a job 
grouping, according to the processing capabilities of 
available resources, and (iii) the transmitting of the job 
grouping to the appropriate resource.  

The job grouping is done based on a particular granularity 
size. Granularity size is the time within which a job is 
processed at the resources. It is used to measure the total 
amount of jobs that can be completed within a specified 
time in a particular resource. Relationship between the 
total number of jobs, processing requirements of those 
jobs, total number of available Grid resources, processing 
capabilities of those resources and the granularity size 
should be determined in order to achieve the minimum  



job execution time and cost, and maximum utilization of 
the Grid resources. In order to evaluate the proposed job 
scheduler, GridSim toolkit, as discussed in Buyya and 
Murshed (2002), is used to model and simulate Grid 
resources and application scheduling.   

The rest of this paper is organized as follows: Section 2 
briefly discusses related work, whereas Section 3 presents 
the proposed job grouping algorithm and its strategy. 
Some simulations and experiments were conducted on the 
proposed scheduler algorithm using GridSim toolkit and 
the results are presented in Section 4. Finally, Section 5 
concludes the paper and mentions some future work. 

2 Related Work 

In cellular manufacturing systems, job grouping has been 
used to enhance efficiency of machinery utilization as 
mentioned by Logendran, Carson and Hanson (2002).  

Similarly, Gerasoulis and Yang (1992), in the context of 
Directed Acyclic Graph (DAG) scheduling in parallel 
computing environments, named grouping of jobs to 
reduce communication dependencies among them as 
clustering. However, the aim of clustering is to reduce the 
inter-job communication and thus, decreasing the time 
required for parallel execution. For example, Edge-
Zeroing, as discussed in Sarkar (1989), tries to reduce the 
critical path of the job graph. Another example is 
Dominant Sequence Clustering (DSC), as explained by 
Yang and Gerasoulis (1994), that trying to reduce the 
longest path in a scheduled DAG. Once the clustering is 
complete, mapping of clusters to processors becomes 
another hard problem. Some heuristics for cluster 
mapping are discussed and compared in Radulescu and 
van Gemund (1998). These heuristics aim to maximize 
the number of jobs that can be executed in parallel on 
different processors.   

In this work, we focus on scheduling jobs which do not 
require communication with each other. Also, the overall 
aim of this work is to create coarse-grained jobs by 
grouping fine-grained jobs together in order to reduce the 
job assignment overhead, that is, the overhead of starting 
a new job on a remote node.  

A study of scheduling heuristics for such jobs and similar 
problem was conducted in James, Hawick and 
Coddington (1999). Among others, two clustering 
algorithms - round-robin with clustering and continual 
adaptive scheduling - were discussed and compared for 
various job distributions. Within the former algorithm, 
jobs were grouped in equal numbers, while in the latter 
algorithm, the nodes are made to synchronize after each 
round of execution. In our case, as we will describe later 
on, the jobs are grouped according the ability of the 
remote node. Also, the job groups are dispatched as and 
when the nodes become available thus eliminating the 
overhead of a synchronisation step. 

3 Algorithm Listing 

Figure 1 shows the terms that are used throughout this 
paper and their definitions. The job grouping and 
scheduling algorithm is presented in Figure 2. Figure 3 
depicts an example of job grouping and scheduling 
scenario where 100 user jobs with small processing 
requirements (MI) are grouped into six job groups 
according to the processing capabilities (MIPS) of the 
available resources and the granularity size. 

The overall explanation of Figure 2 is as follows: once 
the user jobs are submitted to the broker or scheduler, the 
scheduler gathers the characteristics of the available Grid 
resources. Then, it selects a particular resource and 
multiplies the resource MIPS with the granularity size 
where the resulting value indicates the total MI the 
resource can process within a specified granularity size. 
The scheduler groups the user jobs by accumulating the 
MI of each user job while comparing the resulting job 
total MI with the resource total MI. If the total MI of user 
jobs is more than the resource MI, the very last MI added 
to the job total MI will be removed from the job total MI. 
Eventually, a new job (job group) of accumulated total 
MI will be created with a unique ID and scheduled to be 
executed in the selected resource. This process continues 
until all the user jobs are grouped into few groups and 
assigned to the Grid resources. The scheduler then sends 
the job groups to their corresponding resources for further 
computation. The Grid resources process the received job 

Figure 1: List of terms and their definitions 

MI     : Million instructions or processing requirements of a user job 
MIPS   : Million instructions per second or processing capabilities of a resource 
Processing Time  : Total time taken for executing the user jobs on the Grid 
Computation Time  : Time taken for computing a job on a Grid resource 
JobList      : List of user jobs submitted to the broker 
RList       : List of available Grid resources 
JList_Size  : Total number of user jobs 
RList_Size  : Total number of available Grid resources 
Job_Listi_MI  : MI of i th user job 
RListj_MIPS  : MIPS of jth Grid resource  
Granularity_Size  : Granularity size (time in seconds) for the job grouping activity 
Total_JMI    : Total processing requirements (MI) of a job group (in MI) 
Total_RMIj   : Total processing capabilities (MI) of jth resource 
     Total_RMIj = RListj_MIPS *Granularity_Size 
GJobList       : List of job groups after job grouping activity 
TargetRList   : List of target resources of each job group 



groups and send back the computed job groups to the 
Grid user. The scheduler then gathers the computed job 
groups from the network through its I/O port or queue.  

In Figure 3, the granularity size is set to 3 seconds for 
example. The scheduler selects a resource of 33 MIPS 
and multiply the MIPS with the given granularity size. In 
total, that particular resource can process 99 MI of user 
jobs within 3 seconds. The scheduler then gathers the user 
jobs by accumulating their MI up to 99 MI. In this case, 
the first 4 jobs are grouped together resulting in 85 MI. 
The fifth job has MI of 22 and grouping of 5 jobs will 
results in 107 MI, which is more than the total processing 
capability of the selected resource. Once a group of first 
four jobs is created, the scheduler assigns a unique ID to 
that group. It then selects another resource and performs 
the same grouping operations. This process continues 
until all the jobs are grouped into a number of groups. 
Finally, the scheduler sends the groups to the resource for 
job computation. 

4 Evaluation 

4.1 Implementation with GridSim 

GridSim toolkit is used to conduct the simulations based 
on the developed scheduling algorithm. Figure 4 depicts 
the simulation strategy of the proposed dynamic job 
grouping-based scheduler which is implemented using the 
GridSim toolkit. The system accepts total number of user 
jobs, processing requirements or average MI of those 
jobs, allowed deviation percentage of the MI, processing 
overhead time of each user job on the Grid, granularity 
size of the job grouping activity and the available Grid 
resources in the Grid environment (step 1-3). Details of 
the available Grid resources are obtained from Grid 
Information Service entity that keeps track of the 
resources available in the Grid environment. Each Grid 
resource is described in terms of their various 
characteristics, such as resource ID, name, total number 
machines in each resource, total processing elements (PE) 
in each machine, MIPS of each PE, and bandwidth speed. 
In this simulation, the details of the Grid resources are  

------------------------------------------------------------------------- 
Algorithm 1.0 Job Grouping and Scheduling Algorithm 
------------------------------------------------------------------------- 
1 m             := 0; 
2 for i:= 0 to JobList_Size-1 do     
3         for j:=0 to RList_Size-1 do 
4                 Total_JMI  := 0; 
5                 Total_RMI j := 

RListj_MIPS*Granularity_Size; 
6                 while Total_JMI � Total_RMI j and i � 

JobList_Size-1 do 
7                         Total_JMI := Total_JMI + JobListi_MI; 
8                         i++; 
9                 endwhile 
10                 i--; 
11                 if Total_JMI > Total_RMI j then 
12                         Total_JMI := Total_JMI – JobListi_MI; 
13                         i--; 
14                 endif 
15                 Create a new job with total MI equals to 

Total_JMI; 
16                 Assign a unique ID for the newly created job;  
17                 Place the job in GJobListm; 
18                 Place RListj in TargetRListm; 
19                 m++; 
20         endfor 
21 endfor 
22 for i:= 0 to GJobList-1 do   
23         Send GJobListi to TargetRListi for job 

computation; 
24 endfor 
25 //Job computation at the Grid resources 
26 for i:= 0 to GJobList-1 do   
27         Receive computed GJobListi  from TargetRListi; 
28 endfor 

 

Figure 2:  Listing of the Job Grouping and Scheduling 
Algorithm 
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Figure 3: An Example of a Job Grouping Strategy 



Resource MIPS Cost per second 

R1 200 100 

R2 160 200 

R3 210 300 

R4 480 210 

R5 270 200 

R6 390 210 

R7 540 320 

Table 1: Grid resources setup for the simulation. 

store in a file which will be retrieved during the 
simulations.  

After gathering the details of user jobs and the available 
resources, the system randomly creates jobs according to 
the given average MI and MI deviation percentage (step 
4). The scheduler will then select a resource and multiply 
the resource MIPS with the given granularity size (step 
5). The jobs will be gathered or grouped according to the 
resulting total MI of the resource (step 6), and each 
created group will be stored in a list with its associated 
resource ID (step 7). Eventually, after grouping all jobs, 

the scheduler will submit the job groups to their 
corresponding resources for job computation (step 8). 

4.2 Experimental Setup 

Figure 5 lists the terms used within this section and their 
definitions. The inputs to the simulations are total number 
of Gridlets, average MI of Gridlets, MI deviation 
percentage, granularity size, resource MIPS and Gridlet 
processing overhead time.  

The tests are conducted using seven resources of different 
MIPS, as showed in Table 1.The MIPS of each resource 
is computed as follows: 

Resource MIPS = Total_PE *  PE_MIPS, where 

Total_PE = Total number of PEs at the resource, 

PE_MIPS = MIPS of PE 

Each resource has its own predefined cost rate for 
counting the charges imposed on a Grid user for 
executing the user jobs at that resource. The MIPS and 
cost per second are selected randomly for the simulation 
purpose. 

In the simulation, the total processing time is calculated 
in seconds based on the overhead time for processing 

Figure 5: List of terms used within the evaluation and their definition. 
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Figure 4: The simulation strategy for dynamic job grouping-based scheduler 

Gridlet  : User job 
Group  : Total number of Gridlet groups created from Gridlet grouping process  
R  : Resource 
A_MI  : Average MI rating of Gridlet or Gridlet length in MI 
G_Size  : Granularity size in seconds 
R_MIPS  : Resource processing capabilities in MIPS 
D_%  : MI deviation percentage 
OH_Time : Processing overhead time of each Gridlet in seconds  
Process_Time : Gridlet processing time in seconds 
Process_Cost : Processing cost of the Gridlets  
PE  : Processing elements in each resource 

 



each Gridlets, and the time taken for performing Gridlet 
(job) grouping process, sending Gridlets to the resources, 
processing the Gridlets at the resources and receiving 
back the processed Gridlets. This time computation is 
depicted in Figure 6. In real world, the overhead time for 
each job depends on the current network load and speed. 
In the simulations, the processing overhead time 
(OH_Time) of each Gridlet is set to 10 seconds. 

The total processing cost is computed based on the actual 
CPU time taken for computing the Gridlets at the Grid 
resource and at the cost rate specified at the Grid 
resource, as summarized below: 

Process_Cost = T *  C, where  

T = Total CPU Time for Gridlet execution, and  

C = Cost per second of the resources. 

4.3 Experiments, Results and Discussions 

4.3.1 Experiment 1: Simulation with and 
without Job Grouping 

Simulations are conducted to analyse and compare the 

differences between two scheduling algorithms: first 
come first serve and job grouping-based algorithm 
described in section 3 in terms of processing time and 
cost. Resources R1 through R4 are used for these 
simulations.  

Table 2 shows the results of the simulations with and 
without job grouping method conducted with granularity 
size of 30 seconds and Gridlet average MI of 200. The 
simulations managed to execute maximum of 150 
Gridlets within 30 seconds. As depicted in Figure 7, the 
total processing time and cost are increasing gradually for 
simulations without job grouping method compared to 
simulations with job grouping method.  

When scheduling 25 Gridlets, simulation with job 
grouping method groups the Gridlets into one group 
according to resource R1’s MI of 6000 (200*30). 
Therefore, the total OH_Time is only 10 seconds and the 
resulting total Process_Time is 64 seconds. The job 
grouping, scheduling and deploying activities take up to 
54 seconds. On the other hand, simulation without job 
grouping sends all the Gridlets individually to resource 
R1 and the total OH_Time is 250 seconds (25*10) leads 
to total Process_Time of 280 seconds. In this case, the 
total Gridlet computation time (30 seconds) is much less 
than the total communication time (250 seconds).Without 
grouping, a simulation from 25 to 100 Gridlets yields a 
massive increase of 297% in total Process_Time, whereas 
simulation with grouping yields only 112.5% rise in 
terms of in total Process_Time. As the number of Gridlets 
grows, the total Process_Time increases linearly for 
simulation without job grouping since total 
communication time increased with number of Gridlets. 
In simulation with grouping, the communication time 
remains constant and major contribution to the total 
Process_Time comes from Gridlet computation time at 
the resources. With 150 Gridlets, four Gridlet groups are 
created, and each resource received one Gridlet group. 
Here, 1.48% of the total Process_Time is spent for 
communication purpose, whereas in simulation without 
grouping, 90.3% of total Process_Time is spent for the 
same communication purpose.  

Number of  

Gridlets 
With Grouping Without Grouping 

 Number of  

Groups 

Process_Time  

(sec) 

Process_Cost Process_Time 
(sec) 

Process _Cost 

25 1 64 4979 280 9333 

50 2 82 15992 561 38946 

75 3 99 35904 838 73485 

100 4 136 55332 1112 97741 

125 4 186 72332 1388 115673 

150 4 270 90124 1662 134843 

A_MI:200 D_%:20% G_Size:30 sec R_MIPS: 200,160,210,480 OH_Time:10 sec 

Table 2: Simulation with and without job grouping for average MI of 200 and granularity size of 30 seconds 
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Figure 6: Processing time 



In terms of Process_Cost, the time each Gridlet spends at 
the Grid resource is taken into consideration for 
computing the total Process_Cost. In simulation with job 
grouping, only a small number of Gridlets (Gridlet 
groups) are sent to each resource and therefore, the 
amount of total overhead time is reduced. In simulation 
without job grouping, each small scaled Gridlet sustains a 
small amount of overhead time at the Grid resources. 
Therefore, the total overhead time incurred by all the 
Gridlets at the Grid resource leads to higher processing 
cost. For example, when processing 25 Gridlets 
individually at the Grid resource, the total Process_Cost 
comes up to 9333 units, whereas simulation with job 
grouping reduces this cost to 4979 units. 

4.3.2 Experiment 2: Simulation of Different 
Granularity Sizes with Job Scheduling 

Simulations are conducted using different granularity 
sizes to examine the total time and cost taken to execute 
100 Gridlets on the Grid. Resources R1 through R7 are 
used for these simulations. 

Table 3 and Figure 8 depict the results gained from 
simulations carried out on 100 Gridlets of 200 average 
MI using different granularity sizes. Table 4 and Figure 9 
show the processing load at each Grid resources when 
different granularity sizes are used. The term ‘Gridlet 
Computation Time’  in Table 4 refers to the total time 
taken for each resource to compute the assigned Gridlet 
groups. The communication time is not included in this 
computation time. 
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Job Processing Cost for Scheduling with and 
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Figure 7: Processing time (a) and cost (b) for executing 150 Gridlets of 200 average MI within the granularity 
size of 30 seconds 

 
Granularity Size (sec) 10 20 30 40 50 60 

Process_Time (sec) 160 196 136 120 135 143 

Process_Cost 61231 60073 55333 48179 38878 31890 

Number of Groups 7 4 4 3 3 2 

Gridlets: 100; A_MI:200; D_%:20%; OH_Time:10 sec; Resource: R1-R7 

Table 3: Simulation with job grouping for different granularity sizes 
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Figure 8: (a) Processing time and (b) cost for executing 100 Gridlets of 200 average MI using different granularity sizes 



From the simulation, it is observed that the total 
Process_Time for granularity size of 10 seconds is less 
than the one observed for granularity size of 20 seconds. 
When granularity size is 10 seconds, 7 job groups are 
created (from 100 user jobs) and each resource computes 
one job group of almost balanced MI. Since the Gridlet 
computations at the Grid resources are done in parallel 
and each resource has less processing load (balanced 
Gridlet MI), all the Gridlet groups can be computed 
rapidly, in 86 minutes.  

In the case of granularity size of 20 seconds, four Gridlet 
groups are created and 44% of the total Gridlet MI is 
scheduled to be computed at resource R4 since it can 
support up to 9600 MI. Average Gridlet MI percentage at 
the other resources is about 18.7%. Therefore, R4 spent 
more time in computing the Gridlet group which leads to 
higher total Process_Time.  

For granularity size 30 seconds, four Gridlet groups are 
produced and resource R3 receives the most MI, about 
30.6% of the total MI. The total MI scheduled to all the 
resources does not defer much as in the previous case. 
Therefore, all the resources can complete the Gridlet 
computation in 91 minutes.  

The minimum Process_Time is achieved when the 
granularity time is 40 seconds. The Gridlet computation 
time is same as for the granularity size of 10 seconds, but 

less communication time is taken (30 seconds) for dealing 
with three Gridlet groups. 

In terms of Process_Cost, the resulting cost highly 
depends on the cost per second located at each resource 
and total Gridlet MI assigned to each resource. In the 
simulations, cost per second of using resource R3 (300 
units) and R7 (320 units) are more than the other 
resources. Therefore, involving these resources in Gridlet 
computation will increase the total Process_Cost, e.g. all 
the resources are used for Gridlet computation when 
granularity size is 10 seconds, which costs 61231 units. 
When the granularity size is 20 seconds, R7 is not 
engaged in the computation. However, assigning a large 
number Gridlet MI (8756 MI) to R4 results in high total 
Process_Cost of 60073 units. When the granularity time 
is 30 seconds, balanced distribution of the MI among four 
resources reduces the total Process_Cost. Another point is 
that the total MI assigned to resource R1 is increased as 
the granularity size increases. Since R1’s cost per second 
is very low (100 units), the total Process_Cost decreases 
gradually for granularity sizes 40, 50 and 60 seconds.  

From the experiments, it is clear that job grouping 
method decreases the total processing time and cost. 
However, assigning a large number of Gridlet MI to one 
particular resource will increase the total processing time 
and cost. Therefore, during the job grouping activity, a 
balanced relationship should be determined between total 
number of groups to be created from job grouping 

Resource/MIPS Granularity  

Size (sec) R1/200 R2/160 R3/210 R4/480 R5/270 R6/390 R7/540 

Gridlet Computation  

Time (sec) 

10 1995 1549 2094 4771 2509 3761 3217 86 

20 3904 3126 4108 8756    152 

30 5809 4775 6094 3217    91 

40 7843 6337 5715     86 

50 9802 7940 2153     97 

60 11898 7997      117 

Table 4: Processing load at the grid resources for different granularity sizes 
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Figure 9: Processing load at the grid resources for different granularity sizes 



method, resources’  cost per second, and MI distribution 
among the selected resources. 

5 Conclusion and Future Work 

The job grouping strategy results in increased 
performance in terms of low processing time and cost if it 
is applied to a Grid application with a large number of 
jobs where each user job holds small processing 
requirements. Sending/receiving each small job 
individually to/from the resources will increase the total 
communication time and cost. In addition, the total 
processing capabilities of each resource may not be fully 
utilized each time the resource receives a small scaled 
job. Job grouping strategy aims to reduce the impact of 
these drawbacks on the total processing time and cost. 
The strategy groups the small scaled user jobs into few 
job groups according to the processing capabilities of 
available Grid resources. This reduces the communication 
overhead time and processing overhead time of each user 
job.  

Future work would involve developing a more 
comprehensive job grouping-based scheduling system 
that takes into account QoS (Quality of Service) 
requirements as mentioned by Abramson, Buyya, and 
Giddy (2002) of each user job before performing the 
grouping method. In addition, each resource should be 
examined for their current processing load, and jobs 
should be grouped according to the available processing 
capabilities. Finally, need to consider grouping jobs that 
using common data for execution. 
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