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Abstract—As companies shift from desktop applications to cloud-based software as a service (SaaS) applications deployed on

public clouds, the competition for end-users by cloud providers offering similar services grows. In order to survive in such a

competitive market, cloud-based companies must achieve good quality of service (QoS) for their users, or risk losing their customers

to competitors. However, meeting the QoS with a cost-effective amount of resources is challenging because workloads experience

variation over time. This problem can be solved with proactive dynamic provisioning of resources, which can estimate the future need

of applications in terms of resources and allocate them in advance, releasing them once they are not required. In this paper, we present

the realization of a cloud workload prediction module for SaaS providers based on the autoregressive integrated moving average

(ARIMA) model. We introduce the prediction based on the ARIMA model and evaluate its accuracy of future workload prediction

using real traces of requests to web servers. We also evaluate the impact of the achieved accuracy in terms of efficiency in resource

utilization and QoS. Simulation results show that our model is able to achieve an average accuracy of up to 91 percent, which leads

to efficiency in resource utilization with minimal impact on the QoS.

Index Terms—Cloud computing, workload prediction, ARIMA
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1 INTRODUCTION

CLOUD computing [1] has evolved from a set of promis-
ing virtualization and data center technologies to a con-

solidated paradigm for delivery of computing as a service to
end customers, which pay for such services according to its
use, likewise utilities such as electricity, gas, and water.
Adoption of the technology by enterprises is growing fast,
and so is the number of cloud-based companies offering
cloud-based solutions for end users.

The shift from desktop applications to public cloud
hosted software as a service (SaaS) business model has
intensified the competition for cloud providers. This is due
to the presence of multiple providers in the current cloud
computing landscape that offer services under heteroge-
neous configurations. Selecting particular cloud service con-
figuration (e.g., VM type, VM cores, VM speed, cost, and
location) translates to a certain level of quality of service
(QoS) in terms of response time, acceptance rate, reliability,
etc. In order to survive in such a competitive market, cloud
providers must deliver acceptable QoS to end-users of the
hosted SaaS applications, or risk losing them.

However, one issue that arises from the transition to a
SaaS model is the fact that the pattern of access to the appli-
cation varies according to the time of the day, day of the
week, and part of the year. It means that in some periods
there are many users trying to use the service at the same
time, whereas in others only a few users are concurrently
accessing the servers. This makes static allocation of resour-
ces to the SaaS application ineffective, as during a period of
low demand there will be excess of resources available,
incurring unnecessary cost for the application provider,
whereas during high utilization periods the available
resources may be insufficient, leading to poor QoS and loss
of costumers and revenue.

Clouds can circumvent the above problem by enabling
dynamic provisioning of resources to applications based on
workload behavior patterns such as request arrival rate and
service time distributions. This means that extra resources
can be allocated for peak periods and can be released during
the low demand periods, increasing utilization of deployed
resources and minimizing the investment in cloud resources
without loss of QoS to end users [2].

The challenge of dynamic provisioning is the determina-
tion of the correct amount of resources to be deployed in a
given time in order to meet QoS expectations in the pres-
ence of variable workloads like what is observed by cloud
applications. This challenge has been tackled mainly via
reactive approaches [3], [4], [5]—which increase or decrease
resources when predefined thresholds are reached—or via
proactive approaches [6], [7], [8]—which react to future load
variations before their occurrence. The latter is typically
achieved with techniques that can monitor, predict (e.g. esti-
mating QoS parameters in advance), adapt according to
these prediction models, and capture the relationship
between application QoS targets, current cloud resource
allocation, and changes in workload patterns, to adjust
resource allocation configuration on-the-fly.
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In previous work [9], we introduced an architecture for
proactive dynamic provisioning via workload prediction—
which determines how many requests per second are
expected in the near future—combined with analytical
models to determine the optimal number of resources in the
presence of the predicted load. Although the proposed
architecture recognized the need for workload prediction, it
did not propose a concrete method for workload prediction.
Thus, in this paper we present the design and evaluation of
a realization of its workload prediction model using the
autoregressive integrated moving average (ARIMA) model
[10]. ARIMA is a method for non-stationary time series pre-
diction that is composed of an autoregressive and a moving
average model, and was successfully utilized for time series
prediction in different domains such as finance. The key
contributions of this paper are:

� We propose, design, and develop a workload predic-
tion module using the ARIMA model. Our work
applies feedback from latest observed loads to
update the model on the run. The predicted load is
used to dynamically provision VMs in an elastic
cloud environment for serving the predicted
requests taking into consideration QoS parameters
such as response time and rejection rate;

� We conduct an evaluation of the impact of the
achieved accuracy in terms of efficiency in resource
utilization and QoS of user requests.

Results show that our module achieves accuracy of up to
91 percent, which leads to efficiency in resource utilization
with minimal impact in QoS for users.

The rest of this paper is organized as follows. Section 2
presents related work. Section 3 introduces the applica-
tion and system models that support our workload
prediction architecture, which is detailed in Section 4.
Section 5 contains experiments evaluating the accuracy of
our proposed prediction architecture. Section 6 presents
the simulation experiments evaluating the impact of the
prediction in the efficiency of utilization of cloud
resources. Finally, Section 7 presents the conclusions and
future work.

2 RELATED WORK

The approaches for workload prediction in clouds can be
classified as reactive methods and proactive methods.
Among reactive methods, Zhu and Agrawal [3] propose a
method based on control theory to vertically scale
resource configurations such as VM types, VM cores, VM
speed, and VM memory. Vertical scaling is the process of
increasing the resources available to each VM, rather than
increasing the number of VMs (which is known as hori-
zontal scaling). Their approach also addresses the budget
constraints related to the workload execution. They apply
the ARMAX model to predict CPU cycle and memory
configurations required for hosting an application compo-
nent. In contrast to this approach, we apply the ARIMA
model to predict the future application workload behav-
ior, which is fed into the queueing model for calculating
the required VM configuration.

Bonvin et al. [4] propose a reactive method that scales
servers based on the expected performance and profit

generated by changes in the provisioning. This method is
able to perform both horizontal and vertical scaling.

Similar to Bonvin et al., Yang et al. [5] propose a reac-
tive method for changing the resource configuration of
cluster resources driven by the load incurred by the
hosted application. It is based on user-defined threshold
conditions and scaling rules that are automatically
enacted over a virtualized cluster.

Zhang et al. [11] propose a reactive workload factoring
architecture for hybrid clouds that decomposes incoming
workload in base workload and trespassing workload. The
first one is derived from ARIMA-based prediction and han-
dled by the local infrastructure, whereas the second is han-
dled by a public cloud.

The limitation of reactive platforms is that they react to
changes in workload only after the change in utilization
and throughput is observed in the system. Therefore, if
the change is quicker than the reconfiguration time, end-
users will observe poor QoS until the extra resources are
available. Considering that changes in the workload typi-
cally follow patterns that are time-dependent, prediction
techniques can avoid the above problem by triggering the
reconfiguration before the expected increase of demand,
so when the situation arises, the system is already pre-
pared to handle it. Caron et al. [6] propose a method
based on pattern matching for prediction of grid-like
workloads in public clouds. Gong et al. [12] propose a
method for predicting resource demand of VMs based on
predicted application workload. Islam et al. [8] apply
artificial neural networks (ANN) and linear regression
for prediction of resources required for applications.
Sladescu et al. [7] presents a system based on ANN to
predict the workload to be experienced by an online auc-
tion in terms of intensity and location of the peaks.

Although techniques such as linear regression can gener-
ate predictions quicker than ARIMA, they also demand
workloads that have simpler behavior than those that time
series and ANN-based methods can accurately predict. Fur-
thermore, studies [13], [14] show that web and data center
workloads tend to present behavior that can be effectively
captured by time series-based models. Thus, to increase
the applicability of the proposed architecture, we adopt
ARIMA-based prediction for our proposed architecture.

Tran et al. [14] applied the ARIMAmodel for prediction of
server workloads. It targets long-time prediction (up to 168
hours), whereas we target short timespans to achieve timely
reaction to workload changes. Our prediction, which is
designed to be short-term and therefore quicker to be per-
formed, is suitable for clouds because cloud platforms can
quickly react to requests for more or less VMs. Our work also
goes further ahead by applying feedback from latest
observed loads to update themodel on the run. Furthermore,
in ourwork the predicted load is used for dynamically provi-
sioning VMs for serving the predicted requests, and the
impact of the prediction and provisioning is evaluated in
regards to their effect on the QoS observed by end users.

Other domain-specific proactive approaches that are
related to clouds include the approach by Nae et al. for Mas-
sively Multiplayer Online Games [15]. Pacheco-Sanchez
et al. [16] apply a Markovian model to predict server perfor-
mance in clouds. Roy et al. [13] apply the ARMA model for
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workload prediction in clouds with the goal of minimizing
cost, whereas the main objective of our approach is meeting
QoS target of applications such as minimizing the request
rejection rate, or maximizing resource utilization.

3 SYSTEM AND APPLICATION MODELS

The target system model of the architecture proposed in this
paper consists of a public cloud provider that offers to end
users SaaS services backed by a PaaS layer (Fig. 1) [9]. The
PaaS in turn interacts with an IaaS provider that can be a
third party provider. The target SaaS provider receives web
requests, which are processed by the machines that are
located at the IaaS layer.

For scaling up the infrastructure, the target provider
deploys a number of virtual machines (VM) that process
end user requests. To simplify the management of the infra-
structure and to take advantage of profiling information, a
single VM configuration, consisting of CPU power, amount
of memory, and amount of storage is utilized by the SaaS
provider. We also assume that the application has been pro-
filed in the chosen VM configuration, so the provider has
information about the VM’s expected performance.

A single application instance executes on each VM, and
since current cloud providers do not support dynamic
changes in the VM’s specifications without downtime,
increasing and decreasing the total number of VMs running
the application is the most suitable option for utilization of
elastic computing infrastructures,1 as it brings additional
benefits such as higher fault tolerance and higher resilience
to performance degradation caused by VM failures (as the
crash of one of the VMs will not affect the others, enabling
the application to continue serving customers using the
VMs that are running).

The target application is web applications. Client
requests consist of http requests that are processed by a web
server running on the VMs. QoS targets of relevance to the

system are the response time Ts, defined as the maximum
negotiated time in the SLA for serving a user’s request and
rejection rate, which is the proportion of incoming requests
that cannot be served without violating Ts [9].

4 SYSTEM ARCHITECTURE

One of the key characteristics of clouds is elasticity, which
enables the infrastructure to be scaled or down to meet the
demand of applications. However, instantiation of new
VMs is not an immediate operation. Depending on cloud
providers’ infrastructure architecture and their hypervisor
policies, launching a new VM involves a non-negligible
start-up time. The start-up time is long enough to be noticed
by the clients and dramatically decreases the users’ experi-
ence, which may result in abandonment of the application.
Apart from potential financial losses due to decline in the
number of users, the software provider may also be liable
for not delivering the minimum required QoS.

Although standby VM instances may be helpful for
tolerating sudden increases in number of requests, those
standby VMs are more likely to be idle most of the times
reducing the overall system utilization while increasing
the operational cost. Furthermore, if the increase in the
number of requests exceeds the load that standby VMs
can handle, the problem of poor QoS arises again. Thus,
a different approach must be sought for the cloud provi-
sioning problem.

One approach that has been explored is based on work-
load prediction: accurate predictions of the number of end-
users’ future service requests enable SLA’s QoS targets to
be met with reduced utilization of cloud resources. As
requests pattern vary depending on the application type,
this paper focuses on request patterns that exhibit seasonal
behavior, such as requests to Web or online gaming servers
[15], [17]. To overcome the uncertainty in workload patterns
in cloud environments and minimize the estimation error in
predicting future requests while maintaining optimal sys-
tem utilization, in previous work [9] we proposed an adap-
tive provisioning mechanism in order to achieve the
following QoS targets:

� Automation: The whole process of provisioning
should be transparent to users;

� Adaptation: The provisioner should be aware of
dynamic and uncertain changes in the workload and
react to them accordingly;

� Performance assurance: In order to meet QoS targets,
resource allocation in the system must be dynamic.

The key components of the proposed provisioning sys-
tem, depicted in Fig. 1 are [9]:

1) Application provisioner: Receives accepted requests
from the Admission Control module and forwards
them to VMs that have enough capacity to process
them. It also keeps track of the performance of the
VMs. This information is passed to the Load Predictor
and Performance Modeler. The Application Provisioner
also receives from such module the expected number
of VMs required by the application. If the expected
number of VMs differs from the number of provi-
sioned VMs, the number is adjusted accordingly

Fig. 1. Architecture for adaptive cloud provisioning.

1. Although CloudSigma claims to support dynamic changes in the
hardware specifications of running VMs, such alterations require the
VM to be stopped and restarted again, which imposes the same not-
negligible setup time as starting new VMs in conventional IaaS
providers.
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(by either provisioning new VMs or decommission-
ing unnecessary VMs).

2) Load Predictor and Performance Modeler: Decides the
number of VMs to be allocated, based on the pre-
dicted demand by theWorkload Analyzer module and
on the observed performance of running VMs by the
Application Provisioner. The performance is mod-
eled via queueing networks, which, based on the pre-
dicted arrival rate of requests, return the minimum
number of VMs that is able tomeet the QoSmetrics.

3) Workload Analyzer: Generates an estimation of
future demand for the application. This informa-
tion is then passed to the Load Predictor and Perfor-
mance Modeler module.

To make the proposed architecture effective, a strong
knowledge about the application workload behavior is
required by the system so the performance model can be
accurate. Therefore, the most suitable deployment model
for the architecture is software as a service, where a queue-
ing model can be built for each application offered to end
users as a service. In the SaaS layer, the admission control
module ensures that no application instance will get further
requests if the capacity of the queue is exhausted. In this
case, all the upcoming requests are rejected, because other-
wise it is most likely that Ts would be violated. Accepted
requests are forwarded to the cloud provider’s PaaS layer
where the proposed system is implemented.

In our previous work [9], the system architecture was
presented in a high-level view, without presenting a con-
crete implementation of each of its components. In this
paper, we present a realization of the Workload Analyzer
component of the architecture. The prediction method uses
the auto-regressive integrated moving average model. The
prediction gives the Application Provisioner enough time to
react against any precipitous increase in workload by start-
ing new VMs without compromising Ts while maintaining
the overall system utilization above a given threshold.

4.1 Workload Analyzer

The Workload Analyzer realization we propose in this
paper implements workload prediction using the general
ARIMA time series process [10]. ARIMA has been chosen
for the implementation of our module because the underly-
ing workload fits well in the model: previous research
observed that web workloads tend to present strong auto-
correlation [17], [18].

At the start of the execution, in a preliminary step, the
historical workload data is fed into the Workload Analyzer,
where it fits the ARIMA model on them. When the system
is operational, it delivers an estimation of the workload
with one time-interval in advance. The length of the time
interval can be adjusted to better fit the specific application.
The only requirement for efficient system utilization is that
the time interval should be long enough to allow extra VMs
to be deployed. Therefore, time windows as short as 10
minutes could be suitable depending on the selected cloud
provider [19].

The request time series contains the number of observed
requests at each time interval. It is implemented as a cyclic
buffer so that at the next prediction cycle, the actual number
of requests (obtained from the original dataset) is added to

the time series used in prediction while discarding the old-
est value. After constructing the request time series, the pro-
cess of fitting the ARIMA model is initiated based on the
Box-Jenkins method [10].

According to this method, the time series must be trans-
formed into a stationary time series, that is, for each
ðXt;XtþtÞ, t being the time difference (lag) between two
data points, the mean and variance of the process must be
constant and independent of t. In addition, the auto-covari-
ance betweenXt andXtþt should be affected only by t. This
transformation is achieved by differencing the original time
series. The number of times the original time series has to
be differenced until it becomes stationary constitutes the d
parameter of the ARIMAðp; d; qÞmodel.

The values of q and p are determined by analyzing the
autocorrelation and partial autocorrelation plots of the histori-
cal data, respectively. In the context of this work, historical
data means the observed number of requests per second
received by the system in some past time interval.

The autocorrelation plot is used to determine how ran-
dom a dataset is. In the case of random data, the autocorre-
lation values approach zero for all time-lagged values,
otherwise, one or more autocorrelation values approach 1
or �1. In the autocorrelation plot, the horizontal axis repre-
sents the time lags. Values on the vertical axis are calculated
using the autocorrelation coefficient Rh:

Rh ¼ Ch

C0
; (1)

where Ch is the auto-covariance function defined as:

Ch ¼ 1

N

XN�t

t¼1

ðXt � �XÞðXtþt � �XÞ; (2)

where N is the number of samples and �X is the average of
samplesXt; t ¼ 1 . . .N . C0 is the variance function:

C0 ¼ 1

N

XN

t¼1

ðXt � �XÞ2: (3)

The partial autocorrelation at t is the autocorrelation
between Xt and Xt�t that is accounted only by lags above
t � 1. If a stationary time series has an auto-regression com-
ponent of order p, its partial autocorrelation plot falls below
the significant level at t ¼ pþ 1. The number of lags before
the autocorrelation values drop below the significant level
is the value of q for the moving average component of the
ARIMAmodel.

Using the above method to determine the terms p, d, and
q of the ARIMA model, the historical workload information
is fit to the model to be used for prediction of future work-
load values.

4.2 System Design

The class diagram of the ARIMA-based workload predic-
tion system is shown on Fig. 2. The ARIMAWorkloadAnalyzer
is the core component of the system and realizes the Work-
loadAnalyzer component of Fig. 1. By implementing the
IFeedbackable interface, it is capable of taking feedbacks. In
our system, current workload information, received from
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external components is modeled as a feedback signals and
fed into the ARIMAWorkloadAnalyzer to make it aware of
the most recent workload changes.

ARIMAWorkloadAnalyzer stores the given feedback sig-
nals into a cyclic buffer. The length of this buffer, which cor-
responds to the number of time intervals in past affecting
the current prediction value, is configured at the start of the
system based on characteristics of the application workload
(number of received requests per second).

ARIMAWorkload accomplishes the workload prediction
through the Forecaster class. This class has a connection to a
statistical backend (the R forecast package [20], which
for simplicity is not presented on the diagram). It accepts a
time series from the ARIMAWorkloadAnalizer and pre-
pares it for submission to the statistic engine, where ARIMA
model is fitted on them. For a given time series, the statisti-
cal back-end replies with a predicted value, along with its
corresponding 80 and 95 percent confidence levels. The
Forecaster class then parses and encapsulates this reply into
an instance of ForecastEntity class and passes it back to the
ARIMAWorkloadAnalyzer. The accuracy of the ARIMA-
based workload prediction is evaluated in the next section.

The steps of the prediction procedure and its compo-
nents are shown on Fig. 3.

4.3 Modeling and Forecast Complexity

There are many different methods that can be applied for
ARIMAfitting.We adopted the fitting process fromR, which
implements the Hyndman-Khandakar algorithm [20]. This
method is broadly composed of three sequential stages [21]:
(i) determination of the number of differencing steps of the
model (parameter d); (ii) actual differentiation of the time
series d times; and (iii) selection of the best fit model.

The method used by R for the first stage applies succes-
sive Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests [22] to

determine d. This method has complexity O(n2), where n is
the number of points in the workload used for prediction.
The second stage applies d differentiations over the data,
what makes this stage O(n). The third stage evaluates a
fixed number of variations of the ARIMA model and selects
the one that better fits the input data [20]. The fitting process

can be accomplished with complexity O(n2) [23]. For k repe-

titions, the complexity of this stage is O(kn2). Given that k is
finite and does not grow with the size of the input, the com-

plexity of this stage can also be estimated as O(n2). Because
each of these steps is executed sequentially, the complexity

of the fitting method can be established as O(n2). Although
the complexity is determined by the number of observa-
tions, in our application this value is constant because of the
use of a cyclic buffer. Also, the number is reduced because
of the use of lags to operate only with data from relevant
time periods for the period being predicted.

The prediction procedure is straightforward once the
ARIMA has been determined and values from previous
observations are available. Because the propose method
predicts one time interval ahead, it has complexity O(p),
where p is the order of the autoregressive component of the
ARIMAmodel.

5 PERFORMANCE EVALUATION

The system was evaluated with real traces of requests to the
web servers from the Wikimedia Foundation.2 These traces
contain the number of http requests received for each of the
project’s resources (static pages, images, etc) aggregated in
1-hour intervals and are publicly available for download.3 It
also contains the project name associated with each resource

Fig. 2. Class diagram for ARIMA-based workload prediction.

2. http://www.wikimedia.org
3. http://dumps.wikimedia.org/other/pagecounts-raw
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being requested and the language of each accessed resource.
We consider only requests to English Wikipedia resources
in these experiments. An analysis of patterns of web
requests to Wikipedia servers was presented by Urdaneta
et al. [17].

In order to observe weekly patterns, we use four weeks
of the traces, dated from midnight, 01 January 2011 to 5 pm,
04 February 2011. The first three weeks are used for training
purposes. The requests corresponding to such a period are
transformed to a time series process (i.e. the values p; d and
q of the ARIMA model are defined). At runtime, the model
is constantly updated: whenever new requests arrive, they
are incorporated to the time series and older data is
removed from the time series in the same amount. The fit-
ting process is then repeated, what may lead to changes in
the values of p; d, and q.

The fourth week is used for evaluation purposes. Based
on the training dataset, the demand for each hour of the
fourth week is predicted. The output of the prediction pro-
cedure is a number, accompanied by two confidence ranges,
covering the 80 and 95 percent bands, for each hour of the
fourth week. Fig. 4 presents the predicted and actual values
(i.e., the value observed in the traces) and corresponding
confidence ranges, for the fourth week of the workload.

The accuracy of the prediction is evaluated using various
error metrics. The results are presented in Table 1. The Pre-
dicted column contains the accuracy according to different
metrics. The Low 80 percent and High 80 percent contain the
limits for the 80 percent confidence interval for the predic-
tion. The table also reports the same for the 95 percent confi-
dence interval. The output of the confidence intervals can
be used when one is willing to sacrifice SLA in favor of utili-
zation (by choosing the lower 80 or 95 percent) or decreas-
ing utilization in order to provide better response times (by
choosing the higher 80 and 95 percent).

Figs. 4b and 4c show that, although utilization of the
high edges of the confidence intervals minimize the
occurrences of underestimations, it also decreases the pre-
diction accuracy down to an average of 78 percent in the
high 95 percent case. If high to very high system utiliza-
tion, which minimizes the operational cost, is the main
priority the number of VMs should be selected based on
either low 80 or 95 percent values. As a side effect, this
decision increases the underestimation cases, which leads
to an average of 85 percent prediction accuracy in the low

95 percent case. Results from the column Predicted of
Table 1 show the accuracy for different metrics when the
optimal number of VMs for increasing the performance
and user experience, while decreasing underutilization

Fig. 3. Workload prediction steps and its involving components.

Fig. 4. Results of the ARIMA-based prediction for one week period of the
workload. (a) Predicted and actual (obtained from the trace) values. (b)
80 percent confidence interval and actual values. (c) 95 percent confi-
dence interval and actual values.
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cases (Fig. 4a), is selected. In this case, the average predic-
tion accuracy increases to 91 percent.

These results show general trends expected to be
achieved by our approach when it is applied for workloads
that have the following characteristics that define an
ARIMA model: (i) they are a time-series; (ii) they contain
autoregressive and moving average components on its com-
position; and (iii) they become stationary after one or more
integration steps. As suggested in previous work [11], [12],
these characteristics are also found in http requests for stan-
dard and Cloud-hosted web servers. A similar behavior
was also identified in the Wikipedia traces [9]. Specific char-
acteristics of the workload is a factor to be considered when
selecting a prediction technique, as different techniques can
present different performance depending on the character-
istic of each workload. Variations of the ARIMA model can
model time-series that are stationary (ARMA model), that
do not contain an auto-regressive component (MA model)
or moving average component (AR model), that have sea-
sonal components (SARIMA model), or have exogeneous
components (ARMAX). If the workload does not conform to
these models, or if it is not a time-series at all, other
prediction methods should be applied. For example,
Sladescu et al. [12] successfully utilized artificial neural net-
works to predict workloads bursts in auction websites.

6 IMPACT OF PREDICTION ACCURACY ON

APPLICATION’S QOS

Although the proposed method can generate predictions all
the times, and the achieved accuracy indicate that our pro-
posed method achieves good accuracy, it does not say too
much about how the obtained accuracy impacts the QoS of
applications and data center utilization, which are the met-
rics of interest for cloud providers willing to apply the
method. Thus, in this section we present experiments aim-
ing at evaluating how these important metrics are impacted
by the accuracy of the prediction mechanism.

The experiment was performed via simulation using the
CloudSim [24] toolkit. CloudSim is a toolkit that contains a
discrete event simulator and classes that enable users to
model cloud environments, from providers and their
resources (physical machines, virtual machines, and net-
working) to customers and requests. During the simulation
execution, user requests for resources and application
execution trigger provisioning and scheduling decisions in
the data center that affects the execution time of the simu-
lated application, and thus it enables the evaluation of
effects of policies for scheduling and provisioning in the

performance of applications, ultimately resulting in the
observed response time of requests at the user side.

The simulated environment is composed of a data center
implementing the architecture described in Section 4. The
data center contains 1,000 hosts, each of which having eight
cores and 16 GB of RAM. At the start of the simulation, the
data center hosts 50 VMs for processing incoming requests.

The prediction method using the ARIMA model—
described and evaluated in the previous section—is imple-
mented in theWorkload Analyzer component. The expected
number of upcoming requests for the next hour is predicted
based on the number of previously observed requests, and
when the actual value is available, it replaces the predicted
value, and is used in the next round of prediction.

The Load Predictor and Performance Modeler operates
as in our previous work [9]. It consists of a network of n M/
M/1/k queues, where n is the number of VMs in the sys-
tem. The module operates over a single type of virtual
machine, whose average response time of the application is
assumed to be known (for example, based on historic infor-
mation). The queue size k is inferred from the expected
response time of requests on the VM and the maximum
response time that is the QoS attribute agreed between pro-
vider and customers. For these experiments, VMs have the
following configuration: one CPU core with one ECU, 2 GB
of RAM and 10 GB of storage. If a different VM type was
chosen, the execution time of requests would need to be
estimated, resulting in a new value for k.

The input received from the Workload Analyzer is used
by the Load Predictor and Performance Modeler as the
arrival rate for the queue systems. It then searches for the
optimal value of n that is compliant with QoS expectation
at the maximum possible utilization rate. The search is con-
ducted in a way that, at each iteration, it narrows down the
candidate answers, eliminating the re-evaluation of values
which already have been concluded not to be appropriate.
Once the optimal value of n is found, it is forwarded to the
Application Provisioner as the required number of VM for
the next time interval. This value is compared with the cur-
rent number of VMs so a decision can be made about crea-
tion of VMs (if the current number of VM is smaller than n),
decommission of VMs (if the current number is bigger than
n), or no action (if the current number of VMs is equal to n).
Notice that, if decommission of VMs is necessary, it is not
triggered immediately. Instead, the exceeding machines
stop receiving new requests and are destroyed only when
all the requests they are processing are completed.

The Application Provisioner component of the adaptive
cloud provisioning architecture issues VM creation and
decommission commands. This action is based on the

TABLE 1
Prediction Accuracy by Various Metrics

Accuracy metric Predicted Low 80% High 80% Low 95% High 95%

Root mean square deviation (RMSD) 1146.26 1570.16 1959.95 2136.40 2582.36
Normalized root mean square deviation (NRMSD) 0.15 0.20 0.25 0.27 0.33
Mean absolute deviation (MAD) 876.98 1151.56 1461.03 1680.13 2038.47
Mean absolute percentage error (MAPE) 0.09 0.10 0.16 0.15 0.22

Predicted: use of the actual output of the prediction. Low and High 80 percent: use of one of the edges of the 80 percent confidence interval as the predicted value.
Low and High 95 percent: use of one of the edges of the 95 percent confidence interval as the predicted value.
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calculated number of VMs—by the Load Predictor and
Performance Modeler module—necessary to serve accepted
requests. In this experiment, there was no restriction on the
maximum number of VMs, apart from those imposed by
the physical constraints of the simulated date center
infrastructure.

Finally, the Admission Control ensures the QoS of already
accepted requests by rejecting any upcoming requests when-
ever all VM queues are full. The queues are designed in a
way that they only accept a number of requests whose prod-
uct of average execution time and size is equal or smaller
than themaximum response time as defined by the QoS.

The simulation was performed for the fourth week of the
Wikipedia workload traces mentioned in Section 5. The
input requests were generated as follows. The base value for
each hour of simulation was obtained from the correspond-
ing hour in the workload traces. This value was divided by
60 to define the base number of average requests per minute
for that hour. Within each hour, requests were submitted at
each minute, following a Poisson distribution using the base
number of requests/min for the hour as the average. Each
request is modeled to require 50 ms with a positive variation
of 10 percent, uniformly distributed. Themaximum response
time defined by the QoS is 150 ms, rejection rate below 20
percent, and data center utilization above 80 percent. At the
end of each hour, the value for the next hour was read from
the trace and the process was repeated, with the updated
requests/min rate used as the average for the Poisson-
distributed arrivals. For CloudSim simulation purposes, sub-
missions were grouped in batches of 1000, and as many
batches as defined by the traces were submitted on each 1
minute interval. The total number of batches submitted dur-
ing the one-week simulationwas 3,139,260.

As the simulation runs, requests are submitted to the sys-
tem, and either are rejected (if queues are full) or processed.
If processed, execution times are collected and averaged for
each VM. This value is also used by the Performance Mod-
eler to estimate the number of required VMs. The simulation
runs for the same time interval as the previous experiment
(from midnight, 01 January 2011 to 5 pm, 04 February 2011).
The Performance Modeler is executed 15 minutes before the
next hour. At the end of the simulation, we collected the fol-
lowing metrics: execution time of accepted requests; number
of rejected requests; total number of QoS violations; total uti-
lization of the infrastructure; minimum andmaximum num-
ber of VMs running at any moment; and total number of
hour of VMs required for the simulation.

The above process was executed five times. At each exe-
cution, the Workload Analyzer was configured to return a
different value for the prediction, similarly to the experi-
ment in the previous section: (i) the exact prediction value;
(ii) the value of the lower 80 percent confidence interval;
(iii) the value of the lower 95 percent confidence interval;
(iv) the value of the higher 80 percent confidence interval;
and (v) the value of the 95 percent confidence interval.

6.1 Results and Discussion

Table 2 presents the results of the simulation. It contains the
value obtained for each output metric. It can be observed
that the assumption discussed in the previous section about
using the edges of the confidence intervals or the predicted
value holds: the more the prediction overestimates the
arrival rate of requests, smaller the response time and rejec-
tion rate, at the cost of a smaller utilization of the data center.

We can observe that all prediction values are able to meet
the QoS established for the simulation, with the worst case
scenario being 5 percent of rejected requests, below the set
target of 20 percent. The increase in average execution time
is explained by an increase in the time each requests stays
in the queue.

We also can notice that the rate of rejected requests does
not improve when the value of High 95 percent of confi-
dence interval is used. Improvements in this metric satu-
rated at the High 80 percent value. Moreover, the Low
95 percent is the only value where rejection rate is above
10 percent. Therefore, the 95 percent confidence interval
values give extreme results, with a marginal gain when the
higher band is used, and high rejection rate in the case of
the lower band. Thus they are likely to be unsuitable for
most practical applications. Thus, using an 80 percent confi-
dence interval value for the prediction is enough for practi-
cal purposes. More accurate prediction does not result in
any benefit in the operation of the cloud infrastructure.

The consequences of underestimating the number of
incoming requests are twofold. First, since it causes less
VMs that required to be deployed, the response time of the
requests in the execution queues increase. This increase, in
turn, causes the queues to be full most of the time, affecting
the upcoming requests’ rejection rate.

In order to measure the magnitude of execution time
violations, we calculated the amount of requests that were
executed within the required time, along with the propor-
tion of them missed the deadline by 5, 10, 15, 20 percent,
and more than 20 percent. As depicted in Fig. 5, for all cases,

TABLE 2
Results of the Simulation Showing How Different Prediction Values Affect the QoS of Requests

and Utilization of the Data Center

Output metric Low 95% Low 80% Predicted High 80% High 95%

Average service time (ms) 110.51 99.39 85.48 73.19 65.42
Standard deviation of service time 27.83 31.68 33.05 28.49 23.27
% of rejected requests 13 8 4 1 1
% of QoS violations 5 3 2 1 0
Data center utilization (%) 98.74 96.67 91.00 86.44 83.31
Minimum number of VMs 37 70 89 101 95
Maximum number of VMs 193 184 197 198 218
VM Hours 40582.87 43985.14 48605.68 52678.68 55017.67
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more than 80 percent of deadlines were misses by a margin
below 5 percent, and more than 99 percent of requests were
delayed by a margin up to 10 percent. All the missed dead-
lines occur by a margin that was equal or less than 15 per-
cent of the required execution time. This demonstrates that
our method is effective in meeting QoS expectations in
terms of execution time and rejection rate.

Regarding to data center utilization, all the prediction
values were able to achieve the target of keeping utilization
above 80 percent. As expected, the minimum and maximum
number of VMs is determined by the confidence level of
prediction in use, the higher the degree of overestimation of
incoming requests, the higher the minimum and maximum
allocated VMs and consequently the higher the number of
VM hours required to process the workload. The savings in
total VM hours between the provisioned with the prediction
and static allocations based on the maximum VMs varies
from 16.64 percent (High 80 percent) to 34.08 percent (Low
95 percent), demonstrating the advantages of elasticity pro-
vided by clouds against provisioning for peak demands.
Furthermore, achieving the same number of VM hours with
a static allocation (i.e., the same number of VMs running at
all times, irrespective of the load) would allow in the best
case allocation of 172 machines (for High 95 percent), a
value that is 21 percent below the maximum number of
VMs allocated in the same case, and therefore still unable to
meet the QoS demands that our approach achieves.

About execution time of the prediction process, it exe-
cuted in an average of 1.1 s, with standard deviation of
34.29 ms on a Intel CORE i7-2600 CPU4 with 8 GB of RAM.
This execution time is much smaller than the typical dep-
loyment time of a virtual machine (which is in the order
of minutes) and thus it does not compromise the whole
operation of the system. Thus, for workloads such as the
one studied in the section, our proposed method is able to
deliver accurate prediction within a small amount of time,
enabling the data center to timely react to changes in the
incoming workload without impacting applications’ QoS.

7 CONCLUSIONS AND FUTURE WORK

Together with the increasing shift from desktop-based appli-
cations to SaaS-based applications hosted on clouds, there

are growing concerns about the QoS of such cloud applica-
tions. Because of the raising competitiveness in the SaaSmar-
ket, application providers cannot afford to lose their
customers to the competitors as a result of insufficient QoS.

One of the key factors affecting QoS is the dynamicity in
the workload, which leads to variable resource demands. If
at any given moment the workload exceeds resources’
capacity, QoS on that particular interval will be poor, affect-
ing customers’ experience with the application.

In order to circumvent the above problem, we proposed
a proactive approach for dynamic provisioning of resources
for SaaS applications based on predictions using the
ARIMA model. The approach realizes theWorkload Analyzer
component of the architecture presented in our previous
work [9] and feeds the rest of the components with accurate
predictions that enable the rest of the system to scale the
resources without waste of resources.

We introduced the prediction based on the ARIMA
model and evaluated its accuracy of future workload pre-
diction using real traces of requests to web servers from the
Wikimedia Foundation. We also evaluated the impact of the
achieved accuracy in terms of efficiency in resource utiliza-
tion and QoS. Simulation results showed that our model is
able to achieve an accuracy of up to 91 percent, which leads
to efficiency in resource utilization with minimal impact in
response time for users.

In future, we plan to integrate to the architecture a reac-
tive module that can act as a second line of defense against
poor QoS by compensating errors in the prediction with ad
hoc decision on dynamic provisioning. We also plan to
explore more robust techniques for workload prediction,
able to predict peak in resource utilization that cannot be fit
in the ARIMA model. With these techniques available, we
plan to investigate methods for automatic selection of the
best approach for workload modeling and load prediction
given user-defined accuracy and computational require-
ment trade-offs. We will also apply the methods proposed
in this paper in a prototype private cloud system.
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