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Workflows are an application model that enables the automated execution of multiple interdependent and

interconnected tasks. They are widely used by the scientific community to manage the distributed execution

and dataflow of complex simulations and experiments. As the popularity of scientific workflows continue to

rise, and their computational requirements continue to increase, the emergence and adoption of multi-tenant

computing platforms that offer the execution of these workflows as a service becomes widespread. This article

discusses the scheduling and resource provisioning problems particular to this type of platform. It presents

a detailed taxonomy and a comprehensive survey of the current literature and identifies future directions to

foster research in the field of multiple workflow scheduling in multi-tenant distributed computing systems.
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1 INTRODUCTION

The concept of workflow has evolved from the manufacturing and business process fields to a
broader notion representing a structured process flow design. Within the scientific community,
workflows refer to a model for automating and managing the distributed execution of a complex
scientific problem that requires the flow of data among different applications [1]. Many scientific
problems adopt this model to overcome the limitations of an individual scientific application to
process a vast amount of data. Examples of this type of workflow include Scientific Workflows
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Table 1. Resume on Existing Taxonomy of Workflow Scheduling Algorithms

Existing Works
Review Types Environments Workloads

Focus of Discussion
Survey Systematic Grids Clouds Single Multiple

Yu and Buyya [4] � - � - � - Workflow management system architecture

Wieczorek et al. [5] � - � - � - Multiple criteria on workflow scheduling

Wu et al. [6] � - - � � limited Workflow scheduling in cloud environments

Singh and Chana [7] - � - � � limited Resource scheduling in cloud environments

Alkhanak et al. [8] - � - � � limited Cost-aware scheduling in cloud environments

Smanchat and Viriyapant [9] � - - � � - Workflow scheduling in cloud environments

Rodriguez and Buyya [10] � - - � � limited Workflow scheduling in cloud environments

Our current work � - � � - � Multi-tenancy in multiple workflows scheduling

[2] that consist of HPC applications for e-Science and MapReduce Workflows [3] that are used to
process Big Data analytics. Such workflows are large-scale distributed applications and require ex-
tensive computational resources to execute in a reasonable amount of processing time. Therefore,
workflows are commonly deployed on distributed systems, in particular, cluster, grid, and cloud
computing environments.

Workflow scheduling was studied and surveyed extensively during the cluster and grid
computing era [4, 5]. Subsequently, when cloud computing emerged as a new paradigm with
market-oriented focus, the scientific community got a promising deployment platform for work-
flow applications offering multiple benefits. However, this emerging paradigm also brought forth
additional challenges. Solutions for cloud workflow scheduling have been extensively researched,
and a variety of algorithms have been developed [6, 7]. Furthermore, various existing taxonomies
of workflow scheduling in clouds focus on describing the particular scheduling problem as well
as its unique challenges and ways of addressing them [8–10]. The summary of these relevant
works is presented in Table 1 along with the highlight focus of the papers.

Contrary to these previous studies that focus mostly on a single workflow scheduling, this study
addresses the scheduling problem from a higher-level perspective. It considers the scheduling of
multiple workflows that arrive continuously to a multi-tenant computing platform. The advent of
multi-tenant environments like clouds and the shifting trend from the traditional on-premises to
the utility computing era has led to the emergence of platforms that offer workflows processing
as a service. These platforms continuously receive many requests for workflow executions from
different users, along with their various Quality of Service (QoS) requirements. The provider must
then be able to schedule these workflows in a way that each of their requirements is fulfilled. A
simple way to achieve this is by allocating a set of dedicated resources to execute each workflow.
However, the inter-dependent tasks produce unavoidable idle gaps in the schedule. Hence, dedicat-
ing a set of resources for each user can be considered inefficient in environments where multiple
workflows are involved, as it leads to resources being underutilized. This approach, in turn, may
cause a significant loss for the providers that generate revenue from the utilization of resources.
Consequently, the strategies implemented in such platforms should aim to improve resource uti-
lization while still complying with the unique requirements of different users.

Accommodating multi-tenants with different requirements creates a high-complexity manage-
ment system. The very first problem lies on how such a system handles the various workflow
applications. A variety of applications involve different software libraries, dependencies, and
hardware requirements. The users should be able to customize the specific configurations along
with their defined QoS when submitting the workflows. Furthermore, multi-tenant systems must
have a general scheduling approach to handle different types of computational requirements
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from different workflows. Another consideration related to multi-tenancy is the strategy to
maintain fairness between multiple users that should be achieved through clear prioritization in
the scheduling and the automatic scaling of the resources. The last aspect that should be noticed
in multi-tenant computing platforms is the performance variability in computational resources
as virtualization-based infrastructures like clouds may encounter performance degradation due
to the multi-tenancy, virtualization overhead, geographical location, and temporal aspects [11].

The contribution of this work is the study of the multiple workflows scheduling problems in
multi-tenant distributed computing systems. The structure of the rest of this article is as follows.
Section 2 discusses the multiple workflows scheduling problems, while Section 3 addresses its
relevancy in multi-tenant computing platforms. The proposed taxonomy is presented in Section 4,
and the review of existing solutions is covered in Section 5, along with their classification. Section 6
offers future directions, and Section 7 summarizes the article.

2 SCHEDULING MULTIPLE WORKFLOWS IN MULTI-TENANT ENVIRONMENTS

The scope of this work is limited to the theoretical scheduling algorithms for multiple workflows
that are modeled into directed acyclic graphs (DAGs) where a workflow W consists of a set of
tasks T = (t1, t2, . . . , tn ) and a set of directed edges E = (e12, e13, . . . , emn ) in which an edge ei j

represents a data dependency between task ti (parent task) and task tj (child task). Hence, tj will
only be ready for execution after ti has completed. The purpose of DAG scheduling is allocating
the tasks to computational resources in a way that the precedence constraints among the tasks
are preserved. Specifically, the workflows submitted to multi-tenant computing platforms belong
to different users and are not necessarily related to each other. As a result, heterogeneity becomes
a defining characteristic of the workload that covers various aspects of workflows, including the
type of applications, the size of the workflows, and the user-defined QoS.

When these workflows arrive into the platforms, planning the schedule by exploiting the infor-
mation (i.e., topological structure, computational requirement, size, input) as being implemented
in static workflow scheduling is not always beneficial. For example, a strategy of partitioning tasks
before runtime to minimize the data transfer is proven to be efficient for data-intensive workflows
[12]. This strategy can be adopted in multi-tenant computing platforms, but then, it faces an in-
evitable bottleneck, since the time required for partitioning a workflow may delay the next queue
of arriving workflows for scheduling. The waiting time may significantly increase when involv-
ing a metaheuristic technique—which is known for its compute-intensive pre-processing—in the
planning phase. As the size of the workflow increases, this pre-processing time may become longer
and produce a more massive queue with significant waiting time delay. Hence, we do not consider
solutions that schedule each workflow independently, as depicted in Figure 1(a), as this approach
is no different from scheduling a single workflow.

Instead, we consider scheduling algorithms designed to schedule multiple workflows simulta-
neously, as shown in Figure 1(b). Within this context, the multiple workflows scheduling prob-
lem that is being addressed focus on how to allocate the tasks T = (t1, t2, . . . , tn ) from different
workflowsW = {w1,w2,w3, . . . ,wn } on a multi-tenant distributed computing systems with several
computational resources R = {r1, r2, r3, . . . , rn } so that the idle time slots generated from executing
a workflowwi on a resource ri can be allocated to the task tj from another workfloww j . There are
many benefits and challenges of scheduling multiple workflows in this approach. The main ben-
efits are related to re-using and sharing of the idle time slots and reduction of waiting time from
queueing delay of workflows being scheduled. However, the challenges to achieving these are not
trivial. Handling the workloads heterogeneity, managing the continuous arriving workflows, im-
plementing general scheduling approaches that deal with different requirements, and dealing with
performance variability in distributed systems are questions that must be answered.
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Fig. 1. Scheduling multiple workflows.

3 WORKFLOW AS A SERVICE PLATFORM FOR SCIENTIFIC APPLICATIONS

Scientific workflows are widely used to automate scientific experiments in many areas. The latest
detection of gravitational waves by the LIGO project [13] is an example of a scientific breakthrough
assisted by workflow technologies. These workflows are composed of multiple tasks and depen-
dencies that represent the flow of data between them. Scientific workflows are usually large-scale
applications that require extensive computational resources to process. As a result, distributed sys-
tems with an abundance of storage, network, and computing capacity are widely used to deploy
these resource-intensive applications.

The complexity of scientific workflows execution urges scientists to rely on workflow man-
agement systems (WMS), which manage the deployment of workflows in distributed resources.
Their main functionalities include but are not limited to scheduling the workflows, provisioning
the resources, managing the dependencies of the tasks, and staging the input/output data. A key
responsibility of WMS and the focus of this work is the scheduling of workflow tasks. In general,
this process consists of two stages: (i) mapping the execution of tasks on distributed resources
and (ii) acquiring and allocating the appropriate compute resources to support them. Both of these
processes need to be carried out while considering the QoS requirements specified by users and
preserving the dependencies between tasks. These requirements make the workflow scheduling
process a challenging problem.

WMS technology has been consistently evolved along with the emergence of multi-tenant dis-
tributed computing systems. ASKALON [14], Cloudbus [15], HyperFlow [16], Kepler [17], Pegasus
[18], and Taverna [19] are examples of the WMS that continuously developed within the scien-
tific community. In the era of cluster and grid environments, the main features of the WMS are
focusing on the workflow’s representation, utilizing web technology, and providing the Graphical
User Interface for the users. Then, the requirements shifted to the fulfillment of user-defined QoS
in market-oriented clouds, followed by the need to make workflow’s execution more lightweight
using various microservices technology.

The advancement of e-Science infrastructure in the form of scientific applications empowers a
large number of scientists around the world to start the shifting trend of scientific experiments.
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They are part of the broad community that is called the Long Tail of Science. The smaller group of
scientists that run the scientific experiments on a far tinier scale than the LIGO project but generate
a more significant number of scientific data and findings [20]. However, not many scientists can
afford to build their dedicated computational infrastructure for their experiments. In this case,
there is a potential market for providing such services to the scientific community.

Workflow as a Service (WaaS) is an emerging paradigm that offers the execution of scientific
workflows as a service. The service provider lies either in the Platform as a Service (PaaS) or
Software as a Service (SaaS) layer based on the cloud service model. WaaS providers make use of
distributed computational resources to serve the enormous need for computing power in the exe-
cution of scientific workflows. They provide a holistic service to scientists starting from the user
interface in the submission portal, applications installation, and configuration, staging of input/
output data, workflow scheduling, and resource provisioning. WaaS platforms are designed to pro-
cess multiple workflows from different users. The workload is expected to arrive continuously, and
workflows must be handled as soon as they arrive due to the QoS constraints defined by the users.
Therefore, WaaS platforms must deal with a high level of complexity derived from their multi-
tenant and dynamic nature, contrary to a traditional WMS that is commonly used for managing a
single workflow execution.

Several variations of WaaS framework—which extend the WMS architecture—are found in liter-
ature such as the work by Wang et al. [21] describing a service-oriented architecture that separates
the components into user management layer, scheduler, storage, and VM management. Meanwhile,
a framework with a similar division that emphasizes on distributed storage is proposed by Esteves
and Veiga [22]. Another architecture for multi-tenant scientific workflows execution in clouds
emplaces the proposed framework as a service layer above the Infrastructure as a Service (IaaS)
layers [23]. In general, we identified three primary layers in WaaS platforms: the tenant layer, the
scheduler layer, and the resource layer. Based on the identified requirements of WaaS platforms,
we propose an architecture for this system focusing on the scheduler component, as depicted in
Figure 2.

First, the tenant layer manages the workflows submission, where users can configure their pref-
erences and define the QoS of their workflows. The scheduler layer is responsible for placing the
tasks on either existing or newly acquired resources and consists of four components: task runtime
estimator, task scheduler, resource provisioner, and resource monitor. The task runtime estimator
is used to predict the amount of time a task will take to complete a specific computational resource.
Another component, the task scheduler, is used to map a task into a selected virtual machine for
execution. Meanwhile, resource provisioner is used to acquiring and releasing virtual machines
from third-party providers. The resource monitor is used to collect the resource consumption data
of a task executed in a particular virtual machine. These data are stored in a monitoring database
and are used by the task runtime estimator to build a model to estimate the task’s runtime. The
third-party infrastructure with which the platforms interact, fall into the resource layer.

We explore the underlying problem of scheduling multiple workflows in various distributed
systems that have taken place for more than a decade with explicitly focusing on the multi-tenancy
aspect of the problem related to the scheduling and resource provisioning. In this study, we expect
to gain some knowledge to design and develop a multi-tenant WaaS platform that pretty much
resembles the problem of multiple workflows scheduling in multi-tenant distributed computing
systems.

4 TAXONOMY

The scope of this study is limited to the theoretical algorithms developed for multiple workflows
scheduling that represent the problem in multi-tenant WaaS platforms. In this section, we describe
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Fig. 2. Workflow as a service architecture.

various challenges of scheduling multiple workflows and their relevancy for each taxonomy clas-
sification. Furthermore, the mapping and references of the algorithms to each class are presented
in Section 5.

4.1 Workload Model Taxonomy

Multiple workflows scheduling algorithms are designed to handle workloads with a high level of
heterogeneity that represents a multi-tenant characteristic in the platforms. Workload heterogene-
ity can be described from several aspects, including the continuous arrival of workflows at different
times, the various types of workflow applications that differ in computational requirements, the
difference in workflow sizes, and the diversity in software libraries and dependencies.

The different arrival time of multiple workflows in the platforms resembles the problem of
streaming data processing that deals with continuous incoming tasks to be processed. In contrast
with some static single workflow scheduling algorithms that make use of information (e.g., work-
flow structure, the runtime of tasks, computational requirements) to create a near-optimal schedule
plan, the continuous arrival of workflows in multi-tenant computing platforms makes this an un-
suitable approach. Furthermore, conventional techniques to achieve near-optimal schedules such
as metaheuristics are computationally intensive, and the complexity will grow as the workflow
size increases. The time for planning may take longer than the actual workflow execution. Hence,
a lightweight dynamic scheduling approach is the most suitable for multi-tenant environments as
the algorithms must be able to deal with the dynamicity of the workload. For instance, at peak
time, the concurrency of requests may be very high, whereas, at other times, the submission rate
may reduce to a point where the inter-arrival time between workflows is long enough to execute
each workflow in a dedicated set of resources.

The variety of application types is another issue to be addressed. A study by Juve et al. [24]
shows a variety of workflow applications with different characteristics. The Montage astronomy
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workflow [25] that is used to reconstruct mosaics of the sky is considered a data-intensive appli-
cation with high I/O activities. The CyberShake workflow [26] that is used to characterize earth-
quake hazards using the Probabilistic Seismic Hazard Analysis (PSHA) techniques is categorized
as a compute-intensive workflow with multiple reads on the same input data. The Broadband
workflow that is used to integrate a collection of simulation codes and calculations for earthquake
engineers has a relative balance of CPU and I/O activities in its tasks. These three samples show
different types of workflow applications that may have different strategies for scheduling to be
carried out. For example, a strategy of clustering tasks with a high dependency of input/output
data (i.e., data-intensive) and allocating the same resource for them to minimize data transfer.

Furthermore, heterogeneity is also related to the size of the workflows. The size represents the
number of tasks in a workflow and may differ even between instances of the same type of workflow
application due to different input datasets. For example, the Montage astronomy workflow takes
the parameters of width and height degree of a mosaic of the sky as input. The higher the degree,
the larger the workflow size to be executed as it resembles the size and shape of the sky area to
be covered and the sensitivity of the mosaic to produce. A large-scale workflow may raise another
issue in scheduling such as high volume data transfer that may cause a bottleneck in the network,
which will affect other smaller scale workflows being executed in the platform.

Another heterogeneity issue is the various software libraries and dependencies required for dif-
ferent workflows. This problem is related to the deployment and configuration of workflows in the
platforms. Deploying different software libraries and dependencies in a system requires technical
efforts such as installing the software and managing conflicts between software dependencies. The
most important implication related to this case is the resource sharing between workflows to uti-
lize idle time slots produced during the scheduling. In cluster and grid environments where every
user uses shared installed software systems on a physical machine, the conflicting dependencies
are inevitable. This problem can be avoided by isolating applications in virtualized environments
such as clouds.

However, in clouds, where the workflow’s deployment and configuration can be isolated in a
virtual machine, the possibility to share the computational power between users in a particular
virtual machine is limited. This problem is due to the limitation of a virtual machine capacity (i.e.,
memory, storage) and possible conflicting dependencies if we want to have as much as software
configured in a virtual machine instance. The tradeoff between the isolation and the resource
sharing in clouds can be solved using container technology as successfully implemented using
Kubernetes on Docker containers [27], Singularity and CVMFS at OSG [28], and Shifter at Blue
Waters [29]. In this case, container, a lightweight operating system-level virtualization, is used
to isolate the workflow application before deploying them on virtual machines. Therefore, both
isolation and resource sharing objectives can be achieved. Based on the heterogeneity issue, these
workloads can be differentiated by their workflow type and user-defined QoS requirements, as
shown in Figure 3.

4.1.1 Workflow Type. Scheduling algorithms for multi-tenant computing platforms must con-
sider the fact that the users in this system may submit a single type or different workflow applica-
tions. These variations can be categorized into homogeneous and heterogeneous workflow types.
A homogeneous workflow type assumes all users submit the same kind of workflow applications
(e.g., multi-tenant platforms for Montage workflow). In this case, the algorithms can be tailored
to handle a specific workflow application by exploiting its characteristics (e.g., topological struc-
ture, computational requirements, software dependencies, and libraries). For example, related to a
topological structure, a workflow with a large number of tasks in a level may raise an issue of data
transfer. This issue can potentially become a communication bottleneck when all of the tasks in
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Fig. 3. Workload model taxonomy.

a level concurrently transfer the data input needed to execute the tasks. Therefore, clustering the
tasks may result in a reduction in data transfer and eliminates the bottleneck in the system.

Furthermore, the heterogeneity from the resource management perspective affects how the
scheduling algorithms handle software dependencies and libraries installed in computational re-
sources. The algorithms for a homogeneous workflow type can safely assume that all resources
contain the same software for a typical workflow application. In this way, the constraints for choos-
ing appropriate resources for particular tasks related to the software dependencies can be elimi-
nated, since all of the resources are installed and configured for the same workflow application.

However, to handle a heterogeneous workflow type, the algorithms must be able to tackle all
various possibilities of workflow type submitted into the platforms. In a multi-tenant computing
platform, where the heterogeneous workflow type is considered, tailoring the algorithms to the
specific workflow application characteristics is impractical. The scheduling algorithms must be
designed following a more general approach. For example, related to the topological structure, a
workflow’s task is considered ready for the execution when all of its predecessors are executed,
and its data input is available in a resource allocated for execution. In this way, the algorithms can
exploit a simple heuristic to build a scheduling queue by throwing in all tasks with this specification
to the queue.

Therefore, a variety of software dependencies and libraries required for different workflow ap-
plications increases the possible conflict of software dependencies in platforms that consider het-
erogeneous workflow type. Therefore, the algorithms must include some rules in the resource
selection step to determine what relevant resources can be allocated for specific tasks. For exam-
ple, the algorithms can define a rule that is only allowing a task to be assigned a resource based
on its software dependencies and libraries’ availability.

4.1.2 QoS Requirements. Workloads in multi-tenant computing platforms must be able to ac-
commodate multiple users’ requirements. These requirements are represented by the QoS param-
eters defined when users submit their workflows to the platforms. We categorize the workloads
based on the users’ QoS requirements into homogeneous and heterogeneous QoS requirements.

The majority of algorithms designed for multi-tenant computing platforms surveyed in this
study consider a homogeneous QoS requirement. They are designed to achieve the same schedul-
ing objective (e.g., minimizing the makespan, meeting the budget) for all workflows. Meanwhile, a
heterogeneous QoS requirement is addressed by the ability to be aware of various objectives and
QoS parameters demanded by a particular user. The algorithms may consider several strategies
within the same platforms to handle workflows with different QoS requirements. For example, to
process workflows that are submitted with the deadline constraints, the algorithms may exploit the
option to schedule them into the cheapest resources to minimize operational cost as long as their
deadlines can be met. At the same time, the algorithms can also handle workflows with the budget
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constraints by using another option to lease as much as possible the fastest resources within the
available budget.

4.2 Deployment Model Taxonomy

Handling the performance variability in multi-tenant distributed computing systems is essential
to the multiple workflows scheduling problems, as the scheduling highly relies on the accurate
estimation of workflow’s performance on a particular computational infrastructure. Attempts to
increase the quality of scheduling by accurately estimating the time needed for completing a task,
as one of the strategies for taking care of the uncertainty, has been extensively studied [30]. Specific
work designed for scientific workflows includes a work by Nadeem and Fahringer [31] that utilized
the template to predict the scientific workflow application execution time. Another work by da
Silva et al. [32] introduced an online approach to estimate the resource consumption for scientific
workflows. Meanwhile, Pham et al. [33] worked on machine learning techniques to predict task
runtime in workflows using a two-stage prediction approach.

When we specifically discuss cloud environments, the uncertainty becomes higher than cluster
and grid environments. The virtualization that is the backbone of clouds is the primary source
of the performance variability as reported by Leitner and Cito [11] and also previously discussed
by Jackson et al. [34]. The cloud instances performance varies over time due to several aspects,
including the virtualization overhead, the geographical location of the data center, and especially
the multi-tenancy of clouds. For example, it is not uncommon for a task to have a longer execution
time during a specific time (i.e., peak hours) in cloud instances due to the number of users served
by a particular cloud provider at that time. The main conclusions from their works substantiate
our assumption that the performance and predictability of clouds is something that is not easy to
address.

Another variable of uncertainty in clouds is the provisioning and de-provisioning delays of VMs.
When a user requests to launch a cloud’s instance, there is a delay between the request and when
the VM is ready to use, called provisioning delay. There also exists a delay in releasing the resource,
namely de-provisioning delay. Not considering the provisioning and de-provisioning delays in the
scheduling phase may cause a miscalculation of when to acquire and to release the VM. This er-
ror may cause an overcharging bill of the cloud services. A study by Mao and Humphrey [35] re-
ported that the average provisioning delay of a VM, observed from three cloud providers—Amazon
EC2, Windows Azure, and Rackspace—was 97 s while more recently, Jones et al. [36] presented
a study that shows that three different cloud management frameworks—OpenStack, OpenNebula,
and Eucalyptus—produced VM provisioning delays between 12 to 120 s. However, delays are not
only derived from acquiring and releasing instances. As most of the WMS treat cloud instances
(i.e., virtual machines) as virtual clusters using third-party tools (e.g., HTCondor1), there exists a
delay in integrating a provisioned VM from cloud providers into a virtual cluster. An upper bound
delay of 60 s for this process was observed by Murphy et al. [37] for an HTCondor virtual cluster.
These delays are one of the sources of uncertainty in clouds, and therefore, the algorithms should
consider then to get an accurate scheduling result.

Hence, the scheduling algorithms for multi-tenant computing platforms can be differentiated
based on its deployment model. We identified two types of algorithms for multi-tenant computing
platforms based on their deployment model, as illustrated in Figure 4. Several issues and chal-
lenges that arise from these deployment models are worthy of being considered by the scheduling
algorithms.

1https://research.cs.wisc.edu/htcondor/.
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Fig. 4. Deployment model taxonomy.

4.2.1 Non-virtualized. The majority of works in our survey design are scheduling algorithms
for cluster and grid environments. These two environments are the traditional way of establishing
multi-tenant distributed computing systems where a large number of computational resources are
connected through a fast network connection so that many users in a shared fashion can utilize it.
However, in this way, there is no isolation between software installed related to their dependencies
and libraries within the same physical machine.

Accommodating multi-tenant users in a non-virtualized environment is limited by the compu-
tational infrastructure static capacity. This staticity makes it very hard to auto-scale the resources
in non-virtualized environments. Thus, the algorithms cannot efficiently serve a dynamic work-
load without having a queueing mechanism to schedule overloaded requests at a particular time.
For example, adding a node into an established cluster infrastructure is possible but may involve
technicalities that cannot be addressed in a short period. This environment also does not allow
the users to shrink and expand their allocated resources quickly, since it needs to go through the
administrator intermediaries. Therefore, the primary concern of scheduling algorithms designed
for this environment is to ensure for maximum utilization of available resources, so the algorithms
can reduce the queue of users waiting to execute their workflows. In this case, the techniques such
as task rearrangement [38] and backfilling [39] can be used to fill the gaps produced by scheduling
a particular workflow by allocating these idle slots to other workflows.

4.2.2 Virtualized. The algorithms designed for virtualized environments (i.e., clouds) can gain
advantages from a flexible configuration of VM as it isolates specific software requirements needed
by a user in a virtualized instance. A fully configured virtual machine can be used as a template
and can be shared between multiple users to run the same workflows. This isolation ensures little
disturbance to the platforms and the other users whenever a failure occurs. However, in this way,
the possible computational sharing of a virtual machine is limited. It is not plausible to config-
ure a virtual machine for several workflow applications at the same time. In this case, containers
can be used to increase configuration flexibility in virtualized environments. The container is an
operating-system-level virtualization method to run multiple isolated processes on a host using
a single kernel. The container is initially a feature built for Linux that is further developed and
branded as a stand-alone technology (e.g., Docker2) that not only it can run on Unix kernel but
also on Windows NT kernel (e.g., windows container3). A full workflow configuration can be cre-
ated in a container before deploying it on top of virtual machines. In this way, the computational
capacity of VMs can be shared between users with different workflows.

In the context of scalability, algorithms designed for virtualized environments can comfort-
ably accommodate multi-tenant requirements. The algorithms can acquire more resources in on-
demand fashion whenever requests are overloading the system. Furthermore, this on-demand flex-
ibility supported by the pay-as-you-go pricing scheme reduces the burden for the multi-tenant
computing platform providers to make upfront payments for reserving a large number of resources

2https://www.docker.com/.
3https://docs.microsoft.com/en-us/virtualization/windowscontainers/.
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that may only be needed at a specific time (i.e., peak hours). Even if a particular cloud provider
cannot meet the demand of the multi-tenant computing platform providers, the algorithms can
provision resources from different cloud providers.

However, this environment comes with a virtualization overhead that implies a significant per-
formance variability. The overhead not only occurs from the communication bottleneck when a
large number of users deal with high volume data but also the possible degradation of CPU perfor-
mance, since the computational capacity is shared between several virtual machines in the form
of virtual CPU. The other overheads are the delay in provisioning and de-provisioning virtual ma-
chines and the delay in initiating and deploying the container. The scheduling algorithms have
to deal with these delays and consider them in the scheduling to ensure the accurate scheduling
result.

4.3 Priority Assignment Model

Fairness and priority issues are unavoidable in multiple workflows scheduling. Given two work-
flows that arrive at the same time, the decision to execute a particular workflow must be deter-
mined using a policy to ensure that limited computational resources can be fairly allocated. This
fairness can be identified from the slowdown, a difference of expected makespan between the exe-
cution of a workflow in dedicated resources vs. resource sharing environments [40]. In this case,
the scheduling algorithms are designed to gain a slowdown value as low as possible. Since the com-
putational resources are limited, the slowdown is inevitable. Therefore, the algorithms assigned
a priority to the workflows to ensure the fulfillment of QoS. The priority can be derived from
several aspects, including the QoS defined by users, the type of workflow application, the user’s
preference, and the size of the workflows.

Priority assignment can be determined based on the user-defined QoS. It is evident for schedul-
ing algorithms to prioritize workflow with the earliest deadline, as this can ensure the fulfillment
of QoS requirements. In this way, algorithms may introduce a policy based on the deadline that
delays the scheduling of a workflow with a more relaxed deadline to improve resource sharing
in the system without violating the fairness aspect. However, the priority assignment can be de-
fined from the budget available. In real-world practice, it is common to prioritize the users with
more budget available to do a particular job compared to the lower one (e.g., priority check-in for
business class passengers). This policy also can be implemented in multiple workflows scheduling.

Assigning priority based on the type of application can be done by defining application or user
classes. For example, workflows submitted for education or tutorial purpose may have a lower
priority than the workflows executed in a scientific research project. Meanwhile, a workflow that
is used to predict the typhoon occurrence may be performed first compared to a workflow for
creating the mosaic of the sky. This policy can be defined out of the scheduling process based on
some policies adopted by the providers.

Moreover, the priority assignment can also be determined based on the size of workflows. This
approach is the most traditional way of priority scheduling that has been widely implemented,
such as the Shortest Job First (SJF) policy, which prioritizes the smaller workflows over a larger
one to avoid starvation. Another traditional scheduling algorithm like the Round-Robin (RR) also
can be constructed based on the size of the workflows to ensure both of the small and large-scale
workflows get fair treatment in the systems.

Fairness between users in multi-tenant computing platforms can be achieved through priority
assignments. This assignment is essential as the ultimate goal of the providers is to fulfill each
user’s QoS requirement. We identify various priority assignment models from surveyed algorithms
that consider the type of workflow application, users QoS constraints, user self-defined priority,
and size of workflows in their design, as shown in Figure 5.
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Fig. 5. Priority assignment model taxonomy.

4.3.1 Application Type. Different types of workflow applications can be used to define the
scheduling priority based on their context and critical functionality. The same workflow appli-
cation can differ in priority when it is used in a different environment. Montage workflow used
for an educational purpose may have a lower priority than a solar research project using the same
workflow. Meanwhile, considering the different critical functions of workflows and some events
(e.g., earthquake), some workflow applications can be prioritized from the other. For example,
CyberShake workflow to predict the ground motion after an earthquake may be prioritized com-
pared to the Montage workflow that is used to create a mosaic of the sky image. This priority
assignment needs to be designed in a specific policy of the providers that can regulate the fairness
of the scheduling process.

4.3.2 QoS Constraint. Deriving priority assignments from users’ QoS constraints can be done
within the scheduling algorithms. This assignment is included in the logic of algorithms to achieve
the scheduling objectives. For example, an algorithm that aims to minimize cost while meeting
the deadline may consider to de-prioritize and delay the task of a particular workflow that has
a more relaxed deadline to re-use the cheapest resources available. In this way, the algorithms
must be designed to be aware of the QoS constraints of the tasks to derive these parameters into
a priority assignment process during the scheduling.

Furthermore, the challenge of deriving priority assignment from QoS constraints may come
from a heterogeneous QoS requirement workload. The algorithms must be able to determine a
priority assignment for multiple workflows with different QoS requirements. For example, given
two workflows with different QoS parameters, a workflow was submitted with a deadline, while
another was included with a budget. The priority assignment can be done by combining these
constraints with its application type, user-defined priority, or workflow structure.

4.3.3 User-defined Priority. On the contrary to the application type priority model that may be
arranged through a specific policy, the priority assignment must also consider the user-defined
priority in scheduling algorithms. This priority can be defined by users with appropriate compen-
sations for the providers. For example, it is not uncommon in real-world practice to spend more
money to get a prioritized treatment that affects the speed of process and quality of service (e.g.,
regular and express postal service). It is possible in multi-tenant computing platforms to accom-
modate such a mechanism where the users are given the option to negotiate their priority through
a monetary cost compensation for the providers. This mechanism is a standard business prac-
tice adopted in multi-tenant computing platforms (e.g., reserved, on-demand, and spot instances
pricing schemes).

4.3.4 Workflow Size. Another approach on priority assignment is based on the structure of
workflows (e.g., size, parallel tasks, critical path). Prioritizing workflows based on their sizes resem-
bles a traditional way of priority scheduling, such as SJF policy that gives priority to the shortest
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Fig. 6. Task scheduling model taxonomy.

tasks and RR policy that attempts to balance the fairness among tasks with different sizes. This pri-
oritization can be combined with the QoS constraint to produce better fairness between users. For
example, a large-scale workflow may have a very extended deadline. Therefore, smaller workflows
with tight deadlines can be scheduled between the execution of tasks from this larger workflow.

4.4 Task Scheduling Model

Task-resource mapping is the primary activity of scheduling. All of the workflow scheduling al-
gorithms have the purpose of finding the most optimal configuration of task-resource mapping.
However, each scheduling problems may have different requirements regarding the QoS. In gen-
eral, there are two standard QoS requirements in workflow scheduling, namely time and cost. The
majority of the cases require the algorithms to minimize the overall execution time of the workflow
(i.e., makespan).

However, the cost of executing the workflows significantly affects the scheduling decisions in
utility-based computational infrastructures such as utility grids and cloud environments. Every
user wants to minimize the cost of executing their workflows. These two objectives have oppos-
ing goals, and a tradeoff between them must be considered. This tradeoff then is derived into
various scheduling objectives such as minimizing cost while meeting the deadline (i.e., time limit
for execution), minimizing makespan while meeting the budget (i.e., cost limit for execution), or a
more loose objective, meeting deadline, and budget.

In multi-tenant computing platforms, QoS diversity is prevalent due to the different needs of
users to execute their workflows. The variety is not only related to the QoS values the users define
but also may raise in the form of different scheduling objectives. The various user-defined QoS
requirements must be handled in a way that each user’s need can be fulfilled without sacrificing
the other users served by the systems.

All algorithms in this study avoid metaheuristics approaches that are known for their complex-
ity in planning the schedule before runtime. This planning creates an overhead waiting delay as
the continuous arriving workflows have to wait for pre-processing before the actual scheduling
takes place. Therefore, they use dynamic approaches that reduce the need for intensive comput-
ing at the planning phase and aim to achieve a fast scheduling decision by considering the current
status of the systems. These approaches can be divided into immediate and periodic scheduling,
as illustrated in Figure 6.

4.4.1 Immediate Scheduling. Immediate scheduling or just-in-time scheduling is a dynamic
scheduling approach in which tasks are scheduled whenever they are ready for scheduling. In
the case of multiple workflows, this scheduling approach collects all of the ready tasks from dif-
ferent workflows in a task pool before deciding to schedule based on some particular rules. The
immediate scheduling tries to overcome the fast dynamic changes in the environments by adapt-
ing the decision based on the current status of the system. However, as the algorithm schedules
the tasks based on a limited amount of information (i.e., a limited view of the previous and future
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information), this approach cannot achieve an optimal scheduling plan. However, it is an efficient
way for multi-tenant platforms that deal with uncertain and dynamic environments.

The immediate scheduling resembles list-based heuristics scheduling. This scheduling approach,
in general, has three scheduling phases: task prioritization, task selection, and resource selection.
The algorithms repeatedly select a particular task from the scheduling queue that is constructed
based on some prioritization method and then pick the appropriate resource for that specific task.
For example, in deadline constraint-based heuristics algorithms that aim to minimize the cost while
meeting the deadline, the scheduling queue is constructed based on the earliest deadline first (EDF)
of the tasks and the cheapest resources that can meet the deadline are chosen to minimize the cost.
The time complexity for heuristic algorithms is low. Therefore, it is suitable for multiple workflows
scheduling algorithms that deal with the speed to manage the scheduling process.

4.4.2 Periodic Scheduling. This approach schedules the tasks periodically to exploit the possi-
bility of optimizing a set of tasks’ scheduling within a period. While in a general batch scheduling,
a particular set is constructed based on the size of workload (i.e., schedule the tasks after reaching
a certain number), the periodic approach schedules the tasks in a set of timeframe. In this case, the
periodic scheduling acts as a hybrid approach between static and dynamic scheduling methods;
static such that an algorithm exploits the information of a set of tasks (i.e., structures, estimated
runtime) to create an optimal plan, but it do not need to wait for a full workload of tasks to be
available. The dynamic sense of algorithms adapts and changes the schedule plan periodically.
Hence, periodic scheduling refers to a scheduling technique that utilizes the schedule plan of a set
of tasks available in a certain period to produce a better scheduling result. This method is more
adaptable to changes and has faster pre-runtime computation than static scheduling techniques,
since it only includes a small fraction of workload to be optimized rather than the entire workload.
However, this approach can achieve a better result from having an optimized schedule plan than
typical immediate scheduling but with less speed to schedule the tasks.

One of the approaches in periodic scheduling is identifying the gaps between tasks during the
schedule. The identification uses an estimated runtime of tasks and their possible position in a
resource during runtime. The most common methods to fill the gap are task rearrangement and
backfilling strategy. Task rearrangement strategy rearranges the tasks scheduling plan to ensure
the minimal gap in a schedule plan while backfilling allocates the ordering list of tasks and then
backfills the holes produced between the allocation using the appropriate tasks. Both strategies do
not involve an optimization algorithm that requires intensive computation, since the multi-tenant
computing platforms consider speed in the schedule to cope with the users’ QoS requirements.

While gap search is related to the strategy for improving resource utilization, another approach
utilizes resource type configuration to optimize the cost spent on leasing computational resources.
In a heterogeneous environment where resources are leased from third-party providers with some
monetary costs (i.e., utility grids, clouds), determining resource type configuration to optimize
the cost of leasing resources is necessary. For example, the Dyna algorithm [41], which considers
the combination use of on-demand and spot instances in Amazon EC2, utilizes heuristics to find
the optimal resource type configuration to minimize the cost.

4.5 Resource Provisioning Model

Resource provisioning forms an essential pair with task scheduling. In this stage, scheduling algo-
rithms acquire and allocate resources to execute the scheduled tasks. We derive the categorization
of resource provisioning based on the ability of scheduling algorithms to expand and shrink the
number of resources within the platforms to accommodate the dynamic workloads of multi-tenant
computing platforms, as shown in Figure 7.
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Fig. 7. Resource provisioning model taxonomy.

4.5.1 Static Provisioning. The static provisioning refers to scheduling algorithms where the
number of resources used is relatively constant along the scheduling process. Therefore, the pri-
mary issue is related to the algorithms’ ability to optimize the available resources to accommodate
multiple users. This condition can be observed from the algorithms that emphasize heavily on the
prioritization technique for workflows to be scheduled due to the limited available resources con-
tested by many users. Another aspect is the improvement of resource utilization of the systems,
which describes the ability of algorithms to allocate a limited number of resources efficiently.

This static provisioning is not exclusive to non-virtualized environments (e.g., clusters, grids),
where the number of resources is hardly changing over time. This case also prevails in cloud com-
puting environments where the providers determine the number of VMs to be leased before initiat-
ing the platforms, and the number remains unchanged over time. In this scenario, the scheduling
algorithms do not consider any resource provisioning strategy to scale up and down resources
when facing a dynamic workload of workflows.

4.5.2 Dynamic Provisioning. As the clouds provide elastic provisioning of virtual machines, the
scheduling algorithms of multi-tenant computing platforms in clouds take advantage of the dy-
namic provisioning approach. The automated scaling of resources that can be easily implemented
in clouds has been widely adopted mainly in the scheduling algorithms that deal with a dynamic
workload. In this case, the need for resources can be high at a point (i.e., peak hours), while at
the same time, the operational cost must be kept at a minimum. To minimize the cost of leas-
ing VMs, they have to be released when the request is low. From the existing algorithms, there
are two different approaches to auto-scaling the cloud instances, which are workload-aware and
performance-aware.

Workload-aware dynamic provisioning is related to the ability of algorithms to become aware
of the workload status in multi-tenant computing platforms and then to act according to the situa-
tion. Suppose that in the peak hours condition the algorithms acquire more VMs to accommodate
the requests. One of the heuristics used in this scenario is based on the deadline constraints of the
workload. Examples include when the algorithms use a task’s deadline to decide whether a task
should re-use available VMs, provision a new VM that can finish before the deadline, or delay the
schedule to re-use future available VMs as long as it does not violate the deadline. This decision
is essential, as the dynamic workload is common in multi-tenant computing platforms where the
systems cannot predict the future status of the workload. Using this heuristic, provisioning addi-
tional VMs is more accurate, as the acquired new VM is based on the requirement of a particular
task being scheduled.

However, the performance-aware dynamic provisioning refers to an approach of auto-scaling
the VMs based on total resource utilization of current provisioned VMs. The algorithms monitor
the status of the systems and acquire additional VMs when the usage is high and release several idle
VMs when the utilization is low. Maintaining resource utilization at a certain threshold ensures the
efficiency of multi-tenant computing platforms in the scheduling process. The majority of works
considering this approach are the ones that consider only homogeneous VM types in their systems.
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Table 2. Taxonomy of Workload and Deployment Model

Algorithms Refs. Keywords
Workload Model Deployment Model

Workflow Type QoS Requirements
Non-virtualized

Virtualized

Homogen Heterogen Homogen Heterogen VM-based Container-based

RANK_HYBD [42] Dynamic-guided
scheduling

- � � - � - -

OWM [48] Scheduling

framework

- � - � � - -

MOWS [39] - � - � � - -

P-HEFT [46] Dynamic-parallel
scheduling

- � � - � - -

MQMW [44] Multi-QoS

scheduling

- � � - - � -

MQSS [45] - � � - � - -

EDF_BF [51] Exploiting

schedule gaps

- � � - � - -

EDF_BF_IC [52] - � � - � - -

CWSA [23] - � � - - � -

FSDP [53] Fairness &

priority

- � � - � - -

F_DMHSV [54] - � � - � - -

FDWS [40] - � � - � - -

Adaptive
dual-criteria

[55] Partition-based
scheduling

- � � - � - -

MLF_ID [56] - � � - � - -

OPHC-TR [57] Privacy
constraint

� - � - - � -

Dyna [41] Deadline

constraint

- � � - - � -

EPSM [58] - � � - - - �
DGR [38] Task

rearrangement
- � � - � - -

FASTER [59] Fault-tolerant - � � - - � -

EnReal [60] Energy-efficient - � � - - � -

EONS [61] - � � - - � -

DPMMW &
GESMW

[62] - � � - - � -

PRS [63] Uncertainty-

aware

- � � - - � -

EDPRS [64] - � � - - � -

ROSA [65] - � � - - � -

NOSF [66] - � � - - � -

EDF_BF
In-Mem

[67] Data-locality
perspective

- � � - � - -

MW-HBDCS [68] Deadline-budget

constraints

- � � - � - -

MW-DBS [49] - � � - � - -

MQ-PAS [50] Profit-aware - � � - - � -

CERSA [69] Real-time
scheduling

- � � - - � -

In this way, the algorithms do not need to perform the complicated selection process of the VM
types to be chosen.

5 SURVEY

This section discusses a number of surveyed multiple workflows scheduling algorithms from 2008
to 2019 that are relevant to our scope. Each algorithm is classified based on the taxonomy pre-
sented in the previous section. The classification of existing algorithms is depicted in Tables 2
and 3. Furthermore, the experimental design and parameter settings of each algorithm are de-
scribed separately in Appendix A.
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Table 3. Taxonomy of Priority Assignment, Task Scheduling, and Resource Provisioning Model

Algorithms Refs.

Priority Assignment Model Task Scheduling Model Resource Provisioning Model

App.

Type

QoS

Const.

User-

defined

Wf

Structure
Immediate

Periodic
Static

Dynamic

Gap
Search

Conf.
Search

Workload Performance

RANK_HYBD [42] - - - � � - - � - -

OWM [48] - - - � - � - � - -

MOWS [39] - - - � - � - � - -

P-HEFT [46] - - - � � - - � - -

MQMW [44] - � - - � - - � - -

MQSS [45] - � - - � - - � - -

EDF_BF [51] - � - - - � - � - -

EDF_BF_IC [52] - � - - - � - � - -

CWSA [23] - � - - - � - - - �
FSDP [53] - � - - � - - � - -

F_DMHSV [54] - - - � - � - � - -

FDWS [40] - - - � � - - � - -

Adapt.
dual-criteria

[55] - � - � - � - � - -

MLF_ID [56] - � - - � - - - � -

OPHC-TR [57] � � - - � - - - � -

Dyna [41] - � - - - - � - � -

EPSM [58] - � - - � - - - � -

DGR [38] - � - - - � - � - -

FASTER [59] - � - - - � - - � -

EnReal [60] - � - - - - � - � -

EONS [61] - - - - � - - - � -

DPMMW &
GESMW

[62] - � - - - � - - � -

PRS [63] - � - - � - - - � -

EDPRS [64] - � - - � - - - � -

ROSA [65] - � - - � - - - � -

NOSF [66] - � - � � - - - � -

EDF_BF
In-Mem

[67] - � - - - � - � - -

MW-HBDCS [68] - � - � � - - � - -

MW-DBS [49] - � - � � - - � - -

MQ-PAS [50] - � - � � - - � - -

CERSA [69] - � � - � - - - � -

5.1 Planner-Guided Scheduling for Multiple Workflows

RANK_HYBD algorithm [42] was introduced to overcome the impracticality of the ensemble
approach (i.e., merging multiple workflows) to handle different submission time of workflows
to the system by scheduling individual tasks dynamically. The algorithm put together all ready
tasks from different workflows into a pool. Then, the algorithm used a modified upward ranking
[43], which calculates the weight of a task based on its relative position from the exit tasks and
estimated computational length to assign individual tasks priorities. This task ranking time com-
plexity was O (Tw . Ps ) for all tasks in a workflowTw given a set of static processors Ps . In contrast
with the original upward ranking implementation in HEFT algorithm that chose tasks with higher
rank value, RANK_HYBD preferred tasks with the lowest rank in the pool, which created a time
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complexity of O (Tr . Ps ) for re-prioritizing all ready tasksTr . In this case, HEFT preferred the tasks
from later arriving workflows and the tasks with the most extended estimated runtime, which
created an unfair pre-emptive policy for the running workflows. By using the opposite approach,
the RANK_HYBD algorithm avoided the pre-emptive scheduling delay of a nearly finished work-
flow if a new workflow is submitted in the middle of the execution. Finally, it schedules each task
to the processor that can give the earliest processing time with O (Tr (Tr . Ps )) time complexity.

In general, the time complexity was quadratic to the number of tasks processed. The re-
port showed that RANK_HYBD outperformed RANDOM and FIFO algorithms by 1.77× average
speedup on workloads up to 25 multiple workflows. This algorithm was the first solution for mul-
tiple workflows scheduling. Many later algorithms have adopted the approach to tackling the
dynamic workload of workflows using dynamic prioritization for tasks within a workflow and
between workflows. Even though many aspects, such as QoS constraints, performance variability,
and real workflow applications, have not been included in the experiment, this pioneering work
became an important benchmark for the following algorithms.

5.2 Multiple QoS Constrained Scheduling for Multiple Workflows

The Multiple QoS Constrained Scheduling Strategy of Multi-Workflows (MQMW) algorithm [44]
incorporated a similar strategy of RANK_HYBD to schedule multiple workflows. MQMW prior-
itized tasks dynamically based on several parameters, including resource requirement of a task,
time and cost variables, and covariance value between time and cost constraint. This task ranking
time complexity was O (Tw .Cs ) for all tasks in a workflowTw given a set of static cloud instances
Cs . The algorithm preferred the tasks with a minimum requirement of resources to execute, mini-
mum time and cost limit, and a task with minimum covariance between its time and cost limit (i.e.,
when time limit decreases, the cost will increase). Each time the scheduling takes place, MQMW
re-compute all ready tasks Tr by O (Tr .Cs ) time complexity. Finally, MQMW schedules each task
to the best fit idle cloud instances with O (Tr (Tr .Cs ) ) time complexity.

In general, the time complexity was quadratic to the number of tasks processed. It is tested
against RANK_HYBD, even though the RANK_HYBD was not considered the cost in the
scheduling constraint. The evaluation results showed that MQMW outperformed the success rate
of RANK_HYBD [42] algorithm by 22.7%. MQMW was the first attempt to provide the solution of
multiple workflows scheduling on the cloud computing environment. However, its cloud model
did not resemble the real characteristics that are inherent in clouds such as elastic scalability of
instances, on-demand resources, pay-as-you-go pricing schemes, and performance variability of
cloud environments.

MQSS algorithm [45] was proposed to overcome shortcomings from the previous MQMW al-
gorithm that includes the number of QoS considered in the scheduling and the adoption of a more
optimal scheduling strategy. With the relatively same approaches, the MQSS includes other QoS
parameters into the scheduling’s attributes (e.g., time, cost, availability, reputation, and data qual-
ity). In general, MQSS has the same time complexity as MQMW, with 12.47% success rate improve-
ment for the same workloads.

5.3 Fairness in Multiple Workflows Scheduling

The Parallel Task HEFT (P-HEFT) algorithm [46] was the first work of a group from the Universi-
dade do Porto that modeled the non-monotonic tasks (i.e., the execution time of a task might differ
on the different number of resource usage). The algorithm used a relative length position of a task
from the entry task (i.e., t-level/top-level) and exit task (i.e., b-level/bottom-level) to assign the pri-
orities between tasks. This ranking time complexity was O (Tw . Ps ) for all tasks in a workflowTw

given a set of static processors Ps . In their case, the task model was different from other works as it
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allowed parallel execution of a task in several processors. Furthermore, the processor selection and
task scheduling for all ready tasksTr was O (Tr (Tr . Ps )). In general, the complexity was quadratic
to the number of tasks processed. The evaluation results showed that P-HEFT outperformed the
static algorithm HPTS by 1.52× average speedup on workloads of 12 multiple workflows.

The next work from this group was the Fairness Dynamic Workflow Scheduling (FDWS) algo-
rithm [40]. FDWS chose a single ready task from each workflow into the pool instead of putting
all ready tasks together. Local prioritization within a workflow utilized upward-rank mechanism
while the task selection from different workflows to schedule used a percentage of the remaining
task number of workflow the task belongs to (PRT) and a task position in its workflow’s critical
path (CPL). This prioritization time complexity was O (Tw . Ps ) for all tasks in a workflowTw given
a set of static processors Ps . Meanwhile, the resource selection and task scheduling for all ready
tasks Tr in FDWS was O (Tr (Tr . Ps )). In general, the complexity was quadratic to the number
of tasks processed. The evaluation results showed that FDWS outperformed RANK_HYBD and
OWM by 1.1× and 1.15× average speedup, respectively, on workloads of 50 multiple workflows.

The Multi-Workflow Deadline-Budget Scheduling (MW-DBS) algorithm [49] was their work that
addressed the utility aspect of a heterogeneous multi-tenant distributed system. This algorithm
included deadline and budget as constraints. Furthermore, local priority was assigned using the
same method from FDWS that creates O (Tw . Ps ) time complexity. However, instead of using PRT
and CPL, MW-DBS used the task’s deadline and workflow’s scheduled tasks ratio for assigning
global priority. Finally, MW-DBS modified the processor selection phase, in which it included a
budget limit for task processing as a quality measure withO (Tr . Ps ) time complexity. Furthermore,
the complexity of resource selection and task scheduling for all ready tasksTr was O (Tr (Tr . Ps )).
In general, the time complexity was quadratic to the number of tasks processed. The evaluation
results showed that MW-DBS outperformed the success rate of FDWS [40] and its variants by 43%
on workloads of 50 multiple real-world application workflows.

The latest work was the Multi-QoS Profit-Aware Scheduling (MQ-PAS) algorithm [50]. MQ-PAS
was designed not only for the cloud computing environment but also for the general utility-based
distributed system. Task ranking and selection complexity in MQ-PAS was O (Tw .Cs ) for all tasks
in a workflowTw given a set of static cloud instancesCs . Meanwhile, the quality measure in cloud
instances selection was O (Tr .Cs ). Furthermore, the complexity of resource selection and task
scheduling for all ready tasksTr was O (Tr (Tr .Cs )). In general, the time complexity was quadratic
to the number of tasks processed. The evaluation results showed that MQ-PAS outperformed the
success rate of FDWS [40] by only 1% but significantly 20% improvement of profit on workloads
of 50 multiple real-world application workflows.

Several variations of scheduling scenarios were covered in their works. One of the specific sig-
natures from this group is the strategy of choosing a single ready task from workflow to compete
in the scheduling cycle with the other workflows. This strategy represents the term “Fairness”
that becomes the primary concern in most of their works. However, with their broad scenarios
that were intended to cover the general process in a multi-tenant distributed computing systems,
the different requirements in clouds from utility grids (e.g., billing period schemes, dynamic and
uncertain environment) were not considered in their works.

5.4 Online Multiple Workflows Scheduling Framework

A group from the National Chiao-Tung University focused on developing a scheduling framework
for multiple workflows scheduling. Their first algorithm, called Online Workflow Management
(OWM) [48], consisted of four phases: critical path workflow Scheduling (CPWS), task scheduling,
multi-processor task rearrangement, and adaptive allocation (AA). The CPWS phase ranked all
tasks Tw based on their relative position in their workflows before they were submitted to the
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scheduling queue to create a schedule plan with O (Tw . Ps ) time complexity. If there were some
gaps in a schedule plan, then task rearrangement took place to fill the gaps to improve resource
utilization that creates O (Tr

2) time complexity. Furthermore, AA scheduled the highest priority
task from the queue that was constructed based on the near-optimal schedule plan whose time
complexity was O (Tr (Tr . Ps + Ps ). In general, the time complexity was quadratic to the number
of tasks processed. The evaluation results showed that OWM outperformed RANK_HYBD by 1.15×
average speedup on workloads of 100 multiple workflows.

In their following work, they extended OWM into the Mixed-Parallel Online Workflow Sched-
uling (MOWS) algorithm [39]. They modified the CPWS phase using the Shortest-Workflow-First
(SWF) policy combined with the critical path prioritization. Then, MOWS used the priority-based
backfilling to fill the hole of a schedule in the task rearrangement stage. The pre-emptive task
scheduling policy was introduced in the AA phase, so the algorithm allowed the system to sched-
ule the shortest workflow with a pre-emptive strategy and stopped it when the higher priority
workflow was ready to run. The difference between MOWS and OWM is the task rearrangement
phase, which used the priority-based backfilling that takes a lower time complexity of O (Tr ). In
general, the time complexity was quadratic to the number of tasks processed. The evaluation re-
sults showed that MOWS outperformed OWM by 1.25× average speedup on workloads of 100
multiple workflows.

Both OWM and MOWS utilized periodic scheduling, in which periodically created a schedule
plan for a set of ready tasks before submitting it to the scheduling queue. In this way, the algorithm
can produce better scheduling results without having intensive computation beforehand. However,
this approach may still create a bottleneck if the number of ready tasks in the pool increases.
Implementing a strategy to create a fairness scenario when selecting ready tasks to reduce the
complexity of calculating a schedule plan may work to enhance this scheduling framework.

5.5 Real-time Multiple Workflows Scheduling

One of the active groups that focused on real-time and uncertainty aspects of multiple workflows
scheduling was the group from The Aristotle University of Thessaloniki, Greece. They did impres-
sive works on multiple workflows scheduling that explicitly addressed the uncertainty in cloud
computing environments.

Their first work was the Earliest Deadline First with Best Fit (EDF_BF) algorithm [51]. EDF pol-
icy was used for the task selection phase, and the BF was the strategy for exploiting the schedule
gap. EDF_BF incorporated schedule gap exploitation that can be identified through the estimated
position of a task’s execution in a specified resource. From all of the possible positions, the algo-
rithm exploited the holes using a bin packing technique to find the best fit for a task’s potential
position. The result can also be used to determine which resource should be selected for that spe-
cific task. Given a set of ready tasks Tr processed each time and static processor Ps available, task
selection complexity in EDF_BF was O (Tr . Ps ). Meanwhile, the processor selection and schedule
gap exploitation was O (Tr (Tr + Tr . Ps ). In general, the complexity was quadratic to the number
of tasks processed. The evaluation results showed that EDF_BF outperformed the guarantee ratio
(i.e., success rate) of its variants with Highest-Level First (HLF) and Least-Space-Time First (LSFT)
policy on task selection by an average of 10%.

Another work was the Earliest Deadline First with Best Fit and Imprecise Computation
(EDF_BF_IC) algorithm [52], which extended the previous algorithm with imprecise computation.
The imprecise computation was first introduced in Reference [70] to tackle the problem in a real-
time environment that was often needed to produce an early proximate result within a specified
time limit. The imprecise computation model was implemented by dividing the task’s components
into a mandatory and optional component. A task was considered meeting the deadline if its
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mandatory part was completed, while the optional component may be fully executed, partially
executed, or skipped. The evaluation results showed that EDF_BF_IC outperformed the success
rate of its baseline EDF by an average of 16% and cost-saving improvement by 12%.

Furthermore, this group explored data-locality and in-memory processing for multiple work-
flow scheduling [67]. In this case, they combined the EDF_BF algorithm with a distributed in-
memory storage solution called Hercules [71] to evaluate a different way of communication of
workflow tasks. They considered two different communication scenarios, communication through
a network, and via temporary files utilizing the Hercules in-memory storage solution. The results
showed that scheduling performance increased when the I/O to computation ratio reduced by us-
ing in-memory storage, which enforced the locality of data. The evaluation results showed that the
application completion ratio (i.e., success rate) improves as the tardiness bound (i.e., soft deadline
ratio) increases while the average makespan deteriorates. Besides, the average makespan of the
completed workflows improves as the I/O activities decrease.

Despite the variation, their algorithm’s main idea was to schedule all of the ready tasks using
EDF policy for resources that can allow the tasks to finish at their earliest time. The algorithm
maintained a local queue for each resource and then optimized the local allocated queue using
gaps filling techniques and, in one of the works, manipulated a small portion of the tasks that may
have a little significance (i.e., imprecise computation). Their algorithms were designed for a multi-
tenant system with a static number of resources. Therefore, the design may not be suitable for
cloud computing environments—which suffer most from uncertainty problems—where the auto-
scaling of resources is possible.

5.6 Adaptive and Privacy-aware Multiple Workflows Scheduling

A group from The University of Sydney introduced an excellent work of multiple workflows sched-
uling that was concerned with the privacy of users [57]. They developed two algorithms: Online
Multiterminal Cut for Privacy in Hybrid Clouds using PCP Ranking (OMPHC-PCPR) and On-
line Scheduling for Privacy in Hybrid Clouds using Task ranking (OPHC-TR). OMPHC-PCPR was
merging multiple workflows into one single workflow before scheduling. Hence, this solution is
out of our scope, but the other one, OPHC-TR, used an approach that is inclusive of our study.
Both algorithms calculated the privacy level of each workflow before they decided to schedule
them in private or public clouds. The private clouds were used mainly for the workflow that com-
prised a high level of privacy parameters. The main differences between the two algorithms were
their input. While OMPHC-PCPR considered a merged single workflow from several workflows,
OPHC-TR processed each task using a rank mechanism to decide which tasks were submitted into
the scheduling queue. Given a set of tasks in a workflowTw and static processors Ps available, task
ranking and selection complexity in OPHC-TR was O (Tw . Ps ). Meanwhile, the resource selection
and task scheduling for all ready tasksTr was O (Tr (Tr . Ps )). In general, the time complexity was
quadratic to the number of tasks processed. The evaluation results showed that OMPHC-PCPR
outperformed the cost-saving of the OPHC-TR algorithm by 50%. However, in this work, the over-
head of merging several workflows in OMPHC-PCPR did not being evaluated thoroughly. Such an
approach may result in a very high bottleneck when the number of workflows arriving reached a
certain high particular number.

Another work from this group was the DGR algorithm [38]. This algorithm used heuristics,
which started the solution with the initial reservation of resources for particular scheduling
tasks that time complexity was O (Tw . Ps ) for all tasks in a workflow Tw given a set of static
processors Ps . During the execution, uncertainty (i.e., performance and execution time variation)
may profoundly affect the initial reservation and break the schedule plan. In this case, the algo-
rithm rescheduled the tasks to handle the broken reservation. DGR utilized task rearrangement
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techniques and exploited a dynamic search tree to fix this reservation with O (Tr (Ps + Tr . Ps ))
time complexity. In general, the time complexity was quadratic to the number of tasks processed.
The evaluation results showed that DGR outperformed a traditional HEFT algorithm by 1.43×
average speedup on workloads of 300 multiple workflows.

5.7 Adaptive Dual-criteria Multiple Workflows Scheduling

Another adaptive approach in scheduling multiple workflows was an adaptive dual-criteria algo-
rithm [55]. This algorithm used heuristics that utilized scheduling adjustment via task rearrange-
ment. An essential strategy to this algorithm was the clustering of tasks and treated them as an
integrated set in scheduling to minimize the critical data movement within tasks. Hence, any re-
arrangement or adjustment to fill the schedule holes involved the set of tasks to be moved. Given
a set of tasks in a workflow Tw processed each time, task group after clustering Tд where Tд ≤
Tw , and static processors Ps available, the task initial clustering process complexity was O (Tw

2).
Meanwhile, the adjustment of idle time gap selection was O (Tд (Tд + Ps )); it was ranked with
higher complexity compared to a simple Best-Fit and EFT calculation of a single task due to theTд

constraint. Finally, the complexity of adaptive task group re-arrangement wasO (Tд Ps ). In general,
the time complexity was quadratic to the number of tasks and task groups processed. The evalu-
ation results showed that this algorithm outperformed a similar process using traditional Best-Fit
and EFT approaches by up to 1.41× speedup in various scenarios.

Since the approach used was the periodic scheduling, the frequency of scheduling cycle be-
comes critical. The infrequent scheduling cycle implies to the broader set of tasks to be processed,
which may result in a more optimized scheduling plan but potentially required a more intensive
computation for creating the plan. Meanwhile, a perpetual cycle may fasten the scheduling plan
computation due to its size of tasks but may reduce the quality of a schedule. This variation was
not being addressed and explored in-depth by the authors. Besides, the treatment of a cluster of
tasks increases the coarse-granularity of scheduling that may widen the gaps produced. In this
way, the task rearrangement may hardly find the holes that can be fit by a coarse-grained set of
clustered tasks.

5.8 Multiple Workflows Scheduling on Hybrid Clouds

Another work designed for hybrid cloud environments was the Minimum-Load-Longest-App-First
with the Indirect Transfer Choice (MLF_ID) algorithm [56]. The term Load-Longest-App had a
similar concept to the critical path. So MLF_ID was a heuristic algorithm that incorporated the
workflows prioritization based on their critical path and exploited the use of private clouds before
leasing the resources in public clouds. MLF_ID partitioned the workflow based on a hierarchical
iterative application partition (HIAP) to eliminate data dependencies between a set of tasks by
clustering tasks with dependencies into the same set before scheduling them into either private or
public clouds.

Given a set of tasks in a workflowTw processed each time, static private cloud resourcesCs , and
dynamic public cloud resources Cd , the application partition complexity was O (Tw (Cs + Cd )).
Meanwhile, the ready tasks Tr scheduling that included the decision to schedule on public cloud
was O (Tr .Cd ) or private cloud was O (Tr (Tr + Cs ). In general, the time complexity was qua-
dratic to the number of tasks processed. The evaluation results showed that the combined re-
sources of hybrid clouds could minimize the total execution cost when the number of work-
flows can be allocated as much as possible to the private resources. However, the private cloud
capacity was restrained, as the scaling process is not as simple as such an approach in public
clouds.
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The use of hybrid clouds in this work was emphasized to extend the computational capacity
when the available on-premises infrastructure (i.e., private clouds) were not enough to serve the
workloads. First, the tasks were scheduled to the private clouds, and whenever it was not possible
to process the capacity, they were transferred to public clouds. Even though the tasks had been
partitioned to make sure that the data transfer between them was minimal, the decision to move to
public clouds evoked a possible transfer overhead problem. Therefore, some improvements can be
made by implementing a policy to decide whether a set of tasks is considered impractical to process
in private clouds because they include some algorithm to predict the possible future overhead in
the system. In this way, instead of directly transferring the execution to the public clouds, which
results in not only additional cost but also transfer overhead, the algorithm can decide whether it
should move the execution or delay the process and wait for the next available resources.

5.9 Proactive and Reactive Scheduling for Multiple Workflows

Another group that focused on real-time and uncertainty problems in scheduling was a group from
The National University of Defense Technology, China. They proposed algorithms that dynami-
cally exploited proactive and reactive methods in multiple workflows scheduling.

Their first work was the Proactive Reactive Scheduling (PRS) algorithm [63]. The proactive
phase calculated the estimated earliest start and execution times of tasks and then scheduled them
dynamically based on a simple list-based heuristic. This method had been incorporated into many
algorithms for multiple workflows scheduling. However, using only the proactive method results
in an inability to tackle the uncertainties (e.g., performance variation, overhead delays), which led
to sudden changes in the system. Then, PRS introduced a reactive phase whenever two disruptive
events occurred (i.e., the arrival of new workflow and finishing time of a task). The reactive phase
was triggered by two disruption events to re-do (i.e., update) the scheduling process based on
the latest system status. Given a set of tasks in a workflow Tw processed each time and dynamic
cloud resources Cd available, the time complexity of task ranking was O (Tw ). Meanwhile, the
VM selection and task scheduling for all ready tasks Tr was O (Tr (Tr .Cd ). In general, the time
complexity was quadratic to the number of tasks processed. The evaluation results showed that
PRS outperformed the cost-savings of modified SHEFT [72] and RTC [73] algorithms for multiple
workflows by 50.94% and 67.23%, respectively, on workloads of 1,000 multiple workflows.

They then extended PRS into Event-driven and the Periodic Rolling Strategies (EDPRS) algo-
rithm [64]. EDPRS tackled a flaw in PRS whereby if none of the two disruption events happened,
the scheduling process could not be pushed forward. They introduced a periodic rolling strategy
(i.e., scheduling cycle) that drove the re-iteration of the schedule. In this way, when no disrup-
tion events occur, the algorithm repeats their scheduling activities after a specific periodic rolling
time. In general, the time complexity is similar to that of the PRS algorithm. The evaluation results
showed that EDPRS outperformed the cost-savings of modified SHEFT [72] and RTC [73] algo-
rithms for multiple workflows by 12.98% and 21.57%, respectively. Both PRS and EDPRS worked
well in handling the uncertainty in cloud computing environments.

This group also worked on energy-efficient multiple workflow scheduling algorithms. They pro-
duced the Energy-Efficient Online Scheduling (EONS) algorithm [61]. EONS was different from
the other energy-efficient scheduling algorithms due to its focus on fast and real-time-oriented
scheduling. EONS utilized simple auto-scaling techniques to lower energy consumption instead
of optimizing energy usage using techniques such as VM live migration and VM consolidation.
The scaling method used simple heuristics that considered the load of the physical host and the
hardware efficiency. Given a set of tasks in a workflowTw processed each time and dynamic cloud
resources Cd available, task ranking complexity in EONS was O (Tw ). Meanwhile, the VM selec-
tion and task scheduling for all ready tasksTr was O (Tr (Tr .Cd ). In general, the time complexity
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was quadratic to the number of tasks processed. The evaluation results showed that EONS outper-
formed the energy savings of modified EASA [74] and ESFS [75] algorithms for multiple workflows
by 45.64% and 35.98%, respectively.

Another work from this group addressed the failure in multiple workflows scheduling. The algo-
rithm, called FASTER [59], utilized the primary backup technique to handle the failure. To the best
of our knowledge, this was the only fault-tolerant algorithm for multiple workflows scheduling.
As part of the pre-processing phase, they scheduled two copies of a task (i.e., primary and backup
copy) based on the FCFS policy. The workflows were accepted for execution when both primary
and backup copies successfully met their deadlines in the estimation phase. Whenever a task was
not able to meet its deadline, the algorithm re-calculates its earliest start time. This estimation
takes O (Tw

2 ) given a set of tasks in a workflow Tw processed each time. FASTER then ensured
that the primary copy was distributed among all available hosts as part of its fault-tolerant strat-
egy. This heuristic requires periodic scanning of all VMsCd within the available physical host Hd

in the system. The complexity of host monitoring phase was O (Hd (Cd .Tw )) for each primary
and backup type of tasks. In general, the time complexity was quadratic to the number of tasks
processed. The evaluation results showed that FASTER outperformed the modified eFRD [76] algo-
rithm for multiple workflows by 239.66% in terms of guarantee ratio (i.e., success rate) and 63.79%
in terms of resource utilization.

Their next algorithms were called ROSA [65] and CERSA [69]. These algorithms were the im-
provement of PRS and EDPRS algorithms that specifically tackle the uncertainties in executing
multiple real-time workflows. While their previous algorithm EDPRS relies on a periodic trigger
to clear a task pool beside the arrival of new workflows, ROSA and CERSA initiate the schedul-
ing based on specific disturbance events. ROSA defined triggering events like the arrival of new
workflows and the completion of a task in a particular cloud instance. However, CERSA added
the arrival of the urgent task as one of the triggering events. In general, the time complexity of
CERSA and ROSA is quadratic, similarly to the PRS and EDPRS. The evaluation results showed that
in terms of monetary cost, ROSA outperformed EPSM [58] and CWSA [23] by 10.07% and 23.18%,
while CERSA outperformed CWSA [23] and OPHC-TR [57] by 8.31% and 17.22%, respectively.

The algorithms emphasize a specific strategy to handle real-time scenarios by using an imme-
diate scheduling approach, which includes the update strategy to adapt to changes dynamically.
However, this dynamic approach, especially on the energy-efficient and fault-tolerant problem,
can be improved by optimizing the VM placement on the physical machine, since the algorithms
may have access to the information of the physical infrastructure.

5.10 Energy Aware Scheduling for Multiple Workflows

A group from Nanjing University, China, proposed an algorithm for multiple workflows schedul-
ing that was called EnReal, an energy-aware resource allocation method for workflow in the cloud
environment [60]. While the previous energy-aware algorithm (EONS) utilized auto-scaling tech-
niques to lower the energy consumption, EnReal exploited the VM live migration-based policy.
The algorithm partitioned all of the ready tasks in the scheduling queue based on their requested
start time and allocated them to the resources on the same physical machine. The adjustment was
made whenever a load of the physical machine was exceeding the threshold, and then VM live
migration policy took place.

EnReal also adjusted the VM allocation dynamically whenever a task was finished. Combined
with the physical machine resource monitoring, the global resource allocation method empha-
sized the energy saving of the platform. However, its partitioning method did not consider the
dependencies between the tasks that imply a data transfer overhead when they were allocated to
different physical machines. The energy-aware resource allocation policy in EnReal should have
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complemented by an ability to aware of data-locality. This policy will not only minimize en-
ergy consumption but also improves the scheduling results in terms of total execution cost and
makespan. In general, the most intensive phase was the resource monitoring that takes quadratic
time complexity. Furthermore, the performance evaluation results showed that EnReal outper-
formed the modified energy-aware Greedy-D [77] algorithm in terms of energy efficiency by 18%
on average.

5.11 Monetary Cost Optimization for Multiple Workflows on Commercial Clouds

A group from the National University of Singapore proposed Dyna [41], an algorithm that con-
cerned with the clouds’ dynamicity nature. They introduced a probabilistic guarantee of any de-
fined SLAs of workflow users as it was the closest assumption to the uncertainty environment in
clouds. This approach was a novel contribution, since the majority of the works assumed determin-
istic SLAs in their algorithms. Dyna aimed to minimize multiple workflows scheduling execution
cost by utilizing VMs with spot instances pricing scheme in Amazon EC2 along with its on-demand
instances. Dyna started with the initial configuration of different cloud instance types and refined
the configuration iteratively to get the better scenario that minimizes the cost while meeting the
deadline. In general, the time complexity was quadratic to the number of tasks processed. The
evaluation results showed that Dyna outperformed the monetary cost of the modified MOHEFT
algorithm [78] by 74% on average.

Dyna presented an exploration of possible cost reduction in executing multiple workflows by
utilizing the spot instances in Amazon EC2. Since multi-tenant computing platforms that were
assumed in their work acted as a service provider for many users, the use of reserved instances
in Amazon EC2 may further reduce the cost of running the platform. Comparison among on-
demand, spot, and reserved instances in Amazon EC2 needs to be done further to deepen the
plausible scenario on minimizing the execution cost of multiple workflows in clouds.

5.12 Fairness Scheduling for Multiple Workflows

Fairness Scheduling with Dynamic Priority for Multi Workflow (FSDP) [53] was an algorithm
proposed by a group from Dalian University of Technology, China. FSDP emphasized the fairness
aspect as it incorporated slowdown metrics into their algorithm’s policy. The slowdown value is
the ratio of the makespan of a workflow when it is being scheduled in dedicated service to the
makespan of it being scheduled in a shared environment with the other workflows. The closer the
slowdown value is to 1, the fairest the algorithm scheduled the workflows in the system. FSDP
also included an urgency metric, a value that represented the priority of each workflow based
on its deadline. The slowdown and urgency were updated periodically when a workflow finished
ensuring the refinement in the scheduling process.

However, the fairness scenario was not explored in-depth by the authors. FSDP is only evaluated
using two different workflows on a various number of resources (i.e., processor). The issue of
fairness would arise when the number of submitted workflows was high enough to represent
the condition of peak hour in multi-tenant distributed computing systems. In general, the time
complexity was quadratic to the number of tasks processed. The evaluation results showed that
FSDP slightly outperformed the overall makespan of MMHS algorithm [79].

5.13 Scheduling Tradeoff of Dynamic Multiple Workflows

A group from Hunan University presented two algorithms. The first one was the Fairness-based
Dynamic Multiple Heterogeneous Selection Value (F_DMHSV) algorithm [54]. The algorithm con-
sisted of six steps, which were task prioritization, task selection, task allocation, task scheduling,
new workflow arrival handling, and task monitoring. Task prioritization used a descending order
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of heterogeneous priority rank value (HPRV) [80], which included the out-degree (i.e., number of
successors) of the task. This prioritization complexity was O (Tw . Ps ) for all tasks in a workflow
Tw given a set of static processors Ps . The task was selected from the ready tasks pool based on the
maximum HPRV. Furthermore, the task was allocated to the processor with minimum heteroge-
neous selection value (HSV) [80], which optimized the task allocation criteria using the combina-
tion of upward and downward rank, which created a complexity of O (Tr . Ps ) for all ready tasks
Tr . The task, then, was scheduled to the earliest available processor with minimum HSV. The eval-
uation results showed that F_DMHSV outperformed RANK_HYBD, OWM, and FDWS algorithms
by 1.37×, 1.11×, and 1.03× average speedup, respectively.

In the same year, this group published energy-efficient algorithms that combined the Deadline-
driven Processor Merging for Multiple Workflow (DPMMW) algorithm that aimed to meet the
deadline, and the Global Energy Saving for Multiple Workflows (GESMW) algorithm sought to
lower energy consumption [62]. DPMMW was a clustering algorithm that allocated the clustered
tasks in a minimum number of processors so that the algorithm can put idle processors into sleep
mode. Meanwhile, GESMW re-assigned and adjusted the tasks to any processor with minimum en-
ergy consumption in the global scope. The combination of DPMMW and GESMW was exploited
to get lower energy consumption. This approach was different from the previous two energy-
efficient algorithms that focused on virtual machine level manipulation. In general, the most in-
tensive phase in this algorithm was the invoking of the HEFT algorithm to create a baseline sched-
uling plan and traversing all processors, which take quadratic time complexity. Furthermore, the
performance evaluation results showed that DPMMW&GESMW outperformed the energy saving
of the reusable DEWTS, a modified version of the DEWTS algorithm [81] by 8.1% on average.

This group presented two opposite approaches to scheduling with different objectives. How-
ever, in both methods, the works emphasize a similar strategy of resource selection. In their first
work, the algorithm focuses on selecting various resources to minimize the makespan, while in the
second one, it is choosing the different machines with various energy efficiency to reduce energy
consumption. These resource selection strategies can improve the scheduling result by combining
them with efficient task scheduling approaches.

5.14 Workflow Scheduling in Multi-tenant Clouds

Another algorithm for multiple workflows scheduling was Cloud-based Workflow Scheduling
(CWSA) [23]. This work used the term “multi-tenant clouds” in its paper for describing the
multi-tenancy aspect that was generally considered in cloud computing environments, whereas
the definition itself was similar to the multiple workflows we used in this survey. The algorithm
was intended for compute-intensive workflows applications. Hence, CWSA ignored data-related
overhead and focused on compute resource management. The algorithm aimed to minimize the
total makespan of the workflows, which in the result, decreases the cost of execution. In general,
the time complexity of CWSA is O (Tw .Cd ), given a set of workflow tasks Tw and a number
of dynamic cloud instances Cd . The performance evaluation results showed that the CWSA
outperformed both the makespan and cost of standard FCFS, EASY Backfilling, and Minimum
Completion Time (MCT) policy.

However, CWSA did not further optimize its cost minimization strategy using a cost-aware
resource provisioning technique. CWSA auto-scaled the resources using a resource utilization
threshold, in which it acquired and released the resources if their utilization exceeded or was
below a specific number. For example, they implemented the rule; if the usage was ≥70% for
10 minutes, then it was scaled-up by adding 1 VM of small size. In this case, the algorithms with
cost-aware auto-scaling strategy—that specifically acquires and releases particular VMs based
on the workload—may outperform CWSA that only considers overall system utilization based
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auto-scaling. This type of auto-scaling strategy is not provisioning resources that are specifically
tailored to the need of workloads.

5.15 Multi-tenant Workflow as a Service Platform

The latest solution for multiple workflow scheduling was Elastic Resource Provisioning and Sched-
uling Algorithm for Multiple Workflows designed for Workflow as a Service Platforms (EPSM) [58].
This work used a specific term of “multi-tenant workflow as a service” to describe the platform for
executing multiple workflows in the clouds. However, the “multi-tenant workflow as a service”
term and “multiple workflows” can be used interchangeably in this case. The EPSM introduced
a scheduling algorithm for multi-tenant computing platforms that utilized a container to bundle
workflow’s application before deploying it into VMs. In this way, the users can share the same
VMs without having any problem related to software dependencies and libraries.

The algorithm consisted of two-phase resource provisioning that included a flexible approach of
scaling up and down the resources to cope up with the dynamic workload of workflows and sched-
uling that exploited a delay policy based on the task’s deadline to re-use the cheapest resources
as much as possible to minimize the cost. In the resource provisioning phase, EPSM incorporated
an overhead detection in the form of provisioning delay and de-provisioning delay of the VMs.
This strategy was able to reduce unnecessary costs due to violating a coarse-grain billing period of
clouds. The algorithm made an update of the unscheduled tasks’ deadline whenever a task finished
the execution. In this way, the algorithm dynamically adapted the gap between the estimated and
actual execution plans to ensure scheduling objectives. In the scheduling phase, EPSM considered
re-using available VMs before provisioning the new one to minimize the delay of acquiring new
VMs and possible cost minimization by re-using the cheapest VMs available. In general, the time
complexity of the EPSM algorithm is quadratic to the number of tasks processed. Furthermore, the
performance evaluation results showed that this algorithm outperformed the cost-saving of the
Dyna algorithm [41] by 19% on average for various scenarios.

5.16 Concurrent Multiple Workflows Scheduling

The latest work on deadline- and budget-constrained multiple workflows scheduling is the Multi-
workflow Heterogeneous budget-deadline-constrained Scheduling (MW-HBDCS) algorithm [68],
introduced by a group from Guangzhou University, China. This work used the term “concur-
rent multiple workflows” as it emphasized the concurrent condition of multiple workflows, which
means tackling several workflows that arrived at the same time or overlapped on a dense condi-
tion. MW-HBDCS was designed to improve the flaw of the previous similar algorithm, MW-DBS
[49]. Significant enhancement was the inclusion of a budget in the ranking process to prioritize
the tasks for scheduling. The algorithm was also designed to tackle uncertainties in the environ-
ments. In this work, the authors used the terms “consistent” and “inconsistent” environments to
describe various dynamicity in multi-tenant distributed computing systems. In general, the time
complexity was quadratic, similarly to MWDBS time complexity. The evaluation results showed
that MW-HBDCS outperformed the success rate of MW-DBS by 46% and 52% on synthetic and
real-world workflow applications, respectively.

MW-HBDCS tackled many flaws that were not considered in the previous deadline- and budget-
constrained scheduling algorithms. These enhancements were the model that incorporated high
uncertainties and dynamicity, the improvement of a task’s ranking mechanism that made the bud-
get one of the primary constraints in addition to the deadline, which previously only acted as a
complementary constraint. Since the authors considered the budget as crucial as the deadline, it is
essential to include the tradeoff analysis between the values of the budget and deadline, as it is re-
lated to the success rate of workflows execution. One of the techniques to such an approach is the
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Pareto analysis, which is used for multi-objective workflow scheduling (e.g., MOHEFT [78]). Fur-
thermore, this algorithm considers static resource provisioning. Therefore, it may not achieve opti-
mal performance in cloud computing environments where the auto-scaling of resources is possible.

5.17 Scheduling Multiple Workflows under Uncertain Task Execution Time

The latest deadline-aware multiple workflows scheduling algorithm is NOSF [66]. This algorithm
adopted a similar strategy to several previous algorithms (e.g., EDPRS, EPSM, ROSA) designed to
tackle the uncertainties in cloud computing environments. The NOSF aims to minimize the cost
of leasing cloud instances by optimizing resource utilization using the sharing strategy of the VM
billing period. To further distribute a fair share of sub-deadlines between tasks, NOSF made use
of PCP to create end-to-end scheduling of several tasks during the deadline distribution process.
Therefore, traversing workflows for detecting the PCP was the most intensive phase that takes
quadratic time complexity.

NOSF relies on the strategy of maintaining minimal growth of the leased cloud instances instead
of auto-scaling the resources dynamically by eliminating future idle VMs. This strategy may cause
a problem of waiting overhead in very dense workflows’ arrival (i.e., high concurrent workflows).
Combining dynamic auto-scaling and maintaining low growth of VM leased may become an es-
sential strategy for multi-tenant computing platforms with a quite high uncertainties situation.
Furthermore, the performance evaluation results showed that NOSF outperformed ROSA [65] in
terms of reducing the cost and deadline violation probability by an average of 50.5% and 55.7%,
respectively, while improving resource utilization by 32.6% on average.

6 FUTURE DIRECTIONS

Many challenges and problems in the current solutions should be considered for the future
of scientific workflows, as nicely discussed in a study by Deelman et al. [82]. However, this
article describes the particular scheduling aspect explicitly in multi-tenant distributed computing
systems. We capture the future direction of multi-tenancy from existing solutions and rising
technologies that have a high potential to support the enhancement of multiple workflows sched-
uling. The range is broad from the pre-processing phase, which involves the strategy to accurately
estimate task execution time that is a prerequisite for scheduling process; scheduling techniques
that are aware of constraints such as failure, deadline, budget, energy usage, privacy, and
security; and the use of heterogeneous distributed systems that differ not only in capacity but also
pricing scheme and provisional procedures. We also observe a potential use of several technologies
to enhance the multi-tenancy that comes from rising technologies such as containers, serverless
computing, and Unikernels and the broad adoption of the Internet of Things (IoT) workflows.

6.1 Advanced Multi-tenancy Using Microservices

Microservice is a variant of service-oriented architecture (SOA) that has a unique lightweight or
even simple protocol and treats the application as a collection of loosely coupled services [83]. In
this sense, we can consider container technology, serverless computing (i.e., function as a service),
and Unikernels to fall into this category.

Kozhirbayev and Sinnott [84] report that the performance of a container on a bare-metal ma-
chine is comparable to a native environment, since no significant overhead is produced during the
runtime. It is a promising technology to enhance multi-tenancy features for multiple workflows
scheduling, as it can be used as an isolated environment for workflow application before deploy-
ing it into virtual machines in clouds. We argue that, in the future, this technology will be widely
used for solving the multi-tenancy problem, as it has been explored for executing a single scientific
workflow as reported in several studies [85–88].
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However, the main tradeoff of general-purpose container’s performance (i.e., Docker) for scien-
tific applications is security [89]. The multi-tenancy requirements inevitably invite multiple users
sharing the same computational infrastructure at a time. In the case of Docker, every container
process has access to the Docker daemon, which is spawned as a child of the root. At any rate,
this activity compromised the whole IT infrastructure. To tackle this security problem, a Singu-
larity Container that targets explicitly scientific applications has been developed [90]. It has been
tested in the Comet Supercomputer at the San Diego Supercomputer Center [91] and has shown
a promising result for handling multi-tenancy in the future workflow as a service environment.
A study by Suhartanto et al. [92] shows that a container can exploit multiple molecular docking
processes within a host without significant performance degradation. In this way, the algorithms
should be able to enhance the multi-tenancy of a host VM by deploying multiple jobs with ac-
ceptable deterioration. However, the algorithms must consider the additional container initiating
delay [93] as part of their design.

Another promising technology is serverless computing/Function as a Service (FaaS). FaaS is a
new terminology that stands on the top of cloud computing as a simplified version of the virtu-
alization service. In this way, cloud providers directly manage resource allocation, and the users
only needed to pay for the resource usage based on the application codes. This technology facil-
itates users who need to run specific tasks from a piece of code without needing to manage the
cloud instances. We will consider this as part of future directions, since there is high potential of
its multi-tenancy service to accommodate multi-tenant workflows scheduling.

Furthermore, this technology has been tested for single scientific workflow execution, as re-
ported by Malawski [94], Jiang et al. [95], and Malawski et al. [96]. Notably, this FaaS can serve
workloads that consist of platform-independent workflows, which can be efficiently executed on
top of this facility without having to provision a new virtual machine. Nevertheless, deploying
scientific workflows in the serverless infrastructure is limited by the size of applications’ require-
ments in terms of CPU, memory, and network, as reported by Spillner et al. [97].

Finally, Unikernels is another virtualization technology that is designed to maintain perfect iso-
lation of virtual machines and maintain the lightweight of the container [98]. Unikernels enhance
virtualization in terms of weight by removing a general-purpose OS from the VM. In this way,
Unikernels directly run the application on the virtual hardware. Even more impressive, a recent
finding shows that Unikernels do not require a virtual hardware abstraction. It can directly run as a
process by using an existing kernel system, called a whitelisting mechanism [99]. Looking into the
combination features of virtual machines and containers in one single virtualization technology,
we can hope for a better multi-tenancy for the WaaS platform using this technology.

6.2 Reserved vs. On-demand vs. Spot Instances

The further reduction of operational cost has been a long-existing issue in utility-based multi-
tenant distributed computing systems. Notably, in cloud computing environments where the re-
sources are leased from third-party providers based on various pricing schemes, a cost-aware
scheduling strategy is highly considered. Most of the algorithms for clouds use on-demand in-
stances that ensure reliability in a pay-as-you-go pricing model. Meanwhile, Zhou et al. [41] ex-
plored the use of spot instances, which are cheaper but less reliable, as they have limited time
available and could be terminated at an unpredictable time by the providers. This type of resource
raises the issue of fault-tolerance.

However, the use of reserved instances in clouds should be explored to minimize further the
total operational cost as the pricing of this bulk reservation is lower than on-demand even spot
instances. The issue of using reserved instances is related to how accurate the algorithms can
predict the workload of workflows to lease a number of reserved instances. The combination of
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reserved, on-demand, and spot instances must be explored to create an efficient resource provi-
sioning strategy. The workload pattern forecasting model also should accompany the algorithms
to better provision the cloud resources.

6.3 Multi-clouds vs. Hybrid Clouds vs. Bare-Metal Clouds

The use of multi-cloud providers for scientific workflow was explored by Jrad et al. [100] and
Montes et al. [101] by introducing algorithms that were aware of different services available. How-
ever, the only relevant works found in our study are the use of hybrid clouds for separating tasks
execution. In our survey, a work used hybrid clouds to treat tasks with different privacy levels in
healthcare services, while another research utilized public clouds to cover the computational need
that could not be fulfilled using private clouds and on-premises infrastructure. In our opinion,
further utilization of multi-clouds can be beneficial, as a single cloud provider may not be able to
serve the high requirements of resources in multi-tenant computing platforms on particular peak
hours. The other advantage of multi-clouds is the reduction of operational cost as various cloud
providers charge different prices for the datacenter in different geographical locations. In this way,
discovering relevant services can be further explored to minimize data movements by choosing a
particular data center location and also comparing the ratio of price and performance from various
cloud instances from multiple cloud providers.

In this heterogeneity discussion, we have to mention a valuable service that provides a more
heterogeneous infrastructure, called bare-metal clouds. Bare-metal cloud is an emerging service
in the IaaS business model that leases a physical machine instead of a virtual machine to the users.
This service targets users who need specific hardware requirements in an intensive computation
(i.e., GPU, FPGA). While one may compare the elasticity of this service with any standard cloud ser-
vices, recent work has shown that such agility in provisioning bare-metal clouds can be compared
to general VM virtualization [102]. However, the challenge of managing such an environment must
be considered when designing the algorithms. In this way, the scheduling policy should calculate
the several possible overhead factors (i.e., network bandwidth, end-to-end latency) in comparison
to the monetary cost of the infrastructure.

6.4 Fast and Reliable Task Runtime Estimation in Near-real-time Processing

Predicting task runtime in clouds is non-trivial, mainly due to the problem in which cloud resources
are subject to performance variability [34]. This variability occurs due to several factors—including
virtualization overhead, multi-tenancy, geographical distribution, and temporal aspects [11]—that
affect not only computational performance but also the communication network used to trans-
fer input/output data [103]. The majority of algorithms rely on the estimation of task execution
time to produce an accurate schedule plan. Meanwhile, the works on task runtime estimation in
scientific workflows are limited, including the latest works by Pham et al. [33] and Nadeem et al.
[104] that used machine learning techniques. Previously, work on scientific workflow profiling and
characterization by Juve et al. [24] that produced a synthetic workflow generator is being used by
the majority of studies on workflow scheduling.

Future techniques must be able to address dynamic workloads that are continuously arriving,
as in stream data processing. The adoption of an online and incremental machine learning ap-
proach may become another solution. In this approach, the algorithm does not need to learn from
a model constructed from a large number of collected datasets, which is generally time-consuming
and compute intensive. The algorithm only sees the data once and then integrates additional in-
formation as the model is incrementally built from new data. The latest work by Sahoo et al. [105]
develops OMKR, an online and incremental machine learning approach, to handle large time-
series datasets in a near real-time process. While this approach is still intensively being studied
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for scientific workflows, the preliminary work has been presented by Hilman et al. [106] for fu-
ture workflows as a service platform. These methods should mainly consider the concept drift that
impacted the performance variability of the clouds as reported for other continuous data stream
problems [107].

6.5 Integrated Anomaly Detection and Fault-tolerant-aware Platforms

Detecting anomalies in scientific workflows is one of the challenges to maintain the fault-tolerance
of scheduling in multi-tenant distributed computing systems. Several notable works are pre-
sented by Samak et al. [108] that detailed integrated workflows and resource monitoring for the
STAMPEDE project. Furthermore, Gaikwad et al. [109] used Autoregression techniques to detect
the anomalies by monitoring the systems, and a similar work by Rodriguez et al. [110] adopted
Neural Network methods. However, the fault-tolerant algorithms found in our survey used repli-
cation technique [59] and checkpointing [41] to handle failure in workflows execution.

Future works in this area include the integration of detecting anomalies and failure-aware sched-
uling in multi-tenant computing platforms and the use of various fault-tolerant methods in failure-
aware algorithms, such as resubmission and live migration. Furthermore, to investigate how the
anomalies detection model can be combined with the task runtime prediction model to better
schedule multiple tasks on heterogeneous environments. In this case, the algorithms should in-
corporate the ability to fully aware of the underlying hardware performance and their monitoring
features. The algorithms then can decide to either resubmit the anomalous jobs or duplicated the
jobs in the first place to ensure the completion of the workflows.

6.6 Multi-objective Constraints Scheduling

The flexibility and ability to easily scale the number of resources (i.e., VMs) in the cloud computing
environment leads to a tradeoff between two conflicting QoS requirements: time and cost. In this
case, the more powerful VMs capable of processing a task faster will be more expensive than the
slower, less powerful ones. There has been an extensive research [10] on this scheduling topic,
specifically designed for cloud computing environments, with most works proposing algorithms
that were aimed at minimizing the total execution cost while finishing the workflow execution
before a user-defined deadline. Meanwhile, the works that aimed to minimize the makespan by
fully utilizing the available budget to lease as much as possible the faster resources are limited.
We identified algorithms that considered budget in their scheduling, such as References [50, 68,
111, 112], which exploited the workflow budget as a complementary constraint to the deadline.
Nevertheless, none of them aims to fully utilize the available budget to get a faster execution
time.

Furthermore, studies on multiple workflows scheduling that is specifically aim to achieve multi-
objective optimization (i.e., time and cost minimization) is also minimal. While metaheuristics
and evolutionary programming have been used, such as in Fard et al. [113], the implementation
for multiple workflows scheduling is limited by its pre-processing requirement. However, a more
lightweight list-based heuristic approach, such as MOHEFT [78] and DPDS [114], can be consid-
ered for multiple workflows scheduling. In this case, the algorithms should carefully handle the
tradeoff between achieving two or more objective constraints and maintaining the lightweight
low-complexity scheduling process. Lightweight scheduling can be achieved by exploiting heuris-
tics approaches to gain a relatively good optimization instead of aiming for the optimal schedule
through sophisticated approaches with high computational cost, such as evolutionary and bio-
inspired computing algorithms.
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6.7 Energy-efficient Computing

Beloglazov et al. [115] have extensively explored the issue of green computing in cloud datacenters.
Interestingly, there are several works in our study that addressed this energy-efficient and carbon
footprint issue. While a work discussed energy-efficient strategy at the infrastructure level by
implementing a live migration technique [60], another work tackled the problem at the workload
level by allocating the load to specific physical machines [61].

For the multi-tenant computing platform providers that rely on IaaS clouds to lease the compu-
tational resources, adopting workload-level strategies for energy-aware scheduling is one of the
possible further explorations. In this case, they do not have direct control over raw computational
infrastructures as IaaS cloud providers do. Therefore, the algorithms should consider the energy-
aware strategy of choosing the green computational resources, as discussed by Toosi et al. [116]
in a work that explored a renewable-aware geographical load balancing.

6.8 Privacy-aware Scheduling

The users’ privacy is an essential aspect that has been tackled by separating the execution in a
private and public cloud-based on their data privacy level [57]. However, it is crucial to consider
the security aspect of managing privacy, since both issues are highly inter-related. One of the
works that consider security is the SABA algorithm [117]. However, it is designed for a single
workflow scheduling and intended to explore the relationship between cost and security aspects
in the scheduling, instead of focusing on the privacy aspect.

Further exploration of privacy and security in the multiple workflows scheduling has to be done
as it resembles real-world workflow application problems. Another way to deal with privacy is by
adopting a reliable security protocol for data processing in clouds, such as homomorphic encryp-
tion [118]. However, one inevitable tradeoff from the attempt to increase the security aspect is a
delay to the total computational time. Multiple workflows scheduling algorithms should consider
this tradeoff and include it as part of the scheduling strategy design.

6.9 Internet of Things Workflows

A vision paper by Gubbi et al. [119] mentions a future use of the Internet of Things (IoT) in a
workflow form. The idea has been implemented in several works, including a smart city system
[120] and a big data framework [121]. This type of workflow increases in numbers, and its broad
adoption is predicted to occur in the near future. Therefore, the need for a multi-tenant computing
platform that can handle such workflows may arise.

IoT applications are highly demanding network resources to handle end-to-end services from
sensors to users. Therefore, network-intensive strategies such as bandwidth-aware and latency-
aware must be considered in scheduling algorithms. A recent study by Stavrinides and Karatza
[122] presents a work that is aware of edge and cloud resources available to differentiate task
allocation based on their computational requirements.

7 SUMMARY

This article presents a study on algorithms for multiple workflows scheduling in multi-tenant dis-
tributed computing systems. In particular, the research focuses on the heterogeneity of workloads,
a model for deploying multiple workflows, a priority assignment model for multiple users, sched-
uling techniques for multiple workflows, and resource provisioning strategies in multi-tenant
distributed computing systems. It presents a taxonomy covering the focus of the study based on
a comprehensive review of multiple workflows scheduling algorithms. The taxonomy is accom-
panied by classification from surveyed algorithms to show the existing solutions for multiple
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workflows scheduling in various aspects. The current algorithms within the scope of the study
are reviewed and classified to open up the problems in this area and provide the readers with a
helicopter view of multiple workflows scheduling. Some descriptions and discussions of various
solutions are covered in this article to give a more detailed and comprehensive understanding of
the state-of-the-art techniques and even to get an insight into further research and development
in this area.
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A EXPERIMENTAL DESIGN OF SURVEYED ALGORITHMS

This document contains the experimental settings of each algorithm that were not described in

the main article.

Table 1. Experimental Design of RANK_HYBD Algorithm [1]

Experiment Type Simulation

Workload

Synthetic workflows : Taken from Hönig et al. [2]

Number of workflows : 25 workflows

Arrival intervals : Poisson distribution

Workflow Properties

Node (175–249) : Number of tasks

Meshing degree : Nodes connectivity

Edge-length : Average number of nodes between two connected nodes

CCR : Ratio of computation and communication time

Performance Metrics

Makespan : Total execution time

Turnaround time : Makespan and waiting time

Resource utilization : Percentage of time when computational resources are
busy

Table 2. Experimental Design of OWM Algorithm [3]

Experiment Type Simulation

Grid Settings Number of processors : 120 processors

Workload

Synthetic workflows : Randomly generated

Number of workflows : 100 workflows

Arrival intervals : Poisson distribution

Workflow Properties

Node (20–100) : Number of task

Shape (0.5–2.0) : Workflow’s degree of parallelism

OutDegree (1–5) : Maximum number of immediate descendants of a task
CCR (0.1–2.0) : Ratio of computation and communication time
BRange (0.1–1.0) : Distribution range of computation cost of

tasks on processors
WDAG (100–1,000) : Average computation cost of a workflow

Performance Metrics

Makespan : Total execution time

Schedule length ratio : Ratio of makespan and critical path length

Win : Percentage of a particular workflow got
the shortest makespan
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Table 3. Experimental Design of MOWS Algorithm [4]

Experiment Type Simulation

Workload

Synthetic workflows : Randomly generated

Number of workflows : 100 workflows

Arrival intervals : Poisson distribution

Workflow Properties

Node (20–100) : Number of task

Shape (0.5–2.0) : Workflow’s degree of parallelism

OutDegree (1–5) : Maximum number of immediate descendants
of a task

CCR (0.1–2.0) : Ratio of computation and communication
time

BRange (0.1–1.0) : Distribution range of computation cost of
tasks on processors

WDAG (100–1,000) : Average computation cost of a workflow

Performance Metrics

Turnaround time : Total execution and waiting time

Schedule length ratio : Ratio of makespan and critical path length

Ratio of Shortest
turnaround time

: Ratio of a particular workflow got the
shortest turnaround time

Table 4. Experimental Design of P-HEFT Algorithm [5]

Experiment Type Simulation

Grid Settings

Number of processors : 50 processors

Maximum processor speed : 400 Mflops/s

Network bandwidth : 100 Mbps

Network latency : 50 μs

Workload

Synthetic workflows : Randomly generated

Number of workflows : 12 workflows

Arrival intervals : 40% elapsed time of the last job

Workflow Properties

Width : Number of task on the largest level

Regularity : Uniformity of the number of task in
each level

Density : Number of edges between two levels

Jumps : Edge connection between two
consecutive levels

Performance Metrics
Makespan : Total execution time

Efficiency : Ratio of sequential execution and
parallel time
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Table 5. Experimental Design of MQMW Algorithm [6]

Experiment Type Simulation

Workload
Synthetic workflows : Randomly generated

Number of workflows : 25 workflows

Performance Metrics

Makespan : Total execution time

Cost : Cloud resource monetary cost

Success rate : Percentage of successfully executed
workflows

Table 6. Experimental Design of MQSS Algorithm [7]

Experiment Type Simulation

Workload
Synthetic workflows : Randomly generated

Number of workflows : 30 workflows

Performance Metrics

Relative weight of
resource

: Different computational capacity of
resources

Success rate : Percentage of successfully executed
workflows

Table 7. Experimental Design of EDF_BF Algorithm [8]

Experiment Type Simulation

Grid Settings

Number of processors : 32 processors

Heterogeneity level (0–2) : Difference in processors’ speed

Mean execution rate of
processors (μ =1)

: Processors’ speed

Mean data transfer rate (v =1) : Data transfer’s speed

Workload

Synthetic workflows : Randomly generated based on
Stavrinides and Karatza [9]

Number of workflows : 100 workflows

Arrival intervals : Poisson distribution

Workflow Properties

Node (1–64) : Number of tasks

Relative deadline (1–2) : Based on critical path length (CPL)

CCR (0.1–10) : Ratio of computation and
communication time

Performance Metrics Job guarantee ratio : Ratio of successfully executed
workflows
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Table 8. Experimental Design of EDF_BF_IC Algorithm [10]

Experiment Type Simulation

Cloud Settings

Number of VMs : 64 VMs

Heterogeneity level (0.5) : Difference in VMs’ computational
capacity

Mean VM execution rate
(μ =1)

: VM’s computational capacity

Mean data transfer rate (v =1) : Data transfer’s speed

Price per time unit ($0.01) : VM leased fee per time unit

Workload

Synthetic workflows
: Randomly generated based on

Stavrinides and Karatza [11]

Number of workflows : 105 workflows

Arrival intervals (λ = 0.2) : Poisson distribution

Workflow Properties

Node (1–64) : Number of tasks

Relative deadline (1–2) : Based on critical path length (CPL)

CCR (0.1–10) : Ratio of computation and
communication time

Performance Metrics

Overal provided Quality of
Service

: Guarantee ratio × average result
precision

Average cost per application : Average makespan × price per
time unit

Table 9. Experimental Design of CWSA Algorithm [12]

Experiment Type Simulation using CloudSim [13]

Cloud Settings

Number of VM type : 4 types

Provisioning delay : 97 s

Cloud billing period : 1 hour

Workload
Synthetic workflows : Randomly generated based on Juve

et al. [14]

Number of workflows : 1–20 workflows

Workflow Properties

Node (30–1,000) : Number of task

Workflow applications : CyberShake [15] and SIPHT [16]

Deadline (2–4) : Based on critical path length (CPL)

Performance Metrics

Makespan : Total execution time

Tardiness : Exceeding degree of the expected
completion time

Laxity : Degree of a task’s urgency execution

Mean scheduling execution
time

: Average time taken by the scheduler
to execute workflow

Resource utilization rate : Percentage of time when
computational resources are busy

Makespan standard deviation : Standard deviation of the workflow’s
makespan

Skewness of makespan : Symmetry measurement of the
makespan distribution

Cost : Cloud resource monetary cost
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Table 10. Experimental Design of FSDP Algorithm [17]

Experiment Type Simulation

Workload
Synthetic workflows : Randomly generated based on Wang

et al. [18]

Number of workflows : 25 workflows

Workflow Properties

Width (4–12) : Number of task on the largest level

Regularity (0.2–0.8) : Uniformity of the number of task in each
level

Density (0.2–0.8) : Number of edges between two levels

Jumps (1–4) : Edge connection between two consecutive
levels

CCR (0.1–10) : Ratio of computation and communication
time

Performance Metrics
Makespan : Total execution time

Win : Percentage of a particular workflow got
the shortest makespan

Table 11. Experimental Design of F_DMHSV Algorithm [19]

Experiment Type Simulation

Workload

Synthetic workflows : Randomly generated

Number of workflows : 50 workflows

Arrival intervals : 0–200 time units

Workflow Properties

Node (10–50) : Number of task

Shape (0.5–2.0) : Workflow’s degree of parallelism

OutDegree (1–5) : Maximum number of immediate
descendants of a task

CCR (0.1–2.0) : Ratio of computation and communication
time

Performance Metrics

Schedule length ratio : Ratio of makespan and critical path length

Unfairness : Difference between a workflow’s
slowdown and average slowdowns

Deadline missed ratio : Ratio of workflows missing the deadline

ACM Computing Surveys, Vol. 53, No. 1, Article 10. Publication date: February 2020.



10:6 M. H. Hilman et al.

Table 12. Experimental Design of FDWS Algorithm [20]

Experiment Type Simulation using SimGrid [21]

Grid Settings

Number of processors : 280 processors

Maximum processor speed : 13–30 Gflops/s

Platforms derivation : Based on Grid5000 deployed in
France [22]

Workload

Synthetic workflows : Randomly generated

Number of workflows : 50 workflows

Arrival intervals : 0–90% elapsed time of the last job

Workflow Properties

Width (20–50) : Number of task on the largest level

Regularity (0.2–0.8) : Uniformity of the number of task in
each level

Density (0.2–0.8) : Number of edges between two levels

Jumps (1–3) : Edge connection between two
consecutive levels

Performance Metrics

Makespan : Total execution time

Turnaround time : Total execution and waiting time

Turnaround time ratio : Ratio of turnaround time and the
minimum makespan

Normalized turnaround time : Ratio of minimum and actual
turnaround time

Win : Percentage of a particular workflow
got the shortest makespan

Table 13. Experimental Design of Adaptive Dual-criteria Algorithm [23]

Experiment Type Simulation

Grid Settings Number of processors : 30 processors

Workload

Synthetic workflows : Randomly generated based on Bharathi
et al. [24]

Number of workflows : 100 workflows

Arrival intervals : 1–1000 s

Workflow Properties

Node (20–30) : Number of task

Workflow applications : LIGO [25]

CCR (0.1–10) : Ratio of computation and communication
time

Performance Metrics
Makespan : Total execution time

Scheduling overhead : Delay in the scheduling process
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Table 14. Experimental Design of MLF_ID Algorithm [26]

Experiment Type Simulation

Cloud Settings
Number of Public Cloud VM type : 6 types

Number of Private Cloud Instances : 512 CPUs

Workload
Synthetic workflows : Randomly generated based on

Bharathi et al. [24]
Number of workflows : 1000 workflows

Workflow Properties

Node (997–1,000) : Number of task

Deadline (0.2–5 hours) : Based on selected range of instance
types for executing tasks

Input dataset size : 0–300 GB

Performance Metrics

Deadline met : Number of workflows met their
deadline

Number of Application : Number of workflows executed in
private clouds

Cost : Public cloud resource monetary cost

Table 15. Experimental Design of OPHC-TR Algorithm [27]

Experiment Type Real experiments

Workload

Medical research application : Based on the study by Watson [28]

Number of workflows : 1,000 workflows

Arrival intervals (200–700) : Poisson distribution

Workflow Properties

Node (9–9,000) : Number of task

Deadline (0–1) : Based on workflow execution time
in a dedicated fast resources

Private instance limitation : Private cloud resource restriction for
a workflow

Performance Metrics Cost : Cloud resource monetary cost

Table 16. Experimental Design of Dyna Algorithm [29]

Experiment Type Simulation using CloudSim [13]

Cloud Settings

Number of VM type : 4 types

Provisioning delay (on-demand
instances)

: 120 s

Provisioning delay (spot instances) : 420 s

Cloud billing period : 1 hour

Workload

Synthetic workflows : Randomly generated based on
Juve et al. [14]

Number of workflows : 100 workflows

Arrival intervals : Poisson distribution

Workflow Properties

Node (997–1,000) : Number of task

Workflow applications : LIGO [25], Montage [30], and
Epigenomics [14]

Performance Metrics

Deadline met : Number of workflows met
their deadline

Cost : Cloud resource monetary cost

Cloud instances type : Breakdown of cloud instances
type during execution
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Table 17. Experimental Design of EPSM Algorithm [31]

Experiment Type Simulation using CloudSim [13]

Cloud Settings

Number of VM type : 4 types

VM Provisioning delay : 0–250 s

Container Provisioning delay : 0–100 s

Cloud billing period : 1 hour

Workload

Synthetic workflows : Randomly generated based on Juve
et al. [14]

Number of workflows : 1,000–4,000 workflows

Arrival intervals : Poisson distribution

Workflow Properties
Node (30–1,000) : Number of task

Deadline : Randomly generated based on
simulated execution time

Performance Metrics

Deadline met : Number of workflows met their
deadline

Cost : Cloud resource monetary cost

Avg. VM utilization : Percentage of time when a VM is
busy

Makespan/Deadline Ratio : Ratio of actual makespan and
assigned deadline

Cloud instances type : Breakdown of cloud instances
type during execution

Table 18. Experimental Design of DGR Algorithm [32]

Experiment Type Simulation

Grid Settings

Number of processors : 1,000 processors

Computing capacity : Normalized value (1–10)

Computing speed : Normalized value (1–8)

Network bandwidth : Normalized value (1–8)

Workload
Synthetic workflows : Randomly generated

Arrival intervals : Poisson distribution

Workflow Properties

Node (20–100) : Number of task

Shape (0.5–2.0) : Workflow’s degree of parallelism

CCR (0.1–10) : Ratio of computation and communication
time

Tasks’ length (10–800) : Tasks’ execution time based on a certain
time units distribution

Performance Metrics

Makespan : Total execution time

Makespan speedup : Makespan improvement percentage
against HEFT

Acceptance rate : Percentage of successfully executed
workflows

Resource utilization : Percentage of time when computational
resources are busy
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Table 19. Experimental Design of FASTER Algorithm [33]

Experiment Type Simulation using CloudSim [13]

Cloud Settings

Number of VM type : 4 types

VM Provisioning delay : 105 s

Cloud billing period : 1 hour

Workload

Synthetic workflows : Randomly generated based on Juve
et al. [14]

Number of workflows : 400 workflows

Arrival intervals : Poisson distribution

Workflow Properties
Node (50–500) : Number of task

Deadline : Uniformly distributed based on
minimal execution time

Performance Metrics

Guarantee ratio : Percentage of successfully executed
workflows

Host active time : Total active time of all hosts

Ratio of task time over hosts
time

: Ratio of tasks’ execution time over
hosts active time

Table 20. Experimental Design of EnReal Algorithm [34]

Experiment Type Simulation

Datacenter Settings
Number of Server type : 4 types

Energy consumption rate : 86–342 W

Workload
Synthetic workflows : Randomly generated based on Liu

et al. [35]

Number of workflows : 50–300 workflows

Workflow Properties

Node (5–25) : Number of task

Resource requirement (1–15) : Number of required VMs for each
task

Task length (0.1–5.0) : Task execution time in hours

Performance Metrics
Resource utilization

: Percentage of time when
computational resources are busy

Energy Consumption : Datacenter energy consumption
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Table 21. Experimental Design of EONS Algorithm [36]

Experiment Type Simulation using CloudSim [13]

Datacenter Settings

Number of Server type : 10 types
Number of VM types : 10 types
CPU resource requirements : 200–2,000 MHz
Inter-VM bandwidth : 1 Gbps
VM provisioning delay : 90 s

Workload
Synthetic workflows : Randomly generated based on Juve et al. [14]
Arrival intervals : Poisson distribution

Workflow Properties

Node (30–100) : Number of task
CCR (0.5–5.5) : Ratio of computation and

communication time

Performance Metrics
Resource utilization : Percentage of time when

computational resources are busy
Energy Consumption : Datacenter energy consumption

Table 22. Experimental Design of DPMMW & GESMW Algorithm [37]

Experiment Type Simulation

Datacenter Settings Number of processors : 64 processors

Workload
Synthetic workflows : Randomly generated
Number of workflows : 10–50 workflows

Workflow Properties

Node (40–55) : Number of task
Deadline (0–2) : Increment of the workflow lower bound execution
Workflow applications : Gaussian elimination [38], fast fourier

transform [38],
: linear algebra [39], diamond graph [39],

and complete binary tree [39]

Performance Metrics
Deadline missed ratio : Ratio of workflows missing the deadline
Energy Consumption : Datacenter energy consumption

Table 23. Experimental Design of PRS Algorithm [40]

Experiment Type Simulation using CloudSim [13]

Cloud Settings

Number of VM type : 6 types
Network bandwidth : 1 Gbps
Cloud billing period : 1 hour

Workload

Synthetic workflows : Randomly generated based on Juve et al. [14]
Number of

workflows
: 1,000 workflows

Arrival intervals : Poisson distribution

Workflow Properties
Node (30–100) : Number of task
Deadline : Generated based on the fastest execution time

Performance Metrics

Cost : Cloud resource monetary cost
Resource utilization : Percentage of time when computational

resources are busy
Deviation : Cost of time deviation between predicted

and actual finish time
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Table 24. Experimental Design of EDPRS Algorithm [41]

Experiment Type Simulation using CloudSim [13]

Cloud Settings

Number of VM type : 6 types

VM provisioning delay : 120 s

Cloud billing period : 1 hour

Workload

Synthetic workflows : Randomly generated based on Juve et al. [14]

Number of workflows : 1000 workflows

Arrival intervals : Poisson distribution

Workflow Properties
Node (30–100) : Number of task

Deadline : Generated based on the fastest execution time

Performance Metrics

Cost : Cloud resource monetary cost

Resource utilization : Percentage of time when computational
resources are busy

Deviation : Cost of time deviation between predicted and
actual finish time

Table 25. Experimental Design of ROSA Algorithm [42]

Experiment Type Simulation

Cloud Settings

Number of VM type : 4 types

Network bandwidth : 1 Gbps

VM provisioning delay : 30 s

Cloud billing period : 1 hour

Workload

Synthetic workflows : Randomly generated based on Juve et al. [14]

Number of workflows : 1000 workflows

Arrival intervals : Poisson distribution

Workflow Properties
Node (25–100) : Number of task

Deadline : Generated based on the fastest execution time

Performance Metrics
Cost : Cloud resource monetary cost

Makespan : Total execution time

Table 26. Experimental Design of NOSF Algorithm [43]

Experiment Type Simulation

Cloud Settings

Number of VM type : 7 types

Network bandwidth : 100 Mbps

VM provisioning delay : 97 s

Cloud billing period : 1 hour

Workload

Synthetic workflows : Randomly generated based on Juve et al. [14]

Number of workflows : 1,000 workflows

Arrival intervals : Poisson distribution

Workflow Properties
Node (30–1,000) : Number of task

Deadline : Generated based on the fastest execution time

Performance Metrics
Resource utilization : Percentage of time when computational

resources are busy

Deadline violation : Percentage of exceeding workflow deadlines
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Table 27. Experimental Design of EDF_BF In-Mem Algorithm [44]

Experiment Type Simulation

Grid Settings

Number of processors : 64 processors

Heterogeneity level (0–2) : Difference in processors’ speed

Mean execution rate of
processors (μ =1)

: Processors’ speed

Mean data transfer rate (v =1) : Data transfer’s speed

Mean file system throughput
rate (ρ =1)

: File system access’ speed

Workload

Synthetic workflows : Randomly generated based on
Stavrinides and Karatza [9]

Number of workflows : 106 workflows

Arrival intervals : Poisson distribution

Workflow Properties

Node (1–64) : Number of tasks

Relative deadline (1–2) : Based on critical path length (CPL)

CCR (0.1–10) : Ratio of computation and
communication time

IOCR (0.25–1) : Ratio of I/O and communication time

Performance Metrics

Application completion ratio : Ratio of successfully completed
workflows

Application guarantee ratio : Ratio of completed workflows within
the deadline

Tardiness : Exceeding degree of the expected
completion time

Table 28. Experimental Design of MW-HBDCS Algorithm [45]

Experiment Type Simulation using SimGrid [21]

Grid Settings
Number of processors : 20–64 processors

Platforms derivation : Based on Grid5000 deployed in France [22]

Workload

Synthetic workflows : Randomly generated based on Juve et al. [14]

Number of workflows : 50 workflows

Arrival intervals : 10–50% elapsed time of the last job

Workflow Properties

Node (10–100) : Number of task on the largest level

Regularity (0.2–0.6) : Uniformity of the number of task in each level

Density (0.2–0.6) : Number of edges between two levels

Jumps (1–4) : Edge connection between two consecutive
levels

CCR (0.1–5) : Ratio of computation and communication time

BRange (0.1–2) : Distribution range of computation cost of tasks
on processors

Deadline (0.5–0.9) : Based on min. and max. execution time

Budget (0.4–0.8) : Based on min. and max. execution cost

Performance Metrics
Planning successful

rate
: Ratio of successfully planed and executed

workflows
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Table 29. Experimental Design of MW-DBS Algorithm [46]

Experiment Type Simulation using SimGrid [21]

Grid Settings
Number of processors : 20–64 processors

Platforms derivation : Based on Grid5000 deployed in France [22]

Workload

Synthetic workflows : Randomly generated based on Juve et al. [14]

Number of workflows : 50 workflows

Arrival intervals : 10–50% elapsed time of the last job

Workflow Properties

Node (30–100) : Number of task on the largest level

Regularity (0.2–0.5) : Uniformity of the number of task in each
level

Density (0.2–0.5) : Number of edges between two levels

Jumps (1–4) : Edge connection between two consecutive
levels

Deadline (1–2) : Based on min. and max. execution time

Budget (0–1) : Based on min. and max. execution cost

Performance Metrics
Planning successful rate : Ratio of successfully planed and executed

workflows

Table 30. Experimental Design of MQ-PAS Algorithm [47]

Experiment Type Simulation using SimGrid [21]

Grid Settings
Number of processors : 20–64 processors

Platforms derivation : Based on Grid5000 deployed in France [22]

Workload

Synthetic workflows : Randomly generated based on Juve et al. [14]

Number of workflows : 50 workflows

Arrival intervals : 10–50% elapsed time of the last job

Workflow Properties

Node (40–120) : Number of task on the largest level

Regularity (0.2–0.8) : Uniformity of the number of task in each
level

Density (0.2–0.8) : Number of edges between two levels

Jumps (1–4) : Edge connection between two consecutive
levels

Deadline (1–2) : Based on min. and max. execution time

Budget (0–1) : Based on min. and max. execution cost

Performance Metrics
Planning successful rate : Ratio of successfully planed and executed

workflows
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Table 31. Experimental Design of CERSA Algorithm [48]

Experiment Type Simulation

Cloud Settings
Number of VM type : 4 types

Cloud billing period : 1 hour

Workload

Synthetic workflows : Randomly generated based on Juve et al. [14]

Number of workflows : 1,000 workflows

Arrival intervals : Poisson distribution

Workflow Properties
Node (30–100) : Number of task

Deadline : Generated based on the fastest execution
time

Performance Metrics
Cost : Cloud resource monetary cost

Resource utilization : Percentage of time when computational
resources are busy
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