
3822 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 5, MARCH 1, 2021

A Volunteer-Supported Fog Computing
Environment for Delay-Sensitive IoT Applications

Babar Ali, Muhammad Adeel Pasha , Senior Member, IEEE, Saif ul Islam ,
Houbing Song , Senior Member, IEEE, and Rajkumar Buyya , Fellow, IEEE

Abstract—Fog computing (FC) has emerged as a complemen-
tary solution to the centralized cloud infrastructure. An FC
node is available in closer proximity to users and extends cloud
services to the edge of the network in a highly distributed man-
ner. However, with an increase in streaming and delay-sensitive
Internet-of-Things (IoT) applications, FC also needs to address
the issue of higher latency while forwarding compute-intensive
jobs to remote cloud data centers. Hence, there is a need to
investigate the use of computational resources at the edge of the
network. Volunteer computing (VC) offers a reduction in the
cost of maintaining high-performance computing by making use
of user-owned underutilized or idle resources, e.g., laptops and
desktop computers closer to fog devices. We propose volunteer-
supported FC (VSFC), as a computing paradigm, that explores
the interplay of these two distributed computing domains to
help minimize inherent communication delays of cloud comput-
ing, energy consumption, and network usage. To this effect, we
have extended the iFogSim toolkit to support VSFC. Extensive
simulations show that VSFC outperforms traditional FC-cloud
computing by reducing delay by 47.5%, energy by 93%, and
network usage by 92% under normal to heavy load conditions.

Index Terms—Cloud computing, distributed computing
paradigms, fog computing (FC), Internet of Things (IoT),
resource management, volunteer computing (VC).

I. INTRODUCTION

THE PLETHORA of smart devices has encouraged the
industrial and research communities to envision the

beauty of predicting and taking precautionary measures in
advance to save plenty of resources. In this regard, the Internet
of Things (IoT) supports the phenomenon of connecting every
object on the face of Earth irrespective of its platform, commu-
nication technology, etc. [1]. The IoT environment comprises

Manuscript received April 16, 2020; revised July 24, 2020; accepted
September 10, 2020. Date of publication September 21, 2020;
date of current version February 19, 2021. (Corresponding authors:
Muhammad Adeel Pasha; Saif ul Islam.)

Babar Ali is with the Department of Computer Science, SBA School of
Science and Engineering, Lahore University of Management Sciences, Lahore
54792, Pakistan (e-mail: 17030033@lums.edu.pk).

Muhammad Adeel Pasha is with the Department of Electrical Engineering,
SBA School of Science and Engineering, Lahore University of Management
Sciences, Lahore 54792, Pakistan (e-mail: adeel.pasha@lums.edu.pk).

Saif ul Islam is with the Department of Computer Science, Institute of Space
Technology, Islamabad 44000, Pakistan (e-mail: saiflu2004@gmail.com).

Houbing Song is with the Department of Electrical Engineering and
Computer Science, Embry-Riddle Aeronautical University, Daytona Beach,
FL 32114 USA (e-mail: h.song@ieee.org).

Rajkumar Buyya is with the Cloud Computing and Distributed Systems
Laboratory, School of Computing and Information System, University of
Melbourne, Parkville, VIC 3010, Australia (e-mail: rbuyya@unimelb.edu.au).

Digital Object Identifier 10.1109/JIOT.2020.3024823

of things that can be your wearables (smartwatch, glasses,
etc.), vehicles (autonomous cars, smart bikes, etc.), fun time
gadgets (cell phones, tablets, gaming devices, smart cameras,
etc.), and office or working place machines (laptops, com-
puters, etc.) [2]. IoT laid the foundation of a new era of
technology comprising of a large pool of applications, includ-
ing smart parking, traffic control, smart cities, connected cars,
smart grid and meters, greenhouses, etc., [3], [4] as shown in
Fig. 1. The surging of aforesaid and miniaturized ubiquitous
devices led us to the cloud infrastructure due to unlimited
resources and a variety of services availability [5]. Cloud
computing is provisioning resources by on-demand and self-
service models, including storage, applications, services, etc.,
to the users through the Internet [6]. It provides outsourcing
data facility to end users and releases them from maintaining
their own infrastructures. Cloud is not only serving humanity
(e.g., Dell secure healthcare cloud) but also generating a huge
revenue (e.g., social networking and Amazon).

However, the prodigal use of cloud resources, high band-
width requirement, issue of mobility, and federated infrastruc-
ture result in some drawbacks as well that include high latency,
high congestion, and huge idle energy consumption [7]. Cloud
is suffering from core network bandwidth limitation by for-
warding the deluge of data that can be astutely foreseen in the
IoT storm [8]. Similarly, though the IoT paradigm provides
every time and anywhere connectivity of the objects [9], this
connectivity is futile if we cannot use the sensed and gath-
ered data in a timely manner. However, the deluge of data
generated cannot be used by the devices on their own. Thus,
to realize the future and benefits of the IoT infrastructure,
we need to have devices that can store, process, and send
back the insights to the devices to act upon the user input
with low latency. Cloud infrastructure is not able to meet
the aforementioned demands of emerging compute-intensive
applications, which led the research community to coin a term
of fog computing (FC).

FC is a hierarchical distributed infrastructure, introduced to
provide cloud-based services in closer proximity to end users.
Being located in the middle of the cloud and IoT devices,
fog supports mobility, distributed architecture, heterogeneity,
interoperability, scalability, location awareness, and quality
of service (QoS) retaining low latency for time-critical and
delay-sensitive applications, such as telehealth, smart trans-
portation, industrial control, and online gaming [10], [11]. Fog
nodes can be our routers or specifically designed devices as
shown in Fig. 1. These are capable of storing, processing, and

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2021 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9892-5201
https://orcid.org/0000-0002-9546-4195
https://orcid.org/0000-0003-2631-9223
https://orcid.org/0000-0001-9754-6496

ALI et al.: VOLUNTEER-SUPPORTED FOG COMPUTING ENVIRONMENT FOR DELAY-SENSITIVE IoT APPLICATIONS 3823

Fig. 1. Generic diagram of fog infrastructure and related applications.

communicating data with the cloud, IoT, and other fog nodes.
However, these resources are available in a limited capacity,
and on the arrival of proliferated time-sensitive requests, fog
nodes have to divert them to the cloud for processing that
results in an unacceptably high latency [12].

Similarly, volunteer computing (VC) is another distributed
computing model like the fog that harvests the idle resources
of interconnected storage-excessive and compute-excessive
devices to execute compute-intensive projects [13]. People,
who want to volunteer their resources, download the task file
from the server and start executing on their respective devices,
e.g., cell phones, laptops, desktop computers, etc. Recent stud-
ies show that the explosive growth of the aforementioned
devices can provide more resources than a centralized com-
puting system [14]. In order to develop and surge the public
interest toward resource sharing, Shahri et al. [15] proposed
the idea of gamification while Beraldi et al. [16] proposed
a virtual coins-based incentive mechanism. VC provides a
low-price, reliable, and scalable platform in which a mid-
dleware device divides an extensive job into granular chunks
for parallel execution. The utmost challenge faced by the VC
is heterogeneity among available volunteers, which requires
efficient distribution of tasks among them considering their
capabilities.

This article proposes a new computing paradigm called
volunteer-supported FC (VSFC), which is a hybrid of FC-
Cloud and VC paradigms. The core concept of VSFC is to
leverage the underutilized resources of end devices in the
vicinity of a fog node to address the issues of high latency,
energy consumption, and network usage faced by the cloud
infrastructure. On the contrary to the conventional FC-Cloud
computing paradigm, once the fog nodes run out of resources
for delay-sensitive applications, the tasks are migrated to vol-
unteer devices in the vicinity to alleviate the issue of high
latency and conserve energy at the system level. The main
contributions of our work are listed as follows.

1) We propose VSFC, a new computing paradigm for IoT
applications that combines FC and VC to enrich the
computing capabilities at the edge of the network.

2) We extend the well-known iFogSim toolkit [17] by
incorporating a VC layer to enable VSFC. This layer

provisions the volunteers to participate when the fog
device is exhausted. Instead of sending delay-sensitive
jobs to the federated cloud, the fog device efficiently
executes it over the nearby available volunteer devices.

3) We perform extensive simulations to provide a compar-
ative analysis of FC-Cloud and the VSFC paradigms.
Moreover, we also investigate the tradeoffs of shift-
ing delay-sensitive jobs from the baseline FC-Cloud to
VSFC.

The remainder of the article is structured as follows. In
Section II, we present the literature review of FC and VC
domains. In Section III, we detail our proposed idea of VSFC
along with its application in a delay-sensitive application sce-
nario. Section IV contains the simulation setup and details of
considered performance evaluation metrics. Simulation results
are discussed in Section V and finally this article is concluded
in Section VI with some future research directions.

II. RELATED WORK

In this section, we cast some light on the research done in
FC and VC paradigms. We start with the benefits and chal-
lenges of FC and then follow it up with the same in VC.
We then conclude this section with a discussion to motivate
the need for a hybrid approach that is being proposed in this
article.

A. Fog Computing

A fog-supported smart city architecture naming FOCAN
is proposed in [18]. It is multitier energy, latency, and
communication-efficient architecture in which applications and
tasks are offloaded to distributed fog nodes. FOCAN was sim-
ulated over iFogSim with Web traffic and I/O traces. The
significant results opened gates for new dimensions for smart
city projects.

Rafique et al. [19] proposed a hybrid optimization schedul-
ing algorithm. It schedules the tasks to optimal devices and
balances the load among fog devices. Simulation results
show significant improvements in execution time, latency, and
energy consumption. For efficient module mapping in the
FC-Cloud architecture, Mahmud et al. proposed fuzzy logic
models [20] while Taneja and Davy [21] leveraged a generic
scheduling policy by considering RAM, CPU along with
bandwidth. Both improved Quality of Experience (QoE) and
showed a staggering decrease in latency, energy, and network
usage. However, proliferated requests degrade their respec-
tive performances due to execution at the cloud. Similarly,
Toor et al. [22] addressed the energy consumption issues to
ensure minimum QoS by varying CPU frequency for achiev-
ing energy efficiency. The varying operating speed shows
the improvement in energy consumption and latency when
compared with the policy operating at constant higher CPU
speed.

Mobile edge computing (MEC) is another promising
technology paradigm like FC where mobile users offload
the task to an edge server or cellular base station for
execution [23]. Li et al. [24] proposed a mixed-integer
nonLinear programming model in MEC for optimal task
offloading within statistical guaranteed QoS. However, our

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2021 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

3824 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 5, MARCH 1, 2021

Fig. 2. Generic architecture of our proposed VSFC scheme.

proposed work follows and extends the FC-Cloud paradigm
and not only utilizes the resources of the central fog device
but also explores the volunteer devices or the federated cloud
to meet the QoS.

B. Volunteer Computing

In order to increase volunteer resource pool, Funai et al. [14]
proposed an ad hoc networking-based model. Any device hav-
ing Internet access elects itself as a task distribution point and
invites other devices to participate in computation through
device-to-device communication using either WiFi Direct or
Bluetooth. The simulations resulted in an increased number
of tasks executed with the minimum possible energy con-
sumption. Mengistu et al. [25] leveraged the surging IoT
compute-excessive devices and enlarged the resource pool by
appending such volunteers in it with the goal of executing
data near the user. This model uses a volunteer cloud con-
cept at the edge of the network providing cloud-like mini data
centers as processing units in the middle of the end user and
traditional cloud. Panadero et al. [26] proposed a multicriteria-
biased randomized (MCBR) technique to solve the problem of
unreliable participants in VC. The scheme proposed in MCBR
ensures the selection of the most suitable volunteer node (VN)
for computation offloading in a fast and efficient manner by
iterating the unreliable VNs.

C. Discussion

To alleviate the inherent unacceptably high delay of fed-
erated cloud infrastructure, FC has recently been explored
as a complementary solution to enhance the performance of
delay-sensitive tasks. The fog was guaranteeing the minimum
possible latency to delay-sensitive applications being located
in the closer proximity to the end users. In this essence, a
delay-priority scheme was proposed in [12] that prioritized
delay-sensitive over delay-tolerant applications at the FC layer.
However, in the FC-Cloud paradigm, all the users are directed
to the cloud in the arrival of proliferated time-sensitive jobs
due to the limited computational capacity of fog devices as
shown in Fig. 2. The higher delay of the centralized cloud
mainly comes from queuing, propagation, and transmission.
The queuing delay is directly proportional to the number of
jobs, while the typical one-way propagation delay between the
fog and cloud is about 100 ms [12] as shown in Fig. 2.

The aforementioned problems led us to revisit the com-
puting model and to use the underutilized resources available
at the IoT layer in the vicinity of a fog node by leveraging
2-ms [12] delay for task offloading to volunteer devices. This
paved our path to propose a novel computing paradigm for
delay-sensitive applications that are discussed in detail in the
next section.

III. VOLUNTEER-SUPPORTED FOG COMPUTING

In this section, we discuss the system architecture and
application scenario of our proposed VSFC paradigm.

A. System Architecture

The goal of our proposed approach is to meet the stringent-
delay requirement by leveraging the underutilized resources of
volunteer devices located in closer proximity. This idea led us
to revisit the traditional computing model of the FC-Cloud due
to a lack of support for volunteers. Fog consists of switches,
routers, embedded servers, and a smart device responsible for
decision making for incoming requests. For a device to be
a fog, it needs to have characteristics of processing, storage,
and networking that are available in a limited amount as shown
in Fig. 2. Fog contains the following two types of modules:
1) the fog devices and 2) the IoT devices in the vicinity. When
a new IoT device connects to fog, the smart (fog) device asks
for permission of using the resources of the IoT devices in a
voluntary role. The IoT device can decide to become a vol-
unteer or not, and the fog device stores this information for
future decision making. Both modules are updated when a new
IoT device arrives or leaves the vicinity. The characteristics of
the fog module are not updated frequently because of it being
static in nature. On the contrary, the mobility of IoT devices
results in frequent updates in the IoT device module.

The IoT devices include laptops, computers, cameras, smart-
watches, etc., as well as small energy and power-constrained
sensors and actuators. These devices generate data that need
to be processed on a delay-priority or delay-tolerant basis.
According to the proposed approach, these data can be pro-
cessed at a fog node, cloud, or a VC device (depending on the
job requirement and device computing power) as per the deci-
sion of the subjected fog device, which is also depicted in the
sequence of operations given in Fig. 2. When the execution is
completed, the insights are sent to the fog which then forwards
them to the source IoT device. In the proposed VSFC archi-
tecture, fog devices serve as an intermediate layer between the
cloud and VC. Our goal is to efficiently utilize the resources of
voluntary IoT devices having excessive underutilized process-
ing power to achieve a resource-efficient computing paradigm
at the edge of the network.

B. Delay-Sensitive Application Scenario

In order to illustrate the working of VSFC, we simulated
the electroencephalography tractor beam game (EEGTBG)—
a delay-sensitive IoT application [17]—that is a multiplayer
game helping the users to increase their level of concentration
requiring stringent latency restriction. All the players can see
the current status of the game on their mobile screens. Every

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2021 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

ALI et al.: VOLUNTEER-SUPPORTED FOG COMPUTING ENVIRONMENT FOR DELAY-SENSITIVE IoT APPLICATIONS 3825

player has to concentrate on an item, initially, placed at the
center of the screen. The item then starts to move toward the
player with the highest level of concentration sensed through
the sensor placed over their heads. This complete application
loop is delay sensitive and needs to be executed with strin-
gent time bounds to maintain fairness among competing users.
The game has five modules, namely, EEG sensor, client, dis-
play, concentration calculator, and coordinator. The EEGTBG
sensor is deployed over the head of the player connected to
the cell phone via Bluetooth. The client module receives raw
sensed data from the sensor and directs it toward the concen-
tration calculator to measure the current concentration level of
the player. The insights are forwarded to the client module to
update the display of the game. While the coordinator mod-
ule is used on a global level to update the status of all the
players who might be present on distributed locations. Client
and display modules are placed on the mobile device of an
individual player, while the concentration calculator and coor-
dinator modules can be placed on the fog, volunteer device,
or cloud.

1) User Arrival and Module Placement: In this section,
we explain the process of new user arrival into the game. It is
started with the assumption that the game is running at the fog
device. With the arrival of every new user, its concentration
calculator and coordinator modules are placed at a suitable
device. Under the conventional FC-Cloud scenario, the exist-
ing fog architecture shifts all the modules of the users to the
cloud when the cumulative computing requirement of the mod-
ules exceeds the fog node capacity, hence, resulting in high
latency. The capacity of different computing modules, such as
fog, cloud, volunteer IoT device, is measured in available and
demanded millions of instructions per second (MIPS).

Similarly in VSFC, we attempt to accommodate arriving
users in the fog to make them play their game with a min-
imum possible delay. However, when the fog device is fully
utilized, VSFC looks for any available volunteer device in the
vicinity. If there exists a volunteer device that can accommo-
date the arrived module, the latter is placed on this volunteer
and its data are updated with the demanded processing power
(in MIPS) of currently placed modules. Table I shows the peak
MIPS requirements of each module used in the EEGTBG
game. If there is no volunteer device available or the avail-
able volunteer is saturated, then the fog device directs these
new modules toward the cloud. Algorithm 1 shows the overall
working of our proposed VSFC scheme where D, Mf

O, Mf
max,

θ , Mvc
O , Mvc

max, and MC
O represent the arriving IoT device, old

MIPS of fog, maximum MIPS limit of fog, MIPS required by
the module being placed, old MIPS of VC device, maximum
MIPS limit of VC, and old MIPS of cloud, respectively.

2) Data Processing: After the successful deployment of
application modules, the traffic needs to be diverted toward
them. In this regard, on the arrival of every IoT job, the fog
device checks its requirements. If it is time critical and the
desired module for execution exists at the fog, it is prioritized
and dealt with fog; otherwise, the fog device explores con-
nected VC devices for it. Similarly, if the processing module
is found on a VC device, the task is directed toward it. The
results are returned through the fog device back to the source

Algorithm 1 Working of VSFC
1: procedure DEVICE –ARRIVAL

2: for each arriving device Di do
3: if Di agrees to be a volunteer then
4: VC← Di
5: end if
6: end for
7: end procedure
8: procedure MODULE –PLACEMENT

9: for i = 1, i++, while i < N do
10: if Mf

O + θ ≤ Mf
max then

11: Place on Fog
12: Mf

O = Mf
O + θ

13: else if Mvc
O + θ ≤ Mvc

max then
14: Place on VC
15: Mvc

O = Mvc
O + θ

16: else
17: Place on cloud
18: MC

O = MC
O + θ

19: end if
20: end for
21: end procedure
22: procedure TASK –ARRIVAL

23: for t = 1, t++, while t < T do
24: if m ∈ fog then
25: Execute on Fog
26: else if m ∈ VC then
27: Execute on VC
28: else
29: Execute on Cloud
30: end if
31: end for
32: end procedure

TABLE I
CPU REQUIREMENTS OF EEGTBG APPLICATION MODULES

IoT device. In the worst-case scenario, if there is no VC device
available or all of them are fully occupied according to their
capacities, then the tasks will be placed at the cloud.

To avoid degraded system performance, we decided to avoid
using miniaturized and energy-constrained IoT devices as vol-
unteers. Such devices offer very low-processing power along
with a limited battery that results in an increase in job fail-
ures that, in turn, impacts the performance of delay-sensitive
jobs. Hence, only plugged-in devices, such as laptops, tablets,
and desktop computers are included in the VC layer of the
proposed architecture.

IV. SIMULATION SETUP AND PERFORMANCE METRICS

In this section, we provide a detailed description of our
simulation setup, followed by the metrics to compare the
performance of VFSC against the conventional FC-Cloud
computing paradigm.

A. Simulation Setup

We evaluated the proposed architecture using iFogSim [17]
that is constructed over the ClouldSim simulator. iFogSim
is a widely used simulation environment to simulate edge
computing, IoT, fog, and cloud devices. We simulated a delay-
sensitive application, EEGTBG, with gradually increasing the
number of users to compare the results of the proposed scheme
against the delay-priority scheme [12]. Every fog has one

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2021 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

3826 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 5, MARCH 1, 2021

(a) (b)

Fig. 3. Application scenarios used in the simulation setup. (a) One-Fog.
(b) Two-Fog.

dedicated volunteer device connected to it and initially, both
delay-priority and VSFC schemes execute tasks on the fog.
Subsequently, once the fog reaches its maximum limit, delay-
priority shifts all the users to the cloud while VSFC shifts them
to the available volunteer device. We are assuming the VC
device to be a laptop or desktop computer, which is plugged
in and does not have an energy constraint. We set up two
application scenarios: 1) in the One-Fog scenario, there is only
one fog and a connected VC device and while 2) in the Two-
Fog scenario, two fog nodes are connected to two VC devices
resulting in traffic distribution between them under VSFC.
Delay-priority has to deal with the traffic coming from both
distributed fog nodes at the centralized cloud. We assume the
number of simultaneous users to be the same in both scenarios
for the sake of simplicity but this does not limit our scheme
to assume otherwise. Both scenarios are shown in Fig. 3.

Each fog has a processing power of 4000 MIPS and for a
fair comparison, we assume the same for VC devices. Fog is
connected to the cloud with 10-Mb/s bandwidth and posing
a delay of 100 ms. While the link between the fog and IoT-
layer devices poses a delay of 2 ms over the same 10-Mb/s
link. Table II shows the overall configurations of devices
used in our simulations that are taken from the base paper
on iFogSim [17]. B and I in the power column of Table II
represent the busy and idle status of a device, respectively.

B. Performance Metrics

We are comparing the performance of VSFC against the
earlier proposed delay-priority scheme using three resources,
including the overall application execution delay, energy con-
sumption, and network usage. In the following discussion, we
provide the mathematical models that were used for these three
performance metrics.

1) Delay: The delay of the EEGTBG application comes
from the processing of the application loop among its modules
and it is calculated when the loop is completed. EEGTBG loop
is explained in Section III-B. As explained in Section II-C,
delay mainly comes from queuing, propagation, and transmis-
sion, and it can be modeled as

Dtotal = Dq + Dp + Dt (1)

TABLE II
DEVICE CONFIGURATIONS

where Dtotal, Dq, Dp, and Dt represent the total, queuing, prop-
agation, and transmission delays, respectively. In the EEGTBG
game, the data are transferred among modules that are placed
on different nodes, therefore, the EEGTBG processing loop
faces all of the delays mentioned in (1) at every module of
the game.

2) Energy Calculation: We can calculate the total energy
consumed by a computing device executing the application
loop using

Etotal =
n∑

i=1

Eci (2)

where Etotal is the total energy that can be computed from the
sum of Eci by executing n number of tasks. Eci shows the
energy consumption on the ith task execution and can itself
be calculated as

Eci = P(ui)×�ti (3)

where P(ui) is the power consumption depending on the uti-
lization ui of device for the ith task in the �t time interval.
The device utilization u is the percentage of total compute
resources a device is consuming while executing a certain task.
Hence, its value is 0 < u < 1. This factor scales a device
power consumption between busy (u = 1) and idle (u = 0)
states given in Table II.

3) Network Usage: Data sharing among modules over the
network results in network usage. When a module transmits
data to another module, the link between them gets busy until
the data successfully arrive at the destination module which
can be modeled as

Nu =
n∑

i=1

Li ×�t′i (4)

where Nu is the total network usage, Li is the data size, and
�t′i is the time for which the link was busy for the ith task.

V. EXPERIMENTAL RESULTS

To have better insights into VSFC and delay-priority
schemes, we executed the following two different sets of
simulations by changing the load over VC and cloud.

1) Fixed Simulation Time: In this scenario, we fixed the
total time for which the EEGTBG game was run on our
extended iFogSim simulator.

2) Fixed Number of Tasks Completed: In this scenario, we
varied the total game time and fixed the total number of
tasks executed over both VC and cloud.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2021 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

ALI et al.: VOLUNTEER-SUPPORTED FOG COMPUTING ENVIRONMENT FOR DELAY-SENSITIVE IoT APPLICATIONS 3827

(a) (b)

Fig. 4. VSFC and delay-priority delay comparison under fixed simulation
time. (a) One-Fog. (b) Two-Fog.

A. Fixed Simulation Time

In this set of simulations, we fixed the total time of sim-
ulations, i.e., 1.5 h for both VSFC and delay-priority, and
compared their performances in terms of the aforesaid metrics.

1) Delay: Fig. 4(a) shows the EEGTBG loop delay for
VSFC and delay-priority for One-Fog. Initially, both of them
execute their data at the fog resulting in a similar delay until
the number of users reaches 11 where the fog device can
no more accommodate the users. Subsequently, VSFC shifts
the users to VC while delay-priority shifts them to the cloud,
which results in a consistent increase in their respective delays.
We can see the delay of VSFC is higher than that of the
delay-priority for each increasing user and delay-priority is
outperforming our proposed VSFC scheme. This behavior is
quite justified since the cloud has a very high processing power
than the VC device, therefore it executes the tasks much faster
and reduces the overall loop delay.

The delay of the delay-priority scheme starts increasing
from user-15 onward due to the bandwidth limitation of the
core network. As the number of users increases, the amount
of data directed to the cloud also increases, ultimately, uti-
lizing the maximum bandwidth available. Although the cloud
has excessive processing power, delay-priority suffers from
transmission delay caused by bandwidth limitation.

Fig. 4(b) shows the delay with two EEGTBG games run-
ning on two different fog devices. It can be noticed that the
performance of VSFC is better than the delay-priority at each
user. The main reason is the distributed workload over VC
devices where the data generated from each fog are dealt at
the respective VC device due to which VSFC is performing
better than the One-Fog scenario. The behavior of both VC
devices in Fig. 4(b) is similar to the VC device in Fig. 4(a)
due to handling the same amount of workload. On the other
hand, delay-priority suffers from heavy load because both the
fogs are directing the data to a centralized cloud. This results
in increasing the overall loop delay due to queuing at the
cloud. In addition, the bandwidth limitation is also hurting
the performance of the delay-priority scheme.

Hence, it can be concluded that our proposed VSFC scheme
outperforms the traditional FC-Cloud scheme under normal to
heavy load conditions that are quite expected with the deluge
of data expected to be generated under the IoT storm.

Fig. 5. Energy consumption of VC and fog devices under One-Fog and
Two-Fog simulation scenarios.

(a) (b)

Fig. 6. Energy consumption comparison of VC and cloud under (a) One-Fog
and (b) Two-Fog simulation scenarios.

2) Energy Consumption: The energy consumption of VSFC
and delay-priority schemes for One-Fog and Two-Fog is given
in Fig. 5.

It can be observed that from user-1 to user-11, the energy
consumption has resulted from the fog devices in both VSFC
and delay-priority; hence, it is identical (see the curves for
VSFC-Fog-[*] and Delay-Priority-Fog-[*]). As the number of
users increases, the utilization of a fog device also increases
resulting in the rise of the energy curve. However, when the
number of users reaches 11, the utilization of the fog devices in
both VSFC and delay-priority reaches its peak and the process-
ing is shifted from fog to cloud in delay-priority or VC in the
case of VSFC. At this point, the fog energy of both schemes
reduces static or idle energy. Consequently, the energy of VC
devices rises and since the utilization u for VC devices is
maximum, the energy consumption is capped throughout the
simulation time.

Similarly, Fig. 6(a) and (b) depicts the energies of fog, VC,
and cloud for One-Fog and Two-Fog scenarios, respectively.
It can be noted again that after user-11, all the users are
shifted to either cloud (in delay-priority) or VC (in VSFC).
Consequently, the fog energy reduces to its idle energy while
cloud and VC’s energy consumption is affected. The cloud
energy in VSFC remains constant at idle because the cloud is
inactive and VSFC leverages the available VC, while the cloud
energy is linearly increased in the delay-priority scheme due
to the placement of users on the cloud. By comparing the scale
of cumulative energy consumption in the graphs, we can con-
clude that the VSFC is outperforming delay-priority by a huge
margin due to the inherent higher idle energy consumption of
the cloud while providing higher compute power.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2021 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

3828 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 5, MARCH 1, 2021

Fig. 7. Network usage for VSFC and delay-priority schemes under One-Fog
and Two-Fog scenarios.

3) Network Usage: Increasing the number of users also
increases the network load and results in high network usage
for the delay-priority scheme. As the data are sent to the cloud,
it makes the link busy for a longer time period. Cloud being
located at a propagation delay of 100 ms increases network
usage as given by the (4). The behavior of delay-priority is
similar for both One-Fog and Two-Fog scenarios. However, if
we look closely at Fig. 7, we can observe that the slope of
network usage is steeper for the Two-Fog curve than that of
One-Fog due to higher load. This spike also depicts bandwidth
limitation, which causes the delay of the delay-priority scheme
in the Two-Fog scenario to sharply increase as mentioned in
the previous section. On the contrary, the network usage of
VSFC is quite low as the delay of the Fog-VC link is only
around 2 ms. Therefore, the network gets busy for very little
time when compared to FC-Cloud communication.

B. Fixed Number of Tasks Completed

In the previous set of simulations, we can observe that the
energy consumption of the VC device in the VSFC scheme
(VSFC-VC-[*] in Fig. 5) was not changing even with the
increase in the workload as the VC device utilization u was
already at 1. This maximum utilization puts the tasks in a
queue when the fixed simulation time ends and results in a
reduced number of completed jobs.

This inspired us to design a different set of simulations
where the simulation time was varied to capture the impact of
an increase in VC energy under the VSFC scheme. However,
since VC and cloud have different processing power, we had
to fix the total number of tasks completed, in order to have
a fair comparison between VSFC and delay-priority schemes.
For this, we first executed the One-Fog scenario for 1.5 h
and recorded the number of tasks completed under the delay-
priority scheme. We then varied the simulation time for the
VSFC scheme to achieve the same number of tasks com-
pleted and compared the energy results with the delay-priority
scheme for a fair comparison. The same was repeated for the
Two-Fog scenario and the results are shown in Fig. 8.

We can notice that VC energy is increasing with the increase
in the number of users because it has to process a lot more
data than the previous set of simulations. The VC device is
still maximally utilized here, i.e., in (3), P(ui) is at max but
in the current set of simulations, �ti is increased that results
in an increased value for energy consumption.

Fig. 8. Energy consumption of VC and fog for One-Fog and Two-Fog
scenarios under varied time.

(a) (b)

Fig. 9. Energy consumption comparison of VC and cloud under (a) One-Fog
and (b) Two-Fog scenarios under varied time.

Fig. 9(a) and (b) depicts the energies of fog, VC, and cloud
for One-Fog and Two-Fog scenarios under a fixed number of
tasks completed. The results are even better than the previous
set of simulations of fixed simulation time and the VSFC
scheme is further outperforming the baseline delay-priority
scheme in the overall system-level energy consumption under
the Two-Fog scenario.

Similarly, the delay and network usage results for a fixed
number of task completed scenarios were consistent with the
fixed simulation time scenario but those cannot be included
due to space limitation.

To summarize, under normal to heavy load conditions,
VSFC provides a saving up to 47.5% and 85.1% under One-
Fog and Two-Fog scenarios over the baseline delay-priority
scheme for communication delay. Likewise, VSFC provides
93% and 86% energy savings compared to the traditional
FC-Cloud architecture under One-Fog and Two-Fog scenar-
ios, respectively. Finally, VSFC also outperforms the baseline
scheme in the network usage by decreasing it by 92% under
both One-Fog and Two-Fog schemes.

VI. CONCLUSION

With the emergence of delay-sensitive IoT applications,
there is a dire need to deploy more computing power at the
edge of the network. In this context, we proposed a novel
computing paradigm, VSFC, that integrates VC and FC for
efficient utilization of the underutilized computing resources
available in the vicinity of fog devices. This results in energy
savings by utilizing low-power VC devices instead of high-
power cloud machines. It also enables bandwidth optimiza-
tions by avoiding the core network via handling the majority of

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2021 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

ALI et al.: VOLUNTEER-SUPPORTED FOG COMPUTING ENVIRONMENT FOR DELAY-SENSITIVE IoT APPLICATIONS 3829

the traffic at the edge. Results showed that the proposed VSFC
scheme reduces the delay, energy consumption, and network
usage by 47.5%, 93%, and 92%, respectively, when compared
with the traditional FC-Cloud architecture. In the future, we
aim to propose and develop efficient scheduling policies for
load-balancing among available resources at the edge of the
network. Moreover, the adaptive policies can also be consid-
ered for optimizing the QoS. We also plan to extend the VSFC
to include volunteer devices with more realistic characteristics,
i.e., device heterogeneity, mobility, and battery life.

REFERENCES

[1] H. Wu et al., “Dynamic edge access system in IoT environment,” IEEE
Internet Things J., vol. 7, no. 4, pp. 2509–2520, Apr. 2020.

[2] S. Andreev, C. Dobre, and P. Misra, “Internet of Things and sensor
networks,” IEEE Commun. Mag., vol. 58, no. 4, pp. 34–74, Apr. 2020.

[3] J. Granat, J. M. Batalla, C. X. Mavromoustakis, and G. Mastorakis,
“Big data analytics for event detection in the IoT-multicriteria approach,”
IEEE Internet Things J., vol. 7, no. 5, pp. 4418–4430, May 2020.

[4] M. Mukherjee, S. Kumar, M. Shojafar, Q. Zhang, and
C. X. Mavromoustakis, “Joint task offloading and resource allo-
cation for delay-sensitive fog networks,” in Proc. IEEE Int. Conf.
Commun. (ICC), 2019, pp. 1–7.

[5] P. Cai, F. Yang, J. Wang, X. Wu, Y. Yang, and X. Luo, “Jote: Joint
offloading of tasks and energy in fog-enabled IoT networks,” IEEE
Internet Things J., vol. 7, no. 4, pp. 3067–3082, Apr. 2020.

[6] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A comprehensive survey on fog computing: State-of-
the-art and research challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 416–464, 1st Quart., 2018.

[7] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-
edge-cloud orchestrated network computing paradigms: Transparent
computing, mobile edge computing, fog computing, and cloudlet,” ACM
Comput. Surveys, vol. 52, no. 6, pp. 1–36, Oct. 2019.

[8] Z. Liu, Y. Yang, K. Wang, Z. Shao, and J. Zhang, “Post: Parallel offload-
ing of splittable tasks in heterogeneous fog networks,” IEEE Internet
Things J., vol. 7, no. 4, pp. 3170–3183, Apr. 2020.

[9] X. Huang, Y. Cui, Q. Chen, and J. Zhang, “Joint task offloading
and QoS-aware resource allocation in fog-enabled Internet-of-Things
networks,” IEEE Internet Things J., vol. 7, no. 8, pp. 7194–7206,
Aug. 2020.

[10] M. Mukherjee et al., “Task data offloading and resource allocation in
fog computing with multi-task delay guarantee,” IEEE Access, vol. 7,
pp. 152911–152918, 2019.

[11] M. Mukherjee et al., “Computation offloading strategy in heterogeneous
fog computing with energy and delay constraints,” in Proc. IEEE Int.
Conf. Commun. (ICC) QoS, Rel. Model. Symp., 2020, pp. 1–5.

[12] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and
M. Parashar, “Mobility-aware application scheduling in fog computing,”
IEEE Cloud Comput., vol. 4, no. 2, pp. 26–35, Mar./Apr. 2017.

[13] M. N. Durrani and J. A. Shamsi, “Volunteer computing: Requirements,
challenges, and solutions,” J. Netw. Comput. Appl., vol. 39, pp. 369–380,
Mar. 2014.

[14] C. Funai, C. Tapparello, H. Ba, B. Karaoglu, and W. Heinzelman,
“Extending volunteer computing through mobile ad hoc networking,”
in Proc. IEEE IEEE Global Commun. Conf. (GLOBECOM), 2014,
pp. 32–38.

[15] A. Shahri, M. Hosseini, R. Ali, and F. Dalpiaz, “Gamification for volun-
teer cloud computing,” in Proc. 7th IEEE/ACM Int. Conf. Utility Cloud
Comput., 2014, pp. 616–617.

[16] R. Beraldi, A. Mtibaa, and A. N. Mian, “CICO: A credit-based incentive
mechanism for cooperative fog computing paradigms,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), 2018, pp. 1–7.

[17] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in the Internet of Things, edge and fog computing environments,” Softw.
Pract. Exp., vol. 47, no. 9, pp. 1275–1296, 2017.

[18] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya,
“Focan: A fog-supported smart city network architecture for manage-
ment of applications in the Internet of everything environments,” J.
Parallel Distrib. Comput., vol. 132, pp. 274–283, Oct. 2019.

[19] H. Rafique, M. A. Shah, S. U. Islam, T. Maqsood, S. Khan, and
C. Maple, “A novel bio-inspired hybrid algorithm (NBIHA) for effi-
cient resource management in fog computing,” IEEE Access, vol. 7,
pp. 115760–115773, 2019.

[20] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality
of experience (QoE)-aware placement of applications in fog comput-
ing environments,” J. Parallel Distrib. Comput., vol. 132, pp. 190–203,
Oct. 2019.

[21] M. Taneja and A. Davy, “Resource aware placement of IoT application
modules in fog-cloud computing paradigm,” in Proc. IFIP/IEEE Symp.
Integr. Netw. Service Manag., 2017, pp. 1222–1228.

[22] A. Toor et al., “Energy and performance aware fog computing: A case
of dvfs and green renewable energy,” Future Gener. Comput. Syst.,
vol. 101, pp. 1112–1121, Dec. 2019.

[23] C. X. Mavromoustakis, G. Mastorakis, and J. Mongay Batalla, “A mobile
edge computing model enabling efficient computation offload-aware
energy conservation,” IEEE Access, vol. 7, pp. 102295–102303, 2019.

[24] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, “QoS
driven task offloading with statistical guarantee in mobile edge com-
puting,” IEEE Trans. Mobile Comput., early access, Jun. 23, 2020,
doi: 10.1109/TMC.2020.3004225.

[25] T. M. Mengistu, A. Albuali, A. Alahmadi, and D. Che, “Volunteer cloud
as an edge computing enabler,” in International Conference on Edge
Computing. Cham, Switzerland: Springer, 2019, pp. 76–84.

[26] J. Panadero, J. de Armas, X. Serra, and J. M. Marquès, “Multi criteria
biased randomized method for resource allocation in distributed systems:
Application in a volunteer computing system,” Future Gener. Comput.
Syst., vol. 82, pp. 29–40, May 2018.

Babar Ali received the B.S. degree in computer
science from COMSATS University, Islamabad,
Pakistan, in 2017, and the master’s degree in
computer science from the Lahore University of
Management Sciences, Lahore, Pakistan, in 2019.

His research interests include resource manage-
ment in IoT, fog computing, and wireless sensor
networks.

Muhammad Adeel Pasha (Senior Member, IEEE)
received the B.S.-E.E. degree in electrical and
computer engineering from the University of
Engineering and Technology, Lahore, Pakistan, in
2004, the M.S. degree in electrical and com-
puter engineering from the University of Nice
Sophia-Antipolis, Nice, France, in 2007, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Rennes, Rennes, France,
in 2010.

He is an Assistant Professor with the Electrical
Engineering Department, Lahore University of Management Sciences, Lahore.
His research interests include low-power microarchitecture, energy-efficient
hardware design, and futuristic computing platforms for green computing and
communications.

Saif ul Islam received the Ph.D. degree in com-
puter science from the University Toulouse III Paul
Sabatier, Toulouse, France, in 2015.

He is an Assistant Professor with the Department
of Computer Science, Institute of Space Technology,
Islamabad, Pakistan, where he is currently leading
the Research and Development Cell. He has pub-
lished in various high-impact factor journals. His
research interests include resource and energy man-
agement in large-scale distributed systems and the
Internet of Things.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2021 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2020.3004225

3830 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 5, MARCH 1, 2021

Houbing Song (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from the
University of Virginia, Charlottesville, VA, USA, in
2012.

Since August 2017, he has been working
as an Assistant Professor with the Department
of Electrical Engineering and Computer Science,
Embry-Riddle Aeronautical University, Daytona
Beach, FL, USA. His research interests include
cyber–physical systems, cyber security and privacy,
Internet of Things, edge computing, AI/machine

learning, big data analytics, and networking.
Dr. Song has served as an Associate Technical Editor for the IEEE

Communications Magazine from 2017 to 2020, and an Associate Editor for
IEEE INTERNET OF THINGS JOURNAL in 2020.

Rajkumar Buyya (Fellow, IEEE) received the Ph.D.
degree in computer science and software engi-
neering from Monash University, Melbourne, VIC,
Australia, in 2002.

He is a Professor and Future Fellow of the
Australian Research Council, and the Director of
the Cloud Computing and Distributed Systems
Laboratory, University of Melbourne, Parkville,
VIC, Australia. He has authored more than
425 publications and four text books including
Mastering Cloud Computing (McGraw Hill and

Elsevier/Morgan Kaufmann, 2013). Microsoft Academic Search Index ranked
him as the world’s top author in distributed and parallel computing from 2007
to 2012.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2021 at 03:20:25 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

