
Elastic Load Balancing for Dynamic Virtual
Machine Reconfiguration Based on
Vertical and Horizontal Scaling

Stelios Sotiriadis , Nik Bessis, Senior Member, IEEE, Cristiana Amza, and Rajkumar Buyya

Abstract—Today, cloud computing applications are rapidly constructed by services belonging to different cloud providers and service

owners. This work presents the inter-cloud elasticity framework, which focuses on cloud load balancing based on dynamic virtual

machine reconfiguration when variations on load or on user requests volume are observed. We design a dynamic reconfiguration

system, called inter-cloud load balancer (ICLB), that allows scaling up or down the virtual resources (thus providing automatized

elasticity), by eliminating service downtimes and communication failures. It includes an inter-cloud load balancer for distributing

incoming user HTTP traffic across multiple instances of inter-cloud applications and services and we perform dynamic reconfiguration

of resources according to the real time requirements. The experimental analysis includes different topologies by showing how real-time

traffic variation (using real world workloads) affects resource utilization and by achieving better resource usage in inter-cloud.

Index Terms—Cloud computing, cloud elasticity, horizontal scalability, vertical scalability, cloud load balancing

Ç

1 INTRODUCTION

CLOUD computing presents new business opportuni-
ties as an environment for deploying applications

and services. Fundamentally, it provides an elastic infra-
structure for utilizing virtual servers that are available
anytime from everywhere. It includes three models,
namely as Infrastructure as a Service (IaaS) that includes
virtualized resources, Platform as a Service (PaaS) that
includes an environment for developing applications and
services and Software as a Service (SaaS) that includes
on demand and pay as you go software [1]. Also, it
includes platforms that offer resources such as hardware
(CPU, memory, hard-disk), software and network on a
bespoke manner. Today, cloud elasticity seems to be a
vital cloud asset as it allows users to increase or decrease
capacity of virtualized resources on demand, so pay for
only what they use. Traditional businesses deploy appli-
cations or services in a cloud platform in the form of a
unique virtual machine (VM) and make it available to
users through a virtualized network of the cloud plat-
form provider. Lately, another similar technology has
been emerged, the so called metacloud that is a frame-
work for providing clouds on demand as well as services

called microservices, i.e., the IBM microservices [2]. The
metacloud is a cloud based platform (for example the
system offered by Cisco1) for deploying and operating
private clouds for global organizations.

Similar example is the future Internet concept that allow
development of novel cloud applications combining differ-
ent cloud services that might belong to different cloud pro-
viders (i.e., the FIWARE platform2). This is generally known
as inter-cloud, that refers to multiple cloud providers [3] and
is heterogeneous in terms of cloud platform architectures.
Metacloud follows the inter-cloud concept thus it is com-
prised by a network of clouds that are hosted in different pla-
ces. Here customers can easily host their own private clouds
in themetacloud infrastructure for example Ciscometacloud
is base exclusively on OpenStack.3

Inter-cloud services also refer to cloud enablers that are
part of a generic service oriented architecture (SOA), in
which providers develop applications or services by select-
ing functionalities from different cloud platforms (i.e.,
authentication, data storage, data analysis etc.). There are
many providers that offer such services and claim to offer
an “infinite” view of virtual resources. This refers to scal-
ability as the ability of the system to accommodate larger
loads and to elasticity as the ability to scale with loads
dynamically. Cloud platforms offer both, however it does
not allow automated VM reconfiguration (that refers to scal-
ing up or down VM resources) based on real time usage.
Consequently, as cloud VMs resource usage requirements
change dynamically, the initial configuration could lead to

� S. Sotiriadis and C. Amza are with the Edward Rogers Sr. Department
of Electrical and Computer Engineering, University of Toronto,
Toronto, ON M5S, Canada.
E-mail: s.sotiriadis@intelligence.tuc.gr, amza@ece.utoronto.ca.

� N. Bessis is with Edge Hill University, Ormskirk L39 4QP, United
Kingdom. E-mail: nik.bessis@edgehill.ac.uk.

� R. Buyya is with The University of Melbourne, Parkville, VIC 3010,
Australia. E-mail: rbuyya@unimelb.edu.au.

Manuscript received 23 Oct. 2015, revised 29 Oct. 2016, accepted 17 Nov.
2016, Date of publication 1 Dec. 2016; date of current version 5 Apr. 2019.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2016.2634024

1. http://www.cisco.com/c/en/us/products/cloud-systems-
management/

2. https://www.fiware.org/
3. https://www.openstack.org

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 2, MARCH/APRIL 2019 319

1939-1374� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2494-5127
https://orcid.org/0000-0002-2494-5127
https://orcid.org/0000-0002-2494-5127
https://orcid.org/0000-0002-2494-5127
https://orcid.org/0000-0002-2494-5127
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:
mailto:
mailto:
mailto:
http://www.cisco.com/c/en/us/products/cloud-systems-management/
http://www.cisco.com/c/en/us/products/cloud-systems-management/
https://www.fiware.org/
https://www.openstack.org

service performance degradation, for instance if demand
increases significantly.

To deal with these, this work focuses on the dynamic VM
reconfiguration in terms or horizontal and vertical elasticity.
Wedefine the terms horizontal elasticity that refers to the crea-
tion of new VMs and vertical elasticity that refers to the resiz-
ing of existing VMs. To address such issues, cloud providers
offer elastic load balancers that manage incoming traffic with-
out disrupting the flow of information. In particular, plat-
forms such as OpenStack, VMWare VCloud4 etc., provide
load balancers to achieve stability, adaptability and optimal
usage of clientworkloads. However, in thisworkwe aremoti-
vated by the inter-cloud concept that makes elasticity a chal-
lenging task. In particular, the elasticity factor, which targets
dynamic adaptation to workload changes, is a crucial aspect
to be explored. The problem that this work is focusing is
timely and comes from the transition from monolithic web
applications to distributed microservices where elasticity
becomes a hurdle (i.e., how to manage a microservice, scale it
up or down automatically and reconfigure it according to real
time usage).

We are motivated by the works of (a) [4] that describes the
Google Borg as a cloud scheduler, (b) [5] that describes the
Kubernetes that is an environment for building distributed
applications from containers [6], (c) [2] that presents the IBM
microservices that break up large applications to easily to
manage, maintain and operate modules, (d) [7] that describe
Elastack that provides automated monitoring and adaptation
in OpenStack platforms and (e) [8] that describe challenges
towards automated cloud application elasticity. The innova-
tion of this work is based on the dynamic elasticity involving
running already deployed VMs rather containers that are exe-
cuted in different cloud platforms, thuswe focus on exploring
the best method for VM reconfiguration. This includes the
dynamic VM reconfiguration that is affected by the variation
of service usage in real-time. Current approaches usually refer
to services from the same cloud provider or perform elasticity
by launching new instances in the provider-side. Having said
that, the contributions of the inter-cloud load balancer (ICLB)
framework include the following:

(C.I) To provide an elastic inter-cloud load balancer for
applications or services composed by microservi-
ces. That allows cloud applications or services to
scale up/down in accordance to real time resource
usage and traffic.

(C.II) To allow dynamic and automated VM capacity
reconfiguration when increased workloads (i.e.,
HTTP traffic) or resource utilization levels (i.e.,
VM disk usage) are observed.

(C.III) To compare horizontal versus vertical reconfigura-
tion for different scenarios in order to conclude to
optimal usage for each of which. We use real
world systems to demonstrate our solution such as
the OpenStack cloud platform and the Apache
Cassandra [9] as a deployed system and the the
Yahoo! Cloud System Benchmark (YCSB) [10] as
the real world workload for stressing the system
and support our research argument for two cases

including (a) for increasing traffic and (b) for
increasing resource usage.

Regarding C.I, the work proposes a new load balancing
layer positioned on top of the cloud platforms. The aim is to
move existing solutions (e.g., OpenStack Elastic Load Bal-
ancer) a step forward, by allowing management of applica-
tion and cross-utilization of services belonging to different
providers and service owners by decoupling load balancers
from the providers. To achieve this we present an experi-
mental study that includes real world workload testing for
an Cassandra VM cluster. In particular, we setup a cluster
and we test it using YCSB workload to stress system perfor-
mance. Thus, we used two ways of triggering autoscaling,
a) based on the HTTP traffic coming from the YCSB (that is
deployed in an external VM) and b) based on the monitor-
ing of the Cassandra resources that is an enterprise-grade
search engine [11]. Having said that, we tested the system
in different configurations including Cassandra cluster that
is deployed in OpenStack and VMWare VCloud.

Regarding C.II, VMs are monitored constantly and capac-
ity is increased or decreased in relation to a VM reconfigura-
tion strategy. The aim is to eliminate downtimes without
affecting the overall flow of information. This will allow
cloud VMs either to be resized or to be re-instantiated in the
same or a different cloud provider with zero loss in commu-
nication. The experimental analysis presents various cases in
which ICLB could be applied with success. Next, Section 2
presents a detailed discussion of the literature and tools
along with the dependencies and the contribution of our
work on and to existing approaches and tools. In Section 3
we present a discussion of the design issues of ICLB mod-
ules, in Section 4 the performance evaluation and in Section 6
the conclusion and future research directions.

2 MOTIVATION AND INNOVATION

In this work we focus on solving the problem of VM autoscaling
by employing load balancers to add VM clones for sharing load or
to resize VM size.

Cloud providers claim to offer high availability services
with an “infinite” view of resources. This includes (a) scal-
ability as the ability of the system to accommodate larger
loads and (b) elasticity as the ability to cope with loads
dynamically. However, VMs resource usage requirements
change dynamically, so the initial VM configuration is static
and could lead to service performance degradation, for
instance if demand increases significantly. Here, we focus
on the cloud elasticity that is the degree in which a system
can provision/deprovision resources automatically to cope
with high demands. Our goal is to reconfigure a VM size
according to the resource usage and/or incoming traffic in
an automatized way. To achieve fault tolerance and keep
VM connection alive, we run experiments in a load balanc-
ing environment where VMs are placed under a load bal-
ancer VM (the inter-cloud load balancer) that distributes
HTTP traffic fairly according to different algorithms (i.e.,
the round robin). We analyze real time resource utilization
levels and we trigger horizontal (increase/decrease VM
size) or vertical (cloning VM through replication) elasticity
to avoid overloads. Our motivation is based on Fig. 1 that
experimentally demonstrates a real world system of an4. http://www.vmware.com/products/vcloud-suite.html

320 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 2, MARCH/APRIL 2019

http://www.vmware.com/products/vcloud-suite.html

Cassandra head node performance that is deployed in an
OpenStack system and is under stress.

To achieve a realistic scenario, we used the real world
workload of YCSB5 that is a framework with a common set
of workloads for evaluating the performance of different
“key-value” and “cloud” serving stores. Based on that, we
run the YCSB workload in order to explore the performance
of the Cassandra system. In detail, we executed YCSB work-
load to stress system performance with (a) 250 thousand
records (normal execution) and 10 million records
(extremely heave execution) by running in five threads in a
small size VM (2 GB RAM, 20 HD disk, 1 CPU Core) and we
observed that the VM disk usage is constantly increased
meaning at some point the VM will be overloaded and will
fail execution of tasks. We can observe that the disk usage
percentage is increased from 67 to 71 percent. Based on this
trend (and its repeatable pattern that is visually apparent)
we can expect (for a heavy workload) that at a certain point
the disk usage will reach 100 percent and the workload exe-
cution will fail. So, we aim to avoid the Cassandra cluster
overload point in order to trigger VM reconfiguration and
achieve load relief either in a clone or in a resized VM.

Another exampe is Fig. 2 that demonstrates an overutil-
ized Cassandra cluster. In particular, we stress the system by
selecting a small size VM in OpenStack and we measure its
performance when we run 10 million records. We observed
that the VM reaches an overload point of 100 percent (around
after 40 minutes of execution time) and continues at the same
levels. At that time we can assume that the overload could
cause errors in the workload execution since there is no free
disk space. To validate this assumption, we measured the
Cassandra insert data throughput and estimated completion
time and we demonstrate results in Fig. 2. We can observe
that around time instance 600 the throughput started to
decrease and until time instance 1,200 the throughput drops
almost to zero. We compared these values with the disk
usage and we concluded that this is the time moment when
the Cassandra VM disk usage started to become overloaded
(the time instance that it reaches 100 percent). Similarly, esti-
mated completion time started to increase significantly,
meaning that the workload execution will be delayed and
eventually could not be executed at all (for example after
1,235 time instance the estimation completion time is
increased dramatically in a steady increasing trend).

So we analyzed resource usage features (i.e., cpu percent-
age, memory percentage, disk usage percentage etc.) and
traffic values in order to trigger autoscaling and avoid over-
loading. The proposed system is not the first to focus on
these issues, but to the best of our knowledge is one of the
few that addresses the comparison of horizontal and verti-
cal scaling in inter-clouds in order to conclude to the best
solution for different scenarios. In addition, we demonstrate
that based on a real world case (of the previous experiment)
even state of the art cloud applications (like Cassandra) suf-
fer from automated scaling and automated monitoring.
Thus, “outsourcing” user demands to clone VMs based on
inter-cloud load balancers could offer a sophisticated and
performance efficient solution. We perform an experimental
study of OpenStack and VMWare VCloud platforms to
illustrate the effectiveness of our system.

3 RELATED WORK

This section presents a discussion of the related works refer-
ring to cloud service elasticity and scalability. We classify
elasticity into vertical, which refers to the changing of VM
size, and horizontal, which refers to the creation of new
VMs. In [12] the authors present a horizontal elasticity solu-
tion by allowing VM allocation (by adding or removing
VMs) in the cloud. They present a simulation analysis that
demonstrates a minimization of SLA violation, by focusing
on horizontal elasticity. In [13] the authors monitor VM
resources and develop an architecture for reducing the pro-
vision overhead. According to [14], the approach does not
offer scale-down mechanisms.

In [14], the authors focus on the use of a private cloud
environment in order to improve the High Performance
Computing (HPC) research infrastructure. Specifically, they
have implemented an HPC job scheduler to improve the uti-
lization of the cloud resources. This work, based on Open-
Stack, focuses on launching new nodes and not on
migration or resizing cloud VMs. In [15] the work focuses
on the need for integration of QoS and SLA requirements
with the cloud and automated dynamic elasticity of the
cloud for SLA management and it is a theoretical discussion
of research directions. The work presented in [16] focuses
on elasticity as the ability of a cloud to add and remove
instances in an automated way. The solution is called Ela-
stack, which is a monitoring and adaptive system. The
authors claim that the solution is generic and could be
applied to existing IaaS frameworks. It is a promising work
that is OpenStack oriented.

Fig. 1. YCSB Cassandra workload overload execution in small size VM
for 250 thousand insert and update records.

Fig. 2. YCSB Cassandra workload insert throughput data failure and
estimation completion time for small size VM (10 million tasks for insert
and update records).

5. https://github.com/brianfrankcooper/YCSB

SOTIRIADIS ET AL.: ELASTIC LOAD BALANCING FOR DYNAMIC VIRTUAL MACHINE RECONFIGURATION BASED ON VERTICAL AND... 321

In [8] the authors present a study on dynamic scaling of
applications in the cloud. Thework shows efforts at the edge of
state-of-the-art technology on cloud elasticity. They present
new challenges in the areas of server, network and platform
scalability. In [17] the authors demonstrate an automated sys-
tem for elastic resource scaling of multi-tenant clouds. It is
called CloudScale and achieves adaptive resource allocation
with no need to know a priori. According to [16], CloudScale
focuses on vertical instance scaling (that is it is said to act on the
instance itself rather launching new ones). The authors in [18]
present a system called Kaleidoscope that allows cloning of
VM instances when demand is increased by copying the com-
plete or partial state of the original instance. Kaleidoscope does
not launch new instances. According to [16], this approach
requires adapting and integrating within the cloud infrastruc-
ture. Also, to be effective it requires installation on all instances.

In [19] the authors present an architecture for an IaaS cloud
to allow dynamic resource allocation. They develop a system
called Kingfisher that contains components for replication
and migration using an integer linear program in order to
optimize cost, and implement an OpenNebula extension for
load balancing when load is changing. In [20] the authors
present an architecture for an IaaS cloud to allow dynamic
resource allocation. They develop components for VM sched-
uling with management objectives for replication and migra-
tion and implement an OpenStack extension for load
balancing. In [21] the Amazon EC2 Auto Scaling is designed
to launch or terminate EC2 instances automatically according
to user-defined policies, schedules, and health checks. The
solution allows management of VM resources based on pre-
dictable and anticipated load changes. Further, the approach
uses the Amazon CloudWatch (for notifications and alarms)
and the Elastic LoadBalancing (ELB) (for distribution of traffic
among various instances) in the autoscaling groups.

Further, [22] provides the Amazon Elastic Load Balancing
to automate the process of incoming web traffic between dif-
ferent Amazon EC2 instances. By using ELB, the users add
and remove instances according to the need of the trafficwith-
out disrupting the flow of information. In the case that a VM
fails the ELB sends the request to other instances that have
been previously configured in the ELB. In [23] the authors
investigate the feasibility of dynamic cloud scaling, by focus-
ing on Cloudify telco services. They focus on the migration of
processes among peer servers in a transparent way for pro-
active resource provisioning based on call load forecasting.
The work in [24] presents vertical elasticity for applications
with dynamic memory requirements when running on a gen-
eralized virtualized environment. The solution offers the abil-
ity to scale the VM memory dynamically using memory
ballooning provided by the KVMhypervisor.

In [25], the authors show a data centre architecture based
on virtual machine monitors to reduce provisioning over-
heads. They also employ a combination of predictive and
reactive methods to determine when to provision resour-
ces. [26] discusses the OpenStack load balancing solution of
VM traffic. It offers an API to allow distributing requests
between VMs similar to Amazon ELB. In [27], the authors
present the soCloud that is a PaaS component in multiple
clouds that uses load balancers to “switch from one applica-
tion instance to another” if there are failures. The work of [28]
presents theMODAClouds that offers a system formigrations

among multiple clouds that reacts to performance reconfigu-
rations. MODAClouds provide innovative features such as
avoiding vendor lock-in problems supporting the develop-
ment of Cloud enabled Future Internet applications and pro-
vide quality assurance during the application life-cycle and
support migration from Cloud to Cloud when needed. In [5],
authors present the Kubernetes that is an “open-source sys-
tem for automating deployment and scaling” using container-
ized applications to allow scaling applications on the fly and
optimization of resources when needed. It is particularly
focused on launching containers that can be horizontally
scale-able and composed by microservices. Other works as
in [29], that focus in interoperation and job executions in terms
of large scale systemsdoes not consider scaling, thus are out of
the scope of our study.

We are motivated by the solutions of [5], [15], [16], [21],
and [27] that aim to contribute from the perspective of an
inter-cloud application. Specifically, we focused on real-time
workload analysis such as of the cloud applications traffic
when increased usage is observed, as in [22] and [26]. To the
best of our knowledge, our work is different from the litera-
ture in the aspects of inter-cloud load balancing (placed on
top of clouds) and focuses in already running VMs rather
than in containers.

4 INTER-CLOUD ELASTICITY FRAMEWORK DESIGN

Developers build innovative cloud applications using services
from different owners that are deployed in different cloud
platforms. Fig. 3 shows an example of an application that uti-
lizes inter-cloud services, where Fig. 3a is the traditional
deployment (based on a single provider) and Fig. 3b is the
inter-cloud deployment where an application (App) is com-
posed by services of different providers. In the second case
elasticity refers to both VMs of application and services, how-
ever the complexity is increased due to the interoperability
aspects of thesemodules. This refers to the ability to build sys-
tems from reusable components that offer out of the box
functionalities.

The following sections discuss (A) the ICLB framework,
(B) its architecture, (C) the analysis of the system configura-
tion and its processes.

4.1 Inter-Cloud Elasticity Framework

ICLB approaches cloud and inter-cloud elasticity from the per-
spective of distributed and interoperable services [30], in

Fig. 3. Inter-Cloud distributed service utilization: (a) Cloud application
deployment in a single provider and (b) Inter-Cloud application deploy-
ment in multiple providers.

322 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 2, MARCH/APRIL 2019

order to allow management of the elastic reconfiguration of
VMs without affecting application uptime and by improv-
ing performance. Its key layers are (i) inter-cloud layer, (ii)
elasticity layer, (iii) load balancing layer, (iv) monitoring
layer, (v) elastic threshold management, (vi) security and
(vi) portability, which are presented below.

(i) Inter-Cloud Layer: It contains the inter-cloud com-
munication layer that allows interactions among
different cloud platforms. It allows mediation for
connecting clouds utilizing APIs and platform
interfaces such as OpenStack,6 VMWareVCloud
and others presented in [31]. Essential mechanisms
include inter-cloud authentication, collection of
data related to resource usage, instantiation and
deployment of services (in a remote manner) and
others. In [31] and [32] we developed a prototype
composed not only from heterogeneous cloud plat-
forms but also from independent (in terms of func-
tionality) cloud services. These are developed by
different cloud service providers and offered as
open source Software-as-a-Service. A vital compo-
nent of this layer is the Inter-Cloud Mediation
Service, specified in [33], that uses SaaS based
microservices. Examples are the publish subscribe
context broker for registrations and subscriptions
to services and a complex event processing engine
for event management. A detailed presentation of
this service is presented in [31] along with the
inter-cloud VMmigration mechanism.

(ii) Elasticity Layer: It features the dynamic properties
for elastic reconfiguration of cloud service VMs.
The layer includes two different modes of elastic-
ity: vertical and horizontal. Todays cloud platform
providers offer these in the form of launching new
or resizing existing VMs instances. The layer
focuses on elasticity as the ability of resources to
scale out (either vertical or horizontally) so to cope
with loads dynamically.

(iii) Load balancing Layer: Most cloud providers offer
sophisticated load balancing mechanisms, for
instance the OpenStack Load Balancing-as-a-
Service [26], the Amazon ELB [22] and others.
These are the default mechanisms that users could
easily deploy and configure using the platforms
dashboard system. The load-balancers could han-
dle traffic by distributing requests to different
clone instances. A widely used solution is the
open-source proxy servers (i.e., the NGINX7) for
implementing complex load balancing in terms of
different algorithms for traffic distribution (i.e.,
round-robin) and dynamic automation of the load
balancer based on workload reconfigurations. The
inter-cloud load balancing layer involves utiliza-
tion of multiload balancers. This is because the
elastic reconfiguration should be independent of
the local load balancers that a user could setup.
The objective of the load balancer is to split the

HTTP traffic among VMs that are belonging to
same or different datacenters. In particular, we
perform experiments for cases where there are two
levels of balancers, the inter-cloud load balancer
that is responsible for balancing HTTP load distri-
bution among different clouds and the local load
balancer that could be provided by the cloud it
self, for example Amazon EC2 uses the Amazon
Elastic load balancing.

(iv) Monitoring Layer: It is a vital requirement to observe
real-time resource usage so to allow adaptive deci-
sion-making during run-time. This layer is responsi-
ble for data collection directly from the running
instances and comprises high performance real-time
observation of VM usage for the purpose of trigger-
ing elastic reconfiguration. Different monitoring
server solutions like Nagios8 and Zabbix9 offer flexi-
ble REST APIs. The assumption is that each VM is
monitored constantly and properties like CPU,
memory, etc. are evaluated at run-time. We utilize a
real time monitoring system that collects resource
usage based on an interval. Data is collected and
analyzed during runtime (such as CPU, memory
and disk usage statistics). More details are presented
in the experimentation section.

(v) Elastic Threshold Management Layer: It imple-
ments the dynamic and real time cost management
function that defines the elastic reconfiguration
thresholds for services. The layer provides func-
tions to calculate profits or overheads of a service
owner or provider by analyzing HTTP traffic.

(vi) Security Layer: Cloud services are usually
deployed as web applications: prevention of
attacks that could increase traffic between applica-
tion and services is of vital importance. The layer
establishes an external security layer to increase
security and discover attacks.

(vii) Portability Layer: It defines the process for system-
atizing application and service deployment
among different cloud platforms. The layer
defines solutions for portability by automating the
deployment of self-sufficient containers (i.e.,
Docker10). In [31] and [32] we presented inter-
cloud IaaS portability solutions that are used here.

4.2 Architecture of Inter-Cloud Based on ICLB
Framework

ICLB framework, demonstrated in Fig. 4, targets the auto-
mation of the inter-cloud elasticity and performs dynamic
VM reconfiguration based on the variation of HTTP traffic.

In detail, Fig. 4 demonstrates the interactions among the
various modules, the flow of traffic initiated by a user to the
ICLB component, and the configuration requirements of the
developer that deploys the service. ICLB differentiates three
actors: the application/service owner, named as App
owner, the user that forwards traffic to the service (i.e., by
making HTTP requests to the App) and the 3rd party

6. OpenStack API: http://developer.openstack.org
7. NGINX: http://nginx.org

8. Nagios: www.nagios.org
9. Zabbix: www.zabbix.com
10. Docker: https://www.docker.com

SOTIRIADIS ET AL.: ELASTIC LOAD BALANCING FOR DYNAMIC VIRTUAL MACHINE RECONFIGURATION BASED ON VERTICAL AND... 323

http://developer.openstack.org
www.nagios.org
www.zabbix.com
https://www.docker.com

service owners that are independent of the cloud platforms.
The next section presents the structure of the ICLB internal
processes regarding initialization and during traffic.

4.2.1 Initialization of the ICLB Architecture

The ICLB initialization process defines processes prior to
the publication of the service. The following describes the
configuration of ICLB modules including initialization and
management of elasticity.

(i) The assumption is that the service owner actor has
already implemented an App/service using avail-
able inter-cloud platform services. By using the Por-
tability module the actor creates App/services in
proprietary containers that are portable, thus inde-
pendent of cloud providers and infrastructure con-
straints. These are also ready for deployment (i.e.,
available in the Docker) to any cloud provider. The
owner deploys the App/service to the preferred
cloud locations (i.e., different clouds). During
deployment the service makes the initial configura-
tion of VM resources (CPU, memory, HD) and vir-
tual network settings. At this point, the App is
composed by other services that are all identified by
a unique URI (that is the service endpoint IP). The
owner uses ICLB to define two categories of service
as follows:
� The brokers are general purpose services and

do not store permanent data. These are in case
of service downtime (i.e., while cloned, resized
and re-launched) and will not affect the App/
service functionality (i.e., missing data because
of a failure).

� The storage services for permanent data storage
that constitute data redundancymechanisms.

(ii) The IC load balancer is configured by the ICLB
components in order to allow traffic distribution in
the deployed App. At this point the assumption is

that the owner instantiates at least two VMs that
host the App in the same or different clouds. Dur-
ing initialization, the owner configures any local
load balancers of the local providers by creating, if
needed, replicated instances of the local services.
The owner configures the IC load balancer to dis-
tribute traffic among service endpoints based on
HTTP load balancer algorithms such as round-
robin, least-connected or IP-hash.

(iii) Using ICLB, the service owner configures the mon-
itoring aspects of the App/service. In particular,
the monitoring module allows live data capturing
based on an interval (i.e., data collection every 5
seconds). The monitoring component requires
installation and configuration within the VMs and
will offer a centralized control point for storing
data including configuration and performance
data. The real-time time monitoring will allow
automated actions of the ICLB components, i.e.,
restart a VM using the IC mediation component.

(iv) The IC mediation component is based on a service-
centric architecture as in [31]. This allows remote
connection to the various clouds interacting
through RESTFul cloud services. Key functionali-
ties include identity management and cloud regis-
try (secure authentication to connect to clouds),
subscription service (data retrieval regarding serv-
ices virtual resources and context management
(subscribe, unsubscribe, create, update and regis-
ter context), complex event management (interfa-
ces to the inter-cloud mediation for defining rules
and patterns to react on certain event flows) and
others described in [31]. The mediation works
independently of the ICLB component, yet it uses
its interfaces to get and post events to the clouds.
For example, the ICLB module, through the media-
tion service will send a request for restarting a VM.
Major aspects of elasticity including horizontal and
vertical elasticity are defined in this component.

(v) The cost management component provides gener-
alized functions and algorithms for real-time data
handling. ICLB uses it to define triggers for inter-
cloud elasticity. The owner initializes this compo-
nent by selecting one of the preferred real-time
resource usage assessment algorithms. These are
simple rules: for instance, when traffic increases 50
percent a new instance will be re-launched or
resized and ICLB will notify the IC load balancer.

(vi) The security component includes the application
and service authentication point that is imple-
mented within the IC mediation. This also includes
an external security layer that increases security for
detecting attacks in order to prevent increasing
traffic. Since ICLB features cloud elasticity in terms
of HTTP traffic monitoring solutions like
ModSecurity,11 an Apache module for real-time
analysis with few changes to existing infrastructure.
The owner defines the security protection rule.

Fig. 4. Inter-cloud elastic service architecture.

11. ModSecurity: www.modsecurity.org

324 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 2, MARCH/APRIL 2019

www.modsecurity.org

(vii) The ICLB component is initialized according to the
requirements of the owner. The component could
perform horizontal and/or vertical elasticity based
on rules and real-time data captured by the moni-
toring and security within the inter-cloud system.

4.2.2 Elasticity Processes of the ICLB Service

ICLB targets real-time traffic management of cloud applica-
tions and services. The following demonstrates the interac-
tion among processes during incoming HTTP traffic. First,
the users send HTTP requests to the IC load balancer, which
in turn forwards the traffic to the local load balancers or the
VMs (depending on the initial deployment). The IC load bal-
ancer is deployed as a cloud service within the inter-cloud
system and monitored in real time. Also, it utilizes an HTTP
load balancer algorithm (pre-defined by the owner) for traf-
fic distribution. The volume of the traffic is monitored by the
ICLB component every interval, while the IC load balancer
resource usage is captured by the monitoring component.
ICLB is based on real-timemonitoring; it defines the automa-
tion mechanism according to the configuration parameters
of the owner. In case of increased or decreased traffic, the
cost management rules trigger actions in ICLB, which sends
events to interacted components. These are as follows.

(i) ICLB monitors resource usage and HTTP traffic
using the monitoring component (based on inter-
val measurements). In particular, we set the moni-
toring threshold to every second for the whole set
of the experimental study. Data is collected and
analyzed on the fly.

(ii) ICLB is configured for triggering events (according
to a decision-making process) based on rules and/
or patterns coming from the cost management
component. If a rule is met, a sequence of events is
triggered. The security component is utilized as a
web firewall to classify incoming traffic to healthy
and malicious requests.

(iii) ICLB, through the IC mediation, sends a request
for performing autoscaling (vertical or horizontal
elasticity to increase or decrease resources). In the
horizontal case it also sends the URI of the new
deployed instance that has been generated using
the portability module.

(iv) Events coming to the IC mediation assigned as
actions for clouds (i.e., launch a new instance). In
case of horizontal elasticity a response is generated
to the ICLB to update the IP of the new instance.

(v) For horizontal elasticity, ICLB gets the IP of the
new instance and performs a sanity check to know
when the service is up; at this point it updates the
IC load balancer list of IPs without dropping the
connection. For vertical elasticity the IC load bal-
ancer sends requests to the instance automatically
when it is up.

(vi) The IC load balancer continues to distribute the
traffic according to a load balancer algorithm (that
is predefined in the initialization stage), and from
this moment it forwards HTTP requests to the new
clone instance (horizontal) or the resized instance
(vertical).

(vii) The ICLB continues monitoring. In case of decreas-
ing traffic it repeats the same process to drop/
shutoff an instance; however, in this case it first
updates the system to delete the instance IP, if
required, by the owner (i.e., for cases where a
cloud client would like to release IPs to decrease
costs). After, it sends the request to the IC media-
tion component for removing the instance IP from
the list. In any other case, the IC load balancer
keeps the IP in the list; however, it does not send
traffic until they become active again.

To demonstrate the above interactions, we present a sim-
ple example that involves the monitoring of the traffic for
increased workloads by 50 percent for more than 1 hour.
Foe example, in this case, the ICLB framework will resize an
instance of the inter-cloud from a small to medium size (i.e.,
from 1 CPU, 2 GB RAM, 20 GB HD to 2 CPUs, 4 GB RAM,
40 GB HD). A more complex case is the generation of a new
clone instance of the selected medium size. In this case the
IP of the new VMwill be registered into the IC load balancer
and the traffic will be spread among the pool of cloned VMs.

4.3 Analysis of the ICLB Configurations

The App/services owner configures the load balancer by
including the addresses of the VMs (IPs and ports). The
default setup for the load balancer is set to the round robin
algorithm that distributes the HTTP traffic fairly. With
regards to the service configuration, the App/services
owner/developer configures VMs (that belong to the inter-
cloud system) and installs components (such as security,
monitoring etc.) using the portability deployment module,
then selects whether to use a local load balancer (Local LB)
or not. The final service endpoints are forwarded to the
ICLB that configures the inter-cloud load balancer, the mon-
itoring (to get real-time data), the IC mediation (i.e., to get
authentication tokens from clouds) and the cost manage-
ment functions. Finally, ICLB is set to serve incoming user
traffic. We further detail the vertical and horizontal
autoscaling configuration as follows:

� Vertical autoscaling refers to the reconfiguration of
the hardware resources of a running VM including
virtual CPU number, disk and RAM size. Various
cloud providers include different size flavors, thus
the threshold for horizontal autoscaling triggers an
action for changing the cloud platform flavor that
in turn upscales or downscales according to
dynamic user needs. Vertical autoscaling creates
App/service downtime, however it keeps the
same endpoint URI.

� Horizontal autoscaling refers to the creation of new
VMs that are clones of the selected instance, utiliz-
ing a process of creating a new image by assigning
the same resources (flavor). After the creation, the
cloned VM is executed independently of the initial
VM. The Horizontal autoscaling does not create
any downtime of the App/service as the image cre-
ation process does not stop VM execution, yet the
new cloned VMgets a new endpoint URI.

The load balancers are organized by the ICLB service, so
in the horizontal case the load balancer forwards all the

SOTIRIADIS ET AL.: ELASTIC LOAD BALANCING FOR DYNAMIC VIRTUAL MACHINE RECONFIGURATION BASED ON VERTICAL AND... 325

traffic to the running instance(s) while in the vertical it is
configured with the new endpoint.

5 PERFORMANCE EVALUATION

This section presents the performance analysis of the ICLB
framework. It includes (a) the experimental setup, (b) the
benchmark analysis, (c) the comparison of horizontal and
vertical autoscaling, (d) the inter-cloud load balancing
benchmarks, the inter-cloud load balancing scenarios based
on (e) HTTP traffic volume and (f) resource usage and (g)
the inter-cloud load balancing based on various service
layers (for example layers of microservices that integrate a
cloud application).

5.1 Experimental Setup

We developed the experiments using two infrastructures
based on (a) an OpenStack and (b) a VMWare VCloud
platforms. The OpenStack system is comprised by 11
nodes (1 head and 10 compute) with total 128 Cores, 284
GB RAM and 12 TB HDD and has been deployed as an
experimental infrastructure while the VMWare is from a
commercial provider. We deployed different VMs fol-
lowing the default sizes of OpenStack that we duplicated
in VMWare. Using both systems we aim to demonstrate
the inter-cloud notion.

The experimental setup includes the utilization of a load
balancing solution deployed in OpenStack, while the VMs
are deployed in OpenStack and VMWare. We perform hori-
zontal and vertical autoscaling in both platforms using their
RESTnAPIs. The fundamental objective is to keep connec-
tion of VMs alive during each ICLB process. To demonstrate
a real world scenario, we deployed Cassandra and we run
different experiments to explore the performance of ICLB
framework. Cassandra is an open source search engine
using schema free JSON documents and provides an HTTP
web interface. We used the the Yahoo! Cloud System Bench-
mark workload in order to stress the CPU utilization for dif-
ferent workloads and we set threshold values to trigger VM
reconfiguration (i.e., when CPU utilzation is higher than a
specific CPU usage percentage). For the whole set of the
experiments we use the YCSB core workload, that has a mix
of 50/50 reads and writes.

The YCBS workload allows us to test our system using a
real world workload benchmark that increases CPU utiliza-
tion. Fig. 5 demonstrates a simple example of this scenario
where it is shown that the HTTP traffic is forwarding from
YCSB node (that in our case simulates a user) to the Cassan-
dra cluster. Here the client forwards requests to the

Cassandra node using the inter-cloud load balancer, by
sending traffic to N1 while N2 is offline for the moment. A
monitoring service that is preinstalled in all nodes and mon-
itors different features including percentage of CPU usage,
Memory, HD, IOs etc.

In detail, the traffic is forwarding to the N1 that is the
head node of the Elastisearch cluster consisting of three
nodes (N1, N2, N3). The assumption is that when the traffic
overcomes a threshold a new clone VM (N1 Clone) will be
created (for example from size small to medium) to handle
the increasing demands and replace N1. In our case, we set
the default parameter for autoscaling the HTTP requests,
however this can be extended to include CPU utilzation and
other. In more detail, the monitoring service uses the psutil
library12 and is responsible for collecting monitoring data
per second, and sends it to the ICLB along with the identifi-
cation number of the node.

Based on this setup, we perform the following
experiments.

(A) First, we perform a benchmark analysis of horizontal
and vertical autoscaling including various tests of
cloud VMs sizes (named as flavors). For each experi-
ment we run 10 tests and wemeasure the average of
these executions. The experimental setup includes
load balancing in the Cassandra cluster.

(B) The autoscaling of a single VM that utilizes other
services belonging to different clouds. The aim is
to explore if there are any downtimes in terms of
horizontal autoscaling and also to measure the
times needed for vertical autoscaling (that is the
time to create new instances).

(C) The benchmark analysis of the ICLB that distrib-
utes traffic into the Cassandra cluster (comprised
by two VMs) in order to compare the total execu-
tion time, requests served and transfer rates. In
addition, we compare round robin, IP hashing and
least connected load balancing algorithms to
explore their performance for various levels of
concurrent requests.

(D) The autoscaling of the Cassandra in a topology in
which the ICLB component distributes requests
among two identical VMs for a large number of
requests that simulate incoming traffic using the
YCSB workload. The aim is to compare horizontal
and vertical autoscaling and to explore an optimi-
zation scheme for further gains.

(E) The ICLB scenario in which the ICLB component
monitors resource utilization levels and accord-
ingly triggers autoscaling based on CPU usage.

(F) A complex inter-cloud heterogenous topology in
which the monitoring of CPU levels triggers
autoscaling.

5.2 Benchmark Analysis of Horizontal and Vertical
Autoscaling

This section presents the analysis of autoscaling of the Cas-
sandra (that in our example demonstrates the cloud applica-
tion/system) based on the YCSB workload. We deploy

Fig. 5. HTTP traffic forwarding from user that sends YCSB workload to
the Cassandra cluster.

12. https://pythonhosted.org/psutil/

326 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 2, MARCH/APRIL 2019

Cassandra and we configure flavors, where flavor f1 is 1
CPU, 1 GB memory and 1 TB HD, f2 is 1 CPU, 2 GB memory
and 20 TB disk and f3 is 2 CPU, 4 GBmemory and 40 GBHD.
We divided the VM creation phase into two stages; the
Response and the Active server. Specifically, the Response is the
time needed for the request to send a VM creation to the
OpenStack API and get the response (shown as status 202
Accepted) information from the virtual server.

It should be mentioned that the ICLB sends API calls using
the REST interfaces of the platforms, so the response time is
the time needed for a call to be executed (i.e., send an HTTP
GET/POST) and return the successive HTTP response. The
response data includes VM identification, endpoint IP etc.
The Active server is the time needed for the server to acquire
statusActive in the OpenStack system.We execute a sequence
of 10 requests for each of the three flavors, thus the total exper-
iment includes 30 executions with 60 measurements executed
in a total of 50 minutes. The total creation time is the sum of
the two aforementioned times. With regards to the network
aspects we follow the default network configurations of the
cloud platforms (for example OpenStack uses the Neutron
service13 that provide networking as a service and are respon-
sible for creating the virtual interfaces for the OpenStack sys-
tem). According to Table 1 we calculate that the average total
time for Cassandra VM creation for f1 is 51.44 seconds, for f2
40.47 seconds and for f3 is 38.36 seconds.

Based on these we conclude the following findings.

� The average time for the VM creation for all cases
is less than 44 seconds.

� As the size of the requested VM is increased, the
time for VM creation is decreased slightly, thus
bigger VM sizes does not affect performance
significantly.

� The average time for a VM creation, independent
of its size, is 43 seconds.

� The VM is not yet accessible as the system has not
yet assigned a floating IP to it. Based on a basic
experiment in an OpenStack platform we con-
cluded that the IP allocation and assignment pro-
cess would increase the average creation time by
an average of 6 seconds, so the average VM crea-
tion time becomes 48.55 seconds.

In Fig. 6 we visualize the horizontal autoscaling values of
Table 1 in a clustered column diagram to highlight the
above findings.

In this case we execute a simple upscaling resizing in an
OpenStack system using the API and by sending HTTP

requests. It includes the upscaling from flavor f1 to f2, f2 to
f3 and f3 to f4. The new flavor, which is not in the previous
horizontal case, is f4 and includes 4 CPUs, 8 GB RAM and
80 GB HD. We executed 10 requests (as previously) and we
measured two parameters that divide the overall upscaling
process into the altering of flavor to flavor Uptime and flavor
to flavor Downtime. The first reflects the resizing preparation
time where the instance is online and the second the execu-
tion timewhere the instance is offline.

The sum of the values of the two parameters defines
the total upscaling time. The same configuration is valid
for the downscale process. Based on the measurements
in Table 2 we observe that the total time of upscaling
from f1 to f2 is 68.26 seconds, from f2 to f3 is 37.52 sec-
onds and from f3 to f4 is 53.77 seconds. We further
define a connection looseness factor that is the division
of uptime to downtime value. The factor is calculated as
1.17 for resizing f1 to f2, 1.21 from f2 to f3 and 1.29 from
f3 to f4. Based on the table values we conclude the
following.

� The overall time for VM resizing is always less
than 53.5 seconds.

� As the size of the requested VM is increased, the
time for VM creation does not change linearly and
is related to the size of the required flavor and the
bandwidth.

� The VM is accessible as the system keeps the same
endpoint (IP).

� The connection looseness factor shows an
increasing trend each time the VM upscales,
thus VMs tend to loose connection when size is
increased.

TABLE 1
Horizontal Autoscaling Benchmark Analysis

Request Number 1 2 3 4 5 6 7 8 9 10

f1: Response 29.92 29.24 13.85 17.085 23.14 20.36 21.79 30.39 13.57 10.81
f1: Active server 28.91 44.19 24.53 36.16 23.47 30.63 29.91 26.92 25.19 34.3
f2: Response 8.67 25.09 9.69 16.85 23.83 15.86 20.36 19.89 21.85 12.24
f2: Active server 19.74 23.86 22.13 32.1 28.08 33.44 16.96 18.87 14.86 20.4
f3: Response 10.2 19.17 15.81 14.33 10.91 13.78 9.99 15.56 17.31 18.56
f3: Active server 31.31 20.5 23.97 16.7 26.29 14.77 23.66 20.66 32.146 27.93

Fig. 6. Benchmarking: Horizontal autoscaling of a cloud VM.13. https://wiki.openstack.org/wiki/Neutron

SOTIRIADIS ET AL.: ELASTIC LOAD BALANCING FOR DYNAMIC VIRTUAL MACHINE RECONFIGURATION BASED ON VERTICAL AND... 327

https://wiki.openstack.org/wiki/Neutron

In Fig. 7 we visualize the vertical autoscaling values of
Table 2 in a clustered column diagram in order to highlight
above findings.

5.3 Comparison of Horizontal and Vertical
Autoscaling

This section demonstrates the comparison between horizon-
tal and vertical autoscaling that it is triggered by ICLB. We
base out experiment in Fig. 5, however we activated the
N1 Clone so users send requests to the ICLB component that
in turn triggers the autoscaling mechanism. In this case load
balancing is performed in a round-robin fashion, meaning
that half of the re. For this experiment autoscaling is exe-
cuted every 100 YCSB requests in order to measure the
downtimes (vertical) and VM creation times (horizontal) of
identical flavors (f2 and f3). Fig. 8 demonstrates the compar-
ison between the horizontal and vertical autoscaling of a
cloud App for flavor f2 along with the linear trend lines.

Similar to Figs. 8 and 9 demonstrates the comparison
between the horizontal and vertical autoscaling for flavor f3.

Based on the previous figures we conclude to the follow-
ing findings.

� The horizontal autoscaling outperforms the verti-
cal one, since the downtime average is lower. The
average values of vertical autoscaling (28.21 and
26.66 seconds) compared to the horizontal ones
(46.15 and 48.13 seconds) demonstrate that, based
on times, the preferred solution is the horizontal.

� The trend lines show that the vertical autoscaling
downtimes for both f2 and f3 decrease as the ICLB
component executes the mechanism based on the
specific number of YCSB runs. In contrast, the hori-
zontal autoscaling case demonstrates a marginally
decreasing trend for f2 and an increasing one for f3.

It should be noted that during this experiment the
assumption was that the AppClone VM has been created at a
previous stage.

5.4 Inter-Cloud Load Balancing Benchmarks

This section presents the fundamental benchmark study of
the ICLB that is the key component of the ICLB framework.
The topology of the App/services is similar to Fig. 5 where
users send HTTP requests to the ICLB that in turn it for-
wards each into the N1 or the N1 Clone VMs, however in this
case N1 is deployed in OpenStack and N1 Clone is deployed
in VMWare VCloud. The experimental configuration
involves YCSB executions of workloada14 that includes 1,000

record counts and operation counts. To compare perfor-
mance, we present two scenarios in which (a) all the traffic
is forwarded to one VM that executes all HTTP requests
(here, ICLB is acting as a proxy) and (b) the traffic is distrib-
uted among two identical VMs (here, ICLB is acting as a
load balancer in a round-robin fashion). Fig. 10 demon-
strates the results of the execution of 1,000 requests (with
total transfer size of 21.6 KB) where the percentages demon-
strate the requests served within a certain time (ms).

Fig. 11 shows metrics including the mean time across all
concurrent requests, the mean time per request, and the
total time of execution for both cases. We can observe that
the ICLB improves times for each metric. Further to the
aforementioned scenarios, another useful analysis is the
comparison of the load balancing algorithms that could
assist with the next sections experimental developments.
Fig. 12 shows the comparison between the round robin, IP
hash and the least connected algorithms.

In particular, Fig. 12a demonstrates the total time required
to execute 5,000 and 10,000 requests with concurrency level
of 100 users in both cases and Fig. 12b the comparison of the
requests per second for the same configuration.

It is apparent that in the low volume requests scenario
(C:100/R:5,000) the least connected algorithm offers
improved results (lowest total time and highest serving vol-
ume of request per second). In contrast, when the number
of the requests increased significantly (C:100/R:10,000) the
round robin algorithm outperforms all three. Based on
Figs. 10, 11, and 12 we make the following observations.

� The percentage of the requests served demon-
strates that in the case of 1 VM, 50 percent of the
requests are completed in at most 91 milliseconds

TABLE 2
Vertical Autoscaling Benchmark Analysis

Request Number 1 2 3 4 5 6 7 8 9 10

f1-f2: Uptime 26.74 24.31 28.57 28.24 29.26 26.97 23.20 26.32 28.59 25.27
f1-f2: Downtime 41.52 27.27 25.35 23.09 23.64 27.19 41.22 37.50 34.58 31.56
f2-f3: Uptime 21.45 29.22 22.97 22.49 28.38 30.23 27.37 13.26 13.16 18.20
f2-f3: Downtime 16.07 33.06 29.75 28.42 36.02 31.82 29.13 22.54 21.10 26.96
f3-f4: Uptime 17.76 19.10 16.79 19.90 22.37 20.95 21.03 22.58 14.95 25.50
f3-f4: Downtime 36.01 19.24 22.85 31.97 26.09 28.63 23.88 29.45 22.95 18.72

Fig. 7. Benchmarking: Vertical autoscaling of a cloud VM.
14. https://github.com/brianfrankcooper/YCSB/blob/master/

workloads

328 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 2, MARCH/APRIL 2019

while 90 percent of the requests are completed in
at most 1.196 milliseconds. All requests are com-
pleted within 9.524 milliseconds, which was the
longest request time noted in the test.

� During the execution of the benchmark almost 90 per-
cent of the requests are served in similar times, while
above this amount, the serving times differ radically.
Eventually, 100 percent of requests are executed in
9.524ms for 1VMand in 2.663ms for 2VMs.

� The transfer rate (KBs per second) for 1 VM is 9.61
while for 2 VMs it is 14.56. The transfer rate factor
(that is measured as the division of the transfer
rate of two to one VM) is calculated as 1.5, thus it
shows significantly increased performance.

� The requests per second for 1 VM is 22.79 while
for 2 VMs it is 34.52, showing that in the second
case the serving volume has been increased
significantly.

� The mean time (that is the time between one HTTP
request and another) is well improved in the load
balancing case, since we observe around 60 per-
cent performance gain.

� Based on the experimental tests, the least con-
nected algorithm is most suitable for 5,000 requests
with the round robin for 10,0000 requests.

5.5 Inter-Cloud Load Balancing Based on the
Volume of the HTTP Traffic

This experiment shows ICLB autoscaling performance
analysis of the topology of Fig. 13. We experiment at the
App and LLB level, while the SLBs are monitored in
order to ensure that there are no failures in communica-
tion. In this case, during the execution of a number of
requests, we trigger vertical autoscaling based on HTTP
traffic reconfiguration.

Fig. 8. Horizontal versus vertical autoscaling of a cloud App for flavor f2.

Fig. 9. Horizontal versus vertical autoscaling of a cloud App for flavor f3.

Fig. 10. Benchmarking: Percentage of requests served within a certain
time (ms).

Fig. 11. Benchmarking: Mean time across all concurrent requests, the
mean time per request, and the total time of execution.

Fig. 12. Benchmarking: Comparison between round robin, IP hash and
least connected load balancing algorithms.

Fig. 13. HTTP interactions among ICLB users and App/services and
components.

SOTIRIADIS ET AL.: ELASTIC LOAD BALANCING FOR DYNAMIC VIRTUAL MACHINE RECONFIGURATION BASED ON VERTICAL AND... 329

The experimental configuration is as follows.

� We executed an extensive number of 30,000 HTTP
requests using the round robin algorithm. The traf-
fic is directed from the ICLB to the LLB component
that in turn distributes it to the App and AppClone.

� We set a rule for vertical and horizontal autoscal-
ing to the 3,000 HTTP requests.

� The ICLB and LLB VMs includes 2 CPUs, 4 GB
RAM, 40 GB HD (flavor f3) while the App and
AppClone includes 1 CPU, 2 GB RAM, 20 GB HD
(flavor f2).

� The vertical autoscaling mechanism sends a resiz-
ing request for AppClone from flavor f2 to f3.

� The horizontal autoscaling mechanism requests a
flavor f3.

Fig. 14 shows the comparison between vertical (ICLB
Vert.) and horizontal (ICLB Hor.) autoscaling performance
during run-time execution of 30,000 HTTP requests. In par-
ticular, Fig. 14a demonstrates the time taken for tests that is
measured in seconds (primary vertical axis) and the
requests per second (secondary vertical axis), while Fig. 14b
demonstrates the mean time per request measured in milli-
seconds (primary vertical axis) and the transfer rate (sec-
ondary vertical axis). Observing the figures, we conclude
that the horizontal outperforms the vertical autoscaling.

According to Figs. 14a and 14b, we conclude to following
findings.

� The horizontal outperforms the vertical autoscal-
ing for requests executed per second, mean time
per request and transfer rate. The performance fac-
tor for horizontal (that is calculated as the division
of transfer rate between horizontal and vertical
autoscaling) is calculated at 1.68.

� The total time (time taken for tests) for the verti-
cal case is higher. This comes in contrast to
Fig. 9 benchmark results, that demonstrate that
the time needed for vertical autoscaling is less
than the horizontal. Yet, we have also observed
that during the experiment the App VM (that is
the VM that did not upscale and continued to
serve HTTP requests as normal) started to show
a degradation in the volume of requests served
because of delays caused by the increasing load
in the ICLB component.

To minimize that issue, caused when the VM status is
resizing or migrating, we developed an optimization
scheme that allows direct interactions with the load bal-
ancer in order to change its configuration parameters on the
fly during run-time and before the execution of the vertical
autoscaling request. We noticed that when the ICLB config-
uration is changed before (i.e., remove an instance from the
list before its status changes to offline) the distribution of
the load balancer is well optimized. Fig. 15 demonstrates
the optimized performance results.

According to the optimization scheme, the performance of
the vertical to horizontal autoscaling is increased by a factor of
1.27. Similarly, results for other metrics (Fig. 15) are well
improved: for instance, the vertical autoscaling serves 376
requests per secondwhile the horizontal serves around 319.

5.6 Inter-Cloud Load Balancing Based on Resource
Usage Monitoring

As discussed in Section 3, the monitoring component per-
forms real-time analysis of Apps/services and thus could
trigger autoscaling according to resource usage. To demon-
strate this, we present an experimental analysis similar to
the topology of Fig. 13 by triggering vertical autoscaling
when CPU level is increased over a certain amount, as per
the following configuration.

� The assumption is that at initialization stage the
AppClone is offline and will be started according to
a CPU load threshold of the App VM.

� We configure the ICLB service to trigger horizontal
autoscaling for App VM CPU loads higher than 15
percent.

� We measure real-time CPU load following an
experimental time frame.

Fig. 16, shows the App CPU load during this time
frame. It could be observed that at 16:07:31 the CPU load
becomes 16 percent, a percentage that triggers the
autoscaling mechanism. However, it should be mentioned
that this is an ideal scenario that we stress the VM to
increase the CPU load percentage in order to trigger
autoscaling. The AppClone that is offline will be started
automatically then the load will be 15 percent or higher.
For example, in the case where the threshold will be set
to a higher number, i.e., 50 percent autoscaling will not
be triggered until the load will reach such number. So,

Fig. 14. Comparison between vertical and horizontal autoscaling perfor-
mance during run-time execution of 30,000 HTTP requests.

Fig. 15. Comparison between optimized vertical and horizontal autoscal-
ing performance during run-time execution of 30,000 HTTP requests.

330 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 2, MARCH/APRIL 2019

there the challenge is to define the correct threshold to
avoid suboptimal autoscaling. However, this is not the
aim of this study and in the future work we expect to
increase the number of experiments in order to define a
historical record that will be able to train a machine learn-
ing algorithm that will define autoscaling triggering
according to selected features such as CPU, memory etc.

Fig. 17, shows the comparison between normal (execu-
tion without adding a new instance) and CPU load balanc-
ing triggering and the values of the selected metrics.

In detail, it shows the performance gain in selected met-
rics for normal and ICLB load balancing when the CPU
reaches the 15 percent limit. According to these, we con-
clude the following findings.

� The ICLB minimizes the CPU load. This could be
observed in Fig. 16 at the time that the new
instance becomes available.

� The performance factor regarding the transfer rate
is 1.25 presenting an important optimization gain.

To summarize, the experimental analysis of Sections 5,
5.4, and 5.5, present the various cases of VM reconfigura-
tion in an inter-cloud system. Following the flow of the
experimentation, we concluded that the horizontal and
vertical elasticity could offer significant optimizations
and could be triggered either based on increasing traffic
volume or resource utilization. The downscaling process
supports only flavors with similar hard disk sizes, and
for these ICLB offers similar results, thus due to this
technical limitation we decided to demonstrate only
upscaling cases.

5.7 Load Balancing Based on Different Inter-Cloud
Layers

Until now, the experimental analysis included tests exe-
cuted in different cloud providers but on the same platform
(OpenStack). This section presents an extensive experiment
of a heterogeneous inter-cloud system, where applications
and services are deployed in different cloud platforms. The
assumption is that the ICLB is deployed in Cloud A, and
App and AppClone in Cloud B. Both applications utilize a set
of 3rd party services belonging to Cloud C (S1, S2) and the
experiment will dynamically create a new one that will be
the result of a vertical autoscaling (S3) triggered by the ICLB
component. In particular, we have deployed Cloud A in
Amazon, Cloud B in VMWare Cloud and Cloud C in Open-
Stack to demonstrate heterogeneity. Fig. 18 shows the topol-
ogy of the inter-cloud system.

The experimental configuration involves the following
setup.

� The time frame of the test is set to 300 seconds in
which it executes around 50,000 HTTP requests.

� The total traffic for all cases is 21.6 MB per second.
� We measure the CPU load and we set a vertical

VM autoscaling threshold at 15 percent. This
means that a new VM will become active when the
CPU of one of S1 or S2 is above that amount.

� We execute the experiment based on a round robin
load balancing algorithm.

The monitoring component collects the resource CPU
load that is also evaluated in real time from the ICLB
component. Fig. 19 demonstrates the CPU load variation
during this time frame. It could be observed that when
Service 1 reaches its peak limit (threshold of 15 percent),
ICLB triggers the reconfiguration of resources that
denotes the creation of Service 3 (in heterogeneous

Fig. 16. CPU load of App VM.

Fig. 17. Comparison between normal and CPU load balancing triggering
for total test time, request served per second, time per request and
transfer rate.

Fig. 18. Topology of HTTP traffic in three heterogeneous clouds.

Fig. 19. CPU load of inter-cloud topology for time frame of 300 seconds.

SOTIRIADIS ET AL.: ELASTIC LOAD BALANCING FOR DYNAMIC VIRTUAL MACHINE RECONFIGURATION BASED ON VERTICAL AND... 331

Cloud 3). Fig. 20 further includes two sub-frames for (a)
characterizing the first frame when CPU utilization is 16
percent (Service 1), and (b) the time frame that vertical
autoscaling is executed (total time of 94 seconds). At the
end of this process a new instance is available for traffic
distribution in the ICLB. Lastly, after the creation of the
new instance, it can be observed that the CPU loads are
reduced (below the threshold of 15 percent). Similar to
Fig. 16, the experiment includes a selected threshold that
is to overcame (i.e., the 15 percent threshold). To con-
clude, the results of the experiment demonstrate that the
autoscaling can be executed relatively fast (i.e., one and
a half minute) if we consider the number of operations
involving in this process (create a new VM, configure
network interface, etc.). In addition, we set the threshold
to 15 percent CPU percentage, that clearly is a low load,
however we mostly wanted to demonstrated the process
of autoscaling rather the conceptualization of selecting
the ideal thresholds. As mentioned before these could be
the result of an analysis using historical data from real
world datacenters in order to train the system define
thresholds according to real usage, a direction that we
aim to focus in future works.

To demonstrate the effectiveness of the ICLB autoscaling
in the above scenario we compare the next two cases.

(i) We execute the same experiment with the topology
of 18 without triggering vertical autoscaling. This
case involves two identical 3rd party services.

(ii) We execute the vertical autoscaling to examine
how it affects the performance of the HTTP request
service considering any delays that could be
included in the ICLB component when it updates
the configuration file.

Fig. 20 demonstrates comparison between various met-
rics for cases of vertical and non-vertical autoscaling.

Based on the analysis of this section we concluded the
following findings.

� The inter-cloud topology demonstrates interac-
tions among heterogeneous cloud platforms and
services. The ICLB component performs real-time
evaluation of results (from the monitoring

component) and the IC mediation service allows
communication among the heterogeneous clouds
using their APIs.

� The ICLB component reduces the CPU load of the
services at the moment that the new service
instance is registered in the ICLB component.

� There are no errors and failures during serving the
whole set of the 50,000 HTTP requests.

� The non-vertical autoscaling case outperforms the
vertical one in terms of requests execution, how-
ever the transfer rate factor is measured at 1.08,
which is marginally better, caused by the delays of
the ICLB component.

This study focuses on the ICLB level, thus portability
and security issues have been treated as a black-box.
Especially, inter-cloud IaaS level portability is the total
time for migrating a VM among clouds. To have a more
complete view, we executed a simple example case of an
Cassandra instance migration (running on Ubuntu 12.04
LTS-64 of 800 MB). The process includes a) log into the
original cloud platform (where the VM is already run-
ning), b) create a clone snapshot (i.e., of an already oper-
ated Cassandra node), c) download the snapshot, d) log
into the target cloud, e) upload the snapshot, f) set key-
pair, g) launch the cloned instance (that inherits all the
configuration of its “master” VM image, and h) set
instance IP. The total time for instance migration is 64.93
seconds and could be taken into consideration when hor-
izontal autoscaling includes VM migrations.

6 CONCLUSION AND FUTURE WORK

We proposed the ICLB, a modular framework that allows
load balancing of inter-cloud applications and services
that belong to heterogeneous providers. We aimed to
improve the elasticity in the IaaS level through autoscal-
ing of cloud and inter-cloud VMs, so we highlighted key
requirements. We also utilized various load balancing
configurations in order to ensure zero downtime. We
based our initial hypothesis in a real world system (Cas-
sandra cluster deployed in OpenStack and VMWare) in
order to demonstrate the problems and issues on scaling
inter-cloud applications. The experimental analysis is
positive and shows various topologies in which ICLB
framework could be applied along with fundamental
benchmarks on horizontal and vertical autoscaling that
could serve other studies, as well. The contributions of
our work include the proposition of a new inter-cloud
load balancer that acts on top of the clouds and allows
interactions among heterogeneous cloud platforms. We
compared different scenarios for vertical and horizontal
elasticity and we demonstrated that in both cases we
could executed the experiments without any loss in com-
munication or failures. The future research steps involve
different directions of solutions that could be applied as
optimization schemes including machine learning algo-
rithms. Also, we expect to increase the number of experi-
ments in order to define a historical record that will be
able to train a machine learning algorithm that will define
autoscaling triggering according to selected features such
as CPU, memory etc.

Fig. 20. Comparison between total time of tests, requests per second,
time per request and transfer rate for the two cases of vertical and non-
vertical autoscaling.

332 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 2, MARCH/APRIL 2019

REFERENCES

[1] S. Sotiriadis, N. Bessis, F. Xhafa, and N. Antonopoulos, “Cloud
virtual machine scheduling: Modelling the cloud virtual machine
instantiation,” in Proc. IEEE 6th Int. Conf. Complex Intell. Softw.
Intensive Syst., 2012, pp. 233–240. [Online]. Available: http://dx.
doi.org/10.1109/CISIS.2012.113

[2] IBM, “Microservices from theory to practice: Creating applica-
tions in IBM bluemix using the microservices approach,” Aug.
2016. [Online]. Available: http://www.redbooks.ibm.com

[3] D. Petcu, “Consuming resources and services from multiple
clouds,” J. Grid Comput., vol. 12, no. 2, pp. 321–345, Jun. 2014.
[Online]. Available: http://dx.doi.org/10.1007/s10723-013-9290-3

[4] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with
borg,” in Proc. 10th Eur. Conf. Comput. Syst., 2015, pp. 18:1–18:17.
[Online]. Available: http://doi.acm.org/10.1145/2741948.2741964

[5] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proc.
6th ACM Symp. Cloud Comput., 2015, pp. 167–167. [Online]. Avail-
able: http://doi.acm.org/10.1145/2806777.2809955

[6] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, omega, and kubernetes,” Commun. ACM, vol. 59, no. 5,
pp. 50–57, Apr. 2016. [Online]. Available: http://doi.acm.org/
10.1145/2890784

[7] L. Beernaert, M. Matos, R. Vilaça, and R. Oliveira, “Automatic
elasticity in OpenStack,” in Proc. Workshop Sec. Depend. Middleware
Cloud Monitoring Manage., 2012, pp. 2:1–2:6. [Online]. Available:
http://doi.acm.org/10.1145/2405186.2405188

[8] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically
scaling applications in the cloud,” SIGCOMM Comput. Commun.
Rev., vol. 41, no. 1, pp. 45–52, Jan. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1925861.1925869

[9] A. Cassandra. [Online]. Available: http://cassandra.apache.org,
Accessed at 10 Sept. 2016.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,” in
Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 143–154. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807152

[11] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide, 1st ed.
Sebastopol, CA, USA: O’Reilly Media, 2015.

[12] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid
elasticity controller for cloud infrastructures,” in Proc. IEEE Netw.
Operations Manage. Symp., Apr. 2012, pp. 204–212.

[13] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood,
“Agile dynamic provisioning of multi-tier internet applications,”
ACM Trans. Auton. Adaptive Syst., vol. 3, no. 1, pp. 1:1–1:39, Mar.
2008. [Online]. Available: http://doi.acm.org/10.1145/
1342171.1342172

[14] I. Kureshi, C. Pulley, J. Brennan, V. Holmes, S. Bonner, and
Y. James, “Advancing research infrastructure using OpenStack,”
Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 4, pp. 64–70, Dec. 2013.
[Online]. Available: http://eprints.hud.ac.uk/19421/

[15] S. Bouchenak, “Automated control for SLA-aware elastic clouds,”
in Proc. 5th Int. Workshop Feedback Control Implementation Des. Com-
put. Syst. Netw., 2010, pp. 27–28. [Online]. Available: http://doi.
acm.org/10.1145/1791204.1791210

[16] L. Beernaert, M. Matos, R. Vilaça, and R. Oliveira, “Automatic
elasticity in OpenStack,” in Proc. Workshop Secure Depend. Middle-
ware Cloud Monitoring Manage., 2012, pp. 2:1–2:6. [Online]. Avail-
able: http://doi.acm.org/10.1145/2405186.2405188

[17] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: Elastic
resource scaling for multi-tenant cloud systems,” in Proc. 2nd
ACM Symp. Cloud Comput., 2011, pp. 5:1–5:14. [Online]. Available:
http://doi.acm.org/10.1145/2038916.2038921

[18] R. Bryant, et al., “Kaleidoscope: Cloud micro-elasticity via VM
state coloring,” in Proc. 6th Conf. Comput. Syst., 2011, pp. 273–286.
[Online]. Available: http://doi.acm.org/10.1145/1966445.1966471

[19] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elas-
ticity provisioning system for the cloud,” in Proc. 31st Int. Conf.
Distrib. Comput. Syst., Jun. 2011, pp. 559–570.

[20] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic resource alloca-
tion with management objectives: Implementation for an Open-
Stack cloud,” in Proc. 8th Int. Conf. Netw. Serv. Manage., 2013,
pp. 309–315. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2499406.2499456

[21] Amazon auto scaling documentation. [Online]. Available: http://
aws.amazon.com/documentation/autoscaling/, Accessed at 10
Sept. 2016.

[22] Amazon elastic load balancing documentation. [Online].
Available: http://aws.amazon.com/documentation/elastic-load-
balancing/, Accessed at 10 Sept. 2016.

[23] N. Janssens, X. An, K. Daenen, and C. Forlivesi, “Dynamic scaling
of call-stateful SIP services in the cloud,” in Proc. 11th Int. IFIP TC
6 Conf. Netw.—Vol. Part I, 2012, pp. 175–189.

[24] G. Molto, M. Caballer, E. Romero, and C. de Alfonso, “Elastic
memory management of virtualized infrastructures for applica-
tions with dynamic memory requirements,” Procedia Comput. Sci.,
vol. 18, pp. 159–168, 2013.

[25] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood,
“Agile dynamic provisioning of multi-tier internet applications,”
ACM Trans. Auton. Adaptive Syst., vol. 3, no. 1, pp. 1:1–1:39,
Mar. 2008. [Online]. Available: http://doi.acm.org/10.1145/
1342171.1342172

[26] Load balancing as a service, 2015. [Online]. Available: https://
wiki.openstack.org/wiki/Neutron/LBaaS

[27] F. Paraiso, P. Merle, and L. Seinturier, “soCloud: A service-ori-
ented component-based PaaS for managing portability, provision-
ing, elasticity, and high availability across multiple clouds,”
Computing, vol. 98, no. 5, pp. 539–565, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s00607–014-0421-x

[28] D. Ardagna, et al., “MODAClouds: A model-driven approach for
the design and execution of applications on multiple clouds,” in
Proc. 4th Int. Workshop Modeling Softw. Eng., Jun. 2012, pp. 50–56.

[29] Y. Huang, et al., “Towards an integrated vision across inter-coop-
erative grid virtual organizations,” in Proc. 1st Int. Conf. Future
Generation Inf. Technol., 2009, pp. 120–128. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-10509-8_15

[30] S. Sotiriadis, N. Bessis, A. Anjum, and R. Buyya, “An inter-cloud
meta-scheduling (ICMS) simulation framework: Architecture and
evaluation,,” IEEE Trans. on Serv. Comput., 2015, doi: 10.1109/
TSC.2015.2399312.

[31] S. Sotiriadis and N. Bessis, “An inter-cloud bridge system for het-
erogeneous cloud platforms,” Future Generation Comput. Syst.,
vol. 54, pp. 180–194, 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167739X15000400

[32] L. Vacanas, S. Sotiriadis, and E. Petrakis, “Implementing the cloud
software to data approach for OpenStack environments,” in Adap-
tive Resource Management and Scheduling for Cloud Computing.
Berlin, Germany: Springer, pp. 103–118, 2015.

[33] S. Sotiriadis, N. Bessis, P. Kuonen, and N. Antonopoulos, “The
inter-cloud meta-scheduling (ICMS) framework,” in Proc. IEEE
27th Int. Conf. Adv. Inf. Netw. Appl., 2013, pp. 64–73. [Online].
Available: http://dx.doi.org/10.1109/AINA.2013.122

Stelios Sotiriadis is currently a research scien-
tist in the Edward Rogers Sr. Department of Elec-
trical and Computer Engineering, University of
Toronto, Canada. His research interests are
related to distributed systems and especially
cloud computing systems, inter-cloud, future
internet (FI) applications, and Internet of Things
(IoT). He has published more than 70 papers and
he won two best paper awards. His personal pro-
file is available in www.sotiriadis.gr.

Nik Bessis is a full professor of computer sci-
ence and the head of the Department of Comput-
ing, Edgehill University, United Kingdom. His
research is on social graphs for network and big
data analytics as well as on developing data push
and resource provisioning services in IoT, FI, and
inter-clouds. He is involved in and led a number
of funded research and commercial projects in
these areas. He has published more than 250
papers, won four best paper awards and is the
editor of several books and the editor-in-chief of

the International Journal of Distributed Systems and Technologies. He is
a fellow of the HEA, the BCS, and a senior member of the IEEE.

SOTIRIADIS ET AL.: ELASTIC LOAD BALANCING FOR DYNAMIC VIRTUAL MACHINE RECONFIGURATION BASED ON VERTICAL AND... 333

http://dx.doi.org/10.1109/CISIS.2012.113
http://dx.doi.org/10.1109/CISIS.2012.113
http://www.redbooks.ibm.com
http://dx.doi.org/10.1007/s10723-013-9290-3
http://doi.acm.org/10.1145/2741948.2741964
http://doi.acm.org/10.1145/2806777.2809955
http://doi.acm.org/10.1145/2890784
http://doi.acm.org/10.1145/2890784
http://doi.acm.org/10.1145/2405186.2405188
http://doi.acm.org/10.1145/1925861.1925869
http://cassandra.apache.org
http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1342171.1342172
http://doi.acm.org/10.1145/1342171.1342172
http://eprints.hud.ac.uk/19421/
http://doi.acm.org/10.1145/1791204.1791210
http://doi.acm.org/10.1145/1791204.1791210
http://doi.acm.org/10.1145/2405186.2405188
http://doi.acm.org/10.1145/2038916.2038921
http://doi.acm.org/10.1145/1966445.1966471
http://dl.acm.org/citation.cfm?id=2499406.2499456
http://dl.acm.org/citation.cfm?id=2499406.2499456
http://aws.amazon.com/documentation/autoscaling/
http://aws.amazon.com/documentation/autoscaling/
http://aws.amazon.com/documentation/elastic-load-balancing/
http://aws.amazon.com/documentation/elastic-load-balancing/
http://doi.acm.org/10.1145/1342171.1342172
http://doi.acm.org/10.1145/1342171.1342172
https://wiki.openstack.org/wiki/Neutron/LBaaS
https://wiki.openstack.org/wiki/Neutron/LBaaS
http://dx.doi.org/10.1007/s00607--014-0421-x
http://dx.doi.org/10.1007/978-3-642-10509-8_15
http://dx.doi.org/10.1109/TSC.2015.2399312
http://dx.doi.org/10.1109/TSC.2015.2399312
http://www.sciencedirect�.com/science/article/pii/S0167739X15000400
http://www.sciencedirect�.com/science/article/pii/S0167739X15000400
http://dx.doi.org/10.1109/AINA.2013.122

Cristiana Amza received the BS degree in com-
puter engineering from Bucharest Polytechnic
Institute, in 1991, and the MS and PhD degrees
in computer science from Rice University, in
1997 and 2003, respectively. She is an associate
professor in the Department of Electrical and
Computer Engineering, University of Toronto.
Her research interests include the area of distrib-
uted and parallel systems, with an emphasis on
designing, prototyping and experimentally evalu-
ating novel algorithms and tools for self-manag-

ing, self-adaptive, and self-healing behavior in data centers and Clouds.
She is actively collaborating with several industry partners, including
Intel, NetApp, Bell Canada, and IBM through IBM T.J. Watson, Almaden,
and IBM Toronto Labs.

Rajkumar Buyya received the BE and ME
degrees in computer science and engineering
from Mysore and Bangalore Universities, in 1992
and 1995, respectively. He received the PhD
degree in computer science and software engi-
neering from Monash University, Melbourne,
Australia, in 2002. He is a professor of computer
science and software engineering; future fellow
of the Australian Research Council; and a direc-
tor of the Cloud Computing and Distributed Sys-
tems (CLOUDS) Laboratory, University of

Melbourne, Australia. He is also serving as the founding CEO of Manjra-
soft Pty Ltd., a spin-off company of the University, commercialising its
innovations in Grid and Cloud Computing. He served as the foundation
editor-in-chief of the IEEE Transactions on Cloud Computing. He is cur-
rently serving as co-editor-in-chief of the Journal of Software: Practice
and Experience, which was established more than 45 years ago.

334 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 2, MARCH/APRIL 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

