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1 INTRODUCTION

Cloud computing is gaining popularity through its eye-catching features, such as scalability, elas-
ticity, and pay-as-you-go [1]. Increased popularity results in an enormous growth in the cloud
computing industry [2, 3]. Consequently, increased cloud traffic and resources introduce higher
uncertainties. Therefore, the consideration of uncertainty is becoming important to manage cloud
resources efficiently and to keep a profit margin [4]. The uncertainty exists almost everywhere in
the cloud [5]. There are uncertainties in the price, availability, saving progress, and computation
time of cloud virtual machines (VMs), network traffics, and so on.

1.1 Background

The uncertainty is everywhere. In a production-based industry, uncertainties exist on cost, quality,
production time, transportation, demand, competitors, price, and lifetime [6–8]. Uncertainties also
exist in natural events influencing our daily life, such as temperature, raining, sunshine, and so on
[9]. Cloud computing itself is one uncertainty-aware approach. Individual users need computa-
tions at a varying rate. The demand becomes very high for a small time and the demand becomes
very low for the rest of the time. Buying a desktop of average configuration results in a longer exe-
cution time during execution and unused capacity rest of the time. The concept of cloud computing
allows a user to use a large number of computational resources for short time at a reasonably low
cost. Therefore, various uncertainties on the user, computation jobs, traffic, and so on, become a
huge concern for cloud providers. Moreover, the user also requires information on the uncertainty
of the provider for the efficient completion of the job. There are uncertainties associated with cloud
users, traffics, and providers. Numerous approaches have been developing to handle the uncertain-
ties in the cloud. The cloud user and brokers need to know uncertainties associated with different
providers. A provider may provide better instances at a cheaper price but another provider may
have higher consistency. The provider needs to provide computing resources in a highly fluctuat-
ing environment. A prediction for workload containing multiple uncertainty bounds is useful for
them to know the exact uncertain condition of the upcoming number of users. Moreover, a proper
prediction on their willingness to pay and the nature of tasks help providers in proper pricing and
configuring. The knowledge in the uncertainty is useful in both of the safety and the profitable
management [10–12]. Therefore, this article discusses the concept of uncertainty, current trends
in cloud, and the future of uncertainty in cloud computing.

1.2 Prediction and Uncertainty

Researchers develop models for predicting quantities. The traditional point of view considers the
error value as the quality of the prediction model. The error value can be the root-mean-square-

error (RMSE) or the mean-square-error (MSE) in regression problems, the percentage of wrong
predictions in classification problems, and so on. People develop a better model to reduce the er-
ror value of the model [13]. With the advancement in modeling, researchers reach saturation in
terms of error reduction. No matter how well the model training is, there is a certain error prob-
ability. Such as, researchers are developing neural networks for handwritten digit recognition.
Researchers have concluded that an excellent CNN can provide about 99.7% accuracy. Researchers
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have found 99.84% state-of-the-art performance with excellent CNN and extremely lucky train-
ing session. The rest 0.16% portion is the uncertainty of the system. Some digits are confusing to
both humans and machines [14, 15]. However, we can not assume that the uncertainty is uniform;
some handwritten digits are easy to detect, and some handwritten digits have high uncertainty.
Therefore, a heteroscedastic uncertainty quantification system is required [16]. Cloud computing
is a fast-growing field. Various components of clouds have different levels of uncertainties. Re-
searchers may soon conclude that there exist inherent randomness of the system betterment of
model cannot reduce that error probability [17], and they need uncertainty modeling. This article
may provide an overview of cloud uncertainty to cloud researchers.

1.3 Related Work

There exist several short-length survey papers on the uncertainty in cloud computing [18–21].
Some research works in several sub-domains of cloud computing also mention about uncertainty
on cloud [22–24]. However, there is no paper providing a detailed discussion on uncertainty in
cloud computing. Therefore, we write this survey to provide a detailed discussion on uncertainty
in cloud computing.

We focus on both human involved decisions and intelligent systems for the uncertainty-aware
cloud management. The uncertainty is traditionally quantified as the interval forecast or the error
probability in various economic and industrial problems. Engineers and statisticians take decisions
based on quantified uncertainties. In cloud management, some uncertainty-aware decisions need
to be taken within a very short time, such as checkpointing [25]. The human involvement is ineffi-
cient, as it takes a longer time. Therefore, many intelligent approaches have been developing over
time to handle uncertainties in the cloud. Some other management allows a higher time for taking
a decision, such as capacity management. Automated approaches usually handle situations with
a single uncertainty bound corresponding to certain error probability, and humans usually follow
the quantified uncertainty for the future planning.

1.4 Our Contributions

• We discuss approaches of humans for managing uncertainties.
• We propose major uncertain parameters in cloud computing. We discuss how numerous un-

certain factors may affect major uncertain parameters and how major uncertain parameters
affect cloud performance.
• We propose a comprehensive survey of uncertainty-aware decisions in cloud computing.
• We propose a hype curve of uncertainty in the cloud and discuss the future of uncertainty-

aware approaches.

1.5 Article Structure

The rest of the article is organized as follows: Section 2 presents the uncertainty—the concept of
quantification, managing uncertainties, and the uncertainty in the cloud. Section 3 presents major
uncertain parameters and effects of various activities on them. Section 4 presents the effect of major
uncertain parameters in the cloud QoS. Section 5 presents existing uncertainty-aware systems in
the cloud. Section 6 presents the current condition and future directions with the help of the Hype
Curve. Section 7 summarizes and concludes the article.

2 THE UNCERTAINTY

The uncertainty is simply known as the lack of certainty. More or less, we have uncertainties
associated with predictions almost everywhere. Examples are chances of rain, equipment failures,
and flight delays.
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2.1 Types of Uncertainties

Uncertainty categorization depends on the perspective. Based on the level of uncertainty, the un-
certainty can be classified into the following categories [26]:

• Ignorance
• Severe uncertainty
• Mild uncertainty
• Certainty

Name of each category also presents the definition. Ignorance is such a situation when the per-
son has no idea about the outcome. For example, one user wants to see a number less than four in
single dice rolling but he does not know how many sides the dice have. In ignorance, the person
has no idea about important determinants of the outcome. There exists a high risk with severe
uncertainty. An individual wants to see heads while tossing one coin. The person knows the prob-
ability of success but that probability is not too high (>>0.5) or not too low (<<0.5). Therefore, the
person cannot say clearly whether the event will occur or not. The example of the mild uncertainty
can be rolling one 16-sided dice once and observing a number lower than 16. The certainty can be
exemplified as the expectancy of both heads or tails while tossing. An outcome with a very slight
success or unsuccess probability can also be treated as the certainty. Such as expecting at least
one head in the toss of 100 coins. Uncertainty can also be presented by numeric limits, popularly
known as the interval forecast. With historical data and several related parameters, one may pre-
dict the temperature of a certain location to be between 20oC–22oC for the upcoming hour. That
event has mild uncertainty. However, one-day ahead forecast with insufficient information may
result in a wider interval (10oC–30oC), possessing a severe uncertainty.

Statisticians and mathematicians also try to reduce the level of uncertainty through modeling
improvement. In this context, the uncertainty can be classified as follows [27]:

• Aleatory uncertainty
• Epistemic uncertainty

The aleatory uncertainty is also known as the inherent randomness. The consequence of the same
action with the same circumstances can be different due to the aleatory uncertainty. A signal
can vary largely from its common historical pattern due to the aleatoric uncertainty. Day-to-day
temperature curve may vary largely on a day due to an unpredictable event caused by the aleatoric
uncertainty. The epistemic uncertainty is known as the modeling error. The epistemic uncertainty
occurs when secondary or tertiary effects are overlooked during the modeling. The model designer
can reduce the epistemic uncertainty through improving the modeling process.

2.2 Uncertainty and Risk

Many people consider the uncertainty quantification as the risk analysis. However, risk analysis
is a special case of uncertainty quantification. The risk is a type of uncertainty where some pos-
sible outcomes a significant loss [29]. Uncertainty in the production time may indicate some risk
due to a nearby deadline. An increase in production time usually causes a linear loss, increasing
effective running costs. A substantial loss can occur when the production misses a major event of
the shipment date.

2.3 Uncertainty Quantification (UQ)

The probability density function can present the exact uncertain condition. However, the prob-
ability density or the cumulative probability density cannot be expressed with a few words
or numbers. Therefore, the uncertainty is usually quantified as the interval forecast [30]. The

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.



Uncertainty-aware Decisions in Cloud Computing: Foundations and Future Directions 74:5

Fig. 1. A rough sketch presenting the importance of uncertainty quantification. Red dots present targets

and the black solid line presents the point prediction. The point prediction is a value corresponding to the

mean or median of the probability distribution. It does not convey any message about the uncertainty. The

uncertainty is low near sample 450 and the uncertainty is high near sample 800. The prediction interval with

the green line is representing uncertainty. The interval is sharp for a low uncertainty and the interval is wide

for a high uncertainty.

interval forecast is presented by three numbers: the upper bound, the lower bound, and the cover-
age probability. The upper bound and the lower bound are the predicted upper limit and predicted
lower limit of the future quantity, respectively. The coverage probability is the probability that
the target will be within the upper and the lower bounds. To quantify uncertainties, researchers
propose prediction intervals of different coverage probability and probabilistic forecasts [31, 32].
Figure 1 presents a rough sketch showing the importance of uncertainty. The point prediction
provides a numeric value that is derived from the minimum statistical error. The point prediction
conveys no evidence of the heteroscedastic uncertainty. An unavoidable aleatoric heteroscedastic
uncertainty may cause different deviation from targets at different positions. A heteroscedastic
prediction interval can represent that uncertain condition.

The interval-based uncertainty quantification may seem inefficient for a single event. However,
the interval provides a smart indication of the uncertainty while numerous factors are responsible
for the uncertainty. For example, while rolling one six-sided dice the probability of getting one
to six is equal. An interval of 90% coverage probability extends the entire output range. While
rolling five dices and observing the sum of outcomes, the probability of getting a number between
12 to 23 is 88.244% [33]. The range of output in rolling five dices is 5 to 30. Therefore, the width
of an interval of 88.244% confidence is (12/26=) 46.15% of the range, as shown in Figure 2. The
interval becomes narrower compared to the range with a larger number of dice-rolling. Our real-
life events are influenced by numerous probabilistic events and the effect of all probabilistic events
can be predicted by a narrow interval of high coverage probability; most of the situations. The
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Fig. 2. The formation of high and low probable regions from events of a uniform probability distribution.

Rolling a six-sided dice has an equal probability of getting a natural number from one to six. An interval

of 90% confidence expands the entire range. The situation is presented in (a). Summation of numbers of

rolling five dice has a non-uniform probability distribution. An interval of 88.24% coverage has 46.15% width

of the range. The situation is presented in (b). The interval becomes narrower compared to the range with a

higher number of dice rolling. Considering the multiplication of numbers results in even narrower intervals

compared to the range [28].

statistical outcome of a large number of dice rolling is highly deterministic with a small error and
the outcome becomes dependent on the property (number of sides) and the fairness of the dice.
The usage of an individual cloud user is difficult to predict but the total usage of million users is
predictable with higher confidence. Moreover, the total usage becomes a function of major events
(vacation, sports, weather, etc.) for a large number of users.

2.4 Managing Uncertainties

Uncertainty is unavoidable for human beings [34]. People make a number of precautions to handle
uncertain situations. Common precautions are as follows:

• Assume future is like the past and modeling
• Rules, norm, and conventions to eliminate some worst possibilities
• Buffers and redundancies
• Trial and error
• Routine inspection and maintenance
• Regulatory institutions
• Consideration of alternatives

Uncertainty is growing in emerging engineering and economic issues. For example, the large-
scale inauguration of renewable resources in the power grid has made the power generation more
unpredictable [35, 36]. Numerous prediction algorithms have been developing proposing optimal
prediction systems [37, 38]. Online auction-based cloud computing services of low reliability have
put users in an uncertain condition [39]. They are designing intelligent approaches to finish their
computation jobs in a cost-efficient way [40]. The enormous growth of the cloud industry has
increased uncertainty in cloud traffic. Increased research in designing autonomous systems has
raised the importance of understanding uncertainty [41]. In all of these situations, researchers are
developing models for both prediction and uncertainties.
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Rules, conventions, and intelligent strategies also applied to manage uncertainties. When ev-
eryone obeys rules, fewer uncertain situations arise. Fewer accidents happen while drivers and
pedestrians follow rules and conventions. Such as saving the progress of the computation job re-
sults in less damage due to the unexpected termination of the computation jobs. The creation of
a historical log may help future users in understanding consequences. Keeping a good buffer is
a must to overcome uncertainty. The buffer can be excess time or money or any other utility. A
deadline constrained computation job can be finished economically when the deadline is much
larger than the required computation time. Trial and error are required to collect initial data for
the modeling when the consequence is unknown.

Routine inspection and maintenance are also prescribed to avoid unexpected situations. All
vehicles need routine maintenance to check several degradations that may lead to a major mal-
function. Moreover, the user needs more frequent personal inspections, such as checking oil and
coolant levels. People also consider alternatives to avoid uncertainty. People often consider dif-
ferent shops when one shop is too busy. There are multiple counters in busy shops and banks.
Upcoming customers usually stand in a shorter queue. Customers also observe the movement in
different queues and switch to the queue that moves first. Through the process, most customers
get the service within a reasonable time.

2.5 Uncertainties in Cloud

Cloud specialists agree that 100% reliability target is wrong for almost everything in the cloud.
Notable exceptions are pacemakers and anti-lock brakes. It is possible to cover 99.999% situations
with a reasonable amount of precautions but covering the rest 0.001% requires much more pre-
cautions [42]. In various fields, such as economics, energy generation, and demand predictions,
people consider 95% certainty [43]. The expected uncertainty in the cloud depends on the follow-
ing factors: the user’s satisfaction, the uncertainty of alternatives, and the consequence of different
actions.

Cloud computing provides three basic services named, Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [44]. IaaS provides only fun-
damental resources, such as processing power, network, and storage. Popular examples of IaaS are
Amazon Web Services (AWS) and Google Compute Engine (GCE). PaaS provides all facilities
of IaaS with operating systems and middlewares. Popular examples of PaaS are Apprenda, Pivotal
CF, and Red Hat OpenShift. SaaS applications usually run directly through the web browsers and
do not require any downloads or installations of software. Popular examples of SaaS are Google
Apps and Dropbox.

There exists numerous work in predicting the quantities associated with the cloud computing.
Although many works on predicting clouds do not consider the uncertainty, researchers know two
major facts. First, the error probability in one-minute ahead prediction is much lower than the
error probability in one-hour ahead prediction. Secondly, the error probability in predicting some
quantities are significantly higher than some other quantities. The error probability is defined
by some statistical error values between the model output and observations. Popularly applied
statistical error values are the root mean square error (RMSE), the mean square error (MSE),
the sum squared error (SSE), and the mean absolute percentage error (MAPE).

Tchernykh et al. agree that uncertainty is the main hassle of cloud computing and it brings
challenges to brokers, resource providers, and end-users [20]. Vredeveld et al. develop a model
for online scheduling with the consideration of uncertainty [45]. Mendoza et al. propose a model
for VoIP cloud environment considering uncertainty [46]. Bychkov et al. consider failure proba-
bility and possible financial results [47]. Fard et al. consider the lower and upper bounds of the
processing time for executing workflow applications on the cloud [48]. The work of Fabio et al.
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consider service elasticity, which includes scaling of cloud computing services and overbooking
[49]. Roland et al. propose a realistic cloud workflow simulation with noisy parameters [50]. Very
recently Aranitasi et al. quantify uncertainties for preemptive resource provisioning in the cloud
[51]. Bhargavi et al. present a novel soft-set-based optimal scheduling of cloud tasks [52] under
uncertainty. According to Basset et al. [53] imprecision latent in the estimation process is one of
the three major challenges in implementing cloud services in an organization. They develop the
neutrosophic multi-criteria decision analysis (NMCDA) approach to estimate the quality of
services under uncertainty. Section 5 presents a detailed survey of uncertainty-aware decisions in
cloud computing.

3 MAJOR UNCERTAIN PARAMETERS IN CLOUD COMPUTING

The cloud is connected to the entire world through the Internet. Millions of parameters may
slightly affect the cloud-job. Our environment is also similarly connected to the entire world. Ac-
cording to weather prediction specialists, flapping a butterfly in one country can be related to
rain in another country [54]. A small occurrence in a country may affect a cloud user in another
country greatly. Therefore, we sort out five major uncertain parameters of cloud computing those
directly affect a cloud user. These parameters are price, availability, traffic, workload, and security.
Numerous occurrences change these uncertain parameters. Also, these five uncertain parameters
combine with the provider’s attribute and determine the quality of service (QoS) [55].

There can be a large number of influencing factors that affect cloud computing. A larger number
of users than the capacity can hamper traffic, availability. A security breach or any inconstancies
in another datacenter in a different country can also affect a datacenter. Many users may switch
datacenter. The effect will be on availability, traffic, and workload. Being driven by the internet,
cloud computing has many influencing factors. However, all factors are directly influencing five
major uncertain parameters. In Table 1, we present how common influencing factors affect major
uncertain parameters. Table 2 shows that all major parameters performance parameters. Many
factors are not one of the major uncertain parameters, but they often directly affect performance
parameters. Such as, a provider can provide a different level of freedom to a certain user. A provider
may not allow a new user to book a large number of servers. In fact, that policy affects availability.
Similarly, all other policies and factors affect major uncertain parameters.

Common occurrences directly influencing five uncertain parameters are presented as Table 1.
A server request may come from different locations. The location of a cloud user directly affects
the network traffic. That location can also raise concerns about the security due to the probability
of the leakage of cloud information. However, the location of the user does not affect the price,
availability, and workload of instances directly. Data size directly affects cloud traffic. More data
is transferred through the network when the data size is larger. More data does not directly affect
price, availability, workload, and security. However, the traffic congestion due to the size of data
may potentially cause a long time to save the progress affecting the availability and the future
workload. Moreover, any unsaved data can be lost. Everything directly or indirectly influences ev-
erything in the cloud. Therefore, we mark only direct influences. The arrival of new jobs influences
price, availability, traffic, and workload.

The price of spot EC2 instances instantly varies depending on the prices of bids [56]. The price
of the on-demand EC2 instances also changes based on the arrival of jobs but that change is not
too frequent. As a result, checkpointing increases cloud traffic and the cloud workload of corre-
sponding machines. However, checkpointing is mandatory to prevent significant loss of data or
computation progress. Communication between server also increases workload and traffic. The
total number of available computing resources is also a determinant of price and availability. The
network capacity influences the traffic directly. Many users parallelize their task and run them
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Table 1. Factors Directly Influencing Major Uncertain Parameters in Cloud Computing

Common Influencing Major Uncertain Parameters of Cloud

Factors Price Availability Traffic Workload Security
Location of Users × × � × �

Data Size × × � × ×
Jobs Arrival � � � � ×

Checkpointing × × � � ×
Communication × × � � ×

Capacity of Provider � � × × ×
Network Capacity × × � × ×

Task Parallelization � � � � ×
Overbooking � � × � ×

Task Execution Time × � × � ×
Execution Failure in VM × � × � �

VM Interruption × � × � �
Network Failure × � � � �
Cyber Attacks × × � � �

Nearby Datacenters × � � � ×
�- Directly influencing; × - Not directly influencing.

Table 2. Influence of Major Uncertain Parameters to Performance Parameters

of Cloud Computing

Performance Parameters [55] Major Uncertain Parameters Affecting

Service Response Time Availability, Traffic, Workload.
Sustainability Availability, Traffic, Security.

Suitability Price, Availability, Traffic, Workload, Security.
Accuracy Availability, Traffic, Workload, Security.

Transparency Availability, Security.
Interoperability ∗

Availability Availability
Reliability Availability, Security.
Stability Availability, Traffic, Workload.

Effective Cost Price, Traffic, Workload.
Adaptability Availability, Traffic, Workload.

Elasticity Availability, Traffic, Workload.
Usability Price, Availability, Traffic, Workload, Security.

Throughput and Efficiency Availability, Traffic, Workload.
Scalability Availability, Traffic, Workload.

∗ - Providers’ Attributes.

in different servers. Task parallelization changes the workload pattern over time. It also affects
availability, the price of instances, and the network traffic. Cloud service providers often overbook
their resources [57]. Overbooking can affect availability, workload, and price of instances.

The task execution time affects the availability of the resource and the workload directly. Execu-
tion failure in a cloud instance may cause a loss of simulation progress. The instance may become
unavailable and that may affect the availability of instances in a data center. Re-performing the
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simulation results in an increased workload. Cloud service providers often interrupt the progress
of low-cost preemptible instances to facilitate premium users [58, 59]. The instance interruption
directly affects availability, workload, and security. Any failure at the network also changes avail-
ability, traffic, workload, and security. Cyber attacks influence traffic, workload, and security. How-
ever, influences may vary based on attacks. The attacker may try to access the same server from
different locations with the help of spyware. The data is secured in such a situation but traffic
and workload are affected. While the attacker steals the data, the security is breached. Nearby
datacenters directly affect availability, traffic, and workload. The price is also indirectly affected.

3.1 Price of Cloud Instances

The price of cloud instances varies depending on time, location, provider, and types of instances.
As cloud computing is becoming popular over time, numerous companies have begun to provide
cloud services. Popular cloud providing companies are Amazon Web Services, Microsoft Azure,
Google Cloud, IBM Cloud, Adobe, VMware, Rackspace, Red Hat, Salesforce, Oracle Cloud, SAP
Cloud, and Dropbox. Some instances have higher flexibility and reliability than others, such as
AWS on-demand instance [60] or Azure Pay-as-you-go instance [61], which are reliable and allow
the user to leave the instance without any penalty. The price of such instances does not change
frequently over time but varies from location to location. The user may require to wait for the
instance during the provisioning or switch the region to get the instance. Reservation of instances
can be up to 40% cheaper compared to highly flexible and reliable AWS on-demand or Azure Pay-
as-you-go instances. The price is determined during the provisioning and there are uncertainties
associated with the price. There are also low cost and highly unreliable instances, which can be
80% cheaper than highly flexible reliable instances. Four companies are currently providing such
instances. Instances are AWS Spot Instance [56], Azure Low Priority VM [62], Google Preemptible
VM [63], and IBM Transient Virtual Servers [64]. The price of such instances is highly uncertain.
Low cost and highly unreliable instances are the spare capacities after providing highly flexible
and reserved instances. The price of AWS spot instances may increase or decrease anytime. The
user may lose the instance due to the price hike.

3.2 Availability of Cloud Instances

The availability of a cloud service is the percentage of time a user can access the service [55]. The
following equation defines the availability:

Availability =
total time for which service was available

total service time
. (1)

Lu et al. incorporated uncertainty for the cloud application development decisions in 2013. They
perform an availability analysis from the cloud consumer perspective [4]. To obtain uncertainties,
they propose a set of availability analysis models applying Stochastic Reward Nets (SRNs) [65].
They also provide insights into some deployment decisions. Several reasons are affecting the avail-
ability of cloud instances. These include runtime failures [66], workload spikes [67], rare and hardly
predictable events [68], interference [69], and combined effects. To address challenges such as the
inherent uncertainty in the mobile cloud, Viswanathan et al. [70] proposed role-based resource
provisioning framework with self-healing, self-optimization, and self-organization.

The recent popularity of low cost and highly unreliable instances has bought extensive research
on their availability [71]. Azure low-priority-VMs and Google’s preemptible VMs are 60% to 80%
cheaper. The price of such VM does not change rapidly, but the user may lose the instance with a 30-
second notice due to the shrink in spare capacity. IBM’s transient virtual servers can be reclaimed
without any notification.
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Fig. 3. Rough sketches presenting four workload patterns in cloud computing (a) ON and OFF, (b) Growing

Fast, (c) Unpredictable Bursting, and (d) Predictable Bursting.

3.3 Cloud Traffic

The cloud traffic prediction is required for the proper management of computer networks [72].
Resource allocation and checkpointing may consume a much longer time than usual due to a
wrongly predicted traffic [73]. Benson et al. investigate [74] data center traffic patterns. However,
one research cannot cover all traffic patterns and there are always uncertainties. Users of less-
reliable cloud instances may save progress during the price hike [75]. However, if all users use
the same algorithm to save progress, then the network becomes busy during that time. The user
may fail to save progress within the expected time due to the traffic. That may result in the loss of
computed results.

Wolski et al. developed one of the very first network traffic prediction systems in 1997 [76],
which aimed to predict cloud traffic with different prediction algorithms and selected one with the
lowest statistical error. Later, Xinyu et al. proposed [77] error-adjusted LMS method. The prediction
of cloud traffic is still challenging and predictions results in high MSE or MAPE error values [78].
Cloud users may require uncertainty quantification of the cloud traffic to select VMs of different
providers and locations near future.

3.4 Cloud Workload

The word workload means the amount of work needs to be accomplished by someone or something
[79]. However, different cloud researchers define cloud workloads differently. Yang et al. [80] and
Liang et al. [81] define workload as the number of requests of the application. Song et al. [82]
and Jiang et al. [83] define workload as the future demand of VMs. Garg et al. [84] and Jheng
et al. [85] define workload as the resource utilization of VMs. Rodrigo et al. derive a model for
VM provisioning under the uncertain workload [86]. Their adaptive resource provisioning model
maintains the required QoS and the utilization threshold.

Steve et al. classified cloud workload patterns into four categories, as shown in Figure 3 [87]. The
cloud workload increases slightly and faces inactivity periods in the ON-and-OFF pattern. A good
example of such a pattern is the verification department of pharmaceutical R&Ds. They perform
numerous measurement and analysis before launching any product. Once those simulations are
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complete, they release instances until the next time. The exponential increase in the demand is
categorized as the growing fast. That is the situation of a growing company using the cloud VMs or
a growing cloud service provider. The unpredictable bursting is the third category, which happens
due to a huge burst in demand for a short time. Popular examples are workloads of newspapers,
social media, and search engine when anything goes viral. The demand fluctuates periodically or
following events in a predictable bursting category. The use of computational resources by offices
are mostly limited by office hours and follows daily patterns and changes over holidays.

Gilles et al. propose several models for the workload prediction and compare them [88]. Ac-
cording to Gilles, the NN-based prediction system provides better performance, and constraint
programming is better for the trace generation. Cao et al. predict cloud workload with the NN
[89]. Their data is real, large-scale, and enterprise-class collected from a database-based data
center.

3.5 Security

The cloud security is another broad field [90–92]. We mention common security concerns in the
current work. Common security concerns include: the nefarious use of cloud computing, unautho-
rized access, data loss, identity hacking, leakage of user information, service interruption, and so
on. Cyber-attacks include denial of service attack, service injection attack, virtualization attack,
the user to root attack, port scanning, man-in-middle attack, metadata spoofing attack, phishing
attack, and backdoor channel attack [93, 94].

Malicious attacks and software errors are increasingly common. Software errors are increasing
due to the growth in size and complexity of software and novel applications. Malicious attacks
and software errors can cause faulty nodes to exhibit Byzantine (i.e., arbitrary) behavior [95, 96]
in which components of a system fail in arbitrary ways, i.e., not just by stopping or crashing but by
processing requests incorrectly, corrupting their local state, and/or producing incorrect or inconsis-
tent outputs. Consequently, it is mandatory to have Byzantine Fault Tolerant (BFT) mechanism
to defend against Byzantine failures so a system can continue to operate accordingly even if some
of its components exhibit arbitrary, possibly malicious behavior. Usually, using BFT mechanism
helps ensure not to preempt each particular fault, however, the number of system components
that can fail at a time is bounded. Note that BFT mechanism adopts replication technique to de-
fend Byzantine fault as suggested by Byzantine Generals’ Problem [95, 96]. In the mechanism, we
would have at least 3f +1 replicas where f be the maximum number of replicas that may be faulty.
For example, Hadoop distributed file system (HDFS) uses the default replication factor of 3 for
enhancing/ensuring fault tolerance [97]. As we know, redundant resources incur cost even though
dependability and security are enhanced. The authors in Reference [98] analyze the tradeoff of re-
dundant resources usage in terms of unavailability metric, cost of cloud service deployment, and
security of the service deployed.

A major concern in the cloud is the loss of data or computation progress. It is more frequent
in high-performance computing (HPC) jobs in preemptible cloud instances compared to the
security breach [99]. Efficient checkpointing or local storing capability can reduce the loss due to
the unexpected termination of instances.

4 EFFECTS OF MAJOR UNCERTAIN PARAMETERS ON THE PERFORMANCE

OF CLOUD SERVICES

Cloud performances, such as the Quality of Service (QoS) and Service Level Agreements

(SLAs) can be different for different cloud specialists. Garg et al. define key performance indexes

(KPIs) for evaluating cloud computing services [55]. That paper is highly cited and, therefore, we
consider their KPIs as the performance parameter of the cloud. They mention 15 KPIs, presented
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in Table 2. We find that some of the KPIs are quantitative and some of the KPIs are qualitative.
Moreover, some of the KPIs are varying, and some other KPIs are constant for a provider.

4.1 Service Response Time

A user requests for a VM or a service. Based on availability, traffic, and workload, the user faces
a delay [100]. Garg et al. [55] mention three response parameters as evaluation indexes for the
response time: average response time, maximum response time, and response time failure. Ac-
cording to a recent study, the average response time of cloud services is 50.35 milliseconds [101].
The response time failure occurs when the provider fails to serve within the promised response
time [102].

4.2 Sustainability

Sustainability refers to the environmental impact of cloud service. The sustainability mostly de-
pends on the location of data centers and renewable installations near data centers. These factors
depend on the provider. Several major uncertain parameters of the cloud can also affect sustain-
ability. When servers at sustainable locations are not available, the user may launch their job in
a different location. The traffic conditions may also cost packet loss during the communication,
which results in higher power consumption. Security issues such as loss of computation progress
or denial of service degrade sustainability. The attributes of the provider are certain and usually
known to the user. Therefore, Table 2 presents only the effect of major uncertain parameters.

4.3 Suitability

A cloud provider may fail to achieve one customer’s suitability while another cloud provider may
succeed. A user can be dissatisfied due to price, VM configuration, latency, or anything else. All
of the five uncertain parameters can directly affect the suitability. There can be a drawback of the
infrastructure of the cloud provider, but the infrastructure influences major uncertain parameters,
and several major uncertain parameters affect the suitability.

4.4 Accuracy

The first indicator of the accuracy is the percentage of time the provider maintains the promised
SLA [103–105]. The SLA is a statement from the provider where the provider states the minimum
quality of service that the provider should provide. The accuracy depends on availability, traffic,
workload, and security.

4.5 Transparency

Transparency in cloud computing is the quality of the provider that allows good usability during
the change of circumstances [55]. The transparency is often inferred as the time for which the
performance of the application is postponed due to the change of service. Transparency is an im-
portant factor, as cloud services are changing rapidly. The statistical accuracy is the ratio between
the summation of delays and the summation of such occurrences. The transparency depends on
the infrastructure of the provider and the nature of change. The provider affects availability and
security, and these uncertain parameters affect transparency.

4.6 Interoperability

Interoperability is defined as the ability of a cloud-service in interacting with other cloud services.
Other cloud services can be from the same cloud provider or can be from a different cloud provider.
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The interoperability is approximated as follows:

Interoperability =
NPO

NPR
, (2)

where NPO is the number of platforms offered by the provider. NPR is the number of platforms
required by users for interoperability.

The interoperability is mostly dependent on compatibility issues. Therefore, the interoperability
is not time-varying unless the provider brings some upgrade. Therefore, interoperability depends
only on the provider.

4.7 Availability

We consider the availability as both the major uncertain parameter and performance criteria. Many
other performance criteria are directly dependent on availability. If we do not consider the avail-
ability as the major uncertain parameter, then we have to find indirect relations. Such as, a work-
load may vary availability that may affect the sustainability. However, everything in the cloud is
indirectly related and we consider only direct relations.

4.8 Reliability

Reliability in cloud computing is defined as the expected length of uninterrupted service. Reliability
in cloud service failure is expressed as follows:

Reliability = Pus × PMTTF , (3)

where Pus in the Probability of uninterrupted service. PMTTF is the Promised mean time to failure.
The probability of uninterrupted service depends on the number of failures and the total number

of trials (N ). Therefore, the reliability is also expressed as follows:

Reliability =
(
1 − number o f failures

N

)
× PMTTF . (4)

The reliability of a system is directly dependent on availability and security. The user may not
select a server at a premium cost that has availability issues. Such as Amazon’s on-demand cloud
instances have higher availability, and the chance of losing availability in the middle of the job is
lower compared to spot instances. Therefore, on-demand cloud instances are more reliable. Relia-
bility also depends on security. A user may not perform an important job or put any confidential
data on insecure servers.

4.9 Stability

The variation in the performance of a service determines the stability in cloud computing. It is
the variance in computation time in computing and the variance in the average read-write time
in storage. The stability largely depends on the availability, traffic, and workload. Security also
hampers stability, but the failure of security is rare in cloud computing and has a negligible effect
in variation.

4.10 Effective Cost

Cloud providers offer different instances of different attributes and attributes do not follow a linear
relation. While comparing different instances, we often observe that the size of random access

memory (RAM) of one instance is double of another but the number of cores of the processor is
the same and one processor is 1.1 times faster than another processor. It is difficult to compare the
price of a processor of one configuration from the price of a processor of another configuration
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[106]. Garg et al. define the effective cost as follows [55]:

Ef fective Cost =
Price

CPU a × netb × datac × RAMd
, (5)

where a - d are weights and a + b + c + d = 1. As an average user cannot compare the effective
cost, this equation is useful to compare servers in terms of the effective cost.

4.11 Adaptability

The user may try to upgrade the service to a higher level due to an urgent requirement or switch to
a lower level instance for cost efficiency. The provider needs to provide another resource based on
customers’ requirements. The adaptability of the provider is the time required to switch between
services [106]. Depending on the situation, the provider may require different times to switch be-
tween instances. Availability, traffic, and workload affect adaptability. When the required instance
is not available, the user needs to wait. Large traffic may also increase the required time.

4.12 Elasticity

Elasticity is the scalability of the provider during a sudden demand. Two terms determine the
elasticity: the maximum capacity of service and time required to expand the usage [107, 108].
Elasticity depends on availability, traffic, and workload. The provider can maintain a good elasticity
when the amount of job is lower than their capacity. However, the elasticity is low when a small
provider is serving a large number of jobs [109]. High traffic and workload can also potentially
create congestion resulting in a lower elasticity.

4.13 Usability

Usability in cloud services is the ease of using the cloud service. It is solely dependent on the
provider. The user may feel more comfortable with one providers’ interface than another provider.
However, the provider is a certain parameter. Different policies of providers also affect all major
uncertain parameters, resulting in a significant influence on usability. The provider as well as
major uncertain parameters determine the usability. As the providers’ configuration is constant,
all major uncertain parameters are responsible for the uncertainty in usability.

4.14 Throughput and Efficiency

The throughput of a cloud service is the number of tasks completed by that service in unit time.
The throughput depends on availability, traffic, and workload. The efficiency is the effective uti-
lization of leased resources. The efficiency depends on how instances are designed and offered by
a provider and the requirement of the application. However, the provider is constant. Therefore
the uncertainty on the throughput and efficiency depends on availability, traffic, and workload.

4.15 Scalability

The scalability is the ability of a cloud service to handle a large number of requests simultaneously.
The scalability has two dimensions: horizontal and vertical scalability. Horizontal scaling is the
initiation of more virtual machines. Vertical scaling is the increase in the resource; such as physical
memory, CPU speed, or network bandwidth. The provider can limit the scalability of an individual
user. A new cloud user cannot use a large number of Amazon Spot Instances. The vertical scaling
is dependent on availability, traffic, and workload.
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5 EXISTING UNCERTAINTY-AWARE INTELLIGENT SYSTEMS IN CLOUD

5.1 Pricing Models

The price of non-preemptible servers changes less frequently. Only four major cloud providers are
providing preemptible instances. Among them, the price of Amazon Spot Instance (SI) changes
more rapidly and it is possible to get higher reliability with the willingness to pay high. There-
fore, a numerous bidding framework has been developed by researchers [110–112]. However, all
factors determining the price and methods for computing the price for both preemptive and non-
preemptive instances are not disclosed by providers. Several researchers develop price optimiza-
tion functions based on historical data of the Amazon SI price. The optimization function con-
sists of two major parts [113], commonly known as revenue maximization and capacity utilization
[114, 115]. The revenue maximization function is the multiplication of the number of accepted
SIs and the price of SI. To increase the user-friendliness of the EC2 bidding system, Amazon is
also considering a utilization maximization function. Utilization optimization function increases
logarithmically with the increment of the number of accepted bids. Equation (6) presents the
profit function, Equation (7) presents the utilization function, and the Amazon EC2 SI provider’s
probable optimization function is the maximization of the sum of these functions, presented as
Equation (8).

Profit Function = π (t )N (t ), (6)

Utilization Function = loд(1 + N (t )), (7)

max
π (t )

π (t )N (t ) + βloд(1 + N (t )), (8)

where, N (t ) is the number of accepted SIs, π (t ) is the price per accepted SI, and β is the weight
of the utilization term. The price per accepted SIs (π (t )) is determined by numerous uncertain
bid values coming from numerous users and the available SI capacity. Amazon has recently in
2018 announced that they are not considering bid prices. They are only considering the available
capacity and acceptable bids [116]. However, that encourages users to bid high although they are
not willing to pay a high price. Moreover, workload prediction for the pricing of SIs is important to
reduce frequent allocation and termination of servers [117, 118]. From discussions on preemptible
instances of popular providers [197–201], we have sketched a rough cloud providers’ diagram
representing the information flow in cloud management in Figure 4.

5.2 Capacity Planning to Ensure Availability

The prediction is widely applied to the capacity planning of cloud datacenters [119, 120]. However,
that prediction can never be the traditional prediction that results in a value close to the mean or
median of the probability density function. Amazon and Google SLAs promise 99.95% uptime [121].
They need to consider the highest probable value of the demand to ensure 100% availability. How-
ever, installing a very large number of servers to meet the highest possible demand is inefficient.
That results in a large number of unused capacity and a very large installation cost [122]. Therefore,
the cloud provider needs to consider the uncertainty upper bound. Such as, they need a value that
is higher than 99.95% cumulative probability. The uncertainty upper bound (UB) can be defined
as follows:

P
(
Demand ≤ UB (99.95%)

)
= 99.95%, (9)

where, P (Condition) is the probability function. Recently Amazon has announced that they are
applying AI for the capacity planning [123]. We expect that other major cloud service providers
are switching towards AI-based uncertainty-aware decisions in the near future.
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Fig. 4. A rough diagram representing the information flow in cloud management. The cloud controller

requires one or more short-term uncertainty bounds for proper control. Long-term uncertainty bounds are

useful in capacity planning for the future.

5.3 Traffic Management

Traffic uncertainty models are basically of two types: offline design and online routing [124]. Ap-
plegate et al. propose an offline design for network traffic management [125]. Their objective is to
minimize the maximum link utilization. The objective of M. Kodialam et al. [126] offline model is
to maximize the throughput. Several other uncertainty-aware offline network models aim to mini-
mize the cost [127–130]. Several other researchers develop online routing mechanisms for network
management [131, 132]. Both offline design and online routing can consider the probability distri-
bution of incoming traffic. D. Xiao et al. [133] consider a Gaussian probability distribution of traffic.
However, the probability distribution can be non-Gaussian and there are a lot of opportunities to
improve.

5.4 Configuring Cloud for Workload Management

The auto-scaling of cloud resources is performed in a loop consisted of Monitoring, Analysis, Plan-
ning, and Execution steps [108]. The monitoring step monitors some performance indicators, such
as: application characteristic, monitoring cost, and SLAs. The analysis step determines the volume
of resource allocation for each category. This step computes workload prediction, scaling time,
adaptivity to mitigation, and oscillation changes. The planning step performs resource estimation
and resource combination based on the outputs of the analysis step. Finally, planned actions are
executed. These steps are performed repeatedly in an interval called the monitoring interval.

M. Tajvidi et al. develop an uncertainty-aware system model for the optimized resource provi-
sioning [134]. P. Jamshidi et al. design uncertainty-aware automatic elasticity controller based on
fuzzy logic and machine learning [135]. The proper scheduling of cloud resources can reduce the
cost and the peak-hour demand for cloud resources. However, the task scheduling in the cloud
is challenging due to high fluctuations in workload patterns and unstable performance of the in-
frastructure. Marco et al. develop a model for efficient cloud-resource provisioning and scheduling
[136]. They consider the minimization of the overall monetary cost. Their execution time of an
application does not exceed the specified deadline with a given probability even in presence of
high uncertainties.
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5.5 Security Enhancement Techniques in Cloud Computing

5.5.1 Confidentiality and Authentication. The data confidentiality in cloud computing is the
quality of the provider of protecting data from illegal or unwanted access [137–139]. Confidential-
ity is becoming a challenging issue with the added features of cloud computing platforms. Com-
putational resources in cloud computing are often shared with a group of people [140]. The owner
may add or remove users over time. Confidentiality is not only limited to data security but also
relies on several circumstances and providers’ policies. When the owner removes access of certain
people, they may lose the document [141], or they may have the permission of seeing the older
version of the document. In some situations, the owner may not have enough rights to remove
access from one collaborator. Although network security is one of the oldest problems of the in-
ternet, still, researchers are facing new problems, developing algorithms, and simulating before
applying those algorithms [142, 143].

5.5.2 Secured Domain and Data Encryption. Many datasets contain confidential industrial, polit-
ical, or health-related information. It is also discouraged to keep confidential and sensitive datasets
on the cloud. The provider needs to provide a secure domain for confidential datasets to attract
users. Providing a secured domain and data encryption is a quite saturated field [144, 145]. How-
ever, maintaining a good tradeoff between high security and swiftness of the domain is challenging.
Researchers are developing new algorithms and strategies to solve novel problems [146–148].

5.5.3 Reducing the Number of Dropped or Lost Jobs. Traditional dependability metrics such as
availability, reliability, continuity, and maintainability are defined from a system-oriented perspec-
tive and may not adequately capture the dependability experience from a user’s perspective [149].
Bauer et al. [150] state that it is better to focus on the much smaller number of unreliable service
events or service defects, since most of the components in a modern cloud computing system is
reliable. These service defects are conveniently normalized as the number of customer demands
or user requests or jobs not served or dropped or lost, per million attempts—referred to as defects

per million (DPM) [150–153]. The authors in Reference [153] analytically show the effective-
ness of the checkpointing and replication scheme to the minimization of DPM, i.e., to optimize the
uncertainty of cloud services.

5.6 Uncertainty from the Perspective of Users

Several companies are providing cloud services of different cost and different QoS. A user requires
performance indication in the uncertain cloud environment to choose a proper resource. More-
over, the user of preemptible instances needs to consider the heteroscedastic reliability to save the
computation progress efficiently [154, 155].

5.6.1 Server Selection. Zheng et al. predict the QoS ranking for the selection of cloud server
[156]. They consider past user experiences in terms of response time and throughput. Instead of
considering the average value, they consider minimum, maximum, mean, and the standard de-
viation. These parameters indicate uncertainties associated with the corresponding cloud server.
Rehman et al. applied Multiple Criteria Decision Making (MCDM) to historical QoS data and
importance weights from users to rank servers [157]. Qian et al. present a system cloud service
selection for IaaS platforms considering usage, performance, and geographical location [158]. The
server selection on Amazon SI’s also depends on the price. Sabyasachi et al. quantify uncertainties
associated with the SI price [40]. They consider the condition of user and price for efficient bidding.
Benouaret et al. are using statistical human decisions for the selection [159]. Human brains can un-
derstand more quality parameters than machines. Such as the background color of a website may
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affect its popularity, and human voting can indicate the overall popularity where mathematical
equations fail.

5.6.2 Checkpointing. The cloud is widely used for the progress monitoring of different tasks.
Therefore, the approach of monitoring a cloud computing job and saving the progress is popularly
known as the checkpointing or application checkpointing. The checkpointing consists of three
steps: pausing the computation, saving the current state, and resuming the computation. Check-
pointing can be periodic or based on uncertainties. Yi et al. [160] develop a checkpointing scheme
based on the uncertainty on the spot instance price. A checkpointing is performed with the price
increment. Sui et al. [161] propose a learning-based adaptive checkpointing strategy. Different
computation nodes may have different reliability. Therefore, different checkpointing frequencies
can be applied to different servers [162].

5.6.3 Keeping Margin. There are time-gaps between buying and getting instances. Although
the gap is mostly limited by the SLA agreement, SLA violation may happen anytime. The user
needs some time margin while applying for cloud instances or migrating cloud instances [160, 163].
The user of preemptive instances needs to have one stable machine to withstand the preemption
[40]. If there are insufficient backup servers, then he may lose the progress. The performance of
cloud servers can be slightly lower than a physical server of the same capability. The difference oc-
curs due to communication and monitoring. The user needs to select a proper instance or instance
groups to finish the task before the deadline.

5.7 Artificial Neural Network for Cloud Management

The value of many real-world quantities depends on a large number of factors. The service re-
sponse time, for example, depends on Availability, Traffic, and Workload. These major uncertain
parameters depend on many influencing factors. It is laborious and time-consuming to derive
mathematical equations between all factors and the quantity [164–166]. Moreover, the pattern of
cloud data changes over time. Therefore, many researchers train Neural Networks with an error-
optimization method to find relations between influencing factors and the quantity [167–169]. Sev-
eral researchers have proposed AI-based solutions for cloud management to achieve better QoS
with optimal power consumption and overall cost [170, 171].

The relations among AI, cloud, and uncertainties are deeply rooted. The cloud provides highly
scalable computing resources for AI training. Recently, AI is an efficient means of cloud manage-
ment. AI can compute the level of heteroscedastic uncertainty [165, 172], and uncertainty exists
with outputs of NNs. Several works apply AI to improve the performance of fog and cloud systems
[173–176].

6 FUTURE DIRECTIONS

6.1 Improved UQ

The quantification of uncertainty is still a debating issue. The probability density expresses the
exact uncertain condition. However, there is no suitable algorithm to calculate the heteroscedastic
probability distribution. Prediction Interval is a popular approach to express uncertainty [177, 178].
The width of the interval represents the level of uncertainty. However, the interval does not rep-
resent the skewness of the distribution. Multiple probabilistic forecasts can represent the shape of
distribution [31]. There is no widely accepted formula or NN-training approach for both predic-
tion interval and probabilistic forecast. Researchers may find improved approaches for quantifying
uncertainties near future.
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6.2 UQ in Emerging Cloud Fields

Cloud computing is still expanding. Many services will be added to the cloud, especially in the
Software as a Service (SaaS) [179, 180]. Providers will face more difficulties in maintaining the
availability of different SaaS instances with cost efficiency. Moreover, there is ongoing research on
efficient hardware architectures for different software applications and tasks. Some applications
such as neural network training can be performed efficiently with different architectures [181, 182].
Currently, Xilinx and AWS are providing FPGAs as cloud instances. Gradually, all major cloud
providers will provide FPGAs and other customized instances for special applications. Improved
computation will increase the volume of traffic and traffic uncertainty. The expansion of the fog
computing and the edge computing will also increase the uncertainty in traffic.

6.3 Improved Artificial Neural Network Training and GPU Processing

Several major cloud providers have switched to Artificial Neural Network (ANN)-based cloud
management [123]. ANN is trained with an initial dataset. The ANN performs poorly with a dif-
ferent set of data. As cloud uncertainties and pattern of uncertainties are changing over time,
ANNs need to retrain with newer sets of data over a certain interval. Moreover, researchers may
apply novel learning approaches for quantifying uncertainties of cloud computing. For example,
adversarial training for cloud management or dropout for predicting cloud uncertainties [183, 184].
Hardware accelerators, such as the graphics processing unit (GPU) and the tensor processing

unit (TPU) are becoming popular for remarkably faster processing [185]. Researchers may apply
these hardware accelerators to train uncertainty quantification NNs.

6.4 Hype Cycle for Uncertainty in Cloud

The Hype Cycle is the representation of the maturity of applications or approaches of a specific
domain [186, 187]. Therefore, we construct a hype cycle to visualize conditions of uncertainty-
aware approaches in cloud computing. Figure 5 presents our proposed Hype Cycle for uncertainty
in the cloud.

UQ for cloud management, AI for uncertainty in the cloud, and availability analysis are in the
innovation trigger region in the hype curve. There are a few works on the UQ of cloud parameters
and the term is unfamiliar to the majority in the cloud community. Besides a few recent discussions
and announcements from several IT companies [188], very few scholarly works have published on
AI-based cloud management. There will be a lot of work on AI for cloud management in coming
years. Moreover, training approaches and training cost-functions will also evolve. Therefore, it will
take more than 10 years for AI for uncertainty in the cloud to reach the plateau of productivity.
The availability analysis of preemptible instances is another rapidly growing approach. More cloud
providers will start to provide preemptible instances over time, and the growing popularity will
increase the uncertainty in the availability.

QoS ranking and UQ in cloud applications are at the peak of inflated expectations. As several
providers are offering similar cloud servers, a QoS rank prediction is becoming crucial for proper
selection of servers [53, 156]. Numerous approaches have been developing for the selection of a
better server from possible combinations [159, 189–192]. Therefore, there is a growing debate on
the relative effectiveness of different QoS rankings. There will be a significant improvement in the
selection process in the upcoming years. Users may find a few widely accepted server selection
techniques within a few years. After achieving widely accepted techniques, the uncertainty-based
server selection will go to the next stage of the Hype Curve. UQ in cloud application has reached
its peak of inflated expectations. Researchers are quantifying uncertainties for various quantities
[193]. However, current UQ approaches have limitations. These limitations may cause trough of
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Fig. 5. The proposed Hype Cycle for uncertainty in cloud.

disillusionment in the upcoming years. New applications of UQ will reveal over time. The algo-
rithm improvement will also improve the expectation. It will take more than 10 years for UQ in
cloud applications to reach the plateau of productivity [194, 195].

Cloud bidding and checkpointing are at the trough of disillusionment step of the Hype Curve.
AWS has recently changed its pricing model [116]. AWS is not considering the profit maximization
from available bids at this moment. AWS spot prices are more predictable now. Therefore, less
research is ongoing on the development of an efficient bidding system. However, uncertainty in
the SI price will increase over time with the increased number of users. Moreover, AWS may change
their rules anytime to increase profit and to punish careless bidders. Cloud servers are becoming
more reliable over time, and that is decreasing the expectation from new checkpointing approaches.
However, many other factors can cause preemption or shutdown of instances and the expectation
on checkpointing will increase over time.

Uncertainty-aware decisions for workload, capacity planning, and loss of data are at the slope of
enlightenment region and will reach the plateau of productivity within a few years. Major cloud
providers are applying machine learning for efficient management of cloud resource. Workload
and capacity planning research will come to its maturity within a few years. They are also offering
backup memories with the hibernation state to prevent data loss [196]. Resource scaling is also at
the slope of enlightenment region of the Hype Curve. Provision of different kinds of resources
will increase challenges in resource scaling. It will require 3 to 10 years for the uncertainty-aware
resource scaling to reach its plateau of productivity.

Data privacy is a quite saturated field. There are highly secured algorithms and still, many occur-
rences are happening on data-stealing or account hijacking. The expectation from the data privacy
is flat at this moment, and therefore it has reached its plateau of productivity.

7 SUMMARY AND CONCLUSIONS

The recent enormous growth of the cloud industry has increased the uncertainty in cloud com-
puting. Numerous uncertainty-aware systems have been developing over the years to meet the
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demand. With the traditional approaches to design uncertainty-aware systems, researchers have
also started to quantify uncertainties. Although the uncertainty is not efficiently quantifiable for
a single event, the effect of a large number of events is quantifiable.

The cloud is connected to the entire world through the Internet. A small influence from one
country can affect a user in another country slightly. Therefore, we select five major uncertain
parameters: price, availability, traffic, workload, and security. Major uncertain parameters are di-
rectly affected by numerous influencing factors. Change in major uncertain parameters affects the
QoS.

This work also describes popular uncertainty-aware approaches. A rough hype curve is also
drawn to present the situation. The hype curve presents the maturity region and time to reach
the plateau for each approach. Therefore, the situation of a trend becomes easily understandable.
Dependency on the cloud will increase over time. Moreover, numerous automation approaches will
require uncertainty quantification in the near future. This work will direct future researchers and
developers of cloud computing to design uncertainty-aware efficient cloud management systems.

REFERENCES

[1] Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros, Yogesh Simmhan, Blesson Varghese,
Erol Gelenbe, Bahman Javadi, Luis Miguel Vaquero, Marco A. S. Netto et al. 2018. A manifesto for future generation
cloud computing: Research directions for the next decade. ACM Comput. Surv. 51, 5 (2018), 1–38.

[2] Blesson Varghese and Rajkumar Buyya. 2018. Next generation cloud computing: New trends and research directions.
Fut. Gen. Comput. Syst. 79 (2018), 849–861.

[3] Sukhpal Singh Gill and Rajkumar Buyya. 2018. A taxonomy and future directions for sustainable cloud computing:
360 degree view. ACM Comput. Surv. 51, 5 (2018), 1–33.

[4] Qinghua Lu, Xiwei Xu, Liming Zhu, Len Bass, Zhanwen Li, Sherif Sakr, Paul L. Bannerman, and Anna Liu. 2013.
Incorporating uncertainty into in-cloud application deployment decisions for availability. In Proceedings of the IEEE

6th International Conference on Cloud Computing (CLOUD’13). IEEE, 454–461.
[5] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar Buyya. 2014. Workload prediction using ARIMA

model and its impact on cloud applications’ QoS. IEEE Trans. Cloud Comput. 3, 4 (2014), 449–458.
[6] Songpu Ai, Antorweep Chakravorty, and Chunming Rong. 2019. Household power demand prediction using evolu-

tionary ensemble neural network pool with multiple network structures. Sensors 19, 3 (2019), 721.
[7] Mohammad Reza Chalak Qazani, Houshyar Asadi, and Saeid Nahavandi. 2019. High-fidelity hexarot simulation-

based motion platform using fuzzy incremental controller and model predictive control-based motion cueing algo-
rithm. IEEE Syst. J. 14, 4 (2019), 5073–5083.

[8] Seyed Mohammad Jafar Jalali, Parham M. Kebria, Abbas Khosravi, Khaled Saleh, Darius Nahavandi, and Saeid Na-
havandi. 2019. Optimal autonomous driving through deep imitation learning and neuroevolution. In Proceedings of

the IEEE International Conference on Systems, Man and Cybernetics (SMC’19). IEEE, 1215–1220.
[9] Anastasia Zabaniotou. 2020. A systemic approach to resilience and ecological sustainability during the COVID-19

pandemic: Human, societal, and ecological health as a system-wide emergent property in the Anthropocene. Global

Transit. 2 (2020), 116–126.
[10] H. M. Dipu Kabir, Abbas Khosravi, M. Anwar Hosen, Saeid Nahavandi, and Rajkumar Buyya. 2019. Probability density

for amazon spot instance price. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT’19).
IEEE, 887–892.

[11] Éloi Bossé and Basel Solaiman. 2018. Fusion of information and analytics: A discussion on potential methods to cope
with uncertainty in complex environments (big data and IoT). Int. J. Dig. Sig. Smart Syst. 2, 4 (2018), 279–316.

[12] In Lee and Kyoochun Lee. 2015. The Internet of Things (IoT): Applications, investments, and challenges for enter-
prises. Bus. Horiz. 58, 4 (2015), 431–440.

[13] Shakti Goel and Rahul Bajpai. 2020. Impact of uncertainty in the input variables and model parameters on predictions
of a long short term memory (LSTM) based sales forecasting model. Mach. Learn. Knowl. Extract. 2, 3 (2020), 256–270.

[14] Siham Tabik, Ricardo F. Alvear-Sandoval, María M. Ruiz, José-Luis Sancho-Gómez, Aníbal R. Figueiras-Vidal, and
Francisco Herrera. 2020. MNIST-NET10: A heterogeneous deep networks fusion based on the degree of certainty to
reach 0.1% error rate. ensembles overview and proposal. Inf. Fusion 62 (2020), 73–80. DOI:https://doi.org/10.1016/j.
inffus.2020.04.002

[15] H. M. Kabir, Moloud Abdar, Seyed Mohammad Jafar Jalali, Abbas Khosravi, Amir F. Atiya, Saeid Nahavandi, and
Dipti Srinivasan. 2020. SpinalNet: Deep neural network with gradual input. arXiv preprint arXiv:2007.03347 (2020).

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.

https://doi.org/10.1016/j.inffus.2020.04.002


Uncertainty-aware Decisions in Cloud Computing: Foundations and Future Directions 74:23

[16] Konstantin Posch and Juergen Pilz. 2020. Correlated parameters to accurately measure uncertainty in deep neural
networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 3 (2020), 1037–1051.

[17] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and Rajkumar Buyya. 2011. CloudSim:
A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Softw.: Pract. Exper. 41, 1 (2011), 23–50.

[18] Sanjeevi Pandiyan and Viswanathan Perumal. 2017. A survey on various problems and techniques for optimizing
energy efficiency in cloud architecture. Walailak J. Sci. Technol. 14, 10 (2017), 749–758.

[19] Manuel Trenz, Jan C. Huntgeburth, and Daniel J. Veit. 2013. The role of uncertainty in cloud computing continuance:
Antecedents, mitigators, and consequences. ECIS 2013 - Proceedings of the 21st European Conference on Information

Systems.
[20] Andrei Tchernykh, Uwe Schwiegelsohn, Vassil Alexandrov, and El-ghazali Talbi. 2015. Towards understanding un-

certainty in cloud computing resource provisioning. Procedia Comput. Sci. 51 (2015), 1772–1781.
[21] Andrei Tchernykh, Uwe Schwiegelsohn, El-ghazali Talbi, and Mikhail Babenko. 2019. Towards understanding uncer-

tainty in cloud computing with risks of confidentiality, integrity, and availability. J. Comput. Sci. 36 (2019), 100581.
[22] Sukhpal Singh and Inderveer Chana. 2016. A survey on resource scheduling in cloud computing: Issues and chal-

lenges. J. Grid Comput. 14, 2 (2016), 217–264.
[23] Yijie Wang, Xiaoyong Li, Xiaoling Li, and Yuan Wang. 2013. A survey of queries over uncertain data. Knowl. Inf. Syst.

37, 3 (2013), 485–530.
[24] Sunilkumar S. Manvi and Gopal Krishna Shyam. 2014. Resource management for Infrastructure as a Service (IaaS)

in cloud computing: A survey. J. Netw. Comput. Applic. 41 (2014), 424–440.
[25] Muhammad Shafie Abd Latiff et al. 2017. A checkpointed league championship algorithm-based cloud scheduling

scheme with secure fault tolerance responsiveness. Appl. Soft Comput. 61 (2017), 670–680.
[26] Richard Bradley and Mareile Drechsler. 2014. Types of Uncertainty. Erkenntnis 79, 6 (2014), 1225–1248.
[27] H. M. Dipu Kabir, Abbas Khosravi, Mohammad Anwar Hosen, and Saeid Nahavandi. 2018. Neural network-

based uncertainty quantification: A survey of methodologies and applications. IEEE Access 6 (2018), 36218–36234.
DOI:10.1109/ACCESS.2018.2836917

[28] H. M. Dipu Kabir, Abbas Khosravi, Saeid Nahavandi, and Abdollah Kavousi-Fard. 2019. Partial adversarial train-
ing for neural network-based uncertainty quantification. IEEE Trans. Emerg. Topics Comput. Intell. (2019). 1–12.
DOI:10.1109/TETCI.2019.2936546

[29] David Hillson. 2002. Extending the risk process to manage opportunities. International Journal of Project Management

20, 3 (2002), 235–240.
[30] Abbas Khosravi, Saeid Nahavandi, and Doug Creighton. 2013. Quantifying uncertainties of neural network-based

electricity price forecasts. Appl. Energy 112 (2013), 120–129.
[31] Wenjie Zhang, Hao Quan, and Dipti Srinivasan. 2018. An improved quantile regression neural network for proba-

bilistic load forecasting. IEEE Trans. Smart Grid 10, 4 (2018), 4425–4434.
[32] Mehdi Rafiei, Taher Niknam, and Mohammad-Hassan Khooban. 2017. Probabilistic forecasting of hourly electricity

price by generalization of ELM for usage in improved wavelet neural network. IEEE Trans. Industr. Inform. 13, 1
(2017), 71–79.

[33] Eric W. Weisstein. 2006. Dice. https://mathworld.wolfram.com/.
[34] Lex Hoogduin. 2018. Decision Making in a Complex and Uncertain World. Retrieved from https://www.futurelearn.

com/courses/complexity-and-uncertainty.
[35] Maria De Giorgi, Paolo Congedo, and Maria Malvoni. 2014. Photovoltaic power forecasting using statistical methods:

Impact of weather data. IET Sci., Meas. Technol. 8, 3 (2014), 90–97.
[36] Maria Malvoni, Maria Grazia De Giorgi, and Paolo Maria Congedo. 2017. Forecasting of PV power generation using

weather input data-preprocessing techniques. Energy Proc. 126 (2017), 651–658.
[37] Sang-Bing Tsai, Youzhi Xue, Jianyu Zhang, Quan Chen, Yubin Liu, Jie Zhou, and Weiwei Dong. 2017. Models for

forecasting growth trends in renewable energy. Renew. Sustain. Energy Rev. 77 (2017), 1169–1178.
[38] M. Malvoni, M. C. Fiore, G. Maggiotto, L. Mancarella, R. Quarta, V. Radice, P. M. Congedo, and M. G. De Giorgi. 2016.

Improvements in the predictions for the photovoltaic system performance of the Mediterranean regions. Energy

Convers. Manag. 128 (2016), 191–202.
[39] Maria Alejandra Rodriguez and Rajkumar Buyya. 2017. A taxonomy and survey on scheduling algorithms for scien-

tific workflows in IaaS cloud computing environments. Concurr. Comput.: Pract. Exper. 29, 8 (2017), e4041.
[40] Abadhan Saumya Sabyasachi, Hussain Mohammed Dipu Kabir, Ahmed Mohamed Abdelmoniem, and Subrota Kumar

Mondal. 2017. A resilient auction framework for deadline-aware jobs in cloud spot market. In Proceedings of the IEEE

36th Symposium on Reliable Distributed Systems (SRDS’17). IEEE, 247–249.
[41] Curtis Marshall, Blake Roberts, and Michael Grenn. 2017. Intelligent control & supervision for autonomous system

resilience in uncertain worlds. In Proceedings of the 3rd International Conference on Control, Automation and Robotics

(ICCAR’17). IEEE, 438–443.

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.

https://doi.org/10.1109/ACCESS.2018.2836917
https://doi.org/10.1109/TETCI.2019.2936546
https://mathworld.wolfram.com/
https://www.futurelearn.com/courses/complexity-and-uncertainty


74:24 H. M. Dipu Kabir et al.

[42] Stephen Thorne. 2018. Tenets of SRE, available in Retrieved from https://medium.com/@jerub/tenets-of-sre-
8af6238ae8a8.

[43] Farnad Nasirzadeh, H. M. Dipu Kabir, Mahmood Akbari, Abbas Khosravi, Saeid Nahavandi, and David G. Carmichael.
2020. ANN-based prediction intervals to forecast labour productivity. Eng., Construct. Archit. Manag. 27, 9 (2020).

[44] Haithem Mezni, Sabeur Aridhi, and Allel Hadjali. 2018. The uncertain cloud: State of the art and research challenges.
Int. J. Approx. Reas. 103 (2018), 139–151.

[45] Tjark Vredeveld. 2012. Stochastic online scheduling. Comput. Sci.-res. Devel. 27, 3 (2012), 181–187.
[46] Jorge M. Cortés-Mendoza, Ana-Maria Simionovici, Pascal Bouvry, Sergio Nesmachnow, Bernabe Dorronsoro et al.

2015. VoIP service model for multi-objective scheduling in cloud infrastructure. Int. J. Metaheur. 4, 2 (2015), 185–203.
[47] I. Bychkov, G. Oparin, A. Tchernykh, A. Feoktistov, V. Bogdanova, Yu Dyadkin, V. Andrukhova, and O. Basharina.

2017. Toolkit for simulation modeling of logistics warehouse in distributed computing environment. In Proceedings of

the 3rd International Conference on Information Technology and Nanotechnology, Science and Engineering. 1106–1111.
[48] Hamid Mohammadi Fard, Sasko Ristov, and Radu Prodan. 2016. Handling the uncertainty in resource performance

for executing workflow applications in clouds. In Proceedings of the IEEE/ACM 9th International Conference on Utility

and Cloud Computing (UCC’16). IEEE, 89–98.
[49] Fabio Lopez-Pires, Benjamin Baran, Leonardo Benítez, Saul Zalimben, and Augusto Amarilla. 2018. Virtual machine

placement for elastic infrastructures in overbooked cloud computing datacenters under uncertainty. Fut. Gen. Com-

put. Syst. 79 (2018), 830–848.
[50] Roland Mathá, Sasko Ristov, and Radu Prodan. 2017. Simulation of a workflow execution as a real cloud by adding

noise. Simul. Modell. Pract. Theor. 79 (2017), 37–53.
[51] Marin Aranitasi, Benjamin Byholm, and Mats Neovius. 2017. Quantifying uncertainty for preemptive resource pro-

visioning in the cloud. In Proceedings of the 28th International Workshop on Database and Expert Systems Applications

(DEXA’17). IEEE, 127–131.
[52] K. Bhargavi and B. Sathish Babu. 2017. Soft-set based DDQ scheduler for optimal task scheduling under uncertainty in

the cloud. In Proceedings of the 2nd International Conference On Emerging Computation and Information Technologies

(ICECIT’17). IEEE, 1–6.
[53] Mohamed Abdel-Basset, Mai Mohamed, and Victor Chang. 2018. NMCDA: A framework for evaluating cloud com-

puting services. Fut. Gen. Comput. Syst. 86 (2018), 12–29.
[54] Robert C. Hilborn. 2004. Sea gulls, butterflies, and grasshoppers: A brief history of the butterfly effect in nonlinear

dynamics. Amer. J. Phys. 72, 4 (2004), 425–427.
[55] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. 2013. A framework for ranking of cloud computing

services. Fut. Gen. Comput. Syst. 29, 4 (2013), 1012–1023.
[56] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. 2013. Deconstructing Amazon EC2

spot instance pricing. ACM Trans. Econ. Comput. 1, 3 (2013), 16.
[57] Faruk Caglar and Aniruddha Gokhale. 2014. iOverbook: Intelligent resource-overbooking to support soft real-time

applications in the cloud. In Proceedings of the IEEE 7th International Conference on Cloud Computing (CLOUD’14).
IEEE, 538–545.

[58] Breno G. S. Costa, Marco Antonio Sousa Reis, Aletéia P. F. Araújo, and Priscila Solis. 2018. Performance and cost
analysis between on-demand and preemptive virtual machines. In Proceedings of the International Conference on

Cloud Computing and Services Science. 169–178.
[59] Juan Li, Yanmin Zhu, Jiadi Yu, Chengnian Long, Guangtao Xue, and Shiyou Qian. 2017. Online auction for IaaS

clouds: Towards elastic user demands and weighted heterogeneous VMs. In Proceedings of the IEEE Conference on

Computer Communications (INFOCOM’17). IEEE, 1–9.
[60] Vivek Kumar Singh and Kaushik Dutta. 2015. Dynamic price prediction for Amazon spot instances. In Proceedings

of the 48th Hawaii International Conference on System Sciences (HICSS’15). IEEE, 1513–1520.
[61] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David

Patterson, Ariel Rabkin, Ion Stoica et al. 2010. A view of cloud computing. Commun. ACM 53, 4 (2010), 50–58.
[62] Shijimol Ambi Karthikeyan. 2018. Introduction to Azure IaaS. In Practical Microsoft Azure IaaS. Springer, 1–38.
[63] Ashish Kumar Mishra, Brajesh Kumar Umrao, and Dharmendra K. Yadav. 2018. A survey on optimal utilization of

preemptible VM instances in cloud computing. J. Supercomput. 74, 11 (2018), 5980–6032.
[64] Jose Pergentino Araujo Neto, Donald M and Ralha Pianto, and Ghedini Célia. 2019. MULTS: A multi-cloud fault-

tolerant architecture to manage transient servers in cloud computing. Journal of Systems Architecture 101 (2019),
101651.

[65] Jogesh Muppala, Gianfranco Ciardo, and Kishor S. Trivedi. 1994. Stochastic reward nets for reliability prediction.
Commun. Reliab., Maintainab. Serviceab. 1, 2 (1994), 9–20.

[66] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes,
and Sean Quinlan. 2010. Availability in globally distributed storage systems. In Proceedings of the Symposium on

Operating Systems Design and Implementation (OSDI’10), Vol. 10. 1–7.

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.

https://medium.com/@jerub/tenets-of-sre-
8af6238ae8a8


Uncertainty-aware Decisions in Cloud Computing: Foundations and Future Directions 74:25

[67] Peter Bodik, Armando Fox, Michael J. Franklin, Michael I. Jordan, and David A. Patterson. 2010. Characterizing,
modeling, and generating workload spikes for stateful services. In Proceedings of the 1st ACM Symposium on Cloud

Computing. ACM, 241–252.
[68] Timothy Wood, Emmanuel Cecchet, Kadangode K. Ramakrishnan, Prashant J. Shenoy, Jacobus E. van der Merwe,

and Arun Venkataramani. 2010. Disaster recovery as a cloud service: Economic benefits & deployment challenges.
HotCloud 10 (2010), 8–15.

[69] Surajit Chaudhuri. 2012. What next?: A half-dozen data management research goals for big data and the cloud. In
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems. ACM, 1–4.

[70] Hariharasudhan Viswanathan, Eun Kyung Lee, Ivan Rodero, and Dario Pompili. 2015. Uncertainty-aware autonomic
resource provisioning for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 26, 8 (2015), 2363–2372.

[71] Joe Long and Dan McCurley. 2018. Parallel cloud computing: Making massive actuarial risk analysis possible. Predict.

Anal. Futur. 17 (2018), 6.
[72] Bruno Lopes Dalmazo, João P. Vilela, and Marilia Curado. 2013. Predicting traffic in the cloud: A statistical approach.

In Proceedings of the 3rd International Conference on Cloud and Green Computing (CGC’13). IEEE, 121–126.
[73] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. Towards predictable datacenter networks.

ACM SIGCOMM Comput. Commun. Rev. 41 (2011). ACM, 242–253.
[74] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network traffic characteristics of data centers in the

wild. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement. ACM, 267–280.
[75] Sangho Yi, Derrick Kondo, and Artur Andrzejak. 2010. Reducing costs of spot instances via checkpointing in the ama-

zon elastic compute cloud. In Proceedings of the IEEE 3rd International Conference on Cloud Computing (CLOUD’10).
IEEE, 236–243.

[76] Richard Wolski et al. 1997. Forecasting network performance to support dynamic scheduling using the network
weather service. In Proceedings of the ACM International Symposium on High-performance Parallel and Distributed

Computing (HPDC’97), Vol. 97. 316.
[77] Yang Xinyu, Zeng Ming, Zhao Rui, and Shi Yi. 2004. A novel LMS method for real-time network traffic prediction.

In Proceedings of the International Conference on Computational Science and Its Applications. Springer, 127–136.
[78] Bruno L. Dalmazo, João P. Vilela, and Marilia Curado. 2016. Online traffic prediction in the cloud. Int. J. Netw. Manag.

26, 4 (2016), 269–285.
[79] Deborah Magalhães, Rodrigo N. Calheiros, Rajkumar Buyya, and Danielo G. Gomes. 2015. Workload modeling for

resource usage analysis and simulation in cloud computing. Comput. Electric. Eng. 47 (2015), 69–81.
[80] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Bo Cheng, Zexiang Mao, Chunhong Liu, Lisha Niu, and Junliang Chen.

2014. A cost-aware auto-scaling approach using the workload prediction in service clouds. Inf. Syst. Front. 16, 1 (2014),
7–18.

[81] Quan Liang, Jing Zhang, Yong-hui Zhang, and Jiu-mei Liang. 2014. The placement method of resources and applica-
tions based on request prediction in cloud data center. Inf. Sci. 279 (2014), 735–745.

[82] Weijia Song, Zhen Xiao, Qi Chen, and Haipeng Luo. 2014. Adaptive resource provisioning for the cloud using online
bin packing. IEEE Trans. Comput. 63, 11 (2014), 2647–2660.

[83] Yexi Jiang, Chang-Shing Perng, Tao Li, and Rong N. Chang. 2013. Cloud analytics for capacity planning and instant
VM provisioning. IEEE Trans. Netw. Serv. Manag. 10, 3 (2013), 312–325.

[84] Saurabh Kumar Garg, Adel Nadjaran Toosi, Srinivasa K. Gopalaiyengar, and Rajkumar Buyya. 2014. SLA-based vir-
tual machine management for heterogeneous workloads in a cloud datacenter. J. Netw. Comput. Applic. 45 (2014),
108–120.

[85] Jhu-Jyun Jheng, Fan-Hsun Tseng, Han-Chieh Chao, and Li-Der Chou. 2014. A novel VM workload prediction using
Grey Forecasting model in cloud data center. In Proceedings of the International Conference on Information Networking

(ICOIN’14). IEEE, 40–45.
[86] Rodrigo N. Calheiros, Rajiv Ranjan, and Rajkumar Buyya. 2011. Virtual machine provisioning based on analytical

performance and QoS in cloud computing environments. In Proceedings of the International Conference on Parallel

Processing (ICPP’11). IEEE, 295–304.
[87] Microsoft Corporation. 2009. Optimal Workloads for the cloud. https://blogs.msdn.microsoft.com/stevecla01/2009/

11/26/optimal-workloads-for-the-cloud/.
[88] Gilles Madi Wamba, Yunbo Li, Anne-Cécile Orgerie, Nicolas Beldiceanu, and Jean-Marc Menaud. 2017. Cloud work-

load prediction and generation models. In Proceedings of the 29th International Symposium on Computer Architecture

and High Performance Computing (SBAC-PAD’17). IEEE, 89–96.
[89] Rui Cao, Zhaoyang Yu, Trent Marbach, Jing Li, Gang Wang, and Xiaoguang Liu. 2018. Load prediction for data

centers based on database service. In Proceedings of the IEEE 42nd Computer Software and Applications Conference

(COMPSAC’18). IEEE, 728–737.

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.

https://blogs.msdn.microsoft.com/stevecla01/2009/11/26/optimal-workloads-for-the-cloud/


74:26 H. M. Dipu Kabir et al.

[90] Tham Nguyen, Doan Hoang, Diep Nguyen, and Aruna Seneviratne. 2017. Initial trust establishment for personal
space IoT systems. In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WK-

SHPS’17). IEEE, 784–789.
[91] Fahed Alkhabbas, Ilir Murturi, Romina Spalazzese, Paul Davidsson, and Schahram Dustdar. 2020. A goal-driven

approach for deploying self-adaptive IoT systems. In Proceedings of the IEEE International Conference on Software

Architecture (ICSA’20). IEEE, 146–156.
[92] Sarah Maroc and Jian Biao Zhang. 2020. Cloud services security-driven evaluation for multiple tenants. Cluster Com-

put. (2020), 1–19. DOI:10.1007/s10586-020-03178-z
[93] Ashish Singh and Kakali Chatterjee. 2017. Cloud security issues and challenges: A survey. J. Netw. Comput. Applic.

79 (2017), 88–115.
[94] Syed Rizvi, Jungwoo Ryoo, John Kissell, William Aiken, and Yuhong Liu. 2018. A security evaluation framework for

cloud security auditing. J. Supercomput. 74, 11 (2018), 5774–5796.
[95] Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement in the presence of faults. J. ACM 27,

2 (1980), 228–234.
[96] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine generals problem. ACM Trans. Prog. Lang.

Syst. 4, 3 (1982), 382–401.
[97] Dhruba Borthakur. 2007. The Hadoop distributed file system: Architecture and design. Hadoop Proj. Website 11 (2007),

21.
[98] Subrota K. Mondal, Abadhan S. Sabyasachi, and Jogesh K. Muppala. 2017. On dependability, cost and security tradeoff

in cloud data centers. In Proceedings of the IEEE 22nd Pacific Rim International Symposium on Dependable Computing

(PRDC’17). IEEE, 11–19.
[99] Luke M. Leslie, Young Choon Lee, and Albert Y. Zomaya. 2015. RAMP: Reliability-aware elastic instance provisioning

for profit maximization. J. Supercomput. 71, 12 (2015), 4529–4554.
[100] Wentao Wu, Xi Wu, Hakan Hacigümüş, and Jeffrey F. Naughton. 2014. Uncertainty aware query execution time

prediction. Proc. VLDB Endow. 7, 14 (2014), 1857–1868.
[101] Guiding Metrics. 2018. The Cloud Service Industry’s 10 Most Critical Metrics. https://guidingmetrics.com/content/

cloud-services-industrys-10-most-critical-metrics/.
[102] Kuljeet Kaur, Tanya Dhand, Neeraj Kumar, and Sherali Zeadally. 2017. Container-as-a-service at the edge: Trade-off

between energy efficiency and service availability at fog nano data centers. IEEE Wirel. Commun. 24, 3 (2017), 48–56.
[103] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. 2011. Smicloud: A framework for comparing and ranking

cloud services. In Proceedings of the 4th IEEE International Conference on Utility and Cloud Computing (UCC’11). IEEE,
210–218.

[104] Ahmad Khalil, Nader Mbarek, and Olivier Togni. 2018. Self-configuring IoT service QoS guarantee using QBAIoT.
Computers 7, 4 (2018), 64.

[105] Mohammed Alodib. 2016. QoS-aware approach to monitor violations of SLAs in the IoT. J. Innov. Dig. Ecosyst. 3, 2
(2016), 197–207.

[106] Jinesh Varia. 2011. Best practices in architecting cloud applications in the AWS cloud. Cloud Comput.: Princ. Parad.

18 (2011), 459–490.
[107] Flavia C. Delicato, Adnan Al-Anbuky, I. Kevin, and Kai Wang. 2020. Smart cyber-physical systems: Toward pervasive

intelligence systems. 107 (2020), 1134–1139. DOI:https://doi.org/10.1016/j.future.2019.06.031
[108] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. 2018. Auto-scaling web applications in clouds: A taxonomy

and survey. ACM Comput. Surv. 51, 4 (2018), 1–33.
[109] Wei Ai, Kenli Li, Shenglin Lan, Fan Zhang, Jing Mei, Keqin Li, and Rajkumar Buyya. 2016. On elasticity measurement

in cloud computing. Sci. Prog. 2016 (2016).
[110] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang, and Xinyu Wang. 2015. How to bid the cloud. ACM

SIGCOMM Comput. Commun. Rev. 45 (2015). ACM, 71–84.
[111] Rich Wolski, John Brevik, Ryan Chard, and Kyle Chard. 2017. Probabilistic guarantees of execution duration for

Amazon spot instances. In Proceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis. ACM, 18.
[112] H. M. Dipu Kabir, Abadhan S. Sabyasachi, Abbas Khosravi, M. Anwar Hosen, Saeid Nahavandi, and Rajkumar Buyya.

2019. A cloud bidding framework for deadline constrained jobs. In Proceedings of the IEEE International Conference

on Industrial Technology (ICIT’19). IEEE, 765–772.
[113] Qihang Sun, Chuan Wu, Zongpeng Li, and Shaolei Ren. 2016. Colocation demand response: Joint online mechanisms

for individual utility and social welfare maximization. IEEE J. Sel. Areas Commun. 34, 12 (Dec. 2016), 3978–3992. DOI:
http://dx.doi.org/10.1109/JSAC.2016.2611918

[114] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang, and Xinyu Wang. 2015. How to bid the cloud. ACM

SIGCOMM Comput. Commun. Rev. 45, 5 (Aug. 2015), 71–84. DOI: http://dx.doi.org/10.1145/2829988.2787473

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.

https://doi.org/10.1007/s10586-020-03178-z
https://guidingmetrics.com/content/cloud-services-industrys-10-most-critical-metrics/
https://doi.org/10.1016/j.future.2019.06.031
http://dx.doi.org/10.1109/JSAC.2016.2611918
http://dx.doi.org/10.1145/2829988.2787473


Uncertainty-aware Decisions in Cloud Computing: Foundations and Future Directions 74:27

[115] Linquan Zhang, Zongpeng Li, and Chuan Wu. 2014. Dynamic resource provisioning in cloud computing: A random-
ized auction approach. Proceedings of the IEEE IEEE Conference on Computer Communications (INFOCOM’14). 433–441.
DOI: Retrieved from http://dx.doi.org/10.1109/INFOCOM.2014.6847966

[116] Roshni Pary. 2018. New Amazon EC2 Spot pricing model: Simplified purchasing without bidding and fewer inter-
ruptions. Retrieved from https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/.

[117] Kimitoshi Sato and Kenichi Nakashima. 2020. Optimal pricing problem for a pay-per-use system based on the Internet
of Things with intertemporal demand. Int. J. Prod. Econ. 221 (2020), 107477.

[118] Alireza Salehan, Hossein Deldari, and Saeid Abrishami. 2017. An online valuation-based sealed winner-bid auction
game for resource allocation and pricing in clouds. J. Supercomput. 73, 11 (2017), 4868–4905.

[119] Daniel A. Menasce, Virgilio A. F. Almeida, Lawrence W. Dowdy, and Larry Dowdy. 2004. Performance by Design:

Computer Capacity Planning by Example. Prentice Hall Professional.
[120] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. 2007. Workload analysis and demand predic-

tion of enterprise data center applications. In Proceedings of the IEEE 10th International Symposium on Workload

Characterization (IISWC’07). IEEE, 171–180.
[121] Marcus Carvalho, Daniel A. Menascé, and Francisco Brasileiro. 2017. Capacity planning for IaaS cloud providers

offering multiple service classes. Fut. Gen. Comput. Syst. 77 (2017), 97–111.
[122] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. 2007. Capacity management and demand pre-

diction for next generation data centers. In Proceedings of the IEEE International Conference on Web Services (ICWS’07).
43–50. DOI:10.1109/ICWS.2007.62

[123] Tom Krazit. 2018. How Amazon Web Services uses machine learning to make capacity planning decisions. Retrieved
from https://www.geekwire.com/2017/amazon-web-services-uses-machine-learning-make-capacity-planning-
decisions/.

[124] Song Yang, Fernando A. Kuipers et al. 2014. Traffic uncertainty models in network planning. IEEE Commun. Mag. 52,
2 (2014), 172–177.

[125] David Applegate and Edith Cohen. 2006. Making routing robust to changing traffic demands: Algorithms and eval-
uation. IEEE/ACM Trans. Netw. 14, 6 (2006), 1193–1206.

[126] Murali Kodialam, T. V. Lakshman, James B. Orlin, and Sudipta Sengupta. 2009. Oblivious routing of highly variable
traffic in service overlays and IP backbones. IEEE/ACM Trans. Netw. 17, 2 (2009), 459–472.

[127] Alexandre Fréchette, F. Bruce Shepherd, Marina K. Thottan, and Peter J. Winzer. 2015. Shortest path versus multihub
routing in networks with uncertain demand. IEEE/ACM Trans. Netw. 23, 6 (2015), 1931–1943.

[128] Walid Ben-Ameur and Hervé Kerivin. 2005. Routing of uncertain traffic demands. Optim. Eng. 6, 3 (2005), 283–313.
[129] Arie M. C. A. Koster, Manuel Kutschka, and Christian Raack. 2013. Robust network design: Formulations, valid

inequalities, and computations. Networks 61, 2 (2013), 128–149.
[130] Ramon Aparicio-Pardo, Pablo Pavon-Marino, and Biswanath Mukherjee. 2012. Robust upgrade in optical networks

under traffic uncertainty. In Proceedings of the 16th International Conference on Optical Network Design and Modeling

(ONDM’12). IEEE, 1–6.
[131] Ariel Orda, Raphael Rom, and Moshe Sidi. 1993. Minimum delay routing in stochastic networks. IEEE/ACM Trans.

Netw. 1, 2 (1993), 187–198.
[132] Elise Miller-Hooks. 2001. Adaptive least-expected time paths in stochastic, time-varying transportation and data

networks. Netw.: Int. J. 37, 1 (2001), 35–52.
[133] Ying Xiao, Krishnaiyan Thulasiraman, Xi Fang, Dejun Yang, and Guoliang Xue. 2012. Computing a most probable

delay constrained path: NP-hardness and approximation schemes. IEEE Trans. Comput. 61, 5 (2012), 738–744.
[134] Masoumeh Tajvidi, Michael J. Maher, and Daryl Essam. 2017. Uncertainty-aware optimization of resource provision-

ing, a cloud end-user perspective. In Proceedings of the International Conference on Cloud Computing and Services

Science (CLOSER’17). 293–300.
[135] Pooyan Jamshidi, Claus Pahl, and Nabor C. Mendonça. 2016. Managing uncertainty in autonomic cloud elasticity

controllers. IEEE Cloud Comput. 3, 3 (2016), 50–60.
[136] Marco L. Della Vedova, Daniele Tessera, and Maria Carla Calzarossa. 2016. Probabilistic provisioning and scheduling

in uncertain cloud environments. In Proceedings of the IEEE Symposium on Computers and Communication (ISCC’16).
IEEE, 797–803.

[137] Mohamed Amine Ferrag, Leandros A. Maglaras, Helge Janicke, Jianmin Jiang, and Lei Shu. 2017. Authentication
protocols for internet of things: A comprehensive survey. Secur. Commun. Netw. 2017 (2017).

[138] Jangirala Srinivas, Ashok Kumar Das, Neeraj Kumar, and Joel J. P. C. Rodrigues. 2019. TCALAS: Temporal credential-
based anonymous lightweight authentication scheme for Internet of drones environment. IEEE Trans. Vehic. Technol.

68, 7 (2019), 6903–6916.
[139] Nima Karimian, Paul A. Wortman, and Fatemeh Tehranipoor. 2016. Evolving authentication design considerations

for the internet of biometric things (IoBT). In Proceedings of the 11th IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis. 1–10.

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.

http://dx.doi.org/10.1109/INFOCOM.2014.6847966
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://doi.org/10.1109/ICWS.2007.62
https://www.geekwire.com/2017/amazon-web-services-uses-machine-learning-make-capacity-planning-
decisions/


74:28 H. M. Dipu Kabir et al.

[140] Changhee Hahn, Jongkil Kim, Hyunsoo Kwon, and Junbeom Hur. 2020. Efficient IoT management with resilience to
unauthorized access to cloud storage. IEEE Trans. Cloud Comput. (2020). DOI:10.1109/TCC.2020.2985046

[141] Ping Zhang, Mimoza Durresi, and Arjan Durresi. 2019. Multi-access edge computing aided mobility for privacy
protection in internet of things. Computing 101, 7 (2019), 729–742.

[142] Mouna Jouini and Latifa Ben Arfa Rabai. 2019. A security framework for secure cloud computing environments. In
Cloud Security: Concepts, Methodologies, Tools, and Applications. IGI Global, 249–263.

[143] Pandi Vijayakumar, Victor Chang, L. Jegatha Deborah, Balamurugan Balusamy, and P. G. Shynu. 2018. Computation-
ally efficient privacy preserving anonymous mutual and batch authentication schemes for vehicular ad hoc networks.
Fut. Gen. Comput. Syst. 78 (2018), 943–955.

[144] Kavous-Fard Abdollah, Wencong Su, and Tao Jin. 2020. A machine learning based cyber attack detection model for
wireless sensor networks in microgrids. IEEE Trans. Industr. Inform. 17, 1 (2020), 650–658.

[145] Mohammad Ghiasi, Moslem Dehghani, Taher Niknam, and Abdollah Kavousi-Fard. 2020. Investigating overall struc-
ture of cyber-attacks on smart-grid control systems to improve cyber resilience in power system. Network 1, 1 (2020).

[146] Xuanxia Yao, Zhi Chen, and Ye Tian. 2015. A lightweight attribute-based encryption scheme for the Internet of
Things. Fut. Gen. Comput. Syst. 49 (2015), 104–112.

[147] T. P. Sharma et al. 2020. Lightweight encryption algorithms, technologies, and architectures in Internet of Things: A
survey. In Innovations in Computer Science and Engineering. Springer, 341–351.

[148] Christos Stergiou, Kostas E. Psannis, Byung-Gyu Kim, and Brij Gupta. 2018. Secure integration of IoT and cloud
computing. Fut. Gen. Comput. Syst. 78 (2018), 964–975.

[149] Algirdas Avizienis, J.-C. Laprie, Brian Randell, and Carl Landwehr. 2004. Basic concepts and taxonomy of dependable
and secure computing. IEEE Trans. Depend. Sec. Comput. 1, 1 (2004), 11–33.

[150] E. Bauer and R. Adams. 2012. Reliability and Availability of Cloud Computing. Wiley-IEEE Press.
[151] K. S. Trivedi, D. Wang, and J. Hunt. 2010. Computing the number of calls dropped due to failures. In Proceedings of

the IEEE 21st International Symposium on Software Reliability Engineering (ISSRE’10). IEEE, 11–20.
[152] Subrota K. Mondal, Xiaoyan Yin, Jogesh K. Muppala, Javier Alonso Lopez, and Kishor S. Trivedi. 2015. Defects per

million computation in service-oriented environments. IEEE Trans. Serv. Comput. 8, 1 (2015), 32–46.
[153] Subrota K. Mondal, Fumio Machida, and Jogesh K. Muppala. 2016. Service reliability enhancement in cloud by check-

pointing and replication. In Principles of Performance and Reliability Modeling and Evaluation. Springer, 425–448.
[154] Zia-ur Rehman, Omar Khadeer Hussain, and Farookh Khadeer Hussain. 2015. User-side cloud service management:

State-of-the-art and future directions. J. Netw. Comput. Applic. 55 (2015), 108–122.
[155] Sukhpal Singh and Inderveer Chana. 2015. QoS-aware autonomic resource management in cloud computing: A sys-

tematic review. ACM Comput. Surv. 48, 3 (2015), 1–46.
[156] Zibin Zheng, Xinmiao Wu, Yilei Zhang, Michael R. Lyu, and Jianmin Wang. 2013. QoS ranking prediction for cloud

services. IEEE Trans. Parallel Distrib. Syst. 24, 6 (2013), 1213–1222.
[157] Zia ur Rehman, Omar Khadeer Hussain, and Farookh Khadeer Hussain. 2014. Parallel cloud service selection and

ranking based on QoS history. Int. J. Parallel Prog. 42, 5 (2014), 820–852.
[158] Hangwei Qian, Hualong Zu, Chenghua Cao, and Qixin Wang. 2013. CSS: Facilitate the cloud service selection in IaaS

platforms. In Proceedings of the International Conference on Collaboration Technologies and Systems (CTS’13). IEEE,
347–354.

[159] Karim Benouaret, Dimitris Sacharidis, Djamal Benslimane, and Allel Hadjali. 2018. Selecting services for multiple
users: Let’s be democratic. IEEE Trans. Serv. Comput. (2018). DOI:10.1109/TSC.2018.2875691

[160] Sangho Yi, Artur Andrzejak, and Derrick Kondo. 2012. Monetary cost-aware checkpointing and migration on Ama-
zon cloud spot instances. IEEE Trans. Serv. Comput. 5, 4 (2012), 512–524.

[161] Zhiquan Sui, Matthew Malensek, Neil Harvey, and Shrideep Pallickara. 2015. Autonomous orchestration of dis-
tributed discrete event simulations in the presence of resource uncertainty. ACM Trans. Autonom. Adapt. Syst. 10,
3 (2015), 18.

[162] Zaeem Hussain, Taieb Znati, and Rami Melhem. 2018. Partial redundancy in HPC systems with non-uniform node
reliabilities. In Partial Redundancy in HPC Systems with Non-uniform Node Reliabilities. IEEE.

[163] Walayat Hussain, Farookh Khadeer Hussain, Morteza Saberi, Omar Khadeer Hussain, and Elizabeth Chang. 2018.
Comparing time series with machine learning-based prediction approaches for violation management in cloud SLAs.
Fut. Gen. Comput. Syst. 89 (2018), 464–477.

[164] Parham M. Kebria, Abbas Khosravi, Syed Moshfeq Salaken, Ibrahim Hossain, H. M. Dipu Kabir, Afsaneh Koohes-
tani, Roohallah Alizadehsani, and Saeid Nahavandi. 2018. Deep imitation learning: The impact of depth on policy
performance. In Proceedings of the International Conference on Neural Information Processing. Springer, 172–181.

[165] Shouping Guan and Zhouying Cui. 2020. Modeling uncertain processes with interval random vector functional-link
networks. J. Proc. Contr. 93 (2020), 43–52.

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.

https://doi.org/10.1109/TCC.2020.2985046
https://doi.org/10.1109/TSC.2018.2875691


Uncertainty-aware Decisions in Cloud Computing: Foundations and Future Directions 74:29

[166] Seyed Mohammad Jafar Jalali, Sajad Ahmadian, Abbas Khosravi, Seyedali Mirjalili, Mohammad Reza Mahmoudi, and
Saeid Nahavandi. 2020. Neuroevolution-based Autonomous Robot Navigation: A Comparative Study. Cog. Syst. Res.

62 (2020), 35–43.
[167] Matjaž Perc, Mahmut Ozer, and Janja Hojnik. 2019. Social and juristic challenges of artificial intelligence. Palgrave

Commun. 5, 1 (2019), 1–7.
[168] Kinza Shafique, Bilal A. Khawaja, Farah Sabir, Sameer Qazi, and Muhammad Mustaqim. 2020. Internet of things (IoT)

for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT
scenarios. IEEE Access 8 (2020), 23022–23040.

[169] Abu Sufian, Dharm Singh Jat, and Anuradha Banerjee. 2020. Insights of artificial intelligence to stop spread of Covid-
19. In Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach. Springer, 177–
190.

[170] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. 2013. Internet of Things (IoT):
A vision, architectural elements, and future directions. Fut. Gen. Comput. Syst. 29, 7 (2013), 1645–1660.

[171] Sukhpal Singh Gill, Shreshth Tuli, Minxian Xu, Inderpreet Singh, Karan Vijay Singh, Dominic Lindsay, Shikhar
Tuli, Daria Smirnova, Manmeet Singh, Udit Jain et al. 2019. Transformative effects of IoT, Blockchain and Artificial
Intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet Things J. 8 (2019), 100118.

[172] Mamdooh Al-Saud, Ali M. Eltamaly, Mohamed A. Mohamed, and Abdollah Kavousi-Fard. 2019. An intelligent data-
driven model to secure intravehicle communications based on machine learning. IEEE Trans. Industr. Electron. 67, 6
(2019), 5112–5119.

[173] Mingxi Cheng, Ji Li, and Shahin Nazarian. 2018. DRL-cloud: Deep reinforcement learning-based resource provi-
sioning and task scheduling for cloud service providers. In Proceedings of the 23rd Asia and South Pacific Design

Automation Conference (ASP-DAC’18). IEEE, 129–134.
[174] Sukhpal Singh Gill, Inderveer Chana, Maninder Singh, and Rajkumar Buyya. 2018. CHOPPER: An intelligent QoS-

aware autonomic resource management approach for cloud computing. Cluster Comput. 21, 2 (2018), 1203–1241.
[175] Domenico Talia. 2011. Cloud computing and software agents: Towards cloud intelligent services. In Proceedings of

the International Workshop on Optimization and Applications, Vol. 11. Citeseer, 2–6.
[176] Sukhpal Singh and Inderveer Chana. 2016. Resource provisioning and scheduling in clouds: QoS perspective. J. Su-

percomput. 72, 3 (2016), 926–960.
[177] Abdollah Kavousi Fard and Mohammad-Reza Akbari-Zadeh. 2014. A hybrid method based on wavelet, ANN and

ARIMA model for short-term load forecasting. J. Exper. Theoret. Artif. Intell. 26, 2 (2014), 167–182.
[178] Abdollah Kavousi-Fard, Taher Niknam, Hoda Taherpoor, and Alireza Abbasi. 2014. Multi-objective probabilistic re-

configuration considering uncertainty and multi-level load model. IET Sci., Meas. Technol. 9, 1 (2014), 44–55.
[179] Eric M. Dashofy. 2019. Software engineering in the cloud. In Handbook of Software Engineering. Springer, 491–516.
[180] Suyash S. Ghuge, Nishant Kumar, S. Savitha, and V. Suraj. 2020. Multilayer technique to secure data transfer in

private cloud for SaaS applications. In Proceedings of the 2nd International Conference on Innovative Mechanisms for

Industry Applications (ICIMIA’02). IEEE, 646–651.
[181] Kaiyuan Guo, Song Han, Song Yao, Yu Wang, Yuan Xie, and Huazhong Yang. 2017. Software-hardware codesign for

efficient neural network acceleration. IEEE Micro 37, 2 (2017), 18–25.
[182] Jeff Dean, David Patterson, and Cliff Young. 2018. A new golden age in computer architecture: Empowering the

machine-learning revolution. IEEE Micro 38, 2 (2018), 21–29.
[183] H. M. Kabir, Abbas Khosravi, Abdollah Kavousi-Fard, Saeid Nahavandi, and Dipti Srinivasan. 2019. Optimal

uncertainty-guided neural network training. arXiv preprint arXiv:1912.12761 (2019).
[184] Holger R. Maier, Joseph H. A. Guillaume, Hedwig van Delden, Graeme A. Riddell, Marjolijn Haasnoot, and Jan H.

Kwakkel. 2016. An uncertain future, deep uncertainty, scenarios, robustness and adaptation: How do they fit to-
gether? Envir. Model. Softw. 81 (2016), 154–164.

[185] Shashikant Ilager, Rajeev Muralidhar, Kotagiri Rammohanrao, and Rajkumar Buyya. 2020. A data-driven frequency
scaling approach for deadline-aware energy efficient scheduling on graphics processing units (GPUs). arXiv preprint

arXiv:2004.08177 (2020).
[186] Maryam Khodayari and Alireza Aslani. 2018. Analysis of the energy storage technology using Hype Cycle approach.

Sustain. Energy Technol. Assess. 25 (2018), 60–74.
[187] Vladimir Hahanov, Wajeb Gharibi, Ka Lok Man, Igor Iemelianov, Mykhailo Liubarskyi, Vugar Abdullayev, Euge-

nia Litvinova, and Svetlana Chumachenko. 2018. Cyber-physical technologies: Hype cycle 2017. In Cyber Physical

Computing for IoT-driven Services. Springer, 259–272.
[188] Eric Minick. 2018. Machine Learning: Essential in Cloud Service Management. Retrieved from https://devops.com/

machine-learning-essential-in-cloud-service-management/.
[189] Chandrashekar Jatoth, G. R. Gangadharan, Ugo Fiore, and Rajkumar Buyya. 2018. SELCLOUD: A hybrid multi-

criteria decision-making model for selection of cloud services. Soft Comput. 23, 13 (2019), 4701–4715.

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.

https://devops.com/machine-learning-essential-in-cloud-service-management/


74:30 H. M. Dipu Kabir et al.

[190] Sajib Mistry, Athman Bouguettaya, and Hai Dong. 2018. Service providers’ long-term QoS prediction model. In
Economic Models for Managing Cloud Services. Springer, 111–122.

[191] Wenrui Li, Pengcheng Zhang, Hareton Leung, and Shunhui Ji. 2018. A novel QoS prediction approach for cloud
services using Bayesian network model. IEEE Access 6 (2018), 1391–1406.

[192] Shiva Prakash et al. 2019. Review of quality of service based techniques in cloud computing. In Data Science and Big

Data Analytics. Springer, 255–265.
[193] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian approximation: Representing model uncertainty in

deep learning. In Proceedings of the International Conference on Machine Learning. 1050–1059.
[194] Aditi D. Joshi and Surendra M. Gupta. 2019. Evaluation of design alternatives of end-of-life products using internet

of things. Int. J. Prod. Econ. 208 (2019), 281–293.
[195] M. A. López-Medina, Macarena Espinilla, Ian Cleland, C. Nugent, and Javier Medina. 2020. Fuzzy cloud-fog comput-

ing approach application for human activity recognition in smart homes. J. Intell. Fuzzy Syst. 38, 1 (2020), 709–721.
[196] Amazon.com, Inc. 2018. Amazon EC2 Spot Lets you Pause and Resume Your Workloads. https://aws.amazon.com/

about-aws/whats-new/2017/11/amazon-ec2-spot-lets-you-pause-and-resume-your-workloads/.
[197] Agmon Ben-Yehuda, Orna, et al. 2013. Deconstructing Amazon EC2 spot instance pricing. ACM Transactions on

Economics and Computation (TEAC) 1, 3 (2013), 1–20.
[198] Ma, Junming, et al. 2020. PrTaurus: An Availability-Enhanced EMR Service on preemptible cloud instances. In 2020

IEEE International Conference on Web Services (ICWS’20). IEEE.
[199] Cardellini, Valeria, Valerio Di Valerio, and Francesco Lo Presti. 2016. Game-theoretic resource pricing and provision-

ing strategies in cloud systems. IEEE Transactions on Services Computing 13, 1 (2016), 86–98.
[200] Zheng, Liang, et al. 2015. How to bid the cloud. ACM SIGCOMM Computer Communication Review 45, 4 (2015), 71–84.
[201] Zheng, Liang, et al. 2016. On the viability of a cloud virtual service provider. ACM SIGMETRICS Performance Evalu-

ation Review 44, 1 (2016), 235–248.

Received July 2020; revised November 2020; accepted January 2021

ACM Computing Surveys, Vol. 54, No. 4, Article 74. Publication date: May 2021.

https://aws.amazon.com/about-aws/whats-new/2017/11/amazon-ec2-spot-lets-you-pause-and-resume-your-workloads/

