
Thermal Prediction for Efficient Energy
Management of Clouds Using Machine Learning

Shashikant Ilager , Kotagiri Ramamohanarao, and Rajkumar Buyya , Fellow, IEEE

Abstract—Thermal management in the hyper-scale cloud data centers is a critical problem. Increased host temperature creates

hotspots which significantly increases cooling cost and affects reliability. Accurate prediction of host temperature is crucial for

managing the resources effectively. Temperature estimation is a non-trivial problem due to thermal variations in the data center.

Existing solutions for temperature estimation are inefficient due to their computational complexity and lack of accurate prediction.

However, data-driven machine learning methods for temperature prediction is a promising approach. In this regard, we collect and

study data from a private cloud and show the presence of thermal variations. We investigate several machine learning models to

accurately predict the host temperature. Specifically, we propose a gradient boosting machine learning model for temperature

prediction. The experiment results show that our model accurately predicts the temperature with the average RMSE value of 0.05 or an

average prediction error of 2.38 �C, which is 6 �C less as compared to an existing theoretical model. In addition, we propose a dynamic

scheduling algorithm to minimize the peak temperature of hosts. The results show that our algorithm reduces the peak temperature by

6.5 �C and consumes 34.5 percent less energy as compared to the baseline algorithm.

Index Terms—Cloud computing, machine learning, energy efficiency in a data center, datacenter cooling, hotspots

Ç

1 INTRODUCTION

THE transition from ownership-based on-premise IT infra-
structure to subscription-based Cloud has been tremen-

dous in the past decade due to the vast advantages that
cloud computing offers [1]. This rapid proliferation of cloud
has resulted in a massive number of hyper-scale data cen-
ters that generate an exorbitant amount of heat and con-
sume a large amount of electrical energy. According to [2],
around 2 percent of global electricity is spent on data cen-
ters, and almost 50 percent of this energy is spent on cooling
systems [3].

Modern cloud data centers’ rack-mounted servers can
consume up to 1,000 watts of power each and attain peak
temperature as high as 100 �C [4]. The power consumed by a
host is dissipated as heat to the ambient environment, and
the cooling system is equipped to remove this heat and keep
the host’s temperature below the threshold. Increased host
temperature is a bottleneck for the normal operation of a
data center as it escalates the cooling cost. It also creates hot-
spots that severely affect the reliability of the system due to
cascading failures caused by silicon component damage. The
report fromUptime Institute [5] shows that the failure rate of
equipment doubles for every 10 �C increase above 21 �C.
Hence, thermal management becomes a crucial process
inside the data center ResourceManagement System (RMS).

Therefore, to minimize the risk of peak temperature
repercussions, and reduce a significant amount of energy
consumption, ideally, we need accurate predictions of ther-
mal dissipation and power consumption of hosts based on
workload level. In addition, a scheduler that efficiently
schedules the workloads with these predictions using cer-
tain scheduling policies. However, accurate prediction of a
host temperature in a steady-state data center is a non-triv-
ial problem [6], [7]. This is extremely challenging due to
complex and discrepant thermal behavior associated with
computing and cooling systems. Such variations in a data
center are usually enforced by CPU frequency throttling
mechanisms guided by Thermal Design Power (TDP),
attributes associated with hosts such as its physical location,
distance from the cooling source, and also thermodynamic
effects like heat recirculation [6], [7]. Hence, the estimation
of the host temperature in the presence of such discrepan-
cies is vital to efficient thermal management. Sensors are
deployed on both the CPU and rack level to sense the CPU
and ambient temperature, respectively. These sensors are
useful to read the current thermal status. However, predict-
ing future temperature based on the change in workload
level is equally necessary for critically important RMS tasks
such as resource provisioning, scheduling, and setting the
cooling system parameters.

Existing approaches to predict the temperature are inac-
curate, complex, or computationally expensive. The widely
used theoretical analytical models [6], [7], [8], [9], [10] that
are built based on mathematical relations between different
cyber-physical components lack the scalability and accurate
prediction of the actual temperature. In addition, theoretical
models fail to consider several variables that contribute
towards temperature behavior and they need to be changed
for different data centers. Computational Fluid Dynamics
(CFD) models are also predominantly used [11], [12] for

� The authors are with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, School of Computing and Information Systems,
University of Melbourne, Melbourne, VIC 3010, Australia.
E-mail: shashikant.ilager@gmail.com, {kotagiri, rbuyya}@unimelb.edu.au.

Manuscript received 18 June 2019; revised 6 Nov. 2020; accepted 12 Nov. 2020.
Date of publication 26 Nov. 2020; date of current version 11 Dec. 2020.
(Corresponding author: Shashikant Ilager.)
Recommended for acceptance by K. W Cameron.
Digital Object Identifier no. 10.1109/TPDS.2020.3040800

1044 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:shashikant.ilager@gmail.com
mailto:kotagiri@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au

accurate predictions, but their high complexity requires a
large number of computing cycles. Building these CFD
models and executing them can take hours or days, based
on individual data center complexity [13]. The CFD models
are useful in initial design and calibration of data center lay-
out and cooling settings, however, it is infeasible for the
realtime tasks (e.g., scheduling in large scale clouds) that
are dynamic and require quick online decisions. Moreover,
CFD simulation requires both computational (e.g, the layout
of the Data Center, open tiles) and physical parameters, and
changes to these parameters need expensive retraining of
the models [14]. However, our approach is fast and cost-
effective as it solely relies on the physical sensor data that
are readily available on any rack-mounted servers and
implicitly captures variations. Hence, data-driven methods
using machine learning techniques is a promising approach
to predict the host temperature quickly and accurately.

Machine learning (ML) techniques have become perva-
sive in modern digital society mainly in computer vision
and natural language processing applications. With the
advancement in machine learning algorithms and the avail-
ability of sophisticated tools, applying these ML techniques
to optimize large scale computing systems is a propitious
avenue [15], [16], [17], [18]. Recently, Google has reported a
list of their efforts in this direction [19], where they optimize
several of their large scale computing systems using ML to
reduce cost, energy and increase the performance. Data-
driven temperature predictions are highly suitable as they
are built from actual measurements and they capture the
important variations that are induced by different factors in
data center environments. Furthermore, recent works have
explored ML techniques to predict the data center host tem-
perature [6], [20]. However, these works are applied to HPC
data centers or similar infrastructure that relies on both
application and physical level features to train the models.
In addition, they are application-specific temperature esti-
mations. Nevertheless, the presence of the virtualization
layer in Infrastructure clouds prohibits this application-
specific approach due to an isolated execution environment
provided to users. Moreover, getting access to the applica-
tion features is impractical in clouds because of privacy and
security agreements between users and cloud providers.
Consequently, we present a host temperature prediction
model that completely relies on features that can be directly
accessed from physical hosts and independent of the appli-
cation counters.

In this regard, we collect and study data from our Uni-
versity’s private research cloud. We propose a data-driven
approach to build temperature prediction models based on
this collected data. We use this data to build the ML-based
models that can be used to predict the temperature of hosts
during runtime. Accordingly, we investigated several ML
algorithms including variants of regression models, a neural
network model namely Multilayer Perceptron (MLP), and
ensemble learning models. Based on the experimental
results, the ensemble-based learning, gradient boosting
method, specifically, XGBoost [21] is chosen for temperature
prediction. The proposed prediction model has high accu-
racy with an average prediction error of 2.5 �C and Root
Mean Square Error (RMSE) of 0.05. Furthermore, guided by
these prediction models, we propose a dynamic scheduling

algorithm to minimize the peak temperature of hosts in a
data center. The scheduling algorithm is evaluated based on
real-world workload traces and it is capable of circumvent-
ing potential hotspots and significantly reduces the total
energy consumption of a data center. The results have dem-
onstrated the feasibility of our proposed prediction models
and scheduling algorithm in data center RMS.

In summary, the key contributions of our work are:

� We collect physical-host level measurements from a
real-world data center and show the thermal and
energy consumption variations between hosts under
similar resource consumption and cooling settings.

� We build machine learning-based temperature pre-
diction models using fine-grained measurements
from the collected data.

� We show the accuracy and the feasibility of pro-
posed prediction models with extensive empirical
evaluation.

� We propose a dynamic workload scheduling algo-
rithm guided by the prediction methods to reduce
the peak temperature of the data center that mini-
mizes the total energy consumption under rigid ther-
mal constraints.

The remainder of the paper is organized as follows: The
motivations for this work and thermal implications in the
cloud are explained in Section 2. Section 3 proposes a ther-
mal prediction framework and explores different ML algo-
rithms. Section 4 describes the gradient boosting based
prediction model. The feasibility of the prediction model is
evaluated against a theoretical model in Section 5. Section 6
presents a dynamic scheduling algorithm. The analysis of
scheduling algorithm results is done in Section 7 and the
feature set analysis is described in Section 8. The relevant
literature for this work is discussed in Section 9. Finally,
Section 10 concludes the paper and also points out future
research directions.

2 MOTIVATION: INTRICACIES IN CLOUD DATA

CENTERS’ THERMAL MANAGEMENT

Thermal management is a critical component in cloud data
center operations. The presence of multi-tenant users and
their heterogeneous workloads exhibit non-coherent behav-
ior with respect to the thermal and power consumption of
hosts in a cloud data center. Reducing even one degree of
temperature in cooling saves millions of dollars over the
year in large scale data centers [17]. In addition, most data
centers and servers are already equipped with monitoring
infrastructure, that has several sensors to read the work-
load, power, and thermal parameters. Using this data to
predict the temperature is cost-effective and feasible.
Thereby, to analyze the complex relationships between dif-
ferent parameters that influence the host temperature, we
collected data from a private cloud and studied it for intrin-
sic information. This data includes resource usage and sen-
sor data of power, thermal, and fan speed readings of hosts.
The detailed information about the data and collection
method is described in Section 3.2.

The correlation between different parameters (Table 1)
and temperature distribution in the data center can be

ILAGER ETAL.: THERMAL PREDICTION FOR EFFICIENT ENERGY MANAGEMENTOF CLOUDS USING MACHINE LEARNING 1045

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

observed in Figs. 1a and 1b. These figures are drawn from
the data recorded on 75 hosts over a 90 days period. The
logging interval was 10 minutes (i.e., 75� 90� 24� 6
records). The correlation plot in Fig. 1a is based on the stan-
dard pairwise Pearson correlation coefficient represented as
a heat map. Here, the correlation value ranges from -1 to 1,
where the value is close to 1 for highly correlated features, 0
for no correlation, and -1 for the negative correlation. For
better illustration, the values are represented as color shades
as shown in the figure. In addition, the correlation matrix is
clustered based on pairwise euclidean distance to enhance
interpretability. It is evident that the CPU temperature of a
host is highly influenced by power consumption and CPU
load. However, factors like memory usage and machine fan
speeds also have some degree of interdependence with it.
Additionally, inlet temperature has a positive correlation
with fan speeds and the number of VMs running on a host.

The high number of hosts operating at a peak CPU tem-
perature can be observed from Fig. 1b. The figure represents
a histogram of the temperature distribution of all hosts.
Thereby each bin on the x axis represents a quantized CPU
temperature and the y axis the corresponding probability
density value. CPU temperature of hosts can reach more
than 80 �C and the occurrence of such conditions are numer-
ous which is evidenced by high-density value on the y axis
for the respective bin. In addition, hosts exhibit inconsistent

thermal behavior based on several factors. This non-linear
behavior of hosts presents a severe challenge in temperature
estimation. A single theoretical mathematical model, applied
even for homogeneous nodes, fails to accurately predict the
temperature. Two homogeneous nodes at a similar CPU
load observe different CPU temperatures. For instance, at a
CPU load of 50 percent of the different hosts in our data set,
CPU temperature varies up to 14 �C. Furthermore, with simi-
lar cooling settings, inlet temperature also varies up to 9 �C
between hosts. These temperature variations are caused by
factors like physical attributes such as the host’s location,
thermodynamic effects, heat recirculation, and thermal
throttling mechanisms induced by the operating system
based on workload behaviors [6]. Therefore, a temperature
estimation model should consider the non-linear composite
relationship between hosts.

Motivated by these factors, we try to rely on data-driven
prediction approaches compared to existing rigid analytical
and expensive CFD based methods. We use the collected
data to build the prediction models to accurately estimate
the host temperature. Furthermore, guided by these predic-
tion models, we propose a simple dynamic scheduling algo-
rithm to minimize the peak temperature in the data center.

3 SYSTEM MODEL AND DATA-DRIVEN

TEMPERATURE PREDICTION

In this section, we describe the system model and discuss
methods and approaches for cloud data center temperature
prediction. We use these methods to further optimize our
prediction model in Section 4.

3.1 System Model

A system model for predictive thermal management in the
cloud data center is shown in Fig. 2. A Resource Manage-
ment System (RMS) interacts with both, the users and the
thermal prediction module, to efficiently manage the under-
lying resources of the cloud infrastructure. The prediction
module consists of four main components, i.e., data

TABLE 1
Definition of Features Collected

Features Definition

CPU CPU Load (%)
R RAM- Random Access Memory (MB)
Rx RAM in usage (MB)
NCPU Number of CPU cores
NCPUx Number of CPU cores in use
NRx Network inbound traffic (Kbps)
NTx Network outbound traffic (Kbps)
Pc Power consumed by host (watts)
Tcpu1 CPU 1 temperature (�C)
Tcpu2 CPU 2 temperature (�C)
fs1 fan1 speed (RPM)
fs2 fan2 speed (RPM)
fs3 fan3 speed (RPM)
fs4 fan4 speed (RPM)
Tin Inlet temperature (�C)
Nvm Number of VMs running on host

Fig. 1. Feature set correlation and temperature distribution.

Fig. 2. System model.

1046 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

collector, training the suitable model, validating the perfor-
mance of the model, and finally deploying it for runtime
usage. RMS in a data center can use these deployed models
to efficiently manage the resources and reduce the cost. The
important elements of the framework are discussed in the
following subsections.

3.2 Data Collection

An ML-based prediction model is as good as the data it has
been used to train. In the data center domain, training data
can include application and physical level features to train
the model [6]. The application features include instruction
count, number of CPU cycles, cache metrics (read, write
and miss), etc. Accordingly, physical features include host-
level resource usage (CPU, RAM, I/O, etc.) and several sen-
sor readings (power, CPU temperature, fan speeds). Relying
on both of these features is feasible in bare metal HPC data
centers where administrators have exclusive access to the
application and physical features. However, in the case of
Infrastructure as Service (IaaS) clouds, resources are virtual-
ized and provisioned as VMs or containers, thus, giving
users exclusive isolated access to the application execution
environment. The presence of a hypervisor or container-
based virtualization in IaaS clouds restricts access to appli-
cation-specific features. Moreover, a diverse set of users in
the cloud have a different type of workloads exhibiting dif-
ferent application behaviors which impede cloud RMS to
rely on application-specific features. As a consequence, to
predict host temperature, the RMS is required to monitor
fine-grained resource usage and physical features of the
host system that can be directly accessed. In this regard, we
show that this data is adequate to predict the host tempera-
ture accurately.

The Melbourne Research Cloud (MRC)1 provides Virtual
Machines (VM) to students and researchers. The representa-
tive data is collected from a subset of machines from MRC.
This computing infrastructure provides computing facilities
to students and researchers as a virtual machine (VM). We
collect data from a subset of the total machines in this cloud.
A brief summary of this data is presented in Table 3. It
includes logs of 75 physical hosts having an average num-
ber of 650 VMs. The data is recorded for a period of 3
months and the log interval is set to 10 minutes. The total
count of resources includes 9,600 CPU cores and 38,692 GB
of memory. After data filtration and cleaning, the final data-
set contains 984,712 tuples, each host approximately having
around 13,000 tuples. Each tuple contains 16 features
including resource and usage metrics, power, thermal, and
fan speed sensors measurements. The details of these

features are given in Table 1. As each host is equipped with
two distinct CPUs, two temperature measurements are
reported per machine. In addition, each system has four
separate fans installed to provide cooling. The reason to col-
lect data for an extended period is to capture all the dynam-
ics and variations of parameters to train the model
effectively. This is only possible when host resources have
experienced different usage levels over time. A model built
over such data allows accurate prediction in dynamic work-
load conditions. An overview of variations of all parameters
is depicted in Table 2 (NCPU and R are not included as they
represent constant resource capacity).

To collect this data, we run a collectd2 daemon on every
host in the data center, which is a standard open-source
application that collects system and application perfor-
mance counters periodically through system interfaces such
as IPMI and sensors. These metrics are accessed through
network API’s and stored in a centralized server in the CSV
format. We used several bash and python scripts to pre-pro-
cess the data. Specifically, python pandas3 package to clean
and sanitize the data. All invalid measurements (e.g., NaN)
were removed. For the broader use of this data to the
research community and for the sake of reproducibility, we
will publish the data and scripts used in this work.

3.3 Prediction Algorithms

The choice of regression-based algorithms for our problem
is natural since we aim to estimate the numerical output
variable i.e., temperature. In the search for suitable predic-
tion mechanisms, we have explored different ML algo-
rithms including different regression techniques, such as
Linear Regression (LR), Bayesian Regression (BR), Lasso
Linear Regression (LLR), Stochastic Gradient Descent
regression (SGD), an Artificial Neural Network (ANN)
model called Multilayer Perceptron (MLP), and an ensem-
ble learning technique called gradient boosting, specifically,
eXtreme Gradient Boosting (XGBoost).

Since each host in our cluster has two CPUs that are
jointly controlled by the same operating system (which may
dynamically move workloads between them), we always
regard the maximum of the respective two CPU tempera-
ture measurements as the systems’ effective CPU tempera-
ture. We aim to build a model for each host to accurately
capture its thermal behavior properties. For that reason,
instead of solely predicting CPU temperature, we predict
the host ambient temperature (Tamb) which is a combination
of inlet temperature and CPU temperature [22]. The reason
to consider ambient temperature instead of CPU tempera-
ture is manifold. First, by combining the inlet and CPU

TABLE 2
Description of the Feature Set Variations in the Dataset (Aggregated From All the Hosts)

CPUð%Þ Rx NRx NTx Nvm NCPUx Pc fs2 fs1 fs3 fs4 Tcpu1 Tcpu2 Tin

Min 0 3974 0 0 0 0 55.86 5636 5686 5688 5645 29.14 25.46 13.33

Max 64.74 514614 583123.08 463888.76 21 101 380.53 13469 13524 13468 13454 82 75.96 18.05

Mean 18.09 307384.48 2849.00 1354.164 9 54 222.73 9484 9501 9490 9480 59.50 50.78 25.75

1. https://docs.cloud.unimelb.edu.au/
2. https://collectd.org/
3. https://pandas.pydata.org/

ILAGER ETAL.: THERMAL PREDICTION FOR EFFICIENT ENERGY MANAGEMENTOF CLOUDS USING MACHINE LEARNING 1047

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

https://docs.cloud.unimelb.edu.au/
https://collectd.org/
https://pandas.pydata.org/

temperature, it is feasible to capture thermal variations that
are induced by both the inlet and CPU temperature (cause
of these variations are discussed in Section 2). Second, at a
data center level, cooling settings knobs are adjusted based
on host ambient temperature rather than individual CPU
temperature [13]. In addition, resource management sys-
tems in the data center consider host-level ambient tempera-
ture as a threshold parameter whereas operating system
level resource management techniques rely on CPU
temperature.

Therefore, to build the prediction model for individual
hosts, we parse the data set and partition it based on host
IDs. For each individual host, the feature set consists of a
variable number of tuples, with each tuple having these fea-
tures (CPU , R, Rx, NCPU , NCPUx, NRx, NTx, Nvm, Pc, fs1 �
fs4, Tamb). Note that, we have excluded inlet and CPU tem-
peratures from the list, as we have combined these as ambi-
ent temperature (Tamb) which is our target prediction
variable.

We used sci-kit learn package [23] to implement all the
algorithms. For XGBoost, we used a standard python pack-
age4 available on Github. The parameters for each of the
algorithms are set to their default settings in our implemen-
tation. For MLP, it follows a standard 3 layers architecture,
with the number of neurons at a hidden layer set to 5 and a
single output neuron, and ’ReLu’ as the activation function.

To avoid the overfitting of the models, we adopt k-fold
cross-validation where the value of k is set to 10. Further-
more, to evaluate the goodness of fit for different models,
we use the Root Mean Square Error (RMSE) metric which is
a standard evaluation metric in regression-based problems
[24]. The RMSE is defined as follows:

RMSE ¼
ffi

1

n
S
n
i¼1

�

yi � ŷi

�2
r

: (1)

In Equation (1), yi is the observed value, ŷi is the predicted
output variable, and n is the total number of predictions.
The value of RMSE represents the standard deviation of the
residuals or prediction errors. The prediction models
attempt to minimize an expectation of loss, thus, lower
RMSE values are preferred.

The performance of different algorithms is shown in
Fig. 3. These results are an average of all the hosts’ predic-
tion model results. In Fig. 3, we can observe that XGBoost
has a very low RMSE value, indicating that, the residuals or
prediction errors are less and its predictions are more accu-
rate. We observed that MLP has a high error value com-
pared to other algorithms. In addition, different regression
variants have performed almost similar to each other. As
the gradient boosting method XGBoost results are promis-
ing, we focus more on this algorithm to explore it further,

optimize, and adapt it for further scheduling as explained in
Section 6.

4 LEARNING WITH EXTREME GRADIENT BOOSTING

Boosting is an ensemble-based machine learning method
that builds strong learners based on weak learners. Gradient
boosting is an ensemble of weak learners, usually decision
trees. XGBoost (eXtreme Gradient Boosting) is a scalable,
fast and efficient gradient boosting variant for tree boosting
proposed by Chen et al. [21]. It incorporates many advanced
techniques to increase the performance, such as parallelism,
cache optimization with better data structure, and out of
core computation using block compression and block shar-
ing techniques which is essential to prevent the memory
overflow in training large data sets on constrained resource
environments. Accordingly, the impact of boosting techni-
ques including XGBoost is evidenced by its dominant adop-
tion in many Kaggle competitions and also in large scale
production systems [25], [26], [27].

The XGBoost algorithm is an ensemble of K Classification
or Regression Trees (CART) [21]. This can be used for both
classification and regression purpose. The model is trained
by using an additive strategy. For a dataset with n instances
and m features, the ensemble model uses k additive func-
tions to estimate the output. Here, x being a set of input fea-
tures, x ¼ fx1; x2; . . .xmg and y is the target prediction
variable

ŷi ¼ f xið Þ ¼
X

K

k¼1
fk xið Þ; fk 2 F: (2)

In the Equation (2), F is space of all the regression trees, i.
e, F ¼ ff xð Þ ¼ wq xð Þg, and q : Rm ! T;w 2 RT

� �

. Here, q is
the structure of each tree which maps to corresponding leaf
index. T represents total number of leaves in the tree. each
fk represents an independent tree with structure q and leaf
weights w. To learn the set of functions used in the model,
XGBoost minimizes the following regularized objective

z fð Þ ¼
X

i

l ŷi; yið Þ þ
X

k

V fkð Þ;

where V fð Þ ¼ gT ¼ 1
2

�
k w k2 :

(3)

In Equation (3), the first term l is the differentiable con-
vex loss function that calculates the difference between pre-
dicted value ŷi, observed value yi. V penalizes the
complexity of the model to control overfitting. Thereby, T is
the number of nodes in the tree and w is assigned values for
each leaf node of the tree. This regularized objective

Fig. 3. Average prediction error between different models.

TABLE 3
Private Cloud Data Collected for This Work

#Hosts#VMs Total CPU
Cores

Total
Memory

Collection
Period

Collection
Interval

75 650 9600 38692 GB 90 days 10 Minute

4. https://github.com/dmlc/xgboost

1048 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

https://github.com/dmlc/xgboost

function attempts to select a model based on simple predic-
tive functions.

We use the grid search technique to find the optimal
parameters to further enhance the performance of the
model. Here, the g parameter is used to decide the mini-
mum loss reduction required to make a further partition on
a leaf node of the tree. Subsample ratio decides the amount
of sampling selected from training data to grow the trees.
Accordingly, the optimal values for g are 0.5, the learning
rate is 0.1, maximum depth of the tree is 4, minimum child
weight is 4, and the subsample ratio is 1, and rest of the
parameters are set to default. With these settings, the best
RMSE value achieved is 0.05. It is important to note that the
prediction based temperature estimation is feasible for any
data center given the historical data collected from the indi-
vidual data center.

5 EVALUATING THE PREDICTION MODEL WITH

THEORETICAL MODEL

To evaluate the feasibility of our temperature prediction
models, we compare the prediction results to extensively
used theoretical analytical model [7], [8], [9]. Here, the tem-
perature estimation is based on the RC model which is for-
mulated from analytical methods. The temperature of a
host (T) is calculated based on the following equation:

T ¼ PRþ Tin þ ðTinitial � PR� TinÞ � e�
t

RC: (4)

In Equation (4), P is the dynamic power of host, R and C are
thermal resistance (k=w) and heat capacity (j=k) of the host
respectively. Tinitial is the initial temperature of the CPU.
Since analytical models estimate CPU temperature, we also
predict CPU temperature to compare the results instead of
ambient temperature.

To compare the results, we randomly select 1,000 tuples
from our whole dataset and analyze the result between pre-
diction and theoretical models. For the theoretical model,
the value of P and Tin are directly used from our test data
set. The value of thermal resistance (R) and heat capacity
(C) is set as 0.34 K=w and 340 J=K respectively and Tinitital

is set to 318K [9].
The performance of the two models in temperature esti-

mation can be observed in Fig. 4. For the sake of visibility,
Fig. 4a includes 100 tuples of data. As the figure suggests,
our proposed model based on XGBoost’s estimation is very
close to the actual values, whereas the theoretical model has
a large variation from the actual values. Fig. 4b, represents a
rank order of the absolute errors (from actual temperature)
of two models in �C. The theoretical model deviates as far

as 25 �C from the actual values. In this test, the average error
of the theoretical model is 9.33 �C and our prediction model
is 2.38 �C. These results reflect the feasibility of using pre-
diction models over theoretical models for temperature esti-
mation. It is important to note that, the prediction models
need to be trained for different data centers separately with
well-calibrated data that have enough data points to cover
all temperature and load conditions in order to predict tem-
perature accurately. Nevertheless, in the absence of such a
facility, it is still feasible to use theoretical analytical models
that rely on a minimum number of simple parameters.

6 DYNAMIC SCHEDULING GUIDED

BY PREDICTION MODELS

Applications of temperature predictions are numerous. It
can be used to change the cooling settings such as supply
air temperature to save the cooling cost [22]. It is also useful
in identifying the thermal anomalies which increase the risk
of failures and injects performance bottlenecks. Moreover,
one foremost usage would be in a data center resource man-
agement system’s tasks such as resource provisioning and
scheduling.

With the given historical host’s data, predictive models
are trained and deployed for runtime inference. A schedul-
ing algorithm invokes a deployed prediction model to accu-
rately predict the host temperature. The input to the
prediction model is a set of host features. In our model, the
features can be easily collected from the host’s onboard sen-
sors. These features are accessed from the host’s system
interface through HTTP APIs. The complexity to retrieve
this input feature set information is Oð1Þ. The latency of this
operation depends on the data center’s local network capa-
bilities. Moreover, the models need to be retrained only
when changes are introduced to the data center environ-
ment, like, the addition of new hosts or change in the physi-
cal location of hosts. Considering the fact that such changes
are not so frequent in a data center, the cost of building and
using such predictive models in resource management tasks
like scheduling is highly feasible.

In this regard, we propose dynamic scheduling of VMs in
a cloud data center based on the temperature prediction
model we have proposed. Here, we intend to reduce the
peak temperature of the system while consolidating VMs
on fewest hosts as possible for each scheduling interval
which is a preferred way to reduce the energy in a cloud
data center [28]. In this problem, n physical hosts in data
center hosting m VMs at timestep t, the objective is to
reduce the number of active hosts in a data center at tþ 1
by consolidating the VMs based on workload level. This

Fig. 4. Comparison of prediction and theoretical model.

ILAGER ETAL.: THERMAL PREDICTION FOR EFFICIENT ENERGY MANAGEMENTOF CLOUDS USING MACHINE LEARNING 1049

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

consolidation process inside the data center is critical and
carried out regularly to reduce overall data center energy
[29], [30]. This procedure mainly includes three steps. First,
identifying under loaded hosts from which we can poten-
tially migrate VMs and shut down the machine. Also find-
ing overloaded hosts and migrate VMs from them to reduce
the risk of Service Level Agreements (SLA) violation, here,
SLA is providing requested resources to VMs without
degrading their performance. Second, selecting VMs for
migration from the over-and underloaded hosts identified
in previous step, and finally, identifying new target hosts to
schedule the selected VMs. The scheduling for consolida-
tion process allows hosts to experience high load and poten-
tially reach the threshold temperature which is useful in
evaluating our prediction models effectively. Therefore, The
objective of our problem is defined as follows:

minimize Tpeak ¼
X

T

t¼0

X

m

j¼1

X

n

i¼1
dtjiT

t
i

subject to uðhiÞ � Umax;

T t
i < Tred

X

m

j¼0
VMjiðRcpu; RmemÞ � hiðRcpu; RmemÞ

dtji ¼f0; 1g
X

n

i¼1
dtji¼ 1:

(5)

The objective function in Equation (5) minimizes the
peak temperature of the hosts while scheduling VMs
dynamically in all the time steps t ¼ f0; . . . Tg. Here, list
of VMs that are to be scheduled are represented with the
index j where j ¼ f1; . . . mg, and list of candidate hosts as
i, where i ¼ f1; . . . ng. The Tt

i indicates temperature of
host i at time t. The constraints ensure that potential thermal
and CPU thresholds are not violated due to increased work-
load allocation. They also assure the capacity constraints, i.
e, a host is considered as suitable only if enough resources
are available for VM (Rcpu; Rmem). Here, dtji is a binary with
the value 1 if the VMj is allocated to hosti at time interval t,
otherwise, 0. The summation of dtji is equal to 1, indicating
that VMj is allocated to at most 1 host at time t. The objective
function in Equation (5) is executed at each scheduling
interval to decide the target host for the VMs to be migrated.
Finding an optimal solution for the above equation is an
NP-hard problem and it is infeasible for on-line dynamic
scheduling. Accordingly, to achieve the stated objective and
provide a near-optimal approximate solution within a rea-
sonable amount of time, we propose a simple Thermal-
Aware heuristic Scheduling (TAS) algorithm that minimizes
the peak temperature of data center hosts.

To dynamically consolidate the workloads (VMs) based
on current usage level, our proposed greedy heuristic
scheduling Algorithm 1 is executed for every scheduling
interval. The input to the algorithm is a list of VMs that are
needed to schedule. These are identified based on overload
and underload condition. To identify overloaded hosts, we
use CPU (Umax) and temperature threshold (Tred) together.

In addition, if all the VMs from a host can be migrated to
current active hosts, the host is considered as an under-
loaded host. The VMs that are to be migrated from over-
loaded hosts are selected based on their minimum
migration time, which is the ratio between their memory
usage and available bandwidth [28]. The output is schedul-
ing maps representing target hosts for those VMs. For each
VM to be migrated (line 2), Algorithm 1 tries to allocate a
new target host from the active list. In this process, algo-
rithm initializes necessary objects (lines 3-5) and the predic-
tion model is invoked to predict the accurate temperature of
a host (line 7). The VM is allocated to a host that has the low-
est temperature among active hosts (lines 8-11). This
ensures the reduction of peak temperature in the data center
and also avoids potential hotspots resulting in lower cooling
cost. Moreover, this algorithm also assures the constraints
listed in Equation (5) are met (line 10), so that added work-
load will not create a potential hotspot by violating thresh-
old temperature (Tred). In addition, resource requirements
of VM (VM(Rx)) are satisfied, and the CPU utilization
threshold is within the limit (Umax). If no suitable host is
found in the process, a new idle or inactive host is allocated
(line 16) from the available resource pool.

Algorithm 1. Thermal Aware Dynamic Scheduling to
Minimize Peak Temperature

Input: VMList- List of VMs to be scheduled
Output: Scheduling Maps
1: for t 0 to T do
2: for all vm in VMList do
3: allocatedHost ;
4: hostList Get list of active hosts
5: minTemperature maxValue
6: for all host in hostList do
7: T̂i Predict temperature by invoking prediction

model
8: if (T̂i < minTemperature) then
9: minTemperature T̂i

10: if (T̂i < Tred and uðhiÞ � Umax and vmðRxÞ <
hostðRxÞ) then

11: allocatedHost host
12: end if
13: end if
14: end for
15: if allocatedHost ¼¼ ; then
16: allocatedHost Get a new host from inactive hosts

list
17: end if
18: end for
19: end for

The Algorithm 1 has a worst-case complexity of OðVNÞ,
which is a polynomial-time complexity. Here, jV j is the
number of VMs to be migrated, and jN j is a number of
hosts in a data center.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm coupled with our prediction model and compare
and analyze the results with baseline algorithms.

1050 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

7.1 Experimental Setup

We evaluated the proposed thermal aware dynamic sched-
uling algorithm through CloudSim toolkit [31]. We
extended CloudSim to incorporate the thermal elements
and implement Algorithm 1. We used a real-world dataset
from Bitbrain [32], which has traces of resource consump-
tion metrics of business-critical workload hosted on
Bitbrain’s infrastructure. This data includes logs of over
1,000 VMs workloads hosted on two types of machines. We
have chosen this data set as it represents real-world cloud
Infrastructure usage patterns and the metrics in this data set
are similar to the features we have collected in our data set
(Table 1). This is useful to construct precise input vectors
for prediction models.

The total experiment period is set to 24 hours and the
scheduling interval to 10 minutes, which is similar to our
data collection interval. Note that, in the algorithm, predic-
tion models are invoked in many places. The prediction is
required to identify the host with the lowest temperature, to
determine a host overloaded condition, and also to ensure
thermal constraints by predicting their future time step
temperature.

To depict the experiments in a real-world setting, we
model host configurations similar to the hosts in our data
center, i.e., DELL C6320 machines. This machine has an
Intel Xeon E5-2600 processor with dual CPUs (32 cores
each) and 512 GB RAM. The VMs are configured based on
the VM flavours in our research cloud.5 We choose four VM
types from general flavors, configuration of these VMs are
presented in Table 4. The number of hosts in the data center
configuration is 75, similar to the number of hosts in our pri-
vate cloud collected data, and the number of VMs is set to
750, which is the maximum number possible on these hosts
based on their maximum resource requirements. The work-
load is generated to these VMs according to Bitbrain’s
dataset.

The CPU threshold (Umax) is set to 0.9. According to the
American Society of Heating, Refrigerating and Air-Condi-
tioning Engineers (ASHRAE) [4] guidelines, the safe opera-
ble temperature threshold for data center hosts is in-
between 95 to 105 �C. This threshold is a combined value of
CPU temperature and inlet temperature together. Accord-
ingly we set temperature threshold (Tred) to 105 �C.

The new target machines for VMs to be scheduled are
found based on Algorithm 1. This requires predicting the
temperature of hosts in the data center. If the hosti tempera-
ture is predicted (T̂i) at the beginning of timestep tþ 1 then
the input to prediction model is a single vector consisting of
a set of features (CPU , Pc, fs1 � fs4, NCPU , NCPUx, R, Rx,

NRx, NTx, Nvm) representing its resource and usage metrics
along with the power and fan speed measurements. The
resource usage metrics are easily gathered from host utiliza-
tion levels based on its currently hosted VMs’ workload
level. To estimate the power P̂i, we use SPECpower bench-
mark [33], which provides accurate power consumption (in
watts) for our modeled host (DELL C6320) based on CPU
utilization. We estimate fan speeds from simple regression
using remaining features to simplify the problem.

We export the trained models as serialized python objects
and expose them to our scheduling algorithm by hosting on
HTTP Flask application.6 The CloudSim scheduling entities
invoke the prediction model through REST APIs by giving
feature vector and host ID as input, the HTTP application
returns predicted temperature for the associated host.

7.2 Analysis of Results

We compare the results with two baseline algorithms as
shown below.

� Round Robin (RR) - This algorithm tries to distribute
the workload equally among all hosts by placing
VMs on hosts in a circular fashion. The similar con-
straints are applied as in Algorithm 1. We show that
the notion of equal distribution of workloads fails to
minimize the peak temperature and thermal varia-
tions in a data center.

� GRANITE- This is a thermal-aware VM scheduling
algorithm proposed in [34] that minimizes comput-
ing and cooling energy holistically. We choose this
particular algorithm, because, similar to us, it also
addresses the thermal-aware dynamic VM schedul-
ing problem.

We use our predictionmodels to estimate the temperature
in both RR and GRANITE algorithms. For GRANITE, the
required parameters are set similar to their algorithm in [34]
including overload and underload detection methods. The
comparison of the average temperature from all hosts in
each scheduling interval by all three algorithms is shown in
Fig. 5. Our Thermal-Aware Scheduling (TAS) has the lowest
average temperature compared to RR and GRANITE. The

TABLE 4
VM Configurations

Name Core RAM

VM1 (uom.general.1c4g) 1 4 GB
VM2 (uom.general.2c8g) 2 8 GB
VM3 (uom.general.4c16g) 4 16 GB
VM4 (uom.general.8c32g) 8 32 GB

Fig. 5. Average temperature in each scheduling interval (total experiment
time of 24 hours, with scheduling interval of 10 minute).

5. https://docs.cloud.unimelb.edu.au/guides/allocations/ 6. http://flask.pocoo.org

ILAGER ETAL.: THERMAL PREDICTION FOR EFFICIENT ENERGY MANAGEMENTOF CLOUDS USING MACHINE LEARNING 1051

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

https://docs.cloud.unimelb.edu.au/guides/allocations/
http://flask.pocoo.org

RR algorithms’ equal workload distribution policy results in
less variation in average temperature. However, this will not
help to reduce the peak temperature in the data center irre-
spective of its intuitive equal distribution behavior as it
doesn’t consider the thermal behavior of individual hosts
and its decisions are completely thermal agnostic. The
GRANITE policy has a high average temperature and large
variations between scheduling intervals due to its inherent
dynamic threshold policies. To further analyze the distribu-
tion of temperature due to two scheduling approaches, we
draw a histogram with Kernel Density Estimation (KDE) by
collecting temperature data from all the hosts in each sched-
uling interval as shown in Fig. 6. Most of the hosts in the data
center operate around 70 to 80 �C in TAS (Fig. 6a), well below
the threshold due to its expected peak temperature minimiz-
ing objective. However, the RR approach results in more
thermal variations with sustained high temperatures
(Fig. 6b). The GRANITE also has significant distributions
around the peak temperature (Fig. 6c). This temperature dis-
tribution is effectively summarized using the Cumulative
Distribution Function (CDF) between three approaches
(Fig. 7). As we can see in Fig. 7, TAS reaches the probability
density value of 1 well below 100 �C, indicating most of the
hosts operate in reduced temperature value. RR and GRAN-
ITE has a peak temperature of more than 100 �C with high
cumulative probability. In addition, as depicted in Fig. 7, the
average and standard deviation of temperature in TAS

(m ¼ 75:65, s ¼ 6:82) is lesser compared to the other two
approaches (m ¼ 80:69, s ¼ 10:49 for RR and m ¼ 77:36, s ¼
9:34 for Granite), this is also evidenced by Fig. 5.

Further results of the experiments are depicted in Table 5.
The total energy consumption by TAS, RR, and GRANITE is
172.20, 391.57, and 263.20 kWh, respectively (the total
energy is a combination of cooling and computing energy
calculated as in [10]). Therefore, RR and GRANITE have 56
and 34.5 percent more energy consumption than TAS,
respectively. This is because RR and GRANITE distribute
workload into more hosts resulting in a high number of
active hosts. In this experimented period, RR and GRANITE
had 18 and 11 average number of active hosts while the TAS
algorithm resulted in 4 active hosts. Furthermore, although
RR distributes workload among many hosts, its thermal
agnostic nature had a peak temperature of 101.44 �C,
GRANITE had peak temperature of 101.80 �C and TAS had
attained a maximum of 95.5 �C during the experimentation
period which is 6.5 �C lower than the latter approaches.
This demonstrates that the accurate prediction of host tem-
perature with an effective scheduling strategy can reduce
the peak temperature and also save a significant amount of
energy in the data center.

7.3 Evaluating Performance Overhead

It is important to estimate the overhead of dynamic schedul-
ing caused due to migration and workload consolidation. In
the context of scheduling in the cloud, the expected perfor-
mance is usually defined using Service Level Agreements
(SLAs). In our approach, the scheduling is at a higher VM
level, hence, we represent the SLA metrics using the VM
level features. In this regard, we consider the following met-
rics [28], [34]:

Number of VM Migrations. Virtual machines may experi-
ence degraded performance during migration. Hence, the

Fig. 6. Temperature distribution analysis due to scheduling (aggregated from all hosts in experimented period).

Fig. 7. CDF between TAS, RR, and GRANITE.

TABLE 5
Scheduling Results Compared With RR

and GRANITE Algorithm

Algorithm Peak Temperature
(�C)

Total Energy
(kwh)

Active Hosts

TAS 95 172.20 4

RR 101.44 391.57 18

GRANITE 101.81 263.20 11

1052 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

number of migrations should be minimized to reduce the
overhead and avoid SLA violations.

SLAviolation. Due to oversubscription and consolidation,
hosts may reach full utilization level (100 percent), in such
cases, the VMs on such host experiences degraded perfor-
mance. This is expressed using SLA violation Time per
Active Host (SLATAH) metric as shown in Fig. 9c. Further-
more, the consolidation of VMs comes with performance
overhead caused due to live VM migration [35], this Perfor-
mance Degradation due to Migration (PDM) is defined as in
Equation (7)

SLATAH ¼ 1

N

X

N

i¼1

Tmax

Tactive
(6)

PDM ¼ 1

M

X

M

j¼1

CAj � CRj

CRj
(7)

SLAviolation ¼ SLATAH � PDM: (8)

Here, N is total number of hosts, Tmax is amount of time
Hosti has experienced 100 percent of utilization and Tactive

is total active time of Hosti. M is the total number of VMs.
The CAj is the total amount of CPU capacity allocated and
CRj is the total amount of CPU capacity requested by VMj

while in migration during its lifetime, this captures the
under allocation of VMs during live migration. The overall
SLA violation of cloud infrastructure (SLAviolation) can be
defined by combining both SLATAH and PDM metrics as
shown in Equation (8).

The results of overhead metrics for different algorithms
are shown in Fig. 9. As shown in Fig. 9a, the number of
migrations is 10,417 and 18,117 for GRANITE and TAS,
respectively. The RR has zero migrations. It is expected as
RR distributes workload equally among the required num-
ber of hosts from the initial step and is not concerned
about dynamic optimizations in runtime. For the PDM
metric (Fig. 9b), GRANITE and TAS have 0.0037 and
0.0064 percent, respectively. This is because to TAS has a
higher number of migrations compared to GRANITE. As
TAS continuously tries to minimize the peak temperature
among active hosts based on workload level, it performs
aggressive consolidation in each scheduling interval.
However, the proactive approach of TAS trying to reduce
the host peak of temperature also results in reduced CPU
overload of hosts. This is evidenced as the TAS has a lower
value of SLATAH metric (0.34 percent) compared to the
GRANITE (0.53 percent). Furthermore, for the overall
SLAviolation metric (Fig. 9d), TAS has increased value
(0:22� 10�6) compared to GRANITE (0:20� 10�6). This lit-
tle increased value is due to the higher PDM value of TAS.
However, TAS significantly outperforms both GRANITE
and RR in reducing peak temperature and energy effi-
ciency with this negligible overhead.

7.4 Dealing With False Predictions

In our scheduling experiments, we observed that a few of
the temperature predictions have resulted in some large
number which is beyond the boundaries of the expected

value. A further close study into such cases has revealed
that this happens with particularly three hosts which were
almost idle in the data collection period of 3 months having
a CPU load less than 1 percent, which means the models
trained for these hosts have limited variations in their fea-
ture set. As the trained models did not have any instance
close to the instance of prediction, prediction results in an
extreme variant value. Such a false prediction in runtime
results in an incorrect scheduling decision that affects the
normal behavior of the system. In this regard, the schedul-
ing process should consider such adverse edge cases. To
tackle this problem, we set minimum and maximum bound
for expected prediction value based on our observations in
the dataset. For any prediction beyond these boundaries,
we pass the input vector to all remaining hosts’ models and
take an average of predicted value as a final prediction
value. In this way, we try to avoid the bias influenced by a
particular host and also get a reasonably good prediction
result. In the case of a huge number of hosts, subsets of
hosts can be used for this.

This also suggests that, to effectively use the prediction
models, the training data should have a distribution of val-
ues of all hosts covering all possible ranges of values.
Deploying such models in a real-world data center requires
good coverage of data to handle all possible operating
points of the data center so that when ML models are
trained they will not be overfitted for a skewed range of
data and thus perform poorly.

7.5 Assumptions and Applicability

The scheduling algorithm and prediction models proposed
in this paper have the following assumptions and applic-
abilities. The scheduling algorithm is applicable for work-
loads that run in VMs for a long period without any
interruptions (such as web and enterprise applications).
Our policy tries to monitor the utilisation level of such
workloads and consolidate them at regular intervals for
energy efficiency while minimising the data center’s peak
temperature. The workload independent performance met-
rics in Section 7.3 indirectly captures the overhead of the
scheduling algorithm. For other types of workloads such as
tasks with predefined completion time, this algorithm is not
directly applicable. In addition, the models trained from the
particular data center should only be used in that data cen-
ter. This is required to capture the unique characteristics
and configuration of a data center that influences tempera-
ture variations in it. They include data center physical rack-
layout, air circulation pattern, and server heat dissipation
rate that directly affects the sensor readings and thus ambi-
ent temperature of server [7], [34], [36]. Hence, it is essential
to train prediction models with data collected from a indi-
vidual data center to capture its characteristics. However,
our proposed techniques are still applicable in building
such models. Therefore, the scheduling algorithm and pre-
diction models are only suitable for a specific workloads, in
a particular data center.

8 FEATURE SET ANALYSIS

We carried out a feature analysis to identify the impor-
tance of each feature towards the model performance.

ILAGER ETAL.: THERMAL PREDICTION FOR EFFICIENT ENERGY MANAGEMENTOF CLOUDS USING MACHINE LEARNING 1053

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

This analysis can also be used in the feature selection pro-
cess to remove the redundant features, reduce the compu-
tational cost, and increase the performance. Fig. 8a shows
the importance of each feature in the constructed
XGBoost model. Here, the weight metric associated with
each feature corresponds to its respective number of
occurrences in the constructed tree which indirectly noti-
fies its importance. Based on the results, host power (Pc),
fanspeed1 (fs1) and number of VMs (Nvm) are the most
important features towards accurate prediction. It is
important to note that, though we have 4 fan speeds, the
model intuitively selects one fan speed with more weight,
this is since all four fans operate almost at the same rpm,
which is observed in our data set. The least important fea-
ture is network metrics (Nrx, Ntx) along with the remain-
ing three fan speed readings. The crucial observation is
that the model gives high importance to power instead of
CPU load, indicating, the high correlation between tem-
perature and power. The number of cores (NC) is not
included in the tree as it has constant value across hosts
introducing no variation in the data.

The performance of temperature prediction with differ-
ent thresholds can be observed in Fig. 8b. We start with the
most important feature and recursively add more features
according to their importance to the model. The y axis indi-
cates RMSE value and the x axis shows a number of fea-
tures. The first three features (Pc; fs1; Nvm) significantly
contribute to prediction accuracy and the accuracy gain is
little as we add more features to the model. Therefore,

based on the required accuracy or RMSE value, we can
select top n features to effectively train the model with less
complexity.

9 RELATED WORK

Thermal management using theoretical analytical models
has been studied by many researchers in the recent past
[7], [8], [22], [37]. These models based on mathematical
relationships to estimate the temperature are not accurate
enough when compared to the actual values. Moreover,
[7], [37] uses analytical models and targets HPC systems
where jobs have specific completion time, while our work
target the virtualized cloud datacenters with long-running
applications that need dynamic scheduling and migration
in realtime. Furthermore, some of the studies have also
explored using CFD models [11]. Computational Fluid
Dynamics (CFD) models provide an accurate thermal mea-
surement, however, their massive computational demand
hinders their adoption in realtime online tasks such as
scheduling. Researchers are audaciously exploring data-
driven ML algorithms to optimize the computing system
efficiency [15], [19]. With the help of ML techniques, Goo-
gle data centers are able to reduce up to 40 percent of their
cooling costs [17].

Many researchers in recent years study thermal and
energy management inside the data center using machine
learning techniques. The vast applications have been used
for finding an optimal setting or configurations of systems

Fig. 8. Feature analysis.

Fig. 9. Performance overhead metrics.

1054 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

to achieve energy efficiency [38]. However, ML techniques
specific to temperature prediction are studied by Zhang
et al. [36] where they proposed the Gaussian process-based
host temperature prediction model in HPC data centers.
They used a two-node Intel Xeon Phi cluster to run the
HPC test applications and collect the training data. In
addition, they also proposed a greedy algorithm for appli-
cation placement to minimize the thermal variations across
the system. In an extended work [6], they enhanced their
solution to include more efficient models such as lasso
linear and Multilayer Perceptron (MLP). The results have
shown that predictive models are accurate and perform
well in data center resource management aspects. Imes
et al. [38] explored different ML classifiers to configure the
different hardware counters to achieve energy efficiency
for a given application. They tested 15 different classifiers
including Support Vector Machine (SVM), K-Nearest
Neighbours (KNN), and Random Forest (RF), etc. This
work only considers energy as an optimization metric
ignoring the thermal aspect. Moreover, these works are
specific to HPC data centers where temperature estimation
is done for application-specific which requires access to
application counters. Nevertheless, our proposed solution
is for Infrastructure clouds, where such an approach is not
feasible due to limited access to application counters
enforced by the isolated virtualized environment. Thus,
we rely on features that completely surpass application
counters and only consider host-level resource usage and
hardware counters and yet achieve a high prediction
accuracy.

Furthermore, Ignacio et al. [39] showed the thermal
anomaly detection technique using Artificial Neural Net-
works (ANNs). They specifically use Self Organising Maps
(SOM) to detect abnormal behavior in the data center from
a previously trained reliable performance. They evaluated
their solution using traces of anomalies from a real data cen-
ter. Moore et al. [13] proposed Weatherman, a predictive
thermal mapping framework for data centers. They studied
the effect of workload distribution on cooling settings and
temperature in the data center. These models are designed
to find the thermal anomalies and manage the workload at
a data center level without giving any attention to accurate
temperature prediction.

In addition to thermal management, many others
applied ML techniques for scheduling in distributed sys-
tems to optimize the parameters such as energy, perfor-
mance, and cost. Among many existing ML approaches,
Reinforcement Learning (RL) is widely used for this pur-
pose [18], [40], [41]. Orheab et al. [40] studied the RL
approach for scheduling in distributed systems. They used
the Q-learning algorithm to train the model that learns
optimal scheduling configurations. In addition, they pro-
posed a platform that provides scheduling as a service for
better execution time and efficiency. Cheng et al. proposed
the DRL cloud, which provides an RL framework for pro-
visioning and task scheduling in the cloud to increase
energy efficiency and reduce the task execution time. Simi-
larly, [41] et al. studied deep RL based resource manage-
ment in distributed systems. Learning to schedule is
prominent with RL based methods due to the fact that RL
models keep improving in runtime [42] which is

convenient for scheduling. However, our work is different
from these works in a way that, the primary objective of
our problem is to estimate the data center host tempera-
ture accurately to facilitate the resource management sys-
tem tasks. In this regard, our work acts as complementary
to these solutions where such thermal prediction models
can be adopted by these ML-based scheduling frameworks
to further enhance their efficiency.

10 CONCLUSION AND FUTURE WORK

Estimating the temperature in the data center is a complex
and non-trivial problem. Existing approaches for temperature
prediction are inaccurate and computationally expensive.
Optimal thermalmanagementwith accurate temperature pre-
diction can reduce the operational cost of a data center and
increase reliability. Data-driven temperature estimation of
hosts in a data center can give us a more accurate prediction
than simple mathematical models as wewere able to take into
consideration CPU and inlet airflow temperature variations
throughmeasurements. Our studywhich is based on physical
host-level data collected from our University’s private cloud
has shown a large thermal variation present between hosts
including CPU and inlet temperature. To accurately predict
the host temperature, we explored several machine learning
algorithms. Based on the results, we found a gradient boosting
based XGBoost model for temperature prediction is the best.
Our extensive empirical evaluation has achieved high predic-
tion accuracy with the average RMSE value of 0.05. In other
words, our prediction model has an average error of 2.38 �C.
Compared to an existing theoretical model, it reduces the pre-
diction error of 7 �C.

Guided by these prediction models, we proposed a
dynamic scheduling algorithm for cloud workloads to mini-
mize the peak temperature. The proposed algorithm is able
to save up to 34.5 percent more of energy and reduce up to
6.5 �C of average peak temperature compared to the best
baseline algorithm. It is important to note that, though the
models built for one data center are optimized for its own
(as each data center’s physical environment and parameters
vastly change), the methodology presented in this work is
generic and can be applied to any cloud data center given
the sufficient amount of data collected from the respective
data centers.

In the future, we plan to explore more sophisticated
models to achieve better accuracy and performance. We
also intend to extend the work for heterogeneous nodes like
GPUs or FPGAs. Another interesting direction is to consider
parameters related to weather and predictions and their
effect on cooling and scheduling long jobs.

ACKNOWLEDGMENT

The authors would like to thank Bernard Meade and Justin
Mammarella at Research Platform Services, The University of
Melbourne for their support and providing access to the infra-
structure cloud and data. This work was supported in part by
a Discovery Project research grant funded by the ARC (the
Australian Research Council). They would also like to thank
the editor-in chief, associate editor, and anonymous reviewers
for their thoughtful suggestions on improving the article.

ILAGER ETAL.: THERMAL PREDICTION FOR EFFICIENT ENERGY MANAGEMENTOF CLOUDS USING MACHINE LEARNING 1055

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Gener.
Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[2] A. Shehabi et al., “United States data center energy usage report,”
Lawrence Berkeley Nat. Lab., Berkeley, CA , USA, 2016.

[3] C. D. Patel, C. E. Bash, and A. H. Beitelmal, “Smart cooling of data
centers,” U.S. Patent 6 574 104, Jun. 3, 2003.

[4] ASHRAE, “American society of heating, refrigerating and air-con-
ditioning engineers,” 2018. [Online]. Available: http://tc0909.
ashraetcs.org/

[5] U. PLC, “A guide to ensuring your ups batteries do not fail
from ups systems,” 2018. [Online]. Available: http://www.
upssystems.co.uk/knowledge-base/the-it-professionals-guide-to-
standby-power/part-8-how-to-ensure-your-batteries-dont-fail/

[6] K. Zhang et al., “Machine learning-based temperature prediction
for runtime thermal management across system components,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 2, pp. 405–419,
Feb. 2018.

[7] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient
thermal-aware task scheduling for homogeneous high-perfor-
mance computing data centers: A cyber-physical approach,” IEEE
Trans. Parallel Distrib. Syst., vol. 19, no. 11, pp. 1458–1472, Nov.
2008.

[8] H. Sun, P. Stolf, and J.-M. Pierson, “Spatio-temporal thermal-
aware scheduling for homogeneous high-performance computing
datacenters,” Future Gener. Comput. Syst., vol. 71, pp. 157–170,
2017.

[9] S. Zhang and K. S. Chatha, “Approximation algorithm for the
temperature aware scheduling problem,” in Proc. Int. Conf. Com-
put.-Aided Des., 2007, pp. 281–288.

[10] S. Ilager, K. Ramamohanarao, and R. Buyya, “ETAS: Energy and
thermal-aware dynamic virtual machine consolidation in cloud
data center with proactive hotspot mitigation,” Concurrency Com-
put., Practice Experience, vol. 31, no. 17, 2019, Art. no. e5221.

[11] J. Choi, Y. Kim, A. Sivasubramaniam, J. Srebric, Q. Wang, and J. Lee,
“A CFD-based tool for studying temperature in rack-mounted serv-
ers,” IEEETrans. Comput., vol. 57, no. 8, pp. 1129–1142, Aug. 2008.

[12] A. Almoli, A. Thompson, N. Kapur, J. Summers, H. Thompson,
and G. Hannah, “Computational fluid dynamic investigation of
liquid rack cooling in data centres,” Appl. Energy, vol. 89, no. 1,
pp. 150–155, 2012.

[13] J. Moore, J. S. Chase, and P. Ranganathan, “Weatherman: Auto-
mated, online and predictive thermal mapping and management
for data centers,” in Proc. IEEE Int. Conf. Autonomic Comput., 2006,
pp. 155–164.

[14] M. Zapater, J. L. Risco-Mart �ın, P. Arroba, J. L. Ayala, J. M. Moya,
and R. Hermida, “Runtime data center temperature prediction
using grammatical evolution techniques,” Appl. Soft Comput., vol.
49, pp. 94–107, 2016.

[15] G. Fox et al., “Learning everywhere: Pervasive machine learning
for effective high-performance computation,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp. Workshops, 2019, pp. 422–429.

[16] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proc. ACM Special Interest Group Data Commun., 2019,
pp. 270–288.

[17] J. Gao, “Machine learning applications for data center opti-
mization,” Google White Paper, 2014.

[18] M. Cheng, J. Li, and S. Nazarian, “DRL-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for
cloud service providers,” in Proc. Asia South Pacific Des. Autom.
Conf., 2018, pp. 129–134.

[19] D. Jeff, “ML for system, system for ML, keynote talk in Workshop
on ML for Systems, NIPS,” 2018. [Online]. Available: http://
mlforsystems.org/

[20] Y. Luo, X. Wang, S. Ogrenci-Memik, G. Memik, K. Yoshii, and
P. Beckman, “Minimizing thermal variation in heterogeneous
HPC systems with FPGA nodes,” in Proc. IEEE 36th Int. Conf. Com-
put. Des., 2018, pp. 537–544.

[21] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting sys-
tem,” in Proc. 22nd Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 785–794.

[22] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma,
“Making scheduling “cool”: Temperature-aware workload place-
ment in data centers,” in Proc. USENIX Annu. Tech. Conf., 2005,
pp. 61–75.

[23] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J.
Mach. Learn. Res., vol. 12, no. Oct., pp. 2825–2830, 2011.

[24] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proc. 23rd Int. Conf. Mach.
Learn., 2006, pp. 161–168.

[25] R. Bekkerman, “The present and the future of the KDDcup competi-
tion: An outsider’s perspective,” 2015. [Online]. Available: https://
www.linkedin.com/pulse/present-future-kdd-cup-competition-
outsiders-ron-bekkerman

[26] A. Mangal and N. Kumar, “Using big data to enhance the bosch
production line performance: A Kaggle challenge,” in Proc. IEEE
Int. Conf. Big Data, 2016, pp. 2029–2035.

[27] R. Bianchini et al., “Toward ML-centric cloud platforms,” Com-
mun. ACM, vol. 63, no. 2, pp. 50–59, 2020.

[28] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing,” Future Gener. Comput. Syst., vol. 28, no. 5, pp.
755–768, 2012.

[29] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari,
“Server workload analysis for power minimization using consol-
idation,” in Proc. USENIX Annu. Tech. Conf., 2009, pp. 28–28.

[30] M. Xu, A. V. Dastjerdi, and R. Buyya, “Energy efficient scheduling
of cloud application components with brownout,” IEEE Trans.
Sustain. Comput., vol. 1, no. 2, pp. 40–53, Jul.–Dec. 2016.

[31] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Softw., Practice Experience, vol. 41, no. 1,
pp. 23–50, 2011.

[32] S. Shen, V. van Beek, and A. Iosup, “Statistical characterization of
business-critical workloads hosted in cloud datacenters,” in Proc.
15th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2015, pp.
465–474.

[33] SPEC, “Standard performance evaluation corporation,” 2018.
[Online]. Available: https://www.spec.org/benchmarks.html

[34] X. Li, P. Garraghan, X. Jiang, Z. Wu, and J. Xu, “Holistic virtual
machine scheduling in cloud datacenters towards minimizing
total energy,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 6, pp.
1317–1331, Jun. 2018.

[35] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost of
virtual machine live migration in clouds: A performance eval-
uation,” in Proc. IEEE Int. Conf. Cloud Comput., 2009, pp. 254–265.

[36] K. Zhang, S. Ogrenci-Memik, G. Memik, K. Yoshii, R. Sankaran,
and P. Beckman, “Minimizing thermal variation across system
components,” in Proc. Int. Parallel Distrib. Process. Symp., 2015, pp.
1139–1148.

[37] T. Cao, W. Huang, Y. He, and M. Kondo, “Cooling-aware job
scheduling and node allocation for overprovisioned HPC sys-
tems,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2017, pp.
728–737.

[38] C. Imes, S. Hofmeyr, and H. Hoffmann, “Energy-efficient applica-
tion resource scheduling using machine learning classifiers,” in
Proc. 47th Int. Conf. Parallel Process., 2018, pp. 45:1–45:11.

[39] I. Aransay, M. Z. Sancho, P. A. Garc�ıa, and J. M. M. Fern�andez,
“Self-organizing maps for detecting abnormal thermal behavior
in data centers,” in Proc. 8th IEEE Int. Conf. Cloud Comput., 2015,
pp. 138–145.

[40] J. P. D. Comput, A. Iulian, F. Pop, and I. Raicu, “New scheduling
approach using reinforcement learning for heterogeneous distrib-
uted systems,” J. Parallel Distrib. Comput., vol. 117, pp. 292–302,
2018.

[41] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACMWorkshop Hot Topics Netw., 2016, pp. 50–56.

[42] R. S. Sutton et al., Introduction to Reinforcement Learning. Cam-
bridge, MA, USA: MIT Press, 1998.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1056 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 5, MAY 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on December 13,2020 at 01:26:48 UTC from IEEE Xplore. Restrictions apply.

http://tc0909.ashraetcs.org/
http://tc0909.ashraetcs.org/
http://www.upssystems.co.uk/knowledge-base/the-it-professionals-guide-to-standby-power/part-8-how-to-ensure-your-batteries-dont-fail/
http://www.upssystems.co.uk/knowledge-base/the-it-professionals-guide-to-standby-power/part-8-how-to-ensure-your-batteries-dont-fail/
http://www.upssystems.co.uk/knowledge-base/the-it-professionals-guide-to-standby-power/part-8-how-to-ensure-your-batteries-dont-fail/
http://mlforsystems.org/
http://mlforsystems.org/
https://www.linkedin.com/pulse/present-future-kdd-cup-competition-outsiders-ron-bekkerman
https://www.linkedin.com/pulse/present-future-kdd-cup-competition-outsiders-ron-bekkerman
https://www.linkedin.com/pulse/present-future-kdd-cup-competition-outsiders-ron-bekkerman
https://www.spec.org/benchmarks.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

