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Abstract—With rapid adoption of the cloud computing model, many enterprises have begun deploying cloud-based services. Failures

of virtual machines (VMs) in clouds have caused serious quality assurance issues for those services. VM replication is a commonly

used technique for enhancing the reliability of cloud services. However, when determining the VM redundancy strategy for a specific

service, many state-of-the-art methods ignore the huge network resource consumption issue that could be experienced when the

service is in failure recovery mode. This paper proposes a redundant VM placement optimization approach to enhancing the reliability

of cloud services. The approach employs three algorithms. The first algorithm selects an appropriate set of VM-hosting servers from a

potentially large set of candidate host servers based upon the network topology. The second algorithm determines an optimal strategy

to place the primary and backup VMs on the selected host servers with k-fault-tolerance assurance. Lastly, a heuristic is used to

address the task-to-VM reassignment optimization problem, which is formulated as finding a maximum weight matching in bipartite

graphs. The evaluation results show that the proposed approach outperforms four other representative methods in network resource

consumption in the service recovery stage.

Index Terms—Cloud computing, cloud service, reliability, fault-tolerance, datacenter, network resource

Ç

1 INTRODUCTION

CLOUD computing has evolved as an important and
popular computing model [1], [2]. Similar to public

utility services, computing resources in a cloud computing
environment can be provisioned in an on-demand manner
[3], [4], and can be purchased via a pay-as-you-go model
[5], [6]. This obviates the need to costly over-provision
on-premise computing resources to accommodate peak
demand [7], [8]. Thus, deploying services into the cloud
has become a growing trend [9].

Reliability is an important aspect of Quality of Service
(QoS) [10]. With many virtual machines (VMs) running in a
cloud datacenter, it is difficult to ensure all the VMs always
perform satisfactorily [11]. In reality, many cloud services
failed to fulfill their reliability assurance commitment due to
VM failures [12]. It is imperative to enhance the reliability of
VM-based services in a cloud computing environment [7] [13].

Many solutions have been proposed to address service
reliability issues. Fault removal, fault prevention, fault fo-
recasting, and fault tolerance are four basic reliability en-
hancement techniques [14]. The first three of them attempt to
identify and remove faults that occur in the system with the
goal of preventing impact-making faults. This goal is unreal-
istic for a complex computing system like a cloud computing
environment in production, inwhich VM failure is inevitable
[15]. Fault tolerance techniques, which try to ensure service
continuity when failure occurs, complements those three
techniques with a fundamentally different service reliability
enhancement approach and with a more practical reliability
management goal for cloud services [16], [17].

Many fault tolerance mechanisms have been proposed
[18]. Checkpointing [19] is a common fault tolerance mecha-
nism for cloud services. The checkpointing mechanism peri-
odically saves the execution state of a running task (e.g., as a
VM image file [20]), and enables the task to be resumed from
the latest saved state after failure occurs. However, taking
checkpoints periodically and resuming a failed service via
checkpoint image(s) are time-consuming. This mechanism
may incur too much performance overhead when it is de-
ployed for some small scale tasks or dividable tasks (e.g., a
data analytic task that can be divided into a set of small tasks).

Replication [21], e.g., one-to-one and one-to-many standby,
is another common fault tolerancemechanism,which exploits
redundant deployment of computing resources, e.g., VMs.
When the fault tolerance capability of a specific service is pro-
visioned via VMreplication, the redundant VMs are classified
into two categories: primary VMs and backup VMs. Notable
approaches [22], [23], [24] were developed to reduce the
implementation cost by exploiting the degree of redundancy.
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k-fault tolerance [25], [26] is a specific type of replication-
based fault tolerance mechanism and supports a configura-
tion-based fault-tolerancemeasurement of a server-based ser-
vice. A k-fault-tolerant service must be configured with
k additional servers such that the minimum server configura-
tion for the service can still be satisfiedwhen k hosting servers
fail simultaneously. In a VM-based cloud environment, for
example, deploying a specific service on only one server
makes the service 0-fault-tolerant (because the service
becomes unavailable when the only hosting server fails),
regardless the number of redundant VMs that may have been
deployed on the same server and the feasibility of restoring
the affected service via server reboot or replacement.

When deploying a replication-based fault tolerance me-
chanism for cloud services, we note that re-assigning an
incomplete task from one failed primary VM to a backup
VM often requires a huge amount of data to be retrieved
and processed once more from the central storage servers.
This is a time-consuming and network-resource-consuming
process. Moreover, the host server on which a specific failed
VM resides may still be running and be able to let the data
used by the failed VM accessible from within the VMs run-
ning on other servers, e.g., the backup VMs that are in prox-
imity to the failed primary VM. Thus, appropriate VM
placement could save considerable amount of time and net-
work resources in failure recovery mode.

Aiming at reducing the lost time and the network reso-
urce consumption when the k-fault-tolerance requirement
must be satisfied, this paper proposes a novel redundant
VM placement approach to enhancing the reliability of
cloud services, which is named optimal redundant virtual
machine placement (OPVMP). The commercialization
nature of network resources in cloud computing prompted
us to make OPVMP reduce network resource consumption
in addition to enhancing cloud service reliability.

The proposed approach is a three-step process with one
algorithm for each of the steps, namely (1) host server selec-
tion, (2) optimal VM placement, and (3) recovery strategy
decision. The first algorithm selects an appropriate set of VM-
hosting servers from a potentially large set of candidate host
servers based upon the network topology. The second algo-
rithm determines an optimal strategy to place the primary
and backupVMs on the selected host servers. Lastly, a heuris-
tic is used to address the task-to-VM reassignment optimiza-
tion problem, which is formulated as finding a maximum
weightmatching in bipartite graphs.

We construct an experimental platform based on our pre-
vious research results [27], [28]. Effectiveness of the pro-
posed approach has been evaluated via the platform. The
evaluation was done by comparing OPVMP against four
other representative redundant VM placement algorithms
in terms of four network resource consumption related per-
formance metrics.

All of the five approaches were implemented in
FTCloudSim. The evaluation results show that OPVMP out-
performs the other four methods in network resource con-
sumption in the service recovery stage.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a review of related work. In Section 3, the
background of the proposed approach is presented. Techni-
cal details of the proposed approach are illustrated in

Section 4. Experimental evaluation results are reported in
Section 5, and the conclusion is presented in Section 6.

2 RELATED WORK

Enhancing the reliability of cloud services is an important
aspect of cloud computing and has received considerable
attention from the research community. The complex cloud
computing environment poses particular challenges to
researchers. A variety of service reliability enhancement
approaches have been proposed to address related issues.

Checkpointing is a widely used basic fault tolerance
mechanism that functions by periodically saving the execu-
tion state of a VM as an image file. However, datacenters
have limited network resources and may readily become
congested when a huge number of checkpoint image files
are transferred. Attempting to avoid this problem, Zhang,
et al. [29] presented a theoretical delta-checkpoint approach
in which the base system only needs to be saved once the
first checkpoint completes and subsequent checkpoint
images only contain the incrementally modified pages. A
theoretical delta-checkpoint approach was implemented by
Goiri, et al. in [19]. A further reduction in network resource
consumption was developed by Limrungsi, et al. [20], who
proposed a peer-to-peer checkpoint approach in which the
checkpoint images are stored on the neighboring host serv-
ers. If the storage server is located in the same pod as the
service-providing server, it is unnecessary to transfer the
checkpoint images via core switches.

For some small scale tasks or dividable tasks, for exam-
ple, Scientific Computing, one huge dataset can be divided
into smaller data blocks. Processing each data block would
consume much less time than doing that for the huge source
dataset. In this case, the cloud supplier may choose other
mechanisms in terms of reduction of the checkpointing exe-
cution and service resuming overhead.

Replication is another type of reliability assurance mech-
anism. Replication is based on the exploitation of redun-
dancy. One-to-one and one-to-many standbys are two well
known mechanisms. Xu , et al. in [21] tried to map each pri-
mary VM to a backup VM. A primary VM and its mapping
backup node form a survivable group. A task can be com-
pleted in time if at least one VM in the survivable group
works well. The work takes the bandwidth reservation into
consideration when solving the mapping problem. In this
regard, an optimal algorithm that maps a survivable group
to the physical data center was proposed [21].

How to reduce the cost of replication is a problem that
has been addressed by several proposals [22], [23], [30]. All
of these proposals aim to reduce the degree of redundancy.
Another effort [30] was based on the fact that different mod-
ules have different redundancy requirements and that mod-
ules with a higher invocation frequency are more significant
than other modules. Thus, the work attempted to rank all
the modules of a system based on their significance value.
The same problem was approached differently [24] by adju-
sting the redundancy of the same module under different
execution conditions.

k-fault tolerance [25], [26] is another approach aiming at
reducing the cost of implementing redundancy. k-fault tol-
erance ensure that the simultaneous failure of any k com-
puting nodes would not make the service unavailable.
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There is a large quantity of tasks. To complete all tasks in
time, a service would be deployed in several VMs. The tasks
are scheduled to the VMs according to an appropriate
scheduling strategy. In a cloud computing environment, the
computing resources of each server are virtualized to sev-
eral VMs. Both hardware and software problems can result
in VM failures. When a host server crashes, all the VMs it is
hosting will no longer operate. The more the number of
VMs providing the same service is placed on the same
server, the more serious the damage is when a host server
fails. Taking this into consideration, Machida, et al. in [25]
proposed a redundant VM placement approach to ensuring
k-fault tolerance.

However, when restarting a task from one backup VM,
we need to re-fetch the data to be processed from the central
database. The process is time-consuming and network
resource-consuming for cloud services. We note that the
host server on which the failed VM runs may store a copy
of data for the task. If the backup VM can fetch the data it
needs directly from that host server despite of the unex-
pected primary VM failure, a lot of data processing time
and network resources can be saved if the primary VMs
and the backup VMs are properly allocated.

One major difference between our proposed cloud ser-
vice reliability enhancement approach and related work is
that we use a redundant VM placement method and opti-
mize network resource consumption through appropriate
placement of the required VMs.

3 PRELIMINARIES

This section provides the background and motivation for
our work as well as explains how we formulate the redun-
dant VM placement problem as an optimization problem.
The notations listed in Table 1 will be used throughout the
rest of the paper.

3.1 Background

In the cloud computing environment, a statistically rare fail-
ure event may be a common occurrence due to scale [31].
Cloud service reliability enhancement is becoming an
important research challenge.

Fig. 1 shows the task processing model we use. The cloud
service is employed in several VMs because, considering the
huge amount of service requests, the computing power of a
single VM would be insufficient. Upon receiving the service
requests, the divider partitions the large scale task into
smaller sub-tasks. Processing each sub-task would not con-
sume too much time. Based on the scheduling algorithm,
each task to one of the service-providing VMs. Each VM has
a task waiting queue. Since a VM may fail due to a software
or hardware fault, an assigned task may not be completed
as scheduled, and may in turn delay the entire service
request operation. k-fault tolerance [25], [26] can be chosen
by the cloud service provider to reduce lost time and to
ensure service reliability. Besides the m number of primary
VMs, there are k backup VMs for each service. k-fault toler-
ance serves to ensure that the task processing service will
not be down in the event of the simultaneous failures of any
k computing VMs or servers. All the primary and backup
VMs are placed on different host servers. Otherwise, when
a host server crashes, all the VMs it is hosting will no longer
operate. Failures of one of the primary VMs result in it being
mapped to a backup VM, and the tasks in its waiting queue
are reassigned to the backup VM.

3.2 Motivation

Suppose there are m virtual machines that provide service
S. All tasks of S are assigned to the m virtual machines
based on appropriate strategy. When k-fault tolerance repli-
cation is adopted to ensure the service reliability, there are k
backup virtual machines for S. To avoid both hardware and
software problems that lead to VM failures, the primary
and backup virtual machines are distributed to different
servers. When a primary VM fails, it is mapped to a backup
VM, and the tasks in its waiting queue are re-assigned to
the backup VM. The backup VM need to re-fetch the data
from the database. This scheme has two shortcomings. First,
the storage servers are continually required to process a
huge number of data read and write requests, which is
sometimes time consuming [20]. Second, transferring large
amounts of data consumes considerable network resources.
When a VM failure event is caused by hardware problems,

TABLE 1
Notations

Symbol Meaning

PMi The physical machine or host server in the
data center, i = 1, 2, ...

VMj The virtual machines in the data center, j = 1, 2, ...
podx The pods in the data center, x = 1, 2, ...
Ty The task submitted by users, y = 1, 2, ...
subnetl The subnet in the data center, l = 1, 2, ...
max subnet The number of subnets which contain available

host servers
S A service
VMP ðSÞ Return the primary VMs of S
VMBðSÞ Return the backup VMs of S
VMF ðSÞ Return current failed VMs of S
PMðSÞ Return all the servers on which service providing

VMs of S locate
Succ The next element after current element
size Return the element number of a list
DSize Return the size of the data stored in a server
a The number of available PM in a subnet
m The number of primary VM of S
k The number of backup VM of S
min Return the min value of the inputs
length The linkage length
copy Copy all data from a vector to another vector

Fig. 1. Task processing model.
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the mapped backup virtual machine re-fetches the needed
data from the database. When a VM failure event is caused
by software problems and the server which hosts the failed
VM has a copy of data, the backup VM can fetch the data
from the server. More network resources can be saved if the
failed primary VM and the backup VM are in proximity to
each other. Therefore, appropriate VM placement could
save considerable amount of time and network resources in
the failure recovery mode. To save more network resources,
we place the primary and backup virtual machines by con-
sidering the network topology of the datacenter.

Datacenter networks always adopt a tree-like structure
[32] of which the fat-tree network structure is a commonly
used datacenter network architecture [33]. A fat-tree net-
work typically consists of trees with three levels of switches
[34] as illustrated in Fig. 2, in which a fat-tree datacenter net-
work with four ports is depicted. The switches in the top,
middle, and bottom layers are referred to as root, aggrega-
tion, and edge switches, respectively. The host servers phys-
ically connect to the network via the edge switches. All the
host servers sharing the same edge switch with each other
are addressed in the same subnet. All host servers sharing
the same aggregation switches are addressed in the same
pod. Upper layer switches transfer data from more host
servers, and are therefore more likely to become congested
than the lower layer switches [35]. Therefore, reducing the
network resource consumption of the upper layer links
becomes an important problem that has to be solved [20].
The host servers must retrieve data from the storage servers,
all of which are connected by the storage area network
(SAN). In turn, each one of these storage resources is seg-
mented into a number of virtual disks [36]. In a centralized
storage scheme where the SAN switches connect to the root
layer switches [20], re-fetching the data from the storage
server may consume too much upper layer resources. As
described before, the server hosting the failed VMmay store
a copy of the data for the affected tasks. If the VM failure
was caused by a software problem, the data may be
retrieved from the host server on which the failed VM is
placed. If the primary and the backup VMs are in the same
subnet, the transfer only consumes the edge-level network
resource. However, if the primary and the backup VMs are
in the same pod, the transfer will consume both the edge-
level and the aggregation-level network resources.

Thus, appropriate VM placement would save time and
network resources. As indicated above, the best solution

would be to place all the primary and backup VMs on host
servers in the same subnet. However, this may not be possi-
ble if some of the host servers in the datacenter have already
been allocated to other tasks and have insufficient free com-
puting resources. Alternatively, a subnet may not even con-
tain a sufficient number of available host servers. Therefore,
it may be necessary to place the (m+k) VMs in different sub-
nets. The problem becomes complex now because different
VM placement strategies could result in different network
resource consumption. Suppose a service needs (2+2) VMs
for two-fault tolerance and there are two available subnets
in the same pod, each with two available host servers. There
are two placement strategies: (1) the two primary VMs are
placed on host servers in subnet 1, whereas the backup VMs
on host servers in subnet 2; (2) one primary and one backup
VM are placed on host servers in subnet 1, whereas the
remaining two VMs on host servers in subnet 2. In strategy
2, the data transfer only consumes edge level network
resources in the recovery stage; therefore, strategy 1 will
consume more network resources than strategy 2. When k is
equal to m, the problem can be solved by minimizing the
difference of the number of primary and backup VMs in
each subnet. However, the problem becomes more complex
when k is smaller thanm.

To address this problem, our approach aims to determine
an optimal placement strategy to enhance the service reli-
ability and minimize the network resource consumption.

3.3 Problem Definition

The redundant VM placement problem can be formulated
as the following optimization problem:

minUP ðSÞandUDðSÞ (1)

subject to:

UP ðSÞ ¼
X
i

X
j

ðDSizeðpktiÞÞ � wij (2)

UDðSÞ ¼
X
i

X
j

delayij (3)

wij 2 f0; 1g (4)

X
i

xi ¼ m (5)

xi 2 f0; 1g (6)

X
i

yi ¼ k (7)

yi 2 f0; 1g (8)

X
i

zi ¼ mþ k (9)

zi 2 f0; 1g; (10)

where UP ðSÞ denotes the total network consumption. The
value of wij is 1 if pkti transfers through linkj. When the
replication strategy is adopted, the downtime is mainly

Fig. 2. Fat-tree data center network with four ports.
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affected by the data transfer delay. UDðSÞ denotes the total
data transfer delay. delayij denotes the transfer delay of pkti
transferring through linkj. The constraints in (5) and (6)
ensure there are m primary VMs for the service. The con-
straints in (7) and (8) ensure there are k backup VMs for the
service. The constraint in (9) and (10) ensures the (m+k) VM
are all placed on different host servers, therefore, the place-
ment strategy ensures k-fault tolerance irrespective of
whether the failure of the VMs is caused by a software fault
or host server fault.

Suppose the number of subnets which contain available
host servers is max sub, then the number of available
host servers in each subnet is stored by using the following
vector:

A ¼ ½a1; a2; . . . ; amax subnet�: (11)

The solution to the problem can be defined by the following
two vectors:

M ¼ ½m1;m2; . . . ;mmax subnet�; (12)

K ¼ ½k1; k2; . . . ; kmax subnet�; (13)

where (12) denotes the number of primary VMs in each sub-
net, and (13) denotes the number of backup VMs in each
subnet. Therefore, it is necessary to obtain an optimal solu-
tion by considering all the solutions of the following inde-
terminate equations:

m1 þm2 þ . . .þmmax subnet ¼ m
k1 þ k2 þ . . .þ kmax subnet ¼ k
mi þ ki � ai; i ¼ 1; 2; 3 . . . ;max subnet
mj � 0; i ¼ 1; 2; 3 . . . ;max subnet
ki � 0; i ¼ 1; 2; 3 . . . ;max subnet:

8>>>><
>>>>:

(14)

There is a huge number of pods, subnets and host servers in
a cloud datacenter. Iterating over all the placement strate-
gies would be intractable; therefore, the problem is solved
by adopting a heuristic optimal algorithm, as discussed in
the next section.

4 PROPOSED APPROACH

The formulated problem essentially involves finding (k+m)
host servers followed by placing (k+m) VMs on those host
servers. Since there are a huge number of host servers in a
cloud datacenter, the possible number of solutions is expo-
nentially large. It is consequently necessary to identify a sub-
set of good host servers from which to obtain the best
solutions. The procedure that was used to select (m+k) good
host servers is provided in Section 4.1 and the algorithm used
for placing (m+k) VMs on those host servers is presented in
Section 4.2. Given the information about the failed and the
backup VMs, a recovery strategy decision algorithm calcu-
lates the optimal matching strategy. The proposed recovery
strategy decision algorithmwill be discussed in Section 4.3.

4.1 Phase 1: Host Servers Selection

As explained in Section 3.2, the further the two host servers
are located from one another, the greater the delay becomes.
In addition, the data transfer traffic would consume more
network resources. To avoid this situation, it is desireable to

place all VMs in a subnet that contains (m+k) available host
servers. Suppose there are two subnets, one of which has
(m+k+20) available host servers, and the other has (m+k+1)
host servers. In cases such as these, our approach would
choose the second option and leave the first option to
another service that may require more host servers. In other
words, we would follow the ”just enough rule”. The ”just
enough rule” means that we select the pod or subnet with
just enough resource, and leave the residual capacities for
future use. If none of the subnets have a sufficient number
of available host servers, the VMs must be distributed to
several subnets or even several pods. In this case, those
pods with a greater number of available host servers will be
considered first to avoid traffic between pods in the recov-
ery stage. We also consider selecting the subnets based on
the above rule. The host server selection procedure is shown
in Algorithm 1 as explained in the following steps:

Step 1: Sort all subnet based on available host servers. A
host server is “available” when the server has sufficient
computing resources to host the virtual machine. Search for
a subnet subnet that satisfies the “just enough rule”. Select
(m+k) servers from subnet and assign them to servers, and
return. (Lines 1 to 4 and Lines 49 to 53)

Step 2: Add all pods in the datacenter to a list, and sort
the list according to the available host servers. Assign the
head of the list to variable HPod. If the number of available
host server of HPod is larger than (m+k), goto Step 6. Else,
goto Step 3. (Lines 5 to 7)

Step 3: Add all host servers in the pod to servers. Iterate
the pod list and collect host servers until sum of
size(servers) and the available host servers in current pod is
larger than (m+k). If size(servers) is equal to (m+k), return.
(Lines 15 to 26)

Step 4: Sort all subnets in current pod according to the
available host servers. Assign the head of the list to variable
HSubnet. If the number of available host server of HSubnet
is larger than (m+k), goto Step 5. Else, goto Step 8. (Lines
27 to 33)

Step 5: Iterate the subnet list. Search for a subnet
HSubnet that satisfies the “just enough rule”. Select (m+k)
host server from the subnet and return. (Lines 49 to 52)

Step 6: Continue to iterate the pod list and search for a
pod pod that satisfies the “just enough rule”. If the number of
available host servers is equal to (m+k-size(servers)), add all
host server in the pod to servers, and return. (Lines 8 to 12)

Step 7: Add all subnets in the pod to a list, and sort the
list according to the available host servers. Assign the head
subnet of the list to variableHSubnet. If the number of avail-
able server is larger than (m+k-size(servers)), goto Step 9.
Else, goto Step 8. (Lines 28 to 33)

Step 8: Add all host servers in HSubnet to servers. Iterate
the subnet list and collect host servers until sum of
size(servers) and the available host servers in current sub-
net is larger than (m+k). If sizeðserversÞ is equal to (m+k),
return. (Lines 35 to 44)

Step 9: Continue to iterate the subnet list. Search for a
subnet subnet that satisfies the “just enough rule”. Select
(m+k) from subnet and assign them to servers, and return.
(Lines 49 to 52)

The iterations enable all the “good” host servers to be
obtained. Section 4.2 describes the procedure that was used
to place the (m+k) VMs on the (m+k) host servers.The time
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complexity of Algorithm 1 is O(nlogn), and n is the number
of subnets in the datacenter.

Algorithm 1.Host Server Selection

Input: the number of needed primary VMsm,the number of
needed backup VMs k

Output: list of interesting host servers servers
1 sort all subnets by the number of available host servers and

subnet = subnets� >head;
2 if (subnet� >freeServerSize)� (m+k) then
3 goto final2;
4 end
5 sort pods by the number of available host servers;
6 pod = pods.head;
7 if (pod.freeServerSize)� (m+k) then
8 next = Succ(pod);
9 while (next.freeServerSize)� (m+k) do
10 pod = next and next =Succ(pod);
11 end
12 add all subnets in pod to subnets and goto final1;
13 end
14 else
15 add all available host servers in pod to servers;
16 while sizeðserversÞ < (m+k) do
17 pod = Succ(pod);
18 if size(pod.freeServerSize)+size(servers) > (m+k) then
19 add all subnets in pod to subnets;
20 goto final1;
21 end
22 else
23 add all available host servers in pod to servers;
24 end
25 end
26 end
27 final1:
28 sort subnets by the number of available host servers;
29 subnet = subnets.head;
30 final2:
31 if (subnet.freeServerSize)+ size(servers)� (m+k) then
32 goto final 3;
33 end
34 else
35 add all available host servers in subnet to servers;
36 while size(servers) < (m+k) do
37 subnet = Succ(subnet);
38 if (subnet.freeServerSize)+size(servers) � (m+k) then
39 goto final3;
40 end
41 else
42 add all available servers in subnet to servers;
43 return servers;
44 end
45 end
46 end
47 final3:
48 next = Succ(subnet);
49 while (next.freeServerSize)+ size(servers) � (m+k) do
50 subnet = next and next =Succ(subnet);
51 end
52 select ðmþ kÞ- size(servers) available servers from subnet,

and assigned them to servers;
53 return servers;

4.2 Phase 2: Virtual Machine Placement

Placing (m+k) VMs on the (m+k) host servers requires the
number of backup and primary VMs in each subnet to be
determined.

A heuristic algorithm is used to solve this problem. Two
heuristic conditions are adopted to narrow the searching
space. If there are even number of available servers in a sub-
net, the number of backup vm in the subnet should be less
or equal to the number of primary vm in the subnet. If there
are odd number of available servers in a subnet, the number
of backup vm in the subnet should be less or equal to one
plus the number of primary vm in the subnet. Suppose there
is a subnet that contains fewer primary VMs than backup
VMs. As the total number of primary VMs is larger than or
equal to the number of backup VMs, there is at least one
subnet in which the number of backup VMs is smaller than
the number of primary VMs. Now, a backup VM in the first
subnet and a primary VM in the second subnet exchange
position with each other. Compared to the first strategy, one
more failed VM in the second subnet does not require to be
mapped to a backup VM in different subnets when k num-
ber of VMs fail at the same time. The new placement strat-
egy will consume less aggregation layer network resource.
The second heuristic condition is that the subnet that con-
tains more available host servers should be allocated more
backup VMs. If a subnet that contains more available host
servers, the difference between the number of primary VMs
and backup VMs of it should be smaller. When the differ-
ence between the number of primary VMs and backup VMs
is larger, there is a larger chance that the data transfer
would consume more network resources. The proof of the
first heuristic condition can be found in Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TSC.2016.2519898. The proof of the second heuristic condi-
tion can be found in Appendix B, available in the online
supplemental material.

Our algorithm is shown in Algorithm 2 and 3, which
are recursive in nature. In each recursion, the algorithm
determines the number of backup VMs that are placed in
the current subnet, and the rest backup VMs are placed in
the following subnets. When the number of rest backup VM
equals 0 or the last subnet has reached, the resource con-
sumption of the current placement strategy is computed
and compared with the current optimal one. If the resource
consumption is smaller than that of the current optimal
strategy, the current strategy is considered optimal. When
the current placement cannot satisfy the two heuristic con-
ditions, the algorithm terminates current recursion and
backtrace.

When a backup VM fails, a new backup VM is searched
around the old one.

4.3 Phase 3: Recovery Strategy Decision

When one or more VMs fail, a recovery strategy has to be
decided upon, and each failed VM has to be mapped to a
backup VM. All tasks in the waiting queue of the failed
VM are rescheduled to its mapping backup VM, and
the data to be processed have to be retrieved again to the
backup VM. If the VM fails because of a software fault, the
particular data block may be obtained from the host server
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on which the failed VM resides. Given the information on
the VM failure caused by a software fault and the backup
VMs, the recovery strategy decision algorithm matches the
failed VMs and the backup VMs. Then each failed VM has
to be mapped to a backup VM. The recovery strategy
should minimize the total network resource consumption.
In this case it is possible to formulate the recovery strategy
decision problem as a minimum weight matching in bipar-
tite graphs [37], [38].

Algorithm 2. Virtual Machine Placement on Specific
Servers

Input: interesting host servers servers, the number of backup
servers k

Output: int strategy½�
1 Obtain all the “good” subnets that at least have one “good”

host server;
2 Store the “good” host server number of each interesting sub-

net to vector subnets½�;
3 Sort subnets½� by the number of “good” host server desc;
4 int strategy[size(subnets)];
5 int optimal[size(subnets)];
6 intmincost =1;
7 optimal placement strategy searching(subnets, strategy,
optimal, k,mincost, 1);

8 return strategy;

Given a complete bipartite graph G=(V ,E) with bipar-
tition(VF ,VB), where V is the set of all failed VMs and
backup VMs, VF is the set of all failed VMs, VB is the set of
all backup VMs, and E is the set of shortest paths connect-
ing nodes for each pair of VMs from different partitions. A
matching set M is a subset of E. Suppose w denotes the
weight function, and then it is necessary to find a matching
of minimum weights where the weight of matching M is
given by:

wðMÞ ¼
X
e2M

ðwðeÞÞ: (15)

In other words, the recovery problem can be formulated as
the following:

min
X

ðVF ;VBÞ
ðwðvf ; vbÞ � xðvf ; vbÞÞ (16)

subject to:

X
ðvf Þ

ðxðvf ; vbÞ ¼ 1Þ; 8vf � VF (17)

xðvf ; vbÞ 2 0; 1; 8vf � VF ; 8vb � VB (18)

wðvf ; vbÞ ¼ DSizeðvfÞ � lengthðeðvf ; vbÞÞ; (19)

where (17) ensures each failed VM is matched to a backup
VM. In (18), x(vf ,vb) = 1 if the edge (vf ,vb) belongs to the
matching; otherwise, x(vf ,vb) = 0. DSize in (19) returns the
data size that can be retrieved from the host server on which
vf is placed. Therefore, w(vf ,vb) denotes the transfer cost.

Algorithm 3. Optimal Placement Strategy Searching

Input: subnets, strategy, optimal, the number of un-placed
backup VMs rest,mincost, nested level i

Output: The placement strategy
1 if rest == 0 then
2 strategy[i] = rest;
3 Compute cost of current strategy;
4 if currentcost �mincost then
5 minCost=currentcost;
6 copy(strategy[], optimal[]);
7 end
8 return;
9 end
10 if i == size(subnets) then
11 if rest > min(strategy[i-1], ceil(subnet[i]/2)) then
12 return;
13 end
14 strategy[i] = rest;
15 Compute cost of current strategy;
16 if currentcost �mincost then
17 mincost=currentcost;
18 copy(strategy[], optimal[]);
19 end
20 return;
21 end
22 n = min(strategy[i-1], ceil(subnets[i]/2), rest);
23 while n � 0 do
24 strategy[i]=n;
25 optimal placement strategy searching(subnets,strategy,

optimal,k-n,cost);
26 n–;
27 end
28 return;

As explained before, information that is exchanged
between host servers in the same subnet only utilizes an
edge switch; however, when two hosts are in the same pod,
all communicated traffic is routed through both the edge
and the aggregation switches. Therefore, the transfer will
consume more network resource and the delay becomes
greater. For each backup VM, we try to find a corresponding
failed VM in the same subnet for it if there is one. Other-
wise, VMs in different subnets would have to be mapped.

Algorithm 4 details our recovery strategy decision
algorithm:

Step 1: For each backup VM, all failed VMs in the same
subnet that have not been matched are sorted according to
their data size. The backup VM is mapped to the failed VM
with the largest data size.

Step 2: If there still remain failed VMs that have not been
matched to a backup VM, all unmatched failed VMs in the
same pod are sorted according to data size. The backupVM is
mapped to the failedVMwith the largest data size in the pod.

Step 3: If there still remain failed VMs that have not been
matched to a backup VM, the backup VMs are randomly
matched to the failed VMs. In addition, the data are re-
fetched from the storage server.

If we iterate all subnets concurrently, the time complexity
of Algorithm 4 is O(nlogn). n is the number of failed VM. We
note that the proposed network-topology-aware redundant
VM placement approach aims at enhancing the reliability of
server-based cloud serviceswhose fault-tolerance level can be
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measured and assured in terms of the k-fault-tolerancemetric.
In practice, rebooting or replacing a specific failed VM on the
same hosting server could be attempted in a controlled man-
ner (as a precondition for executing the aforementioned
recovery strategy) as a VM-specific optimization of the pro-
posed approach, though the VM failure handling scheme is
not helpful to the k-fault-tolerance measurement. The scheme
needs be done in a controlledmanner because service-specific
VM management policy may need be followed, particularly
when the root cause is unknown (whichmay lead to continual
failure recovery attempts caused by partial server failures).

Algorithm 4. Recovery Strategy Decision

Input: Set of all failed host servers VMF , set of all backups
VMB, w(vmf ,vmb) for each vmf 2 VMF and vmb 2 VMB

Output: Map maps between each failed host server and its
backup

1 add all subnets that contains at least one backup VM to
subnets ;

2 for each subnet subneti in subnets do
3 add VMF \ VM(subneti) to list srcVM;
4 add VMB \ VM(subneti) to list dstVM;
5 sort srcVMf by data size;
6 while srcVM is not ; and dstVM is not ; do
7 key = srcVM-> head;
8 value = dstVM-> head;
9 add < key ,value > to maps;
10 remove key from PMF and srcVM ;
11 remove value from PMB and dstVM ;
12 end
13 end
14 if VMF is not ; then
15 for each pod podi in pods do
16 clear srcVM and add VMF \ VM(podi) to list srcVM;
17 clear dstVM add VMB \ VM(podi) to list dstVM;
18 while srcVM is not ; and dstVM is not ; do
19 key = srcVM-> head;
20 value = dstVM-> head;
21 add < key ,value > to maps;
22 remove key from PMF and srcVM ;
23 remove value from PMB and dstVM ;
24 end
25 end
26 end
27 if VMF is not ; then
28 whileVMF is not ; do
29 key = VMF -> head;
30 value = VMB -> head;
31 add < key ,value > to maps;
32 remove key from PMF ;
33 remove value from PMB;
34 end
35 end
36 returnmaps;

5 EXPERIMENTAL EVALUATIONS

In the following sections, the experimental setting is first
outlined. Then OPVMP is compared with other four repre-
sentative approaches in terms of the total network resource
consumption and other performance metrics. Finally, the
parameters of our approach are studied.

5.1 Experimental Setup

We construct an experimental platform based on our previ-
ous research results [28], [39]. In our experiment, a 32-port
fat-tree data center network is constructed. The capacity of
the root-layer link and aggregation-layer link is set as 10
Gbps, and the capacity of the edge-layer link is set as 1
Gbps [21]. There are 16 host servers in each subnet. Each of
these host servers can host four VMs at most. The perfor-
mance of our method (OPVMP) was studied by comparing
it with four other existing representative methods:

� RSVMP . Data are re-fetched from the central storage
server in the recovery stage. This approach does not
take the network topology into consideration. After
having selected (m+k) host servers, all primary VMs
and backup VMs are randomly placed on the
selected host servers in the data center [25].

� RLVMP . Data are re-fetched from the central storage
server or the host server on which the failed VM
resides. The strategy is determined by the network
distance and whether a data copy exists. After hav-
ing selected (m+k) host servers, all primary VMs and
backup VMs are randomly placed on the selected
host servers.

� PLVMP . Data are re-fetched from the central storage
server or the host server on which the failed VM
resides. The strategy is determined by the network
distance and whether a data copy exists. After hav-
ing selected (m+k) host servers, the backup VMs are
uniformly distributed across the pods.

� SLVMP . Data are re-fetched from the central storage
server or the host server on which the failed VM
resides. The strategy is determined by the network
distance and whether a data copy exists. After hav-
ing selected (m+k) host servers, the backup VMs are
uniformly distributed across the subnets.

All the methods were evaluated using the following per-
formance metrics:

� TDelay: Total data transfer delay, TDelay, can be cal-
culated as follows:

TDelay ¼
X
i

delayðpktiÞ; (20)

where pkti denotes a network packet.
� PRoot: The total size of network packet that has been

transferred by the root layer switches. PRoot can be
calculated as follows:

PRoot ¼
X
i

wr 	 sizeðpktiÞ; (21)

where wr denotes the frequency with which packet
pkti has been transferred by the root switches.

� PAgg: The total size of network packet that has been
transferred by the aggregation layer switches. PAgg
can be calculated as follows:

PAgg ¼
X
i

wa 	 sizeðpktiÞ; (22)

where wa denotes the frequency with which packet
pkti has been transferred by the aggregation switches.
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� PEdge: The total size of network packet that has been
transferred by the edge layer switches. PEdge can be
calculated as follows:

PEdge ¼
X
i

we 	 sizeðpktiÞ; (23)

where we denotes the frequency with which packet
pkti has been transferred by the edge switches.

� PTotal: The total size of all packet that has been trans-
ferred by the all switches, which can be calculated as
follows:

PTotal ¼ PRootþ PAggþ PEdge; (24)

where wr denotes the frequency with which packet
pkti has been transferred by the root switches.

5.2 Performance Evaluations

The experiment involved 20 services, each of which
involved 50 primary VMs and 40 backup VMs. Two hun-
dred VM failure events were triggered. Four-thousand data
processing tasks were generated. The data size of each task
is 300 MB and the task size is set as 10 minutes. The task
arrival rate of each service is 200 per hour. The performance
of all approaches was studied. Fig. 3 illustrates the perfor-
mance of TDelay. Figs. 4, 5, 6, and 7 present the performance
of network resource consumption. Figs. 4, 5, and 6 provide

the results of PRoot, PAgg, and PEdge, respectively. Fig. 7
depicts the results of PTotal. The results demonstrate that:

� Compared to other approaches, if the data are re-
fetched from the central storage server, more data are
processed by the root and the aggregation switches. In
addition, the data transfer delay is larger. This is
because while retrieving the data from the neighbor-
ing host servers is possible, it is unnecessary for the

Fig. 3. The performance of total data transfer delay (s).

Fig. 4. The performance of root layer network resource consumption (MB).

Fig. 5. The performance of aggregation layer network resource con-
sumption (MB).

Fig. 6. The performance of edge layer network resource consumption
(MB).

Fig. 7. The performance of total network resource consumption (MB).
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data traffic transfer to consume upper layer network
resources, and the data transfer takes up less time. As
our approach OPVMP takes the network topology
and the service characteristics into consideration
when solving the optimal problem, it consumes the
smallest amount of root and aggregation layer net-
work resources.

� Among all the approaches, the edge layer network
resource consumption of RSVMP is less than those
of other approaches. That’s because when the pri-
mary VM and the backup VM are in the same pod,
the data would transfer through the edge layer
switch twice.

� Of all five approaches, our approach consumes the
least amount of total network resources, because it
takes up less root and aggregation layer network
resources than the other approaches.

5.3 Impact of Parameter k

This section contains the result of the study of the impact of
parameter k on network resource consumption. The experi-
ment involved 10 services, each of which involved 50 pri-
mary VMs. A hundred VM failure events were triggered.
Two-thousand data processing tasks were generated. The
data size of each task is 300 MB and the task size is set as
10 minutes.

The performance metrics consisted of PRoot, PAgg,
PEdge, and PTotal. As shown in Fig. 8, caused by some
random factor, the network resource consumption
increases a little when k increases from 35 to 40. How-
ever, the total amount of data that are processed by the
root switches, aggregation switches and the edge switches
in our approach almost show a decreasing trend when the
value of parameter k increases from 20 to 50. Because an
increase in k results in an increase in the number of
backup VMs for the same service. There is a greater
chance that the primary and backup VMs are in the same
subnet. Therefore, our approach consumes less upper
layer network resources in the recovery stage. Because
this reduction occurs as a result of an increase in the
value of parameter k, the total network resources also
show a decreasing trend in Fig. 9.

5.4 Impact of Parameter Task Arrival Rate

We present the impact of task arrival rate on network
resource consumption in this section. There are 10 services.
Each service has 50 primary VMs and 40 backup VMs. We
generate 2,000 data block processing tasks. The data size of
each task is 300 MB and the task size is set as 10 minutes.
We trigger 100 virtual machine failure events. The task
arrival rate of all services increases from 40 to 200 per hour.
To show the impact of parameter arrival rate, we calculate
the network resource consumption difference between our
approach and RSVMP. The performance metrics include:
root-layer, aggregation-layer, edge-layer, and total network
resource consumption difference between our approach
and RSVMP.

As shown in Fig. 10, the root-layer, the aggregation-layer
and the edge-layer network resource consumption differ-
ence increases with the increase of task arrival rate. As
shown in Fig. 11, the total network resource consumption
also increases with the increase of task arrival rate. When
the task arrival rate increases, the task waiting queue of
each VM becomes longer. A failure event will affect more
tasks and the total re-fetched data increase. Therefore, our
approach can save more upper layer network resource com-
paring to RSVMP, and the network resource consumption
difference increases.

Fig. 8. Impact of parameter k to root layer, aggregation layer, and edge
layer network resource consumption (MB), k represents backup VM
number.

Fig. 9. Impact of parameter k to total network resource consumption, k
represents backup VM number.

Fig. 10. Impact of task arrival rate to root layer, aggregation layer, and
edge layer network resource consumption (MB). The task arrival rate of
each service increases from 40 to 200 per hour.
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6 CONCLUSIONS AND FUTURE WORK

This paper aims at enhancing the reliability of server-based
cloud services whose fault-tolerance level can be measured
and assured in terms of the replication-based k-fault-tolerance
metric. It proposes a novel network-topology-aware redun-
dantVMplacement approach tominimizing the consumption
of network resources when primary VM failures need be
recovered by backup VMs under the k-fault-tolerance con-
straints. The proposed approach is a three-step process: host
server selection, optimal redundant VM placement, and
recovery strategy decision. By exploiting the characteristics of
the datacenter network, a heuristic algorithm capable of effi-
ciently selecting appropriate host servers and determining
the optimal VM placement strategy is presented. Finally, the
recovery strategy decision problem is formulated as a maxi-
mum weight matching in bipartite graphs problem. An opti-
mal algorithm is presented to solve the problem. The
experimental evaluation results show that the proposed
approach consumes less network resources than four other
representative approaches.

Our future work includes: (1) reducing the complexity of
our approach based on some probabilistic analysis, (2) trad-
ing off between the effect of the edge switch failure and the
network resource saving by adopting a fault avoidance
approach, and (3) considering the reliability problem for a
complex cloud workflow service.
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