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8.1 INTRODUCTION

The emergence of stream processing is driven by the incompetence of the traditional batch-processing
paradigm, when it comes to processing fast data. Nowadays, building a modern information-technology
system demands the ability of (1) processing an unprecedented volume of data using possibly distrib-
uted resources, and (2) exploring the concealed value of data within a tight time-constraint. Having
gained extensive attention from the research and industrial community, the batch-processing model
derives a series of techniques to accomplish the first goal. MapReduce, for example, is a highly scalable
and widely adopted programing model that is specialized in processing parallelization [1]. It moves
the computing power to the vicinity of data so that the enormous processing target can be divided and
conquered. Analogously, various NoSQL databases are developed alongside traditional relational da-
tabases, which allows for an extent of flexibility in data representation to handle the increasing variety
of data formats and to obtain finer control over scalability and availability [2]. By taking the horizontal
scaling ability as a principle of design, these batch-based techniques are relatively competent in terms
of handling the ever-growing data volume and increasingly complex data format. However, they are
all struggling to meet the second goal, in which the strict time-constraint has eliminated the luxury of
storing the data somewhere before executing relevant operations against it.

In this context, stream processing is proposed as the antithesis of the batch paradigm that caters
to the need of processing continuous data-volume in real-time. Both data aggregation and analysis
in the streaming model normally have a strict deadline specified, which means completing the job
beyond the deadline is not only considered as degradation of performance, but as a failure to deliver
the immediate insights that merit the effort in the first place. Guaranteeing the timeliness of aggre-
gation and analysis is a nontrivial task, the streaming paradigm has to continuously aggregate the
target-data elements right after its generation to form possible endless streams over the network.
When it comes to the data- processing phase, these streams flow through a computation topology
where continuous queries (ie, long-standing queries that usually operate over time and buffer win-
dows) are installed to be processed in a record-by-record manner. In contrast to the batch model
where data are persisted for future analysis, the streaming model essentially deals with the dynamic
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data-streams that had recently come in, and it incrementally updates the query results. Those data
that have passed the processing system cannot be easily retrieved, resulting in an implicit trade-off
between the processing accuracy and the real-time promise.

Stream processing has always been an integral part of Internet of Things (IoT) applications, as it
offers a scalable, highly available, and fault-tolerant solution to handle a high volume of data in mo-
tion. As shown in Fig. 8.1, the architecture of IoT outlines the importance of stream processing and
how it is connected with the rest of the system. From the perspective of an application developer,
stream processing mainly works as a connecting bridge between the application layer and the service
and middleware layer, which allows the upper logic to make appropriate use of the underlying general-
purpose services and infrastructures. For example, the streaming paradigm may decide that only the
synopsis of incoming data needs to be preserved in the storage system so that no external database
is required, or the runtime framework that conducts the data analytics needs be placed in a cloud envi-
ronment to take advantage of its elasticity feature. In addition to that, the stream-processing paradigm
also has a significant impact on the organization of the network layer and the device layer to keep that
real-time promise. As a matter of fact, the major part of latency between the data generation and result
delivery lies in the data-collection phase rather the processing phase. Therefore, it is essential for an
IoT application to properly select the substructures that suit its particular time-sensitivity requirement.

On the other hand, the applications from the IoT domain have always been the driving force that
motivates the development and adoption of the stream-processing paradigm. The primary cause is that
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the way of data generation has become increasingly active in the emerging IoT applications. Previously,
data in the conventional scenarios resulted from passive reactions to real-world events or user queries, but
nowadays IoT data are mostly automatically generated by large-scale sensor networks for monitoring and
decision-making purposes. As a consequence, not only has the amount of data being generated soared,
but also the places of data production have become much more geographically dispersed than before. In
some cases, leveraging the stream-processing model to handle data in motion is the only viable option.

Besides, the value of IoT data has also become increasingly sparse and deeper hidden, which results
in a significant change in the relevant processing techniques. Prior to the IoT era, we had intended to
collect comparatively a small fraction of data with high precision to quickly perform analysis and get
results in time. However, today the data format used by IoT application is known to be heterogeneous,
unstructured, and fine-grained. This is a result of numerous factors, including the advancement of
mobile and internet technologies, popularity of social media, and widespread deployment of sensors
and actuators in a mutable environment. For example, to make the city more desirable and liveable, the
smart-city program installed in Rio de Janeiro, Brazil in 2010 has set up an operations center to analyze
real-time data 24/7 from 30 municipal institutions. In this program, raw information is collected from
various data sources to support the central surveillance and analytics at a single hub, including live
video from traffic and public transport, position information from Google Maps, and real-time alarms
from the sensor networks on utility and emergency-service readouts [3]. Such an explosion on data
dimensionality has made it impossible to meaningfully correlate the small datasets from these sources,
regardless of how precise they are. Revealing the true value of IoT data therefore largely depends on the
processing of a massive amount of heterogeneous data, where stream processing comes up as a handy
tool, as it provides the required availability, high throughput, and real-time support.

This chapter aims to provide a discussion on the concept and general architecture of a stream-
processing system in the context of IoT, with a focus on comparing various platforms that are available
to process continuous logic according to specific application needs. To this end, we first analyze the
characteristics of stream data, and then we present a general stream-processing architecture, which is
determined by the associated processing demands of each characteristic. Finally, this chapter concludes
with an outlook that explores the future directions and trending topics regarding the development of
stream processing in the IoT domain.

8.2 THE FOUNDATIONS OF STREAM PROCESSING IN loT

There is a considerable ambiguity related to the terms “stream processing” and “‘stream analytics,” as they
have been simultaneously used by a diverse range of research communities. For example, stream processing
in the context of parallel processing refers to a computer programming paradigm that allows applications
to better exploit computation parallelism using a combination of heterogeneous resources, such as CPU,
GPU, or field-programmable gate arrays (FPGAs) [4]. On the other hand, stream processing in the field of
connection-oriented communications means to transmit and interpret digitally encoded coherent signals in
order to convey data packets for the higher-level network abstraction [5]. In the jargon of the database com-
munity, “processing stream” refers to a particular ability owned by active DBMS to handle external updates
with reactive behaviors, according to the predefined Event Condition Action (ECA) rules [6]. Nevertheless,
these definitions of stream are either overly limited or not directly related to our topic, which is the process-
ing of either distributed events or data items for real-time IoT applications. In order to clarify the scope of
this chapter, we first define the terms ““stream” and “stream processing” in the IoT context.
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8.2.1 STREAM

A stream is a sequence of data elements ordered by time. The structure of a stream could consist of
discrete signals, event logs, or any combination of time-series data, but the way of recovering data from
one to another must be append-only, resembling a conveyor belt that continuously carries data elements
through a processing pipeline. In terms of representation, a data stream has an explicit timestamp as-
sociated with each element, which serves as a measurement of data order. Based on this, we formally
define the denotation of stream in the context of IoT, as a Data Element—Time pair (s, A), where

1. sis a sequence of data elements that are made available to the processing system over time. A
data element may consist of several attributes, but it is normally atomic, as these attributes are
tightly coupled with one another for logical consistency.

Typical element types include immutable data tuples of the same or similar category, as
well as heterogeneous events that come from a variety of sources. Depending on the specific
application scenario, data elements can be either regularly generated by sensor networks that have
monitoring intervals, or randomly produced by real-world events such as user clicks on a website,
updates to a particular database table, and system logs produced by Internet services.

2. Ais asequence of a timestamp that denotes the sequence of data elements. Since heterogeneous
elements could be aggregated into a single stream out-of-order due to the uncertainty of
distributed data-collection and transmission procedures, the use of a timestamp is necessary to
reconstruct the logic sequence for the following analytics. In addition, timestamps can be also
used to evaluate the real-time property of a stream-processing system, by checking on whether the
results have been presented on time.

Normally, timestamps can be implemented in two forms: (1) as a string of absolute time-
values, which consumes more resources to be processed, but makes it easier for developers to
devise joint algorithms on separate streams; or (2) as a sequence of positive real-time intervals
that only record the relative order of data elements in the same stream. The latter form alleviates
the stress of the network by reducing the size of the timestamp, but it is harder to reorder the
sequence of events across different streams with only in-stream intervals.

8.2.2 STREAM PROCESSING

Stream processing is a one-pass data-processing paradigm that always keeps the data in motion to
achieve low processing-latency. As a higher abstraction of messaging systems, stream processing sup-
ports not only the message aggregation and delivery, but also is capable of performing real-time asyn-
chronous computation while passing along the information. The most important feature of the stream-
ing paradigm is that it does not have access to all data. By contrast, it normally adopts the one-at-a-time
processing model, which applies standing queries or established rules to data streams in order to get
immediate results upon their arrival.

All of the computation in this paradigm is handled by the continuously dedicated logic-processing
system, which is a scalable, highly available, and fault-tolerant architecture that provides system-
level integration of a continuous data stream. As a consequence of the timeliness requirement, com-
putations for analytics and pattern recognition should be relatively simple and generally independent,
and it is common to utilize distributed-commodity machines to achieve high throughput with only
sub-second latency.
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Table 8.1 Comparison of the Stream Model and the Batch Model

Aspects Stream Model Batch Model

Management target Transient streams Persistent data batch and relations

Amount of data Possibly infinite Finite

Processing model In-memory processing Store-then-process and in-memory processing
Query model Continuous and standing-by query | One-time query

Access model Sequential access Random access

Result repeatability Nearly impossible Easy

Pattern of result update Incremental update Global update

Focus of processing Low latency and high throughput High accuracy and comprehensiveness

However, there is another subclass of stream-processing systems that follows the microbatch
model. Compared to the aforementioned one-at-a-time model, in which it is difficult to maintain the
processing state and guarantee the high-level fault-tolerance efficiently, the microbatch model excels in
controllability as a hybrid approach, combining a one-pass streaming pipeline with the data batches of
very small size. It greatly eases the implementation of windowing and stateful computation, but at the
cost of higher processing-latency. Although such a model is called microbatch, we still consider it to
be a derived form of stream processing, as long as the target data remains constantly on the move while
it is being processed. In order to better illustrate the basic idea of stream processing, we compare it to
the well-known batch paradigm in Table 8.1. Although these two paradigms share some similarities in
terms of the objective and functionality of processing, they differ significantly in the way that data is
organized and processed.

When it comes to the application of stream processing, we have identified two utterly different types
of use cases. The first one is Data Stream Management. The system falling in this category is normally
called Data Stream Management System (DSMS), analogous to the traditional DBMS, whose goal is also
to manipulate a huge amount of available data to constitute data synopsis, schema, or some other math-
ematical or statistical model that is easy to understand and interpret. Specifically, data streams within
the DSMS are joined, filtered, and transformed according to specific application logic with the use of
continuous and long-standing queries. In the early days of DSMS, an application developer could easily
set up those queries using SQL-like declarative language, whereas the real implementation was left to be
transparently handled by the DSMS. However, since the throughput requirement of stream processing
has soared during the recent decade, and the corresponding DSMS has become increasingly distributed,
sticking to such a declarative model makes it painful to horizontally scale, and even harder to maintain
the required availability and fault-tolerance ability. Therefore, the state-of-art DSMS mostly adopts the
imperative way to implement long-time queries, by using the provided programming API, where a seg-
ment of code is performed upon the arrival of each incoming data element to compose the whole-analysis
logic. Additionally, the responsibility of managing the processing state now rests on the shoulders of the
application developers, resulting in a nontrivial effort to debug the application, as well as tune the perfor-
mance on a specific platform. A typical use-case of DSMS includes face recognition from a continuous
video stream, and the calculation of user preference according to his or her click history.
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The other use case is called Complex Event Processing (CEP), which is essentially tracking and
processing streams of raw events in order to derive significant events and identify meaningful insights
from them. There are several techniques being used to achieve that goal. The most notable one is to im-
plement and configure the processing logic as a set of inferring rules in the knowledgebase so that they
could be used in the decision-making process of identifying complex patterns. To define and preserve
the mutual relationship of events, various types of event-processing languages have been proposed to
correlate the seemingly independent events with the relationships such as causality, membership, and
timing. Besides, CEP systems normally require that the maintenance of state and the preservation of
event relationship be provided at the system level rather than the application level, which makes the
microbatch model a preferable option compared to the one-at-a-time model.

In contrast to the primary goal of DSMS, which performs stream analytics at a geographically
concentrated place, the major concern of CEP is to infer the needed insight from the vast volume of
raw events to stream as fast as possible. Therefore, the computation complexity of CEP logic is usually
lower than that of DSMS, and it is preferable to make the rule-matching process take place somewhere
near the data generation.

For the sake of clarity, we summarize the major differences between DSMS and CEP in Table 8.2.

However, the boundary of CEP and DSMS is not clearly demarcated in terms of the implementa-
tion. A CEP system can be built on top of DSMS by implementing event rules with query languages,
whereas the functionality of DSMS can be provided by certain CEP systems that have analytic logic
integrated into the rule-based knowledgebase. Actually, there is an ongoing trend that a single stream-
processing platform is able to serve both the use cases without requiring too much modification. For
example, Apache Storm, a prevalent real-time computation framework that receives a lot of attention
recently, has the one-at-a-time model at its core, which makes it an ideal platform for data-stream

Table 8.2 Differences Between Two Use-Cases of Stream Processing: DSMS and CEP

Aspects

Processing target

Typical data sources

Data variety

Logic implementation
Amount of applied logic
Typical application scenario
Scalability

Preferred venue of processing

Notification of decision

DSMS

Continuous streams of data

Video or audio stream, user clicks,
social media context.

Structured, semi/unstructured
Continuously queries

Small

Quantitative analytics
Horizontal scale-out

Collect and aggregate information
to a single location to achieve
centralized processing

Usually provide analytics result for
another system to make a decision

CEP

Discrete events

Sensory information
System and service logs

Normally structured

Event-matching rules or state automaton
Large

Qualitative inference

Vertical scale-up

Amortize the processing task throughout
the data chain and bring the computation
near the data source to relieve the network
overhead

Make decision based on detected insight
and inform the outside world as fast as
possible
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management. But with the built-in Trident abstraction, Apache Storm can easily fulfill the requirement
of CEP by using the microbatch paradigm to become a typical event-processing platform that is capable
of identifying meaningful patterns from incoming raw events. Such increasing unity has made it pos-
sible to propose an abstract architecture of a stream-processing system which generally satisfies the
processing needs coming from both the DSMS and CEP domains.

To this end, we first present a detailed analysis on the characteristics of stream data, as well as their
relevant processing requirements. Then we investigate the general architecture of a stream-processing
system to cater to these particular requirements and shed some light on how an integral data-processing
chain is constituted by the independent streaming components.

8.2.3 THE CHARACTERISTICS OF STREAM DATA IN loT

As suggested by its name, stream data in IoT constitutes inherently dynamic, continuous, and unidirec-
tional data flows that are normally processed in a one-pass manner. Such a dynamic paradigm has en-
dowed it with several common properties, such as timeliness, randomness, endlessness, and volatility.

8.2.3.1 Timeliness and Instantaneity

Ensuring the timeliness of processing requires the ability to collect, transfer, process, and present
the stream data in real-time. As the value of data may vanish over time rather rapidly, the streaming
architecture needs to perform all the calculation and communication on the fly with the data that has
newly arrived.

On the other hand, the data generation in IoT environments mainly depends on the status of data
sources. The amount of data that is generated at low-activity periods can be dramatically less than the
number observed at peak times. Usually the stream-processing platform has no control over the volume
and complexity of the incoming data stream. Therefore, it is necessary to build an adaptive platform
that can elastically scale with respect to fluctuating processing demands, and still remain portable and
configurable in order to stay agile in response to the continuously shifting processing needs.

8.2.3.2 Randomness and Imperfection

Randomness and data imperfection are two direct consequences of the dynamic nature of stream data.
There could be several unforeseeable factors that affect the processing chain. For example, the data
generation process may induce randomness because the data sources are normally independently in-
stalled in different environments, which makes it nearly impossible to guarantee the sequence of data
arrival across different streams. Besides, the data transmission process can also result in disorder and
other defections in the same data stream, as some tuples may be lost, damaged, or delayed due to the
constantly changing network conditions. Stonebraker et al. have elaborated on the possible types of
data imperfection found in stream data, and list the capability of handling imperfections on the fly as
one of the eight requirements of real-time stream processing [7].

8.2.3.3 Endlessness and Continuousness

As long as the data sources are alive and the stream-processing system is properly functioning, newly
generated data will be continuously appended to the data channel until the whole application is explic-
itly turned off. Therefore, processing stream data needs the support of high-level availability to avoid
any possible interruption of data flow, which may lead to the accumulation of backlogs, and, finally,
the breach of the real-time promise.
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Table 8.3 Characteristics of Stream Data and the Corresponding Processing Requirements
Characteristics Corresponding Requirement

Timeliness and instantaneity 1. Data cannot be detained in any phase of the processing chain, so there
should be a comprehensive data-collection subsystem working as a driving
force that powers the data in motion once they are generated.

2. For compute-intensive applications, a data aggregation subsystem is needed
to gather the collected data for centralized processing.

3. Each phase of the processing chain is preferable to be horizontal scalable in
order to keep pace with the fluctuated workload.

—

Randomness and imperfection . For cleansing and coordination purposes, data should be first buffered in a
message subsystem before being processed.
2. A declarative or imperative CLPS is responsible for implementing the

application logic and handling possible data-stream imperfections.

—_

Endlessness and continuousness . The storage subsystem can only be used as an assistance component that
preserves the data synopsis or the query results.
2. Ensuring the availability is one of the core design principles due to the

continuousness of workload.

—_

Volatility and unrepeatability . The data value and insights discovered from the streams should be
immediately submitted to other services or presented to users through a
presentation subsystem.

2. The fault-tolerance ability is another system design principle, as it is costly

or even impossible to replay the incoming stream during the recovery of

system failures.

8.2.3.4 Volatility and Unrepeatability

Most of the stream data will be discarded once they have finished traversing through the stream-
processing system, which makes the existence of data quite volatile. Even if the data sources are able
to replay the data stream upon the retransmit request, the new stream is unlikely to be exactly the
same as the previous one. Also, the timeliness of result presentation would be impaired because of
the reprocessing.

Table 8.3 summarizes the processing requirements with regard to the corresponding characteristics,
where the phrases in italic denote the streaming components that need to be implemented in the differ-
ent stages of the data-processing chain.

Apart from these common properties, stream data in IoT is known to be highly dynamic and het-
erogeneous. The dynamism not only refers to the varying data volumes, but also it denotes the con-
stantly changing data quality, credibility, and presentation model that are caused by the dynamicity of
the environment. Since there could be a series of resource constraints that confine the ability of data
sources and even alter the structure of the data transmission network, the stream-processing system is
required to be workload-adaptive and context-aware so it can keep on finding meaningful insights from
the ever-changing raw data.

Heterogeneity is another notable characteristic brought on by the IoT context. As an example,
smart-city application, a mobile app that automatically searches for empty parking spaces for the car,
the driver needs to collect various formats of data from different places to make a comprehensive
decision. For instance, the app uses the GPS signal from the driver’s personal device to determine
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the current position, inquires a vacancy pool to show the possible alternatives, including the location
and permitted parking hours, and makes a recommendation among these alternatives, using the traffic
conditions from a road- monitoring system. As most of the raw data are extracted from the sensory
information through distributed smart-devices and embedded sensors in real time, it is a great challenge
for the data collection system to achieve data federation and provide a unified view from the upcoming
heterogeneous sets of data and the prior knowledge extracted from the history information.

8.2.4 THE GENERAL ARCHITECTURE OF A STREAM-PROCESSING SYSTEM IN loT

First of all, we argue that a stream-processing architecture should include an integral data-processing
chain that covers the whole lifespan of data (from its generation up to its consumption). However, most
of the previous research had used this term in a narrower sense, only referring to the organization of a
logic-processing system where the relevant analytics are performed.

For example, a widespread survey written by Gugola et al. broke down the general architecture
of an information-processing system into five major components: the receiver, decider, producer,
and forwarder that manipulate data streams according to the designated logic, and a knowledgebase
that assists the decider during the decision-making process [8]. This usage implicitly assumes that
the incoming data has already been shaped as continuous streams and can be readily obtained by the
receiver, so that the counting of processing latency should start from the time at which the data
streams enter the system, rather than the time when data is generated. However, this assumption
regarding the triviality of data collection and aggregation is tenable only when the research purpose
is to evaluate the correctness and competence of a particular logic-processing subsystem. When it
comes to building stream applications for real-world scenarios, such an assumption is poorly suited
because collecting and aggregating data from geo-distributed data sources are inherently costly pro-
cedures. There are a series of development and deployment hurdles to be overcome by the use of
dedicated streaming components.

Fig. 8.2 presents a general architecture of a stream-processing system that is tailored to the IoT pe-
culiarities. This architecture breaks down the whole data-processing chain into several stages according
Presentation
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to the functionality and target; we have identified six separate streaming components which are respon-
sible for data generation, collection, buffering, logic processing, storage, and presentation, respectively.

The data-generation system denotes the spectrum of data sources that continuously produce raw in-
formation for the data-processing chain. There are a lot of entities that can fulfill this definition, which
makes a full enumeration nearly impossible. However, we can still categorize the generated data into
three types, in accordance with their modalities.

The first type, static data, refers to the long-term information that has already been stored in
on-premise infrastructures or remote locations. As these data are mostly derived from the validated
knowledge and are not frequently updated, they are usually fetched by the stream-processing system
on a regular basis, serving as reference information during the analytic procedure. The second type,
centralized stream data, is a special type of stream that only comes from a single centralized data
source. Data of this type sometimes even demands to be processed right in the same place where it is
generated, so there would be no need for aggregating data to achieve a unified data-view. However,
this type of data is also not the mainstream input for IoT stream applications, for the reason that it
is rather rare that one data source can generate all the information that is required for the analytic
process. Apart from these two, Distributed stream data is the most common data type used in IoT
applications. Data of this type dynamically come from various distributed places in heterogeneous
formats, such as sensory information from sensor networks, personal preferences from mobile de-
vices, and social-media streams from Internet services. The volume of distributed stream data and
the time sensitivity of its application actually determine the performance requirement for a particular
stream-processing system.

However, no matter which form of data is being produced, the data sources have to generate a
unique timestamp associated with it to denote the time of generation. These timestamps are used to
build the continuous processing logic and further evaluate the timeliness of execution.

The Data Collection and Aggregation System combining with the Messaging and Buffering Sys-
tem plays the role of a message broker in the whole data-processing chain. To collect and aggregate
different types of data, various forms of source clients are independently installed to drive the newly
generated data in motion, while several aggregation channels are provided to gather these stream data
into a centralized buffer, using hierarchical aggregation agents. There are two types of message buf-
fers in terms of implementation: some are topic-based, which support a higher-level programmability,
whereas the others are queue-based, and thus mainly optimized for performance concerns.

The storage system and presentation system are two supportive components for a stream-processing
architecture. Keeping all the historical data in the storage system is neither feasible in implementation
nor necessary in terms of the processing requirement. Therefore, data that need to be stored are either
established knowledge, which can guide the future processing, or meaningful data synopsis, which
might arouse the future interest of users. On the other hand, the presentation system serves as an inter-
face of the stream-processing system, wherein it immediately hands over the data value to the higher-
level analytic tools, or directly delivers the results or notifications to the end users. It is also responsible
for receiving search-command or query updates from the external environment so that it can make the
stream-processing system more adaptive and responsive.

As the core of the data-processing chain, the Continuous Logic Processing System (CLPS) deserves
to be separately reviewed in the next section. As suggested by the name, it is responsible for processing
aggregated data according to the designated continuous logic, which could either come from the Data
Stream Management or Complex Event Processing background.
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8.3 CONTINUOUS LOGIC PROCESSING SYSTEM

In particular, we thoroughly discuss the history of the CLPS from an evolutionary perspective, and then
outline the differences among some state-of-the-art CLPS implementations.

The origin of the CLPS dates back to the beginning of this century. As shown in Fig. 8.3, the first
generation of CLPS, pioneered by NiagaraCQ [9] and STREAM [10], is merely several prototypes
from the research community and only suited for certain processing scenarios in which only a small
amount of data are generated. In addition to that, the types of operations supported by these prototypes
are also limited, which means that they are usually used as functional extensions of the existing Data
Base Management Systems (DBMS).

On the other hand, these prototypes are ground-breaking explorations in the new area of stream
processing. NiagaraCQ [9], for example, defines a simple command-language to create and drop con-
tinuous queries over XML files on the fly. It also supports grouping continuous queries based on their
structures, and performs incremental evaluations of each group by considering only the changed por-
tion of the targeted XML file. Besides, this command language adopts a declarative syntax to make it
developer-friendly, which can help the existing queries written in transitional SQL to be transplanted
into the new stream-processing platform.

In contrast to NiagaraCQ, the focus of STREAM [10] developed by Stanford is to transfer from
persistent relations to transient data streams with window-based data processing and approximate
query answering. STREAM directly supports SQL-like query language so that it can be regarded as a
functional extension of traditional DBMS. With the lessons learned from STREAM, the authors also
discuss models and issues in managing data-stream systems [11].
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There are also some CLPSs that are directly built on top of existing databases. TelegraphCQ [12] is
an example of a system falling into this category. It is developed on PostgreSQL to cope with the high-
value and diverse data streams, and enables the possibility of adaptive querying.

Aurora [13] is the last breakthrough founded in the first generation of CLPS. Within the help of
the “boxes and arrows” paradigm, the continuous queries are implemented by explicit operator graphs
rather than declarative query languages such as SQL. As a result, the performance of stream processing
is significantly improved at the cost that the query implementations and internal processing mecha-
nisms are no longer transparent to the developer.

Around 2005, the research front advanced to distributed stream processing, where the CLPS is
able to take advantage of a set of distributed hosts to achieve better scalability and fault-tolerance. The
project Medusa [14] is an extension to Aurora, which leads to a scalable and QoS-oriented architecture.
As a result of distribution, the logical entities of Medusa are no longer tightly coupled and they have to
communicate with each other through a naming, discovering, and message-passing process. In addition
to that, the problem of load balancing and resource management also emerged as a great challenge in
distributed CLPSs, for example, as an operator node could be split into several atomic units and re-
mapped to participating machines, it is important to design a dynamically partitioned operator network
to improve the resource utilization.

Borealis [15] engine was developed on top of Medusa in order to integrate some advanced capabili-
ties, including dynamic query modification, result revision, and flexible monitoring. Apart from that,
Borealis also introduces the concept of a replicated processing node, and defines several new tuple
types, such as punctuation tuples and priority tuples, to gain finer control over the fault-tolerance and
manageability of the distributed platform.

In contrast to the academic projects such as Aurora, Medusa, and Borealis, whose queries are mostly
implemented based on an operator graph, System S [16], a proprietary CLPS developed by IBM, pro-
posed a query model based on data-flow graph to hide the implementation details as much as possible.
The core objective is to achieve highly scalable, resource-efficient processing through a user-oriented
declarative abstraction with a balanced resource-allocation mechanism. Afterward, the developers in
IBM also introduced an intermediate language called SPADE [17] to grant the users more flexibility by
allowing them to design the data-flow graph and the associate stream operators on their own.

The aforementioned systems all fall into the subcategory of DSMS. On the other hand, the project
Esper chooses a different evolutionary path in terms of the implementation of continuous logic. By us-
ing the event processing language (EPL) and a pluggable runtime library, Esper is suitable for distrib-
uted event processing that has different types of events defined [18]. Some commonly used operations
like joint splitting and filtering can be easily expressed by EPL with a very similar syntax to SQL, so
that the programming burden of the developer is also significantly relieved.

However, the advent of Web 2.0 and IoT applications has brought the previous CLPSs to their
knees. Around the year of 2011, CLPS evolved into the third generation, which is inherently scalable
and fault-tolerant, and designed for a large-size cluster composed of commodity machines.

Among others, S4 [19] developed by Yahoo! is generally perceived as the first CLPS that meets the
criteria of fully scalable and fault-tolerant. It offers intuitive programming API similar to MapReduce
that can be used to develop streaming applications. However, S4 does not guarantee the correctness of
processing, so streaming data could be either lost or repeatedly executed during the processing process.

Fortunately, the emergence of the Storm project [20] gracefully handles this requirement by intro-
ducing the anchor mechanism. With anchor, Storm is able to process a tuple with either an exactly once,
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at least once, or at most once, guarantee. Besides, it supports almost arbitrary programming languages
such as Clojure, Java, Ruby, and Python to implement the spouts and bolts, which are the logical op-
erations in Storm. It also greatly enhances its fault-tolerant ability with finely grained task-level paral-
lelization, as when a host fails, all of the running tasks on it could be transferred to other healthy hosts.

TimeStream [21] is another scalable CLPS written in C# by Microsoft. According to the authors’
evaluation, it is able to handle an advertising aggregation data-source with a data generation speed
of 700,000 URLs per s, 1 per a 6-node commodity cluster, all within 2 s. Similar to Storm and S4,
TimeStream adopts a task DAG to denote the sequence of logical operators. To make the system adap-
tive and autonomous, there is a resilient substitution mechanism to dynamically adjust and reconfigure
task DAG in accordance with the changes to incoming streams or in the presence of any failed nodes.

There are also some other state-of-the-art CLPSs that are available to be inserted into the data-
processing chain. As shown in Table 8.4, we compare these alternatives in terms of:

e System architecture: it outlines internally how a CLPS is organized and coordinated

* Data transmission: the way that streaming data feeds the processing system. Pull-based means that
CLPS is responsible for actively fetching data, whereas push-based means passive message- reception

e Development language: which languages are being used to develop the CLPS

*  Programming: which components need to be programmed to apply the continuous logic

* Partitioning and parallelism: how data is partitioned to achieve processing parallelization

e Accurate recovery: whether the CLPS is able to accurately reproduce the same processing result
when failures occur to the system

* State consistency: whether the system is able to ensure the consistency state for all of the
participating components during the processing procedure

8.4 CHALLENGES AND FUTURE DIRECTIONS

The current stream-processing systems have been greatly improved to cater to the emerging needs of
IoT applications. A state-of-the-art stream-processing system now should satisfy the following criteria:
(1) horizontal scalability to accommodate different sizes of processing needs, (2) easy to program and
manage while concealing the tedious low-level implantation from its users, and (3) capable of dealing
with possible hardware faults with graceful performance degradation rather than sudden termination.
However, there is still a long way to go before the stream-processing systems achieve their full matu-
rity. The following aspects summarize the challenges that still need to be further addressed, and also point
toward the possible research directions that should attract more attention from the research community.

8.4.1 SCALABILITY

Scalability does not just refer to the ability to expand the system to catch up to the ever-increasing data
streams, so that the promise of the Quality of Service (QoS) or Service Level Agreement (SLA) could
be honored. Elasticity, the ability to dynamically scale to the right size on demand, is the future and
advanced form of scalability. An efficient resource-allocation strategy should be adopted, by which
the stream-processing system can start running with only limited resource usages, especially when the
data sources are temporarily idle during the application-deployment phase. Afterward, as the workload
of IoT may fluctuate and the user requirement may change over time, the system should dynamically
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provision new resources by taking into account the characteristics of the available hardware infra-
structure, and free up some of them when they are no longer needed. Such an awareness of underlying
infrastructure can help the system to perform more reasonable elastic operations, and is also useful for
scheduling task loads in case of hardware failures.

8.4.2 ROBUSTNESS

Fault-tolerance is a commonplace topic when it comes to the design and implantation of stream-
processing systems, especially when considering that its availability is one of the most crucial prereq-
uisites to guarantee the correctness and significance of real-time processing. The previous research and
practice on fault-tolerance mostly rely on either system replication or state checkpointing, which are
both not flexible enough to tailor to the robustness for operations in accordance with the trending fault-
types. Designing a hybrid and configurable fault-tolerance mechanism that is capable of recovering the
system from unforeseeable failures is an open research-question left to be answered.

8.4.3 SLA-COMPLIANCE

How to negotiate the SLA for stream-processing systems has been rarely discussed in the previous re-
search. It also depends on which platform the system is running on, and how stakeholders are involved.
But an inherent requirement is to achieve cost-efficiency, which translates to minimizing the monetary
cost for the users, as well as reducing the operational cost for the provider (possibly data centers).
Achieving SLA-compliance requires the stream-processing system to be equipped with the ability to
trade-off between the justifiable metrics, such as performance and robustness, with the running cost, the
balance of which should be left for the user to decide when signing up for SLA.

As the stream data from the IoT background tends to be more dynamic and bursty, it would also
be interesting to investigate the possibility of providing probabilistic SLA guarantees rather than tradi-
tional rule-based promises.

8.4.4 LOAD BALANCING

Currently, the applied load-balance schemes are very simplistic, the major target of which is to nor-
mally improve the performance of the system, especially by maximizing the throughput. However, the
importance of load balance goes far beyond performance optimization. A wrong balancing decision
may lead to unnecessary load-shedding, dropping arrived messages when the system is deemed to be
overloaded, which ultimately impairs the veracity of the processing result. It is challenging to take the
low-level metrics such as task capacity or lengths of thread-message-queues into consideration during
the load-balancing process, but the perspective is very promising, as currently the system utilization
rate is still moderate; even the stream-processing system is already saturated, where the inefficient
load-balance mechanism is the culprit to blame.

8.5 CONCLUSIONS

To summarize, we have presented the emergence of stream processing as a complement to the batch
paradigm, which is especially suited to the IoT context. We discussed the relationship between IoT
and stream processing in the introduction, and then outlined the formal definition of stream data as
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well as the associate stream-processing concept in the following section. We have also identified the
unique characteristics of stream data in IoT and investigated how the processing requirements of them
would affect the organization of a stream-processing system. Based on the aforementioned analysis,
we presented a general architecture for such a system, and explained in detail about the history and
comparison of different continuous logic-processing subsystems. The challenges and open questions
for stream processing in IoT are also discussed in this chapter.

It can be concluded that the research on utilizing the stream-processing paradigm to build real-time
IoT applications is gradually arousing a storm of hype. Ultimately, the prevalence of such applications
requires the development of adaptive and autonomous stream-processing systems to better uncover the
connotative value that is hidden within the huge volume of volatile streams.
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