
START: Straggler Prediction and Mitigation
for Cloud Computing Environments Using

Encoder LSTM Networks
Shreshth Tuli , Sukhpal S. Gill , Peter Garraghan , Rajkumar Buyya , Fellow, IEEE,

Giuliano Casale , and Nicholas R. Jennings

Abstract—Modern large-scale computing systems distribute jobs intomultiple smaller taskswhich execute in parallel to accelerate job

completion rates and reduce energy consumption. However, a common performance problem in such systems is dealingwith straggler

tasks that are slow running instances that increase the overall response time. Such tasks can significantly impact the system’sQuality of

Service (QoS) and the Service Level Agreements (SLA). To combat this issue, there is a need for automatic straggler detection and

mitigationmechanisms that execute jobswithout violating the SLA. Prior work typically builds reactivemodels that focus first on detection

and thenmitigation of straggler tasks, which leads to delays. Other works use prediction based proactivemechanisms, but ignore

heterogeneous host or volatile task characteristics. In this paper, we propose a Straggler Prediction andMitigation Technique (START) that

is able to predict which tasksmight be stragglers and dynamically adapt scheduling to achieve lower response times. Our technique

analyzes all tasks and hosts based on compute and network resource consumption using an Encoder Long-Short-Term-Memory (LSTM)

network. The output of this network is then used to predict andmitigate expected straggler tasks. This reduces the SLAviolation rate and

execution timewithout compromisingQoS. Specifically, we use the CloudSim toolkit to simulate START in a cloud environment and

compare it with state-of-the-art techniques (IGRU-SD, SGC, Dolly, GRASS, NearestFit andWrangler) in terms ofQoS parameters such as

energy consumption, execution time, resource contention, CPUutilization and SLAviolation rate. Experiments show that STARTreduces

execution time, resource contention, energy and SLAviolations by 13%, 11%, 16%and 19%, respectively, compared to the state-of-the-art

approaches.

Index Terms—Straggler prediction, straggler mitigation, cloud computing, deep learning, surrogate modelling

Ç

1 INTRODUCTION

EMERGING applications of Cloud Data-Centers (CDCs) in
domains such as healthcare, agriculture, smart cities,

weather forecasting and traffic management produce large
volumes of data, which is transferred among different devi-
ces using various kinds of communication modes [1]. Due

to this continuous increase in data volume and velocity,
large-scale computing systems may be utilized [2], [3], [4],
which exacerbates the need for scalable, automated schedul-
ing and intelligent task placement methods. This work
focuses on this problem by studying, in particular, strate-
gies to mitigate straggler tasks. Stragglers are tasks within a
job that take much longer to execute than other tasks and
can cause a significant increase in response time due to the
need for synchronizing the outputs of the tasks. Their pres-
ence can lead to the so-called Long Tail Problem [5].

More precisely, the Long Tail Problem occurs when the
completion time of a particular job is significantly affected by
a small number of straggler tasks in a negative way. Task
stragglers can occur within any highly parallelized system
that processes jobs consisting of multiple tasks. Googles Map-
Reduce framework [6] or the Hadoop framework [7] are
examples of such systems, where solutions for straggler pre-
vention are common [1], [8], [9]. Both MapReduce and
Hadoop allow for scalability of the system to vast clusters of
commodity servers. The parallel execution of tasks increases
the speed of execution and handles the failures automatically
without human intervention following the principles of IBMs
autonomicmodel [10], [11]. However, stragglers can still occur
because of software/hardware faults as autonomicmodels are
often slow in handling failures and can result in long down-
times in resource-constrained devices [1]. These lead to unex-
pected delays in task execution due to resource unavailability
or data loss and cause such tasks to hog resources which in

� Shreshth Tuli and Giuliano Casale are with the Department of Comput-
ing, Imperial College London, SW7 2BX London, U.K. E-mail: {s.tuli20,
g.casale}@imperial.ac.uk.

� Sukhpal S. Gill is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, E1 4NS London, U.K.
E-mail: s.s.gill@qmul.ac.uk.

� Peter Garraghan is with the School of Computing and Communications,
Lancaster University, LA1 4YW Lancaster, U.K.
E-mail: p.garraghan@lancaster.ac.uk.

� Rajkumar Buyya is with Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne, Parkville, VIC 3010,
Australia. E-mail: rbuyya@unimelb.edu.au.

� Nicholas R. Jennings is with the Department of Computing, Imperial Col-
lege London, SW7 2BX London, U.K., and also with Loughborough Uni-
versity, LE11 3TU Loughborough, U.K.
E-mail: n.r.jennings@lboro.ac.uk.

Manuscript received 18 Dec. 2020; revised 17 Oct. 2021; accepted 19 Nov. 2021.
Date of publication 23 Nov. 2021; date of current version 6 Feb. 2023.
This work was supported in part by EUs Horizon 2020 Program under Grant
825040. Peter Garraghan and Sukhpal S. Gill are supported in part by the Engi-
neering and Physical Sciences Research Council (EPSRC) under Grant EP/
P031617/1. Rajkumar Buyya is supported in part by Melbourne-Chindia Cloud
Computing (MC3) ResearchNetwork and Australian Research Council.
(Corresponding author: Shreshth Tuli.)
Digital Object Identifier no. 10.1109/TSC.2021.3129897

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023 615

1939-1374 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-7103-2515
https://orcid.org/0000-0002-7103-2515
https://orcid.org/0000-0002-7103-2515
https://orcid.org/0000-0002-7103-2515
https://orcid.org/0000-0002-7103-2515
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0003-4548-7951
https://orcid.org/0000-0003-4548-7951
https://orcid.org/0000-0003-4548-7951
https://orcid.org/0000-0003-4548-7951
https://orcid.org/0000-0003-4548-7951
mailto:s.tuli20@imperial.ac.uk
mailto:g.casale@imperial.ac.uk
mailto:s.s.gill@qmul.ac.uk
mailto:p.garraghan@lancaster.ac.uk
mailto:rbuyya@unimelb.edu.au
mailto:n.r.jennings@lboro.ac.uk

non-preemptive execution leads to higher response times.
Thus, efficient techniques are required to mitigate stragglers
to prevent high response times and SLA violations. We now
discuss what types of failures lead to stragglers tasks.

There are two types of failures that can occur during the
execution of jobs: task failures and node failures. The former
occurs when a specific task within a job fails, due to diverse
sources of software and hardware faults [12]. The latter
occurs when one of the resources of a specific node, which
executes the jobs task, fails [1]. This can be caused by a myr-
iad of possible OS or hardware level faults. As an example of
stragglermitigation techniques,MapReduce attempts tomit-
igate task failures by relaunching the task once it fails [13]. In
terms of a node failure, MapReduce re-executes all the tasks
that were originally scheduled to be executed on that node.
In terms of node failures, when the performance of a node
degrades, either due to an OS or hardware fault or the node
completely fails, a specific tasks (straggler) execution time
can be bloated, causing any other tasks that depend on it to
wait for its completion [14]. At the job level, for the job to be
considered complete, all the tasks comprising the job must
finish. If a straggling task prevents other sibling tasks from
successfully completing, the job will not be complete until all
the straggler tasks are complete [15]. Furthermore, straggler
tasks can keep other tasks dependent on their output waiting
and hence consume additional resources, further impacting
the performance of the computing system.

Stragglers not only affect performance but also deploy-
ment costs. Popular cloud service providers such as Ama-
zon, Google, Netflix and Apple face the challenge of
straggler tasks leading to delayed response or resource wast-
age. This requires avoidable scaling-up of the cloud infra-
structures, which in turn increase the deployment costs [14],
[16]. The high latency episodes called tail-tolerant or latency-
tail-tolerant, also affect the performance of cloud serv-
ices [17]. Latency tail-tolerant jobs reduce resource utiliza-
tion and increase energy consumption. Characterization
studies such as [1], [2], [5], [6], [10], [12], [18], show that
resource contention is the main reason for stragglers, occur-
ring when different jobs are waiting for shared resources.
Different applications executing on different nodes may also
contend for shared global resources [17].

Prior work [19], [20] focuses on solving the problem of
straggler tasks by detecting and mitigating which tasks are
stragglers only after the jobs are executed. Straggler mitiga-
tion refers to the prevention of any impact of straggler tasks
on QoS or SLA. This not only requires continuous computa-
tion resources, but these monitoring tasks themselves can be
so data-intensive that they can themselves lead to resource
contention, delays and prevent scalability of the system [21].
However, modern technologies like deep learning allow us
to build scalablemodels to not only detect, but predict before-
hand, which tasks might be straggler and run mitigation
algorithms to save time and improve QoS. Here, straggler
prediction means the prediction of straggler tasks before exe-
cution. In particular, [22], [23] use deep learning based solu-
tions to predict straggler tasks and efficientlymanage them.

Deep learning based straggler prediction methods face
large prediction errors due to twomajor problems. First, these
models ignore the underlying distribution of task execution
times which is crucial to determine straggler tasks [1], [2].

Specifically, diversity in task execution times leads to the pres-
ence of tasks with extremely high or low execution times. This
makes the state space of the neural network very large when
modelling the distribution of task response times and hence it
is often omitted in practical approaches [22], [23]. Second,
these approaches ignore the heterogeneous host capabilities,
which can also lead to poor scheduling ormitigation decisions
[21]. Therefore, a newmethod is requiredwhich can both pro-
actively predict straggler tasks and efficiently mitigate them.
As an example of a heterogeneous execution environment,
fog-cloud environments leverage resource capabilities from
both edge devices and cloud nodes [21]. This leads to high
diversity in the computational resources among host devices
in the same environment. This host heterogeneity impacts the
response time as scheduling in a constrained device may sig-
nificantly increase its response time.

These issues motivate us to develop a novel online SLA-
aware STrAggler PRediction and MiTigation (START) tech-
nique. START uses a machine learning model in tandemwith
an underlying distribution or task response time for automatic
and accurate straggler prediction. To allow mapping of het-
erogeneous environments, encoder networks have shown to
be a promising solution [24]. Moreover, prior works also
show that in dynamic environments, Long-Short-Term-Mem-
ory (LSTM) based neural networks help to adapt to environ-
ment changes [25]. Hence, we use an Encoder-LSTM network
to analyze the state of a cloud environment. Here, the state of
the cloud setup is characterized as a set of host and task
parameters like SLA, CPU, RAM, Disk and bandwidth con-
sumption. These parameters are motivated by prior
work [26]. Further, as prior work has shown that response
times of tasks in large-scale cloud setups follow a Pareto dis-
tribution [1], we use the Encoder-LSTM network to predict
this distribution in advance to alleviate the straggler problem
proactively.

START also uses speculation and rerun-based approaches
for Straggler Mitigation during the execution of jobs. Predic-
tion allows early mitigation, reducing the SLA violation rate
and execution time and maintaining QoS at the required
level. Our performance evaluation is carried out using
CloudSim 5.0 [27] and compares our technique with well-
known existing techniques (SGC [9], Dolly [20], GRASS [8],
NearestFit [6], Wrangler [17], and IGRU-SD [22]) in terms of
QoS parameters such as energy consumption, execution
time, resource contention, CPU utilization and SLA violation
rate. Experimental results demonstrate that START gives
lower execution time and SLA violations than existing tech-
niques, also offering low computational overhead.

The rest of the paper is structured as follows. Section 2
presents related work. Section 3 details START. Sections 4
and 5 describe the evaluation setup and experimental results.
Finally, Section 6 concludes and outlines future research
directions.

2 RELATED WORK

Existing straggler analysis and mitigation techniques can be
mainly divided into two main categories: detection and mit-
igation [1], [2]. The former primarily identify stragglers
from utilization metrics and traces from a job execution
environment like a CDC. Most of these techniques leverage

616 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

offline analytics and real-time monitoring methods. Exam-
ples of such techniques include NearestFit [6] and SMT [28].
Within this category, other techniques use prediction mod-
els to a-priori determine the set of tasks in a job that might
be stragglers. Examples include RPPS [23] and IGRU-
SD [22]. When considering mitigation, approaches either
avoid straggler tasks or prevent high response times by
methods such as re-scheduling, balancing load or running
job replicas (clones). Examples of such strategies include
Dolly [20], GRASS [8], LATE [29] and Wrangler [17]. Table 1
summarizes the comparison of START with prior
approaches. The table shows which works use straggler pre-
diction, mitigation and/or detection. Further, proactive mech-
anism shows if methods use prediction data to proactively
mitigate straggler tasks or wait till completion of other tasks.
Impact on QoS and Utilization shows whether these methods
utilize QoS and host utilization metrics as feedback to
improve prediction or mitigation performance. Dynamic
refers to whether these methods are able to adapt to chang-
ing host/task characteristics. Heterogeneous environment
refers to whether a method assumes resources to have the
same computational characteristics.

Straggler Detection. The NearestFit strategy aims at
improving the performance of distributed computing sys-
tems by resolving data skewness and detecting straggler
tasks or unbalanced load. Through this model, [6] proposes a
fully-online nearest neighbor regression method that uses
statistical techniques to profile the tasks running in the sys-
tem. This model gathers profiles using efficient data stream-
ing algorithms and acts as a progress indicator and it is
therefore suited to applications with long run times. Even
though this indicator is able to profile complex and large-
scale systems, it is not suitable for heterogeneous resource
types as it does not differentiate hosts on the basis of compu-
tational capacities. Further, it does not take into account task
failures or load on each host.

Straggler Prediction. The work in [23] proposes a
resource prediction and provisioning scheme (RPPS) using
the Autoregressive Integrated Moving Average (ARIMA)

model, which is a statistical model for the prediction of
future workload characteristics of various tasks running in a
CDC. The work in [22] very recently proposed a technique
called Improved Gated Recurrent Unit with Stragglers
Detection (IGRU-SD) to predict average resource requests
over time. They use this prediction scheme to then run detec-
tion algorithms for predicting which tasks might be a strag-
gler. However, they do not consider host heterogeneity, nor
do they consider the underlying task distribution, both of
which are crucial for predicting if a task is likely to become a
straggler.

Straggler Mitigation. The work in [20] explores straggler
mitigation techniques and proposes, Dolly, a speculative
execution-based approach that launches multiple clones of
expected straggler tasks and takes the results of the clone,
which finishes execution first without waiting for the other
ones to complete execution. However, there needs to be a
careful balance maintained as over-cloning requires extra
resources and could lead to contention. On the other hand,
under-cloning could lead to slower task execution and no
effective improvement. The authors designed and experi-
mented with short workloads with a small number of jobs.
They identify that the cloning of a small number of jobs that
have short execution times improves reliability without
using too much additional resources. Dolly introduces a
budgeted cloning strategy to only give an excess of 5%
resource consumption for a total of up to 46% improvement
in average job response time.

The work in [8] proposes a strategy called Greedy and
Resource Aware Speculative Scheduling (GRASS). GRASS
uses a similar strategy to Dolly, of spawning multiple clones
of slow tasks but also uses greedy speculation to approximate
which tasks need to be cloned, and dedicate speculation
resources to improve the average deadline-bound job
response time by up to 47% and error-bound jobs by up to
38%. Thework in [29] explores theMapReduce framework to
investigate the occurrence of straggler tasks and optimizes its
performance in a heterogeneous cloud environment. Further,
the work in [5] proposes the Longest Approximate Time to

TABLE 1
Comparison of Existing Models With START

Technique Straggler
Detection

Straggler
Mitigation

Proactive
Mechanism

Straggler
Prediction

Impact on QoS and
Utilization

Dynamic Heterogeneous
Environment

Detection Only Methods

NearestFit [6] ✓ ✓

SMT [28] ✓ ✓

SMA [14] ✓

RDD [19] ✓

Mitigation Only Methods

LATE [29] ✓ ✓ ✓

Dolly [20] ✓ ✓

GRASS [8] ✓ ✓ ✓

Dolly [20] ✓ ✓

GRASS [8] ✓ ✓ ✓

Wrangler [17] ✓ ✓

Prediction based Mitigation Methods

SGC [9] ✓ ✓ ✓ ✓ ✓ ✓

IGRU-SD [22] ✓ ✓ ✓ ✓ ✓

START (this
work)

✓ ✓ ✓ ✓ ✓ ✓ ✓

TULI ETAL.: START: STRAGGLER PREDICTION AND MITIGATION FOR CLOUD COMPUTING ENVIRONMENTS USING ENCODER LSTM... 617

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

End (LATE) scheduling algorithm, which uses heuristics to
search for the optimum task scheduling policy with latency
and cost estimates. They also estimate the response times of
all tasks of a job and assume that the one with the longest
time is a straggler and execute a copy on a powerful host to
reduce overall job response time. However, these works [5],
[8], [29] do not adapt to dynamic environments.

The work in [17] proposes a proactive straggler manage-
ment approach called Wrangler. The underpinning predic-
tive model uses a statistical learning technique on cluster
utilization counter-data. To overcome modeling errors and
maintain high reliability, Wrangler computes confidence
bounds on the predictions and exploits them in the straggler
management process. Specifically, Wrangler relies on a
Ganglia based node monitoring to delay the execution of
tasks on nodes that have straggler confidence above a
threshold value. Experiments on a Hadoop-based EC2 clus-
ter show that Wrangler is able to reduce response times by
as much as 61%, with 55% less resources when compared to
other speculative cloning based strategies. However, we
show in our experiments that in certain load regimes, e.g.,
with low resource utilisations or with highly volatile work-
loads, Wrangler suffers from lower accuracy.

Straggler Prediction and Mitigation. The work in [9]
presents a Stochastic Gradient Coding (SGC) based approach
which uses approximate gradient coding to reduce the
occurrence of straggler tasks. They utilize a pair-wise bal-
anced scheme to determine the jobs to run as a clone or
redundant tasks. The SGC algorithm runs in a distributed
fashion, sharing a datapoint with multiple hosts to compute
independent gradients on the data which is aggregated by
the master. This approach prevents the straggler analysis
itself from becoming slow and hence is appropriate for vola-
tile environments. However, in large-scale setups, monitor-
ing data across all host machines is inefficient and can create
network bandwidth contention, negatively impacting job
response times. The work in [30] proposes a task replication
approach for job scheduling to minimize the effect of the
Long-Tail problem. The authors analyze the impact of this
approach in a heterogeneous platform. Their algorithm pre-
dicts themean service times for single andmulti-fork scenar-
ios and chooses the optimal forking level. This allows their
model to run multiple instances in datacenters with power-
ful computational resources. However, the approach can
handle only a single job system with the same workload
characteristics and fails in the presence of diverse workloads
as pointed by [30].

3 SYSTEM MODEL

We now describe the system model, which predicts the
number of straggler tasks to avoid the Long Tail problem.
The prediction problem requires a model to know before-
hand which tasks, or at least what number of tasks may
adversely impact the performance of the system. This
depends on not only the types of job being executed on the
CDC, but also the characteristics of the physical machines.
We first discuss a Pareto distribution based model that is
able to predict the number of straggler tasks based on user
specifications and hyper-parameters. Later, we describe
another deep learning (DL) based approach that generates

these hyper-parameters of the Pareto distribution based
on the characteristics of the jobs and physical cloud
machines.

A summary of our system model components and inter-
action is shown in Fig. 1. Here, the Cloud Environment con-
sists of a cloud scheduler and host machines. The scheduler
allocates tasks onto the hosts, which are then executed and
utilization metrics are captured by the resource monitoring
service of the cloud environment. The utilization metrics of
hosts and active tasks are then used to develop feature vec-
tors by the Feature Extractor. The user also provides new
jobs for which the feature vectors are instantiated as 0. The
host and task feature vectors are then combined to form
matrices that are then forwarded to a Straggler Prediction
module. The expected tasks flagged as stragglers by the pre-
diction module are then mitigated using a task speculation
or a re-run strategy as we describe later.

We consider a bag-of-tasks job model where a bounded
timeline is divided into equal sized scheduling intervals. At
the start of each interval, the model receives a set of inde-
pendent jobs. SLA deadlines are defined for each job at the
time it is sent to the model. Each job consists of q dependent
or independent tasks, where 0 < q � q0. We now describe
the modeling of the response times of tasks using the Pareto
distribution.

3.1 Pareto Distribution Model

As observed in prior work such as [1], [2], [5], the task
execution times in a cloud computing environment can be
assumed to follow a Pareto Distribution for which the
Cumulative Distribution Function (CDF) is

FXðxÞ ¼
1� ðx

b
Þ�a x � b

0 x < b;

�
(1)

where b is the least time taken among tasks, and a is the tail
index parameter (a;b > 0). X1; X2; . . . ; Xq are the times
taken by q tasks of a particular job running on the Cloud
Environment. The Log-Likelihood Estimate [31] is then

log ðLðX1; . . . ; XqÞÞ ¼ qlog ðaÞ þ q alog ðbÞ � ðaþ 1Þ
Xq
i¼1

log ðXiÞ;

(2)

where L is the likelihood function for the random variables
X1; . . . ; Xq.

As a > 0, to maximize the log likelihood, b is obtained as
the largest possible value such that Xi > b; 8 i. Thus, b ¼
miniðXiÞ. For a, if we set a partial derivative of the

Fig. 1. STARTsystem architecture.

618 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

likelihood with respect to a as 0, we get

a ¼ qPq
i¼1 log ðXiÞ � qlog ðbÞ : (3)

For a given job execution, the task execution times deter-
mine the (a;b) parameters of the assumed distribution.
Thus, at the time of training, we run multiple jobs and fit
the parameters using Eq. (3). These parameters are then
used to predict the number of straggler tasks based on a
straggler parameter K, by calculating the number of tasks
which in expectation could have completion times greater
than K. Thus, for a > 1 (for a well defined mean of the dis-
tribution) and q tasks, q � ð1� FXðKÞÞ gives us the expected
number of straggler tasks, where FX is the cumulative dis-
tribution function. For mathematical simplicity, we keep the
straggler parameter as a multiple of the mean execution
time, given as K ¼ kab=ða� 1Þ. This gives the expected
number of straggler tasks (ES),

ES ¼ q
K
b

� ��a
(4)

Empirically,1 we find that k ¼ 1:5 strikes a good balance
between the cases and hence this value is used in the experi-
ments, but can be changed as per user requirements. Fig. 2
demonstrates results corresponding to simple grid search
on the three parameters k, I and T . The latter two parame-
ters are defined in Section 3.2. For k ¼ 1:5, the prediction
performance (F1 score) is the highest. For each task in the
system, we check whether the predicted class is true or not,
i.e., if the completion time of the task is > K. The number
of correct class labels is denoted as tp and incorrect ones as
fp, then the F1 score is defined as

tp

tpþ 1
2 ðfpþ tpÞ

: (5)

For k < 1:5 the model has high false negatives, whereas for
k > 1:5, the model has high false positives.

3.2 Encoder Network

The previous subsection shows how the Pareto distribution
can be used to determine the expected number of straggler
tasks in a job. However, the parameters (a;b) are not known
beforehand for a job. As motivated in Section 1, to predict
these parameters, we use an encoder network that analyzes
the tasks and the workloads at different machines in the
CDC for a finite amount of time.

We first identify a job j as a set of tasks {Ti}
q
i¼1, where q <

q0 if less than q0 tasks then rest q0 � q rows are 0. For each task
Ta, p feature values are used to form a feature vector. Simi-
larly, for each host out of n hosts {Hi}

n
i¼1,m feature values are

used. The features used for hosts include utilization and
capacity of CPU, RAM, Disk and network bandwidth. The
feature vector also includes the cost, power characteristics,
and the number of tasks to which this host is allocated. The
features used for tasks include CPU, RAM, Disk and band-
width requirements and the host assigned in the previous
interval. These were used to characterize the system state for
deep learning models as is common in prior art [32], [33],
[34]. These feature vectors of hosts (MH) and tasks (MT), as
shown in Fig. 3, are then used to predict the Pareto parameter
values. The neural network model and the working of the
system is shown in Fig. 4. The input matrices are first passed
through an encoder network, the output of which is sent to a
Long Short Term Memory (LSTM) network [35]. To prevent
the LSTM model from diverging, we take an exponential
moving average of eachmatrix using a 0.8weight to the latest
resourcematrix (as in [36]). For time-series prediction, multi-
ple machine learning models could be used, including Echo
State Networks (ESN) or LSTMs [37]. However, as ESNs con-
trol the degree of delays using a manually chosen constant
(leaking rate), this typically lowers the generalization ability
when applied to different load traces [38]. Hence, we use
LSTMs to develop our parameter estimationmodel.

The Encoder network is a 4 layer fully-connected network
with the following details (adapted from prior art [24], [32],
[33]):

Fig. 3. Matrix representation of model inputs.

Fig. 2. Empirical results for different hyper-parameter values comparing
F1 scores of straggler classification on test data. k; I and T are defined
in Sections 3.1 and 3.2. F1 score is defined as per Eq. (5).

Fig. 4. Straggler prediction model.

1. As given in Fig. 2, based on the method described in [17] and a
dataset extracted from traces on a desktop system with 64-bit Ubuntu
18.04 operating system, which is equipped with the Intel� Core i7-
10700K processor (No. of Cores = 8, Processor Base frequency = 3.80
GHz and turbo frequency = 5.10 GHz), 64 GB of RAM, and 1 TB NVMe
storage. We have used Hadoop MapReduce for manage and execute
word count application.

TULI ETAL.: START: STRAGGLER PREDICTION AND MITIGATION FOR CLOUD COMPUTING ENVIRONMENTS USING ENCODER LSTM... 619

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

� Input layer of size jMH j þ jMT j. The non-linearity
used here is softplus

2 as in [32]. The matrices are flat-
tened, concatenated and given as an input to the
encoder network.

� Fully connect layer of size 128 with softplus activation.
� Fully connect layer of size 128 with softplus activation.
� Fully connect layer of size 32 with softplus activation.
We run inference using a neural network model for each

job. Specifically, for each job j, we provide the model with
the inputsMH for host characteristics andMT for all running
tasks in j. For each job, we generate a;b parameters of the
Pareto distribution to evaluate the number of straggler tasks.
The LSTM network has 2 layers with size 32 nodes. The pre-
dicted output of the LSTM network becomes an input for a
fully connected layer with 2 nodes, which outputs the (a;b)
values after a Rectified Non-linear Unit (ReLU) so that these
values are positive (with addition of 1 to a so that the mean
of the distribution is defined). This is sent to the LSTM
Network. To implement the proposed approach, we use
PyTorch Autograd package [39] to run the back-propagation
procedure for network training. We keep sending the input
matrices for a finite time of T , periodically after every I sec-
onds. The LSTM cell takes in two inputs, the hidden state of
the previous interval and the output of the encoder network.
Considering the output of the previous iteration, i.e., the hid-
den state ht�1 and the output of the encoder network �, the
output for the current interval becomes ht ¼ LSTMðht�1; �Þ
(see Fig. 4). Here, h0 ¼ 0 and t 2 f0; I ; 2 � I ; . . . ; T g. Using
grid-search, for the experiments we set I ¼ 1 and T ¼ 5,
which empirically gives the best results1.

The output of LSTM network gives us the parameters for
the Pareto distribution, which are then used to find expected
straggler tasks (ES). This constitutes the Straggler Prediction
module in Fig. 1. The objective of themodel training is to pre-
dict the appropriate distribution parameters using the utili-
zation metrics and use this distribution to calculate the
expected number of straggler tasks as described in Sec-
tion 3.1.ES determines the number of tasks to mitigate using
rerun/speculation-based methods, as explained in the next
subsection. Out of the q tasks, first the parameters (a;b) are
calculated after T time-steps and then bESc tasks are miti-
gated. This ensures that if ES is very small (<1), we do not
mitigate any tasks, saving computational resources. Hence,
after execution of q � bESc tasks, we applymitigation techni-
ques on the remaining tasks to prevent delays in result gen-
eration. Compared to other methods, our model nearly
eliminates the detection time and hence is able to provide a
faster response to users (as shown in Section 5). The main
symbols and their meanings are summarized in Table 2.

3.3 Speculation and Task Rerun

To mitigate the Long Tail problem, we use the following
two strategies (as in prior work [1], [30]) for the straggler
tasks detected by our prediction model.

1) Speculation: We run a copy of the straggler task on a
separate node and use the results we get first. This is
crucial for deadline driven tasks that need results as

soon as possible. Thus, this method gives us the least
response time at the cost of running multiple nodes.

2) Re-Run Task: We stop execution of the straggler task
on the respective node and run a new instance of the
same task in a new node. This method is suitable for
tasks that are not deadline critical as it runs only one
copy of the task at a time which reduces energy con-
sumption and prevents congestion.

Algorithm1. Straggler Prediction andMitigation Algorithm

Inputs:
1: J Set of all jobs being executed currently ½j1; j2; :::; jr�
2: Tn

m Set of tasks of job jn wherem 2 f1; 2; 3:::qg
3: Mtime Max allocated time to release the resource.

Variables:
4: Jn Set of normal jobs � J without straggler tasks
5: Js Set of jobs � J with > 0 straggler tasks

Procedure PREDICTSTRAGGLER(job)
6: for time t from 0 to T with step I
7: q Number of tasks in input job
8: Extract feature vectors of host machines asMH

9: Extract feature vectors of tasks of input job asMT

10: Predict ða;bÞ using the Neural network

11: Find ES as q K
b

� ��a
12: Run job till completion of q � bESc tasks
13: return incomplete tasks
14: Procedure SPECULATION(task list)
15: for task t in task list
16: Run a copy of t on a different node
17: Procedure RERUNSTRAGGLERTASK(task list)
18: for task t in task list
19: Run the same task t on different node
20: Begin
21: for job ji in J
22: stragglerTasks PredictStragglerðjiÞ
23: if stragglerTasks is empty
24: add ji to Jn
25: continue
26: else
27: add ji to Js
28: Wait for specific time (Mtime), if ji does not respond

then generate alert for action
29: if ji is deadline oriented
30: SpeculationðstragglerTasksÞ
31: else
32: ReRunStragglerTaskðstragglerTasksÞ

The choice of the separate or newnode is performed by the
underlying scheduling scheme (further details in Section 4).
We do not consider task cloning as it has significant

TABLE 2
Notation

Symbol Meaning

q Maximum number of tasks in a job
a;b Parameters of the Pareto distribution
K Straggler parameter in START
ES Expected number of straggler tasks
I Time-period of START inference in seconds
T Time-duration of START inference in seconds
n Number of hosts

2. The definitions of these activation functions can be seen at the
PyTorchweb-page: https://pytorch.org/docs/stable/nn.html

620 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

overheads in large-scale environments [40]. In both
approaches mentioned above, we select the new node that
has the lowest moving average of the number of straggler
tasks for the current time-step. Algorithm 1 describes in detail
the complete approach of straggler prediction andmitigation
and is run periodically to eliminate the long tail problem. As
shown, START first determines the host and task feature
matrices for every job (lines 8 and 9), which are then analyzed
for T time-steps to predict the number of straggler tasks (line
13). For each job which has bESc > 0, mitigation techniques
are run for remaining tasks when only bESc of them are left
(lines 30 and 32). Fig. 5 shows how START is able to provide
much lower response times compared to existing detection
based algorithms by nearly eliminating the detection time as
it predicts early-on the number of tasks that are highly likely
to be stragglers. This constitutes the Straggler Mitigationmod-
ule in Fig. 1.

4 EVALUATION SETUP

4.1 Evaluation Metrics

We use common evaluation metrics [1], [8], [9]. We assume
there are n host and q jobs currently in the system.

1) Energy Consumption: The cumulative energy consumed
for a given time is given by

E ¼ ECPU þ EDisk þ EMemory þENetwork þ EMisc; (6)

whereECPU is the total energy consumed by all the processors,
which includes dynamic energy as CV 2f , short-circuit energy,
leakage energy, and idle energy consumption [10]. EDisk is the
energy consumed for all read/write operations plus the idle
energy consumed by all the disks. EMemory is the energy con-
sumedby allmemories (RAMandCache) in the computational
nodes. ENetwork is sum of energies consumed by network devi-
ces which include routers, gateways, LAN cards and switches.
EMisc is energy consumed by other components like mother-
board and port connectors. However, in simulation it is diffi-
cult to find out each energy component separately, so we
calculate maximum and minimum energy consumption
(Emax;Emin) by hardware profiling as per Eq. 6 and using Stan-
dard Performance Evaluation Corporation (SPEC) benchmarks
https://www.spec.org/cloud_iaas2018/results/.
We then use Eq. 7 to get total energy consumption in CloudSim
at time t. Here, Ut

k is the total host resource utilization (sum of
all workloads) of host k. This is a commonpractice [27]. Thus,

Et
total ¼

Xn
k¼1

Ut
k � ðEmax �EminÞ þ Emin: (7)

2) Execution Time: The average execution time is

Texec
avg ¼

1

q

Xq
i¼1
ðTC

i � TS
i Þ þ

Xq
i¼1

Ri: (8)

This is the total time taken to successfully execute an
application, on average, for all tasks. Here TC

i , T
S
i and Ri

are the completion, submission and restart time of task i.
3) Resource Contention: Resource contention occurs when

one workload shares the same resource during the execu-
tion [20]. This may be due to unavailability of the required
number of resources, or because there are a large number of
workloads with urgent deadlines. Resource contention is
quantified as

Conresource
total ¼

Xn
k¼1

Xqk
i¼1

Reqresourcei;k � 1ðresourcei overloadedÞ;

(9)

where qk is the number of tasks being executed at resource k
and Reqresourcei;k is the resource requirement of ith task at
node k. Also, 1ðÞ denotes the indicator function.

4) Memory Utilization: The memory utilization of host k in
percentage terms is

Umemory
k ¼ Ptotal

k � ðFk þBk þ CkÞ
Ptotal
k

	 100; (10)

where Ptotal
k ; Fk; Bk; Ck are the total physical, free, buffer and

cache memory respectively.
5) Disk Utilization: The disk utilization of host k in per-

centage terms is

Udisk
k ¼ Total Used

TotalHDSize
	 100: (11)

6) Network Utilization: The network utilization of host k in
percentage terms is

Unetwork
k ¼ Bitsrxtotal þBitstxtotal

BWk 	 SI
	 100; (12)

where Bitsrxtotal and Bitstxtotal are the total bits received and
transmitted in an interval. BWk is the bandwidth of host k
and SI is the size of the interval.

7) SLA Violation Rate: For q tasks we have q SLAs. Each
SLA has a weight (ith SLA having weight wi). The total SLA
violation rate is

SLAviolation
total ¼ 1

q

Xq
i¼1

wi � 1ðSLAi is violatedÞ: (13)

We also use other metrics including Resource contention,
CPU utilization and Completion times as defined in [41].

As per prior work [1], the metric for comparing predic-
tion accuracy is the Mean Average Percentage Error
(MAPE) which is defined as the mean percentage error of
the predicted value (number of straggler tasks for each job)
from the actual value and given by Eq. (14). To obtain the
actual value, we only perform straggler prediction and com-
pare MAPE of START, IGRU-SD and RPPS [23] as other
baselines do not perform straggler prediction. We use this

Fig. 5. Comparison of STARTwith detection based approaches.

TULI ETAL.: START: STRAGGLER PREDICTION AND MITIGATION FOR CLOUD COMPUTING ENVIRONMENTS USING ENCODER LSTM... 621

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

to calculate the number of straggler tasks using maximum-
likelihood estimation (see Eq (4)). Thus,

MAPE ¼ 100%

n

Xn
t¼1

yt � y0t
yt

����
����; (14)

where yt and y0t are the actual and predicted number of
straggler tasks and n is the number of scheduling intervals
for the complete simulation.

4.2 Workload Model

Our evaluation uses CloudSim toolkit and real-time work-
load traces are derived from PlanetLab systems [42]. This
dataset contains traces of CPU, RAM, disk, and network
bandwidth requirements from over 1000 PlanetLab tasks
collected during 10 random days. These traces are collected
using a scheduling interval size of 300 seconds. The virtual
machines are located at more than 500 places across the
globe. The data was collected on 2880 intervals each, thus
each trace was of this size [43]3. In this dataset, 50% of the
traces are deadline driven and 50% are not. We get similar
results on other distributions. A collection of 2 to 10 tasks is
defined as a job. We use data for 800 tasks as our training
set and 100 tasks’ data as the test set. As in prior work [32],
a Poisson Distribution Poissonð�Þ, with � ¼ 1:2 jobs, is
selected for the number of jobs to be created periodically.
This is because all the workloads/tasks of different jobs are
independent of each other. The requests submitted by users
are considered as cloudlets, which have three specific
requirements (CPU, memory and task length).

4.3 CloudSim Simulation Environment

We evaluate the performance of START using a simulated
cloud environment. We implement our straggler detection
and mitigation technique by introducing the different kinds
of faults using an event-driven module. The neural network
and back-propagation through time code were implemented
using PyTorch library in Python. As in prior work [44], we
have used a Weibull Distribution to model failure character-
istics. The failure distribution is given by

fðx; k; �Þ ¼ k

�

x

�

� �k�1
; (15)

where x is the time-to-failure. We assign the parameters k ¼
1:5; � ¼ 2 as in [44], [45]. The introduced fault types are (1)
host faults (memory faults and faults in the processing ele-
ments), (2) Cloudlet faults (due to network faults) and (3)
VM creation faults. We consider task faults where the under-
pinning applications need to rerun due to task breakdown.

For host failure, all tasks running in that host need to restart.
We consider only ephemeral host faults, i.e., our hosts are
offline for a short duration of time (up to 4 intervals in our
experiments) instead of being permanently down. Other
faults considered in the system include unavailability of
memory space, disk page faults and network packet drops
that increase the response time of running tasks. Every
change in the states of VMs and hosts should be realized by
the cloud datacenter through the cloud broker. Further, the
broker uses a cloudlet specification to request the creation of
VM and scheduling of cloudlets. We have designed a Fault
Injection Module to create a fault injector thread by simulat-
ing the cloudlet faults, host faults and VM creation faults. A
failed node can return to service only after a downtime as
defined in [44].

The Fault injector thread uses a Weibull Distribution
and generates events which execute commands such as
sendNow(dataCenter.getId(), FaultEventTags.HOST_FAILURE,
host); [44]. The Fault Injection Module contains three entities
such as FaultInjector, FaultEvent and FaultHandlerDatacenter.
FaultInjector extends the SimEntity class of CloudSim and
start simulation to insert fault events randomly using the
Weibull Distribution. FaultEvent extends the SimEvent class
of CloudSim, which describes the type of faults such as cre-
ate VM failure, cloudlet failure and host failure. FaultHand-
lerDatacenter extends the Datacenter class and processes
fault events sent by the FaultGenerator and handles VM
migration. In this simulation setup, four Physical Machines
(PMs) characteristics (CPU, RAM, Disk and Bandwidth
capabilities) are used with a various number of virtual nodes
as shown in Table 3. Since straggler tasks are particularly
common in resource-constrained devices [1], we use devices
with low core count and RAM for our experiments. The test
setup is similar to prior work [41] .

Table 4 details the values of the simulation parameters
used in the performance evaluation, collected from the
existing literature and empirical studies [10], [46], [47], [48].
We keep the parameters I and T fixed as 1 and 5 seconds
respectively throughout the simulation. We dynamically
change the k value based on empirical results for the data
up till the current interval with the initial value as 1.5 (as
described in Section 1).

4.4 Model Training

To train the Encoder-LSTM network, we use the PlanetLab
dataset and divide the workloads of 1000 tasks into 80%
training dataset and the rest as the test dataset. For training
and test sets too, we keep the 50-50 ratio of tasks that are
deadline-driven to those that are not. Further, we use a
scheduler that selects tasks at random and schedules them
randomly to any host using a uniform distribution. The ran-
dom scheduler allows us to obtain diverse host and task
characteristics for model training, which is crucial to prevent

TABLE 3
Configuration Details of Simulated Physical Machines

CPU RAM and Storage Core count Operating System Number of Virtual Nodes

Intel Core 2 Duo - 2.4 GHz 6 GB RAM and 320 GB HDD 2 Windows 12
Intel Core i5-2310- 2.9GHz 4 GB RAM and 160 GB HDD 4 Linux 6
Intel XEON E 52407-2.2 GHz 2 GB RAM and 160 GB HDD 4 Linux 2

3. The traces from the PlanetLab systems can be downloaded from
https://www.planet-lab.org/planetlablogs.

622 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

under-fitting of the neural network. The response time histo-
gram was generated and compared against the ða;bÞ output
of the Encoder-LSTM network. The model was trained using
Mean-Square-Error Loss between the values based on the
predicted distribution and the actual data. We used a learn-
ing rate of 10�5 and the Adam optimizer to train the
network [49].

4.5 VM Scheduling Policy

We use the A3C-R2N2 policy which schedules workloads
using a policy gradient based reinforcement learning strat-
egy which tries to optimize an actor-critic pair of agents [32].
This approach uses Residual Recurrent Neural Networks
(R2N2) to predict the expected reward for each action (i.e
scheduling decision) and tries to optimize the cumulative
reward signal. The A3C-R2N2 policy has been shown to
outperform other policies in terms of response time and
SLA violations [32]; hence, it is our choice of scheduling
method for comparing straggler mitigation techniques.

4.6 Baseline Algorithms

We have selected six baseline techniques NearestFit, Dolly,
GRASS, SGC, Wrangler and IGRU-SD which are the most
recent among prior works (see Section 2 for details). We have
chosen recent and relevant techniques from the literature to
validate our technique against state-of-the-art techniques.

1) NearestFit: uses a statistical curve fitting approach to
detect stragglers. The function aþ b � xc is fittedwith x
as the size of the input file for a task [6]. However,
vanilla NearestFit is not able to mitigate the detected
stragglers, sowe use speculation on the detected tasks.

2) Dolly: is a straggler mitigation technique that forks
tasks intomultiple clones which are executed in paral-
lel within their specified budget. The number of clones
are calculated based on the Upper-Confidence-Bound
as in [20] using the CPUutilization of tasks.

3) GRASS: is straggler mitigation framework, which
uses the concept of speculation to mitigate stragglers
reactively. It is implemented using two algorithms,

one for greedy speculation and the other for
resource-aware scheduling.

4) SGC: is an approach using distributed gradient cal-
culation to utilize a pair-wise balancing scheme for
running clones of tasks.

5) Wrangler: is a proactive straggler mitigation tech-
nique, which uses linear modelling approach to
reduce the utilization of excess resources by delaying
the start of tasks predicted as straggler.

6) IGRU-SD: is a GRU neural network based resource
requirement prediction technique which uses detec-
tion mechanisms on the predicted future characteris-
tics [22]. As it only predicts straggler tasks and does
not mitigate them, we use the same re-run and spec-
ulation strategy (based on deadline requirements)
for fair comparison.

5 PERFORMANCE EVALUATION

5.1 Experimental Observations

As in prior work [1], [30], we used QoS parameters to evalu-
ate the performance of START as compared to the existing
techniques. We run our experiments for 24 hours, i.e., 288
scheduling intervals.We average over 5 runs and use diverse
workload types to ensure statistical significance.

5.1.1 Variation of Resource Utilization

We consider 4 types of reserved utilization for CPU, disk,
memory and network, where utilization is blocked inten-
tionally (20%, 40%, 60% and 80%) to test the performance of
the proposed technique. Fig. 6 shows the comparison of
QoS parameters such as Execution Time, Energy, Resource
Contention and SVR with different values of CPU, disk, net-
work and memory utilization.

Fig. 6a shows the value of execution time for different
straggler management techniques with variation in the value
of CPU, disk, network and memory utilization. The value of
execution time increases with the increase in the value of
reserved utilization, but START performs better than the
existing techniques because it tracks the states of the resour-
ces dynamically for efficient decisions. The value of execu-
tion time in START is 11.47-17.4% less than the baseline
methods. Fig. 6b shows the variation of resource contention
with different values of utilization. The value of resource
contention increases as the value of utilization increases. The
value of resource contention in START is 12.34-15.19% less
than the baseline methods. This is due to the execution time
variation across various tasks and resources due to the fil-
tered resource list obtained from the resource provisioning
unit (see Section 2).

Fig. 6c shows the energy consumption for different val-
ues of utilization and we observe that energy consumption
increases with the utilization for all straggler management
techniques. However, START performs better than the prior
art as it avoids over or under-utilization of resources during
scheduling. The value of energy consumption in START is
between 18.55% and 22.43% less than the baseline methods.
Fig. 6d shows the variation of SLA violation rate with differ-
ent values of utilization and value of SLA violation rate is
increasing as the value of utilization increases. The value of
SLA violation rate in START is between 21.34% and 26.77%

TABLE 4
Simulation Parameters for Experiments

Parameter Value

Number of VMs (n) 400
Number of Cloudlets (Workloads) 5000
Host Bandwidth 1 -2 KB/S
CPU IPS (in millions) 2000
Cloud Workload size 10000
 3000 MB
Cloud Workload cost 3 - 5 C$
Memory Size 2-12 GB
Input File size 300
 120 MB
Output File size 300
 150 MB
Power Consumption (KW) 108 - 273 KW
Latency of hosts 20-90 Seconds
Size of Cache memory 4 - 16 MB
CPU Power Consumption 130 - 240W
RAM Power Consumption 10 - 30W
Disk Power Consumption 3 - 110W
Network Power Consumption 70 - 180W
Power Consumption of other Components 2 - 25W

TULI ETAL.: START: STRAGGLER PREDICTION AND MITIGATION FOR CLOUD COMPUTING ENVIRONMENTS USING ENCODER LSTM... 623

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

less than the baseline methods. This occurs because START
uses admission control and a reservation mechanism for
execution of workloads in advance.

5.1.2 Variation of Number of Workloads

In this section we evaluate the value of various performance
parameters as we increase the number of workloads.

Fig. 7a shows the variation of execution time with differ-
ent numbers of workloads. The value of execution time in
START is 19.74-23.84% less than the baseline methods. The
interpretation of resource contention for different numbers
of workloads is shown in Fig. 7b which shows the value of
resource contention increases with the increase in the num-
ber of workloads. START performs better than existing tech-
niques; the average value of resource contention in START is
19.12-24.84% less than the baseline methods. Fig. 7c shows
the variation of energy consumption with different numbers
ofworkloads and the value of energy consumption in START
is 13.71-18.01% less than the baseline methods. The variation
of SLA violation rate for different number of workloads is
shown in Fig. 7d and the value of SLA violation rate is
increasing with the increase in number of workloads but
START performs better than existing techniques. The aver-
age value of resource contention in START is 9.26-12.92%
less than the baseline methods. The reduced execution times

(and hence energy consumption and SLA violations) are due
to efficient and proactive mitigation of stragglers by START.
Further, using the Pareto distribution allows START to iden-
tify stragglers prior to their completion, which reduces
resource usage and hence contention.

Fig. 7e shows that the variation of network utilization
with a different number of workloads for START and the
baseline methods. All the utilization metrics presented in
the figure are averaged across the completed tasks. The
experimental results show that the average value of net-
work utilization in START is between 18.6% and 25.67%
more than the baseline methods. The variation of CPU utili-
zation with different numbers of workloads is shown in
Fig. 7f and it shows the value of CPU utilization is decreas-
ing with the increase in the number of workloads but
START performs better than existing techniques. The value
of CPU utilization in START is between 16.61% and 17.29%
more than the baseline methods. Fig. 7g shows the variation
of disk utilization with a different number of workloads for
all methods. The experimental result show that the average
value of disk utilization in START is 13.25-15.34% more
than the baseline methods. The variation of memory utiliza-
tion with a different number of workloads is shown in
Fig. 7h and indicates that the value of memory utilization is
decreasing with the increase in the number of workloads
but START performs better than existing techniques. The

Fig. 6. Comparison of QoS parameters with different value of CPU, disk, network and memory Utilization: a) Execution Time, b) Resource Conten-
tion, c) Energy Consumption and d) SLAViolation Rate

Fig. 7. Comparison of performance parameters with different value of workloads: a) Execution Time, b) Resource Contention, c) Energy Consump-
tion, d) SLAViolation Rate, e) Network Utilization, f) CPU Utilization, g) Disk Utilization and h) Memory Utilization.

624 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

value of memory utilization in START is 7.92-17.54% more
than the baseline methods. The reduction in usage of
resources in case of START is because of the conservative
execution of tasks based on straggler prediction. Instead of
running/speculating straggler tasks in advance, START
waits for the completion of q � bEsc (refer Algorithm 1).
Thus, if the predicted straggler tasks do complete earlier
than expected, they are not cloned, avoiding resource
wastage.

5.2 Straggler Analysis

Fig. 8 shows the variation of completion time of different
workloads for different straggler management techniques
with different utilization percentages of CPU, disk, memory
and network. The line plots show the completion time across
the workloads sorted by their creation time and the bar plots
show the variation in the completion time. A higher variance
of completion time implies a higher number of tasks that
cause a delay in job completion. Thus, a simple measure for
comparison is the variance of execution times across differ-
ent tasks. Figs. 8a, 8b, 8c, and 8d show the comparison of
START with existing straggler management techniques for
20%, 40%, 60% and 80% reserved utilization respectively.
The observed improvement occurs because START is very
effective in the detection and mitigation of stragglers at
run-time. It is also identified that the completion time is

increasing with the increase in utilization limit from 20% to
80%. Fig. 8d shows that START has more variation in job
completion time with an 80% utilization limit, but START
performs better than existing techniques while detecting and
mitigating stragglersmore efficiently.

5.3 Prediction Accuracy Comparison

To demonstrate the efficacy of the prediction model, we
show that the prediction error is minimized in our model.
To evaluate prediction error, we use the same environment
as before with diverse task requirements and heterogeneous
hosts with host failures. We use the MAPE metric for this.
For ease of comparison, we consider only 2 physical host
types with processors: i5 and Xeon as given in Table 3. We
keep a total 200 VMs out of which the number of VMs on
the Xeon host are changed with time (the variation is not
smooth due to injected VM failures in the model). As shown
in Fig. 9d, as the number of VMs on the Xeon host change,
the percentage prediction error is higher for RPPS and
IGRU-SD than START. This is because these models do not
consider the heterogeneity of VM resource capabilities.
Clearly, when the number of VMs in the Xeon host change,
the heterogeneity changes dynamically, leading to different
probabilities of tasks becoming stragglers. Thus, the models
in IGRU-SD and RPPS are unable to predict straggler tasks
accurately. In contrast, START is able to analyze host
resource capabilities with the task allocation to correctly
predict straggler tasks.

5.4 Overhead Comparison

Fig. 10 shows a comparison of run-times of the START and
baseline approaches (including scheduling of re-run or
speculated tasks) amortized over the average task execution
times. As can be seen, the methods proposed in the prior art
are faster at detecting straggler tasks. However, as seen ear-
lier, they do not perform well. START has a slightly higher
(0:09%) run-time than the best approach among the prior
work (IGRU-SD).

Fig. 8. Comparison of performance based on execution time for different utilization: a) utilization limit = 20%, b) utilization limit = 40%, c) utilization
limit = 60% and d) utilization limit = 80%.

Fig. 9. Comparison of prediction accuracy of START with IGRU-ISD and
RPPS. (a) Number of VMs in Xeon host out of total 400 VMs, (b) Com-
parison of percentage prediction error, (c) MAPE values for modified
environment with changing host resources (d) MAPE values for initial
setup described in Section 5. Fig. 10. Overhead comparison.

TULI ETAL.: START: STRAGGLER PREDICTION AND MITIGATION FOR CLOUD COMPUTING ENVIRONMENTS USING ENCODER LSTM... 625

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

6 CONCLUSIONS AND FUTURE WORK

We proposed a novel straggler prediction and mitigation
technique using an Encoder-LSTM Model for large-scale
cloud computing environments. This technique allows us to
reduce response time and provide better results with fewer
SLA violations compared to prior works. Thanks to the pre-
diction models based on maximum likelihood estimation
from a Pareto distribution and recurrent encoder network,
our model is able to predict straggler tasks beforehand and
mitigate them early on using speculation and re-run meth-
ods. Unlike prior prediction based approaches, START is
able to analyze tasks with host characteristics and utilize the
underlying Pareto distribution for more accurate prediction
and mitigation leading to higher performance than state-of-
the-art mechanisms. It is clear that for different workload
levels, START performs better giving lower execution time,
resource contentions, energy consumption and SLA viola-
tion rate. When compared with different levels of workload
on the cloud system, again START outperforms the baseline
approaches. START has higher CPU, network, RAM and
disk utilization. This is because many jobs, and hence, tasks
complete quickly which leads to more tasks being finished
in a period of time compared to other approaches. This
implies that START is able to leverage resources in a more
efficient manner leading to faster job completion and hence
also saving energy, even with slightly higher resource utili-
zation for the same number of tasks.

As part of future work, we plan to implement START in
real-life settings using fog frameworks such as PRISM [12]
or COSCO [26]. This will help in making the model more
robust to task and workload stochasticity in real scenarios.
Moreover, we can also fine-tune our neural network models
and Pareto distribution parameters using a larger dataset
which includes diverse fog and cloud applications.

ACKNOWLEDGMENTS

S.T. is grateful to the Imperial College London for funding
his PhD through the Presidents PhD Scholarship scheme.

REFERENCES

[1] S. S. Gill, X. Ouyang, and P. Garraghan, “Tails in the cloud: A sur-
vey and taxonomy of straggler management within large-scale
cloud data centres,” J. Supercomput., vol. 76, pp. 1–40, 2020.

[2] H. Xu and W. C. Lau, “Optimization for speculative execution in
big data processing clusters,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 2, pp. 530–545, Feb. 2016.

[3] M. Liaqat, A. Naveed, R. L. Ali, J. Shuja, and K.-M. Ko,
“Characterizing dynamic load balancing in cloud environments
using virtual machine deployment models,” IEEE Access, vol. 7,
pp. 145767–145776, 2019.

[4] S. Mustafa et al., “SLA-aware best fit decreasing techniques for
workload consolidation in clouds,” IEEE Access, vol. 7, pp.
135256–135267, 2019.

[5] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMET-
RICS Perform. Eval. Rev., vol. 43, no. 3, pp. 7–11, 2015.

[6] E. Coppa and I. Finocchi, “On data skewness, stragglers, and
mapreduce progress indicators,” in Proc. ACM Symp. Cloud Com-
put., 2015, pp. 139–152.

[7] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce
framework for spatial data,” in Proc. IEEE Int. Conf. Data Eng., 2015,
pp. 1352–1363.

[8] G.Ananthanarayanan,M. C.-C.Hung, X. Ren, I. Stoica, A.Wierman,
and M. Yu, “Grass: Trimming stragglers in approximation analy-
tics,” inProc. Netw. Syst. Des. Implementation, 2014, pp. 289–302.

[9] R. Bitar, M. Wootters, and S. El Rouayheb , “Stochastic gradient
coding for straggler mitigation in distributed learning,” IEEE J.
Sel. Areas Inf. Theory, May. 2020.

[10] S. S. Gill et al., “Holistic resource management for sustainable and
reliable cloud computing: An innovative solution to global
challenge,” J. Syst. Softw., vol. 155, pp. 104–129, 2019.

[11] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” inProc. IEEE Infocom, 2012, pp. 945–953.

[12] D. Lindsay, S. S. Gill, and P. Garraghan, “Prism: An experiment
framework for straggler analytics in containerized clusters,” in Proc.
Int.Workshop Container Technol. Container Clouds, 2019, pp. 13–18.

[13] P. Garraghan et al., “Emergent failures: Rethinking cloud reliability
at scale,” IEEECloud Comput., vol. 5, no. 5, pp. 12–21, Sep./Oct. 2018.

[14] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for
fast response times in parallel computation,” in Proc. ACM SIG-
METRICS Perform. Eval. Rev., 2014, pp. 599–600.

[15] U. Kumar and J. Kumar, “A comprehensive review of straggler
handling algorithms for mapreduce framework,” Int. J. Grid .Dis-
trib. Comput., vol. 7, no. 4, pp. 139–148, 2014.

[16] M. F. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitiga-
tion: Which clones should attack and when?,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 45, no. 2, pp. 12–14, 2017.

[17] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz, “Wrangler:
Predictable and faster jobs using fewer resources,” in Proc. ACM
Symp. Cloud Comput, 2014, pp. 1–14.

[18] F. Farhat, D. Z. Tootaghaj, Y. He, A. Sivasubramaniam,M. Kandemir,
and C. R. Das, “Stochastic modeling and optimization of stragglers,”
IEEETrans. Cloud Comput., vol. 6, no. 4, pp. 1164–1177, 2016.

[19] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. Netw. Syst.
Des. Implementation, 2012, pp. 2–2.

[20] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica,
“Effective straggler mitigation: Attack of the clones,” in Proc.
Netw. Syst. Des. Implementation, 2013, pp. 185–198.

[21] S. S. Gill et al., “Transformative effects of IoT, blockchain and arti-
ficial intelligence on cloud computing: Evolution, vision, trends
and open challenges,” Internet Things, vol. 8, 2019, Art. no. 100118.

[22] Y. Lu, L. Liu, J. Panneerselvam, B. Yuan, J. Gu, and N. Antonopou-
los, “A GRU-based prediction framework for intelligent resource
management at cloud data centres in the age of 5G,” IEEE Trans.
Cogn. Commun.Netw., vol. 6, no. 2, pp. 486–498, Jun. 2019.

[23] W. Fang, Z. Lu, J. Wu, and Z. Cao, “RPPS: A novel resource pre-
diction and provisioning scheme in cloud data center,” in Proc.
IEEE Int. Conf. Serv. Comput., 2012, pp. 609–616.

[24] S. Tuli et al., “HealthFog: An ensemble deep learning based smart
healthcare system for automatic diagnosis of heart diseases in
integrated IoT and fog computing environments,” Future Gerena-
tion Comput. Syst., vol. 104, pp. 187–200, 2020.

[25] S. S. Gill et al., “ThermoSim: Deep learning based framework for
modeling and simulation of thermal-aware resource management
for cloud computing environments,” J. Syst. Softw., vol. 166, 2020,
Art. no. 110596.

[26] S. Tuli, S. Poojara, S. N. Srirama, G. Casale, and N. Jennings,
“COSCO: Container orchestration using co-simulation and gradi-
ent based optimization for fog computing environments,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 1, pp. 101–116, Jan. 2021.

[27] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose , and R.
Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms,” Softw. Pract. Experience, vol. 41, no. 1, pp. 23–50, 2011.

[28] X. Ouyang, P. Garraghan, D. McKee, P. Townend, and J. Xu,
“Straggler detection in parallel computing systems through
dynamic threshold calculation,” in Proc. IEEE Int. Conf. Adv. Inf.
Netw. Appl., 2016, pp. 414–421.

[29] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments.” in Proc. Oper. Syst. Des. Implementation, 2008, pp. 29–42.

[30] A. Badita, P. Parag, and V. Aggarwal, “Optimal server selection
for straggler mitigation,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 709–721, Apr. 2020.

[31] M.A.Mahmoud,A.A. Soliman,A.H.A. Ellah, andR.M. El-Sagheer ,
“Estimation of generalized pareto under an adaptive type-ii progres-
sive censoring,” Intell. Inf.Manage., vol. 5, no. 03, 2013, Art. no. 73.

626 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

[32] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic
scheduling for stochastic edge-cloud computing environments
using A3C learning and residual recurrent neural networks,”
IEEE Trans. Mobile Comput., to be published, doi: 10.1109/
TMC.2020.3017079.

[33] Y. Zhu,W. Zhang, Y. Chen, andH.Gao, “A novel approach towork-
load prediction using attention-based LSTM encoder-decoder net-
work in cloud environment,” EURASIP J. Wireless Commun.
Netw., vol. 2019, no. 1, 2019, Art. no. 274.

[34] M. F. Aktaş and E. Soljanin, “Straggler mitigation at scale,” IEEE
Trans. Netw., vol. 27, no. 6, pp. 2266–2279, Dec. 2019.

[35] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” in Proc. Int. Conf. Artif. Neural
Netw. 1999, pp. 850–855.

[36] M. Lin, Z. Yao, and T. Huang, “A hybrid push protocol for resource
monitoring in cloud computing platforms,” Optik, vol. 127, no. 4,
pp. 2007–2011, 2016.

[37] J. Shuja, K. Bilal, E. Alanazi, W. Alasmary, and A. Alashaikh,
“Applying machine learning techniques for caching in edge net-
works: A comprehensive survey,” 2020, arXiv:2006.16864.

[38] B. Song, Y. Yu, Y. Zhou, Z. Wang, and S. Du, “Host load predic-
tion with long short-term memory in cloud computing,” J. Super-
comput., vol. 74, no. 12, pp. 6554–6568, 2018.

[39] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc.
Conf. Neural Inf. Process. Syst. 2017, pp. 1–4.

[40] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu,
“Straggler root-cause and impact analysis for massive-scale vir-
tualized cloud datacenters,” IEEE Trans. Services Comput., vol. 12,
no. 1, pp. 91–104, Jan./Feb. 2016.

[41] S. S. Gill, I. Chana, M. Singh, and R. Buyya, “Radar: Self-configur-
ing and self-healing in resource management for enhancing quality
of cloud services,” Concurrency Comput. Pract. Experience, vol. 31,
no. 1, 2019, Art. no. e4834.

[42] K. Park and V. S. Pai, “CoMon: A mostly-scalable monitoring sys-
tem for planetLab,” ACM SIGOPS Oper. Syst. Rev., vol. 40, no. 1,
pp. 65–74, 2006.

[43] W. Kim, A. Roopakalu, K. Y. Li, and V. S. Pai, “Understanding
and characterizing planetLab resource usage for federated net-
work testbeds,” in Proc. ACM SIGCOMM Conf. Internet Meas.
Conf., 2011, pp. 515–532.

[44] M.-C. Nita, F. Pop, M. Mocanu, and V. Cristea, “FIM-SIM: Fault
injection module for cloudSim based on statistical distributions,”
J. Telecommun. Inf. Technol., vol. 4, pp. 14–23, 2014.

[45] P. Zheng and B. C. Lee, “Hound: Causal learning for datacenter-
scale straggler diagnosis,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 2, no. 1, pp. 1–36, 2018.

[46] X. Li, X. Jiang, P. Garraghan, and Z. Wu, “Holistic energy and fail-
ure aware workload scheduling in cloud datacenters,” Future
Gener. Comput. Syst., vol. 78, pp. 887–900, 2018.

[47] Y. Kouki and T. Ledoux, “SLA-driven capacity planning for cloud
applications,” in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci.,
2012, pp. 135–140.

[48] B. Balis et al., “Holistic approach to management of IT infrastruc-
ture for environmental monitoring and decision support systems
with urgent computing capabilities,” Future Gener. Comput. Syst.,
vol. 79, pp. 128–143, 2018.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980.

Shreshth Tuli received the undergraduate
degree from the Department of Computer Sci-
ence and Engineering, Indian Institute of Technol-
ogy - Delhi, India. He is currently a president PhD
Scholar with the Department of Computing,
Imperial College London, U.K. He has was a visit-
ing research fellow with CLOUDS Laboratory,
School of Computing and Information Systems,
University of Melbourne, Australia. His research
interests include Internet of Things, fog comput-
ing, and deep learning.

Sukhpal S. Gill is currently a lecturer (assistant
professor) in cloud computing with the School of
EECS, Queen Mary University of London, U.K.
Prior to this, he was a research associate with
the School of Computing and Communications,
Lancaster University, U.K., and a postdoctoral
research fellow with CLOUDS Laboratory, Univer-
sity of Melbourne, Australia. His research interests
include cloud computing, fog computing, software
engineering, Internet of Things, and Big Data.

Peter Garraghan is currently a reader with the
School of Computing & Communications, Lancas-
ter University. His research interests include com-
plexity and emergent behaviour of massive-scale
distributed systems (Cloud computing and Internet
of Things) to propose design new techniques for
enhancing system dependability, resource man-
agement, and energy-efficiency. He has collabo-
rated internationally with the likes of Alibaba Group
andMicrosoft.

Rajkumar Buyya (Fellow, IEEE) is currently a
Redmond Barry distinguished professor and direc-
tor with Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, University of Melbourne,
Australia. He has authored more than 625 publica-
tions and seven textbooks including ”Mastering
Cloud Computing” published by McGraw Hill,
China Machine Press, and Morgan Kaufmann for
Indian, Chinese and international markets, respec-
tively. He is one of the highly cited authors in com-
puter science and software engineering worldwide
(h-index=150, g-index=322, 117,000+ citations).

Giuliano Casale was with the Department of
Computing, Imperial College London in 2010,
where he is currently a reader. He teaches and
does research in performance engineering and
cloud computing, topics on which he has auth-
ored or coauthored more than 100 refereed
papers. He was with several conferences in the
area of performance and reliability engineering,
such as ACM SIGMETRICS/Performance and
IEEE/IFIP DSN. He was the recipient of multiple
awards, recently the Best Paper Award at ACM

SIGMETRICS. He was with the editorial boards of IEEE Transactions on
Network and Service Management and ACM TOMPECS and as current
chair of ACM SIGMETRICS.

Nicholas R. Jennings is currently the vice-chan-
cellor and president of Loughborough University.
He is an internationally-recognised authority in
the areas of AI, autonomous systems, cyber-
security and agent-based computing. He is a
member of the U.K. Governments AI Council, the
governing body of the Engineering and Physical
Sciences Research Council, and chair with the
Royal Academy of Engineerings Policy Commit-
tee. Before Loughborough, he was the vice-pro-
vost for Research and Enterprise and professor

of Artificial Intelligence, Imperial College London, the UK’s first Regius
professor of computer science (a post bestowed by the monarch to rec-
ognise exceptionally high quality research) and the U.K. Governments
first chief scientific advisor for National Security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TULI ETAL.: START: STRAGGLER PREDICTION AND MITIGATION FOR CLOUD COMPUTING ENVIRONMENTS USING ENCODER LSTM... 627

Authorized licensed use limited to: University of Melbourne. Downloaded on February 25,2023 at 04:46:10 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2020.3017079
http://dx.doi.org/10.1109/TMC.2020.3017079

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

