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a b s t r a c t

The surge in demand for utilizing public Cloud resources has introduced many trade-offs between price,
performance and recently reliability. Amazon’s Spot Instances (SIs) create a competitive bidding option for
public Cloud users at lower prices without providing reliability on services. It is generally believed that SIs
reduce monetary cost to the Cloud users, however it appears from the literature that their characteristics
have not been explored and reported.We believe that characterization of SIs is fundamental in the design
of stochastic scheduling algorithms and fault tolerant mechanisms in public Cloud environments for the
spot market. In this paper, we have done a comprehensive analysis of SIs based on one year price history
in four data centers of Amazon’s EC2. For this purpose, we have analyzed all different types of SIs in terms
of spot price and the inter-price time (time between price changes) and determined the time dynamics
for spot price in hour-in-day and day-of-week. Moreover, we have proposed a statistical model that fits
well these two data series. The results reveal that we are able to model spot price dynamics as well as
the inter-price time of each SI by a mixture of Gaussians distribution with three or four components. The
proposed model is validated through extensive simulations, which demonstrate that our model exhibits
a good degree of accuracy under realistic working conditions.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Due to the surge in demand for using utility computing systems
like public Cloud resources, many trade-offs between price and
performance have emerged. One particular type of Cloud service,
which is known as Infrastructure-as-a-Service (IaaS) provides raw
computing with different capacity and storage in the form of
Virtual Machines (VMs) with various prices on a pay-as-you-go
basis. For instance, Amazon provides on-demand and reserved VM
instances, which are associated with a fixed set price [1]. However,
Amazon can increase or decrease these prices based on their own
local policy. There are 64 different types of instances with various
capacities and prices under two operating systems (i.e. 32 for Linux
and 32 for Windows) which are made available by Amazon in four
data centers as illustrated in Table 1 (sorted by their prices).1 In
this Table, the prices are given for the Linux operating system and
the instances labeled with ‘m1’, ‘m2’, and ‘c1’ are standard, high-
memory, and high-CPU instances, respectively.

In December 2009, Amazon released a new type of instances
called Spot Instances (SIs) to sell the idle time of Amazon’s EC2

∗ Corresponding author. Tel.: +61 2 9685 9181; fax: +61 2 9685 9245.
E-mail address: b.javadi@uws.edu.au (B. Javadi).

1 Amazon now has seven data centers around the world, but the four major data
centers are considered in this research.
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data centers [2]. The price of an SI, spot price, depends on the
type of instance as well as VM demand within each data center.
In fact, spot instances are an alternative to the other two classes of
instances which offer a low price but less reliable and competitive
bidding option for the public Cloud users. Therefore, another
aspect, reliability, has been added to the existing trade-offs tomake
utility computing systems more challenging than ever.

In order to utilize SIs, the Cloud users provide a bid which is
the maximum price to be paid for an hour of usage. Whenever the
current price of an SI is equal or less than the user bid, the instance
is made available to the user. If the price of an SI becomes higher
than the user’s bid, out-of-bid event (failure), the VM(s) will be
terminated by Amazon automatically and the user does not pay
for any partial hour. However, if the user terminates the running
VM(s), she has to pay for the full hour. Amazon charges users per
hour by the market price of the SI at the time of VM creation.

There are a number of works on how to utilize SIs to decrease
the monetary cost of utility computing for Cloud users [3–5].
However, a thorough statistical analysis and modeling of SIs have
not appeared in the literature, the focus of our research in this
study. In this paper, we provide a comprehensive analysis of all SIs
in terms of spot price and the inter-price time (time between price
changes) in four Amazon data centers (i.e. us-west, us-east, eu-
west, and ap-southeast). Moreover, we propose a statistical model
to capture the volatile spot prices in Amazon’s data centers. The
main contributions of this paper are as follows:

http://dx.doi.org/10.1016/j.future.2012.06.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
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B. Javadi et al. / Future Generation Computer Systems 29 (2013) 988–999 989
Table 1
Prices of on-demand instances in different data centers of Amazon (prices given in cents).

Instances us-west us-east eu-west ap-southeast EC2 compute unit Memory (GB) Storage (GB)

m1.small 9.5 8.5 9.5 9.5 1 1.7 160
c1.medium 19 17 19 19 5 1.7 350
m1.large 38 34 38 38 4 7.5 850
m2.xlarge 57 50 57 57 6.5 17.1 420
m1.xlarge 76 68 76 76 8 15 1690
c1.xlarge 76 68 76 76 20 7 1690
m2.2xlarge 114 100 14 114 13 34.2 850
m2.4xlarge 228 200 228 228 26 68.4 1690
• We provide statistical analysis for all SIs in Amazon’s EC2 data
centers. We also determine the time correlation in spot price in
terms of hour-in-day and day-of-week.
• We model spot price and the inter-price time of each SI

with a mixture of Gaussians distribution. A model calibration
algorithm is also proposed to deal with an observed price trend
in the real price history.
• We validate and verify the accuracy of our proposed model

through simulation under realistic working conditions.

We believe that results of this research will be significantly
helpful in the design of stochastic scheduling algorithms and
fault tolerant mechanisms (e.g. checkpointing and replication
algorithms) for the spot market in public Cloud environments.
In addition, although Amazon is the only provider of SIs at the
moment, some research has been conducted to analyze the free
computing resource markets [6,7]. So, this model can be used by
other resource providers that look to offer such a service in the near
future.

The paper is structured as follows. In Section 2, we describe the
processes that we model in this paper. We discuss related work
in Section 3. We examine the pattern of spot price in Section 4.
In Section 5, we present the global statistics for all SIs. We then
illustrate distribution fitting for spot price and the inter-price time
in Section 6. In Section 7, we propose an algorithm for model
calibration. We discuss the validation of the proposed models
through simulation in Section 8. In Section 9, we summarize our
contributions and describe future directions.

2. Modeling approach

In this section, we describe two variables that we are going
to analyze and model. In Amazon’s data centers, SIs have two
variables (i.e. spot price and inter-price time) specified by the
Cloud provider and one variable (user’s bid) determined by users.
In this study, we focus on the analysis and modeling of spot price
and the inter-price time as two highly volatile system variables.
These variables are illustrated in Fig. 1 where Pi is the price of an
SI at time ti. So, the inter-price time is defined as Ti = ti+1 − ti.
Therefore, the time series of spot price (Pi) and the inter-price time
(Ti) are analyzed and modeled in the following sections.

The traces that we use in this study are one year price history of
all Amazon SIs from the first of February 2010–mid-February 2011.
We use the first 10 months (Feb-2010–Nov-2010) in the modeling
process. These 10-month traces along with the last 2 months are
used for the model validation purpose. The spot price history is
freely provided by Amazon per SI for each data center and also
available through other third parties such as [8]. We do not use
data prior to February 2010 due to an algorithm issue reported
in [9] for prices.Moreover,we only use the SIswith Linux operating
systems from all data centers. Due to the similarity of the results,
we present our findings for only two data centers (i.e. eu-west and
us-east). Interested readers can refer to the extended version of
this paper [10] for more discussion about other data centers.
Fig. 1. Spot price and the inter-price time of Spot Instances.

3. Related work

Although the current literature shows that SIs are a good alter-
native for on-demand or reserve instances in terms of monetary
cost, the characteristics of SIs are still not clear to users and re-
searchers in the community.Wee [11] considered SIs as computing
resources with real-time pricing. Focusing on the real price history
of SIs, this paper concluded that still users need more monetary
incentive to shift their workload into SIs. Another work that inves-
tigated the behavior of spot prices is presented in [12], where the
authors used reverse engineering to construct a price model based
on the Auto-Regressive (AR) model for SIs.

Our work is different in several aspects. We provide statistical
analysis of all SIs and study their behavior in terms of hour-in-
day and day-of-week. Moreover, we propose to devise a statistical
model for spot price as well as inter-price time. In addition, the
simulation results reveal that we are able to model behavior of SIs
by a mixture of Gaussians with three or four components.

In the following, we briefly review the other related work
mainly investigating the usage of SIs to decrease themonetary cost
of utility computing. Yi et al. [3,4] introduced some checkpointing
and migration mechanisms for reducing the cost of SIs. They
used the real price history of EC2 spot instances and showed
how the adaptive checkpointing and migration schemes could
decrease themonetary cost and improve the job completion times.
Chaisiri et al. [13] proposed two provisioning algorithms based on
stochastic programming, robust optimization, and sample-average
approximation to optimized the provisioning cost for long-term
and short-term planning. Moreover, in [14], a resource allocation
policy to run deadline constrained jobs on SIs in a cost-effective
manner is proposed.

In [15], a decision model for the optimization of performance,
cost and reliability under SLA constraints while using SIs is
proposed. They used the real price history and workload models
to demonstrate how their proposed model can be used to bid
optimally on SIs to reach different objective with desired levels of
confidences. Mazzucco and Dumas [16] considered a case where a
web service is deployed on SIs and proposed a bidding schema and
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(a) Hour-in-day. (b) Day-of-week.

Fig. 2. Patterns of spot price in eu-west data center.
resource allocation policies to optimize the web service provider’s
revenues.

Chohan et al. [17] proposed a method to utilize the SIs to speed
up the MapReduce tasks. They provided a Markov chain to predict
the expected lifetime of an SI. They concluded that having a fault
tolerantmechanism is essential to runMapReduce jobs on SIs. Also,
in [5], the authors proposed a hybrid Cloud architecture to lease
the SIs to manage peak loads of a local cluster. They proposed
some provisioning policies and investigated the utilization of SIs
compared to on-demand instances in terms of monetary cost
saving and number of deadline violations.

Zhang et al. [18,19] investigated the dynamic market control
problem in a single cloud provider motivated by the SIs offered
by Amazon’s EC2. They used static and dynamic optimizations for
resource allocation tomaximized the provider’s revenue as well as
user satisfactions. Rahman et al. [20] proposed resource allocation
for Cloud users based on financial option theory to reduce the risk
of dynamic price in spot markets. They showed that fluctuation in
Amazon’s SIs aremuch lower than expected values in a freemarket.
This possibly is because of less users for SIs in comparison to other
types of reliable resources such as on-demand instances.

Statistical modeling has been widely used in the characteri-
zation of computer systems’ workloads and failures [21–23]. Al-
thoughwe apply the same techniques, the characteristics of SIs are
far from the behavior of the workloads and failures, so require a
comprehensive analysis.

4. Patterns of spot price

In this section, we examine hour-in-day and day-of-week time
dynamics for the price of different SIs in eu-west and us-east data
centers.Weuse the same approach as [24] to showhow the price of
one SI changes each hour in the day or each day of the week. As we
have the price history in GMT time zone,we adjusted the local time
for the time zone. This adjustment could reveal the dependency of
spot price on the local time of a data center.

In Figs. 2(a) and 3(a), we create eight 3-h time slots per day, and
determine the average price of each SI in each time slot over all
days. Then, we normalized this average by the maximum average
price over all days. Note that the frequency of 3-h sampling could
be increased to 1-h sampling with 24 time slots in a day. However,
it would only increase the sample size without shedding much
light on the price dynamics, since spot prices in Amazon’s data
centers change atmost every 2–3 h (see Section 5). In these figures,
we can observe that the y-axis is in the range of [0.98 1.0] where
there is an increasing trend over the first half of each day ([0 12])
and a decreasing trend in spot price during the second half of each
day for all SIs in each data center.

In Figs. 2(b) and 3(b), we applied the same procedure to obtain
the average price over seven 24-h time slots within a week. The
y-axis in these figures has a wider range of [0.91 1.0] for eu-west
and [0.95 1.0] for us-east data centers.2 As it is observable from this
plot, we can not find any specific pattern for spot price in eu-west,
except the decreasing prices on weekends. However, for other
Amazon’s data centers such as us-east, we see more clear patterns
in day of the week where on Tuesday we have the maximum price
for almost all SIs in those data centers. Moreover, the lowest price
are on Saturday, but on Sunday we again observe increasing price
for all SIs.

5. Global statistics and analysis

In the following, we analyze the price history of different SIs
in eu-west and us-east data centers. It has been shown that spot
prices tend to be random rather than market-driven [12]. So,
analysis of global statistics can reveal some basic facts about SIs.3

We inspect the basic statistics of the traces in terms of spot
price in Tables 2 and 3; and in terms of the inter-price time in
Tables 4 and 5. The statistics in the tables aremean, trimmedmean
(the mean value after discarding 10% of extreme values), median,
standard deviation (Std), coefficient of variance (CV), interquartile
range (IQR), maximum, minimum, skewness (the third moment),
kurtosis (the fourth moment) and number of samples.

These tables show three types of descriptive statistics. Statistics
of the first type (mean, median, trimmed mean) reveal the central
tendency of the distributions. The trimmed mean is a useful
estimator of the central tendency as it is less sensitive to outliers.
Statistics of the second type (CV, IQR, minimum,maximum) reflect
the spread of the distributions. Statistics of the third type (kurtosis,
skewness) represent the shape of the distributions.

First of all, we find that on average the price of SIs can be as
low as 44% and 38% of on-demand instances for eu-west and us-
east data centers, respectively. This expresses that there are some
opportunities in reducing monetary cost of utility computing at

2 For other data centers, this range is ([0.95 1.0]).
3 We conduct all of our statistical analysis using Matlab R2010b on a 32-bit

Core2Duo 3.00GHz desktopwith 3GB of RAM.Weusewhen possible standard tools
provided by the Statistical Toolbox. Otherwise, we implement or modify statistical
functions ourselves.
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(a) Hour-in-day. (b) Day-of-week.

Fig. 3. Patterns of spot price in us-east data center.
Table 2
Statistics for spot price in the eu-west data center (values given in cents).

Instances Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No

m1.small 4.00 4.00 4.00 0.19 0.05 0.20 9.50 3.80 9.44 242.97 3702
c1.medium 8.00 8.00 8.00 0.27 0.03 0.40 10.10 7.60 0.28 3.91 3812
m1.large 16.04 16.02 16.10 0.85 0.05 1.00 50.00 15.20 21.55 792.41 3875
m2.xlarge 24.04 24.03 24.10 1.03 0.04 1.40 57.10 22.80 12.91 387.69 3763
m1.xlarge 32.05 32.01 32.10 1.60 0.05 2.00 76.00 30.40 15.34 415.47 3917
c1.xlarge 32.04 32.03 32.10 1.07 0.03 2.00 45.00 30.40 0.54 8.27 3658
m2.2xlarge 56.04 56.04 56.20 1.83 0.03 3.42 76.00 53.20 0.25 4.99 4001
m2.4xlarge 112.08 112.08 112.50 3.62 0.03 6.80 150.00 106.40 0.21 4.55 3912
Table 3
Statistics for spot prices in the us-east data center (values given in cents).

Instances Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No

m1.small 3.16 3.02 3.10 0.76 0.24 0.20 15.00 2.90 6.24 50.16 3279
c1.medium 6.07 6.01 6.00 0.53 0.09 0.40 17.00 5.70 7.59 90.49 3643
m1.large 12.98 12.15 12.10 4.47 0.34 0.70 68.00 11.40 6.62 60.29 2034
m2.xlarge 17.78 17.05 17.10 4.87 0.27 1.10 80.00 16.20 7.09 57.62 3524
m1.xlarge 24.18 24.05 24.10 2.56 0.11 1.50 100.00 22.80 22.03 599.91 3704
c1.xlarge 26.01 24.26 24.20 8.68 0.33 1.60 128.00 22.80 4.85 27.78 3600
m2.2xlarge 42.15 42.05 42.20 2.47 0.06 2.50 119.00 39.90 14.91 377.30 3790
m2.4xlarge 84.58 84.04 84.20 8.46 0.10 5.00 240.00 79.80 13.54 218.92 3790
Table 4
Statistics for the inter-price time in the eu-west data center (values given in hours).

Instances Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No

m1.small 1.96 1.61 1.35 2.66 1.35 0.30 109.08 0.02 19.94 727.54 3701
c1.medium 1.91 1.59 1.34 1.86 0.97 0.32 22.81 0.02 4.53 30.63 3811
m1.large 1.88 1.57 1.33 1.79 0.95 0.31 30.94 0.02 5.02 42.02 3874
m2.xlarge 1.79 1.53 1.34 1.56 0.87 0.30 22.83 0.02 4.93 38.54 3762
m1.xlarge 1.86 1.58 1.34 1.78 0.96 0.31 38.20 0.02 7.34 101.43 3916
c1.xlarge 1.99 1.56 1.34 7.22 3.63 0.30 378.19 0.02 44.38 2169.40 3657
m2.2xlarge 1.82 1.55 1.33 1.60 0.88 0.31 29.02 0.02 5.11 45.75 4000
m2.4xlarge 1.86 1.58 1.34 1.71 0.92 0.31 26.51 0.02 5.20 44.28 3911
Table 5
Statistics for the inter-price time in the us-east data center (values given in hours).

Instances Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No

m1.small 2.22 1.66 1.36 3.53 1.59 0.32 76.59 0.78 9.21 130.29 3278
c1.medium 2.00 1.65 1.37 2.09 1.05 0.31 49.91 1.00 6.91 98.48 3642
m1.large 3.58 2.20 1.44 18.60 5.20 1.54 657.29 1.00 26.29 824.35 2033
m2.xlarge 1.91 1.58 1.34 2.02 1.06 0.31 36.26 1.00 6.11 61.19 3523
m1.xlarge 1.96 1.62 1.34 3.05 1.55 0.32 145.98 0.58 30.51 1370.41 3703
c1.xlarge 2.02 1.66 1.35 3.38 1.67 0.33 171.62 1.00 35.74 1758.12 3599
m2.2xlarge 1.92 1.62 1.34 1.94 1.01 0.31 50.40 1.01 8.42 143.99 3789
m2.4xlarge 1.92 1.62 1.35 1.76 0.92 0.32 23.02 1.00 4.50 30.98 3789
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(a)m1.small. (b) c1.medium. (c)m1.large. (d)m2.xlarge.

(e)m1.xlarge. (f) c1.xlarge. (g)m2.2xlarge. (h) m2.4xlarge.

Fig. 4. Probability density functions of spot price for all SIs in the eu-west data center.
the cost of unreliability. Moreover, the maximum price of some
SIs (like m1.large) is bigger than the price of corresponding on-
demand instance (especially in the us-east data center). Since us-
east is the cheapest data center, more user demand increases the
fluctuation in spot prices. (The higher value of CV in spot prices in
us-east confirms this variability.) Thus, even if the users’ bid is as
high as the on-demand prices, we may still have a probability of
out-of-bid events.

The results in these tables reveal that the ratios between the
mean and the median for spot price and the inter-price time of
SIs are close to 1 for each trace. This indicates that a Gaussian
distribution might be a good option for the model. However,
the skewness and kurtosis values show that the underlying
distributions are right skewed and short tailed. Therefore, a
Gaussian distributionmaynot be a representativemodel to use and
a better distribution is in order.

Additionally, we can observe that the inter-price time is more
variable than spot price due to higher values of coefficient of
variance. Also, analysis of the trimmed mean confirmed that
inter-price time has greater variability. Therefore, we may need
distributions with higher degrees of freedom, to model the inter-
price time for these traces. It is worth noting that the minimum
inter-price time is almost one hour in all data centers except eu-
west which is about a few minutes and can be seen in Table 4.
Moreover, in eu-west and us-east data centers, the set prices of SIs
are stable on average for 2–3 h. This observation is valid for other
data centers as well [10]. This is the justification of 3-h time slots
to examine patterns of spot price in Figs. 2(a) and 3(a).

6. Distribution fitting

After global statistical analysis, we first inspect the Probability
Density Function (PDF) of spot price and the inter-price time. Then,
we conduct parameter fitting for the Mixture of Gaussians (MoG)
distribution by the expectation maximization (EM) algorithm to
model both time series. We considered other distributions, such
as Weibull, Normal, Log-normal and Gamma distributions as well.
However, the mixture of Gaussians distribution shows better fit
with respect to the others [10]. In this section, we show the process
of fitting for the eu-west data center to avoid presenting similar
figures and plots.Wepresent the final results for both selected data
centers.
6.1. Probability densities

The PDFs of spot price of each SI in the eu-west data center
are depicted in Fig. 4. We can easily observe bi-modality in the
probability density functions. Moreover, the price distribution of
all SIs, except m1.small, are almost symmetric. The exception for
m1.small is possibly because of diverse usage patterns of this
instance as the cheapest resource in each data center.

The PDFs of the inter-price time for each SI in eu-west are
represented in Fig. 5. Obviously, there is a single dominant mode
(peak) in the density functions when compared to (nearly) equal
peaks in the PDFs of spot price. Most SIs have the peak around
two hours, which confirms the results of the previous section (see
Mean column in Table 4). The reason for the very sharp peak
in these density functions is investigated in Section 7. Observing
the plotted density functions of both time series, our decision to
propose amixture of Gaussians distribution as a good candidate for
approximating such density shapes is further strengthened. This
is also confirmed by Li et al. [25] where they used a mixture of
Gaussians distribution to model amulti-modal density function.

6.2. Parameter estimation and goodness of fit tests

In this section, we conduct parameter fitting for the mixture
of Gaussians distribution with k components, which is defined as
follows:

cdf (x; k, p⃗, µ⃗, σ⃗ 2) =

k
i=1

pi
2


1+ erf


x− µi

σi
√
2


(1)

where µ⃗, σ⃗ 2, and p⃗ are the vectors of mean, variance and proba-
bility of components with k items. Also, erf () is the error function,
which is defined as follows:

erf (x) =
2
√

π

 x

0
e−t

2
dt. (2)

To maximize the data likelihood in terms of parameters µ⃗

and σ⃗ 2 where k is given a priori, we adopt the expectation
maximization (EM) algorithm, which is a general maximum
likelihood estimation [21]. Parameter fittingwas done usingModel
Based Clustering (MBC), which was introduced by Fraley and
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(a)m1.small. (b) c1.medium. (c) m1.large. (d)m2.xlarge.

(e)m1.xlarge. (f) c1.xlarge. (g)m2.2xlarge. (h)m2.4xlarge.

Fig. 5. Probability density functions of the inter-price time for all SIs in the eu-west data center.
Raftery [26]. MBC is a methodological framework that can be used
for data clustering aswell as (multi)variate density estimation. One
assumption is that data has several components each of which is
generated by a probability distribution. Model Based Clustering
uses Bayesianmodel selection to choose the bestmodel in terms of
number of components [25]. In contrast, we use the goodness of fit
(GOF) tests to determine the best model as we have an estimation
for the number of components in the model. We choose the
number of components between 2 and 4 (2 ≤ k ≤ 4) based on the
observation of the density functions. We measured the goodness
of fit of the resulting models using a visual method (i.e. standard
probability–probability (PP) plots) and Kolmogorov–Smirnov (KS)
and Anderson–Darling (AD) tests [21] as quantitative metrics.

After parameter estimation, we must examine the quality of
each fit through GOF tests. First of all, we present the graphical
results of distribution fitting for spot price and the inter-price time
of all SIs in Figs. 6 and 7 for the eu-west data center, respectively.
In these plots, the closer the plots are to the line y = x, the better
the fit. In each plot the x-axis is the empirical quantiles while the
y-axis is the fitted quantiles. Based on these figures, a mixture of
Gaussians distribution with three or four components can fit the
spot price and the inter-price time of SIs in the eu-west data center.
The only instance which is hard to fit, especially in terms of spot
price, is them1.small instance.

To bemore quantitative, we also report the p-values of two GOF
tests (i.e. KS and AD tests). We randomly select a subsample of 50
from each trace, compute the p-values iteratively 1000 times and
finally obtain the average p-value. Thismethod is similar to the one
used by the authors in [27]. Moreover, in all cases the coefficient of
variance is less than one (i.e., CV < 1), so the average value is a
representative estimate.

The results of GOF tests are listed in Tables 6 and 7 for spot price
in eu-west and us-east data centers. For the inter-price time, the
p-values are presented in Tables 8 and 9 in eu-west and us-east,
respectively. Moreover, in each row the best fits are highlighted.
In some cases, we have two winners as there is one best fit per
GOF test. These quantitative results strongly confirm the graphical
results of the PP-plots. The p-values in the first row of Tables 6 and
7 express that the spot price of them1.small instance is hard to fit,
even with four components.

The set of parameters forMoGdistributions is listed in Tables 10
and 11 for spot price and the inter-price time for k = 3 in eu-west
and us-east data centers, respectively. It is worth noting that in
Table 6
p-values resulting from KS and AD tests for spot price in eu-west.

Instances MoG (k = 2) MoG (k = 3) MoG (k = 4)

m1.small 0.016 0.791 0.017 0.789 0.053 0.803

c1.medium 0.211 0.779 0.217 0.791 0.224 0.790

m1.large 0.113 0.678 0.319 0.752 0.354 0.754

m2.xlarge 0.139 0.616 0.356 0.721 0.415 0.734

m1.xlarge 0.134 0.570 0.369 0.708 0.431 0.706

c1.xlarge 0.394 0.681 0.444 0.705 0.421 0.707

m2.2xlarge 0.420 0.648 0.469 0.682 0.450 0.672

m2.4xlarge 0.429 0.617 0.463 0.637 0.476 0.653

Table 7
p-values resulting from KS and AD tests for spot price in us-east.

Instances MoG (k = 2) MoG (k = 3) MoG (k = 4)

m1.small 0.000 0.732 0.000 0.736 0.000 0.727

c1.medium 0.056 0.774 0.150 0.796 0.147 0.797

m1.large 0.158 0.726 0.157 0.723 0.329 0.763

m2.xlarge 0.132 0.697 0.138 0.690 0.126 0.693

m1.xlarge 0.142 0.634 0.138 0.633 0.142 0.627

c1.xlarge 0.180 0.669 0.187 0.673 0.187 0.673

m2.2xlarge 0.169 0.553 0.433 0.693 0.453 0.699

m2.4xlarge 0.169 0.464 0.181 0.470 0.181 0.467

the list of parameters, we just report two items of parameter p⃗,
as the last item in this vector can be computed using the others
(i.e. pk = 1−

k−1
i=1 pi).

As the number of parameters in the MoG distribution is 3k+ 1
(see Eq. (1)), we have a trade-off between accuracy and complexity
of the model. With fewer components, the analysis becomes
simpler that gives reasonably good fit to spot price and inter-price
time with a compromise of accuracy to some extent. This would
significantly help in understanding the data series on the first
step. With this understanding a model to better fit the data series
with many components can be designed. Hence, for the sake of
simplicity and homogeneity, in the rest of this paperwe choose the
model with three components (k = 3) for both spot price and the
inter-price time for further analysis. The set of parameters forMoG
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(a)m1.small. (b) c1.medium.

(c)m1.large. (d) m2.xlarge.

(e)m1.xlarge. (f) c1.xlarge.

(g) m2.2xlarge. (h) m2.4xlarge.

Fig. 6. PP-plots of spot price in eu-west for the mixture of Gaussians (k = 2, k = 3, k = 4). X-axis: empirical quantiles, and Y -axis: fitted quantiles.
Table 8
p-values resulting from KS and AD tests for inter-price time in eu-west.

Instances MoG (k = 2) MoG (k = 3) MoG (k = 4)

m1.small 0.347 0.476 0.415 0.592 0.489 0.627

c1.medium 0.382 0.546 0.390 0.566 0.380 0.566

m1.large 0.390 0.552 0.387 0.573 0.400 0.574

m2.xlarge 0.389 0.556 0.393 0.566 0.405 0.585

m1.xlarge 0.369 0.526 0.391 0.564 0.406 0.581

c1.xlarge 0.221 0.319 0.399 0.561 0.467 0.602

m2.2xlarge 0.376 0.532 0.426 0.570 0.463 0.610

m2.4xlarge 0.368 0.529 0.383 0.569 0.395 0.573

distributions for spot price and the inter-price time for 2 ≤ k ≤ 4
in all data centers is reported in [10].

7. Model calibration

In this section, we look into the time evolution of spot price
and the inter-price time, which potentially can lead us to obtain
a more accurate model. For this purpose, we examine the scatter
plot of spot price and the inter-price time during February 2010
to November 2010. We just present the plots for the m2.4xlarge
instance, as the results are consistent for other instance types
within the data centers.

Fig. 8(a) depicts the scatter plot of spot price for m2.4xlarge in
the eu-west data center for the duration of the price history. As
can be seen in this figure, there is no clear correlation in spot price
Table 9
p-values resulting from KS and AD tests for inter-price time in us-east.

Instances MoG (k = 2) MoG (k = 3) MoG (k = 4)

m1.small 0.360 0.467 0.433 0.592 0.476 0.623

c1.medium 0.381 0.517 0.441 0.598 0.489 0.622

m1.large 0.004 0.052 0.329 0.508 0.411 0.595

m2.xlarge 0.370 0.528 0.373 0.563 0.464 0.617

m1.xlarge 0.272 0.389 0.401 0.569 0.391 0.562

c1.xlarge 0.240 0.341 0.396 0.570 0.460 0.597

m2.2xlarge 0.353 0.498 0.401 0.579 0.459 0.605

m2.4xlarge 0.381 0.537 0.434 0.569 0.402 0.578

where they are evenly distributed in a specific range (this range
depends on the type of instances). However, congestion of spot
price is increased after mid-July and this is the case for all SIs in the
eu-west data center. To confirm this observation, we examine the
scatter plot of the inter-price time for this SI in Fig. 8(b).Weobserve
that inter-price time become suddenly shorter after mid-July. That
means, the frequency of changing price is increased while the spot
price remains bounded within a small price range. The inspection
of other SIs within the data center reveals the same result. This is
also the reason for the very sharp peak in density functions of the
inter-price time in Fig. 5.

This trend is possibly due to some fine tuningsmade by Amazon
in their pricing algorithm. It isworth noting that the same issue has
been observed in other Amazon’s EC2 data centers oin different
dates. As illustrated in Fig. 9, this phenomenon is observable in
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(a)m1.small. (b) c1.medium.

(c)m1.large. (d)m2.xlarge.

(e)m1.xlarge. (f) c1.xlarge.

(g)m2.2xlarge. (h)m2.4xlarge.

Fig. 7. PP-plots of the inter-price time in eu-west for the mixture of Gaussians (k = 2, k = 3, k = 4). X-axis: empirical quantiles, and Y -axis: fitted quantiles.
Table 10
Parameters of the mixture of Gaussians distributions for spot price and inter-price time in eu-west.

Instances Price model (k = 3) Inter-price model (k = 3)
p⃗ µ⃗ σ⃗ 2 p⃗ µ⃗ σ⃗ 2

m1.small 0.003 0.003 5.216 5.216 3.997 1.670 1.670 0.020 0.178 0.028 3.474 11.536 1.292 2.308 120.051 0.022
c1.medium 0.443 0.276 8.018 8.292 7.703 0.045 0.006 0.006 0.807 0.090 1.279 6.452 2.876 0.022 12.435 0.528
m1.large 0.492 0.505 15.556 16.470 24.401 0.059 0.048 114.879 0.068 0.126 6.793 3.040 1.276 13.803 0.940 0.022
m2.xlarge 0.445 0.001 23.264 53.500 24.643 0.109 12.960 0.135 0.824 0.066 1.284 2.506 5.166 0.022 0.035 8.192
m1.xlarge 0.457 0.002 31.010 53.803 32.848 0.184 326.523 0.249 0.793 0.177 1.283 3.310 8.356 0.022 1.864 29.730
c1.xlarge 0.261 0.243 33.188 30.756 32.057 0.072 0.058 0.722 0.811 0.187 1.286 4.048 84.430 0.022 5.341 15636.817
m2.2xlarge 0.492 0.252 56.119 53.784 58.100 1.813 0.157 0.216 0.405 0.399 1.155 1.398 4.044 0.007 0.008 6.795
m2.4xlarge 0.263 0.249 116.126 107.609 112.183 0.898 0.660 7.061 0.063 0.137 6.705 3.001 1.279 13.524 0.863 0.022
Table 11
Parameters of the mixture of Gaussians distributions for spot price and inter-price time in us-east.

Instances Price model (k = 3) Inter-price model (k = 3)
p⃗ µ⃗ σ⃗ 2 p⃗ µ⃗ σ⃗ 2

m1.small 0.024 0.952 6.009 3.012 6.009 3.402 0.009 3.402 0.164 0.043 3.581 13.935 1.301 2.638 120.212 0.025
c1.medium 0.439 0.537 5.808 6.167 8.726 0.007 0.011 2.935 0.780 0.145 1.301 2.954 7.379 0.023 0.814 20.600
m1.large 0.596 0.094 11.979 22.345 12.066 0.147 114.857 0.148 0.023 0.389 54.787 3.976 1.277 11982.593 4.795 0.022
m2.xlarge 0.461 0.504 17.020 17.020 38.737 0.299 0.299 209.027 0.147 0.814 3.508 1.282 9.249 1.809 0.023 27.356
m1.xlarge 0.008 0.439 41.511 24.045 24.023 425.466 0.591 0.593 0.778 0.015 1.278 13.908 3.655 0.022 353.873 3.005
c1.xlarge 0.071 0.328 51.722 24.064 24.028 340.120 0.594 0.593 0.759 0.016 1.280 14.298 3.651 0.021 459.583 3.196
m2.2xlarge 0.444 0.549 40.715 43.104 61.120 0.308 0.462 334.756 0.041 0.778 8.230 1.278 3.230 29.753 0.021 1.354
m2.4xlarge 0.594 0.007 83.823 166.323 84.275 7.063 2453.527 6.942 0.218 0.398 4.194 1.167 1.407 7.461 0.008 0.007
us-east at the end of July 2010 for m2.4xlarge instances. Also, for
us-west and ap-southeast data centers this change happened in
January 2011 (figures are plotted in [10]).

Focusing on the scatter plot of the inter-price time (MoGmodel
for k = 3) presented in Fig. 8(b), we can see that after mid-July
only one component (i.e. component 3) remains and the other
components collapsed to a small band. As this observation is
consistent over all SIs, we propose a model calibration algorithm
(Algorithm 1) to find the date of collapse (which is called the
calibration date) as well as the remaining component(s).
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(a) Scatter plot of spot price form2.4xlarge. (b) Scatter plot along with the components’ distribution of the inter-price time
form2.4xlarge.

Fig. 8. Scatter plot of spot price and inter-price time form2.4xlarge in eu-west.
(a) Scatter plot of spot price form2.4xlarge. (b) Scatter plot along with the components’ distribution of the inter-price time
for m2.4xlarge.

Fig. 9. Scatter plot of spot price and inter-price time for m2.4xlarge in us-east.
The algorithm needs the trace of the inter-price time of an SI
(Traceinst ) and the number of components (k). The result of the
mixture of Gaussians model with k components is

−−→
index. Also,

−−→
date is a vector, each element of which corresponds to each item
of
−−→
index. At first, the algorithm computes the probability of each

component in each month in the whole trace and after that finds a
list (
−→
Qm) where the probability of one or more components is less

than q0 (lines 4–8). q0 is a threshold value and we define it as low
as 0.01 (i.e. q0 = 0.01). The components that are not in this list
are remaining components (

−−−→
RCmps in line 10). The first month in

the list of
−→
Qm is the calibration month, called m (line 11). Finally,

the last occurrence of the component(s) in month m would be the
calibration date (CalDate), which is obtained in lines 13–19.

The results of applying this algorithm for all SIs in eu-west and
us-east data centers are presented in Table 12where all calibration
dates are in July. The remaining components can be inspected in
the fifth column (p⃗ of the inter-price time model) of Tables 10
and 11, where the component(s) with higher probability remain(s)
beyond the calibration date. For instance, the third component
of the inter-price time model for m2.4xlarge in eu-west with
probability of 0.8 (1− 0.063− 0.137) remains after 15 July where
the mean and variance are 1.279 and 0.022 h, respectively. The
graphical demonstration of Fig. 8(b) can confirm the correctness
of this algorithm, where component 3 implies a cluster around the
mean value of 1.279 h.

The last step of the model calibration is probability adjustment
where the probability of remaining component(s) must be scaled
up to one. This adjustment can be done by the following formula:

pj =
pj
∀i

pi
i, j ∈
−−−→
RCmps. (3)

In other words, in the calibrated model for each SI, we just change
the probability of the remaining component(s) after the calibration
date. In the following section, we investigate the accuracy of the
calibrated model with respect to the real price history as well as
the non-calibrated model.
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Algorithm 1:Model Calibration Algorithm
Input: Traceinst , k
Output: CalDate,

−−−→
RCmps

1 Ts ← Traceinst .start.time;
2 Te ← Traceinst .end.time;
3 n← Sizeof (Traceinst);

4
−−→
index← (c1, c2, . . . , cn) ci ∈ {1, . . . , k};

5
−−→
date← (d1, d2, . . . , dn) di ∈ {Ts . . . Te};

6 qa,b ← probability of component a in month b;

7
−→
Q ←


qa,b|a ∈ {1, . . . , k}, b ∈ {Ts . . . Te}


;

8
−→
Qm ← {qf ,e|qf ,e < q0, qf ,e ∈

−→
Q };

9
−−→
Cmps← {g|qg,h ∈

−→
Qm};

10
−−−→
RCmps← {1, . . . , k} −

−−→
Cmps ;

11 m← min{h|qg,h ∈
−→
Qm};

12 //Traceinst(m) is the trace for month m;
13 Tms ← Traceinst(m).start.time;
14 Tme ← Traceinst(m).end.time;
15 z ← Sizeof (Traceinst(m));

16
−−−→
Sindex← (c ′1, c

′

2, . . . , c
′
z) c ′i ∈ {1, . . . , k};

17
−−→
Sdate← (d′1, d

′

2, . . . , d
′
z) d′i ∈ {Tms . . . Tme };

18 t ← max{rl|
−−−→
Sindex(rl) == g, l ∈ {1, . . . , z}};

19 CalDate←
−−→
Sdate(t);

Table 12
The results of model calibration in eu-west and us-east (k = 3).

Instances Calibration dates Remaining components
eu-west us-east eu-west us-east

m1.small 24-July 25-July 3 1, 3
c1.medium 15-July 25-July 1 1
m1.large 15-July 26-July 3 2, 3
m2.xlarge 13-July 27-July 1 2
m1.xlarge 23-July 24-July 1 1
c1.xlarge 23-July 26-July 1 1, 3
m2.2xlarge 23-July 26-July 1, 2 2
m2.4xlarge 15-July 26-July 3 2, 3

8. Model validation

In order to validate the proposed model, we implemented
a discrete event simulator using CloudSim [28]. The simulator
has a general architecture of IaaS Cloud with the capability of
provisioning of on-demand and Spot Instances for input workload.
The simulator uses the model or the price history traces to run the
input workload. We consider the case where the user requests one
VM from one type of SI and runs whole jobs on that VM. The total
monetary cost of running the workload on an SI is the parameter
to be considered. In this section, we only present the results for
eu-west. The validation results are the same for us-east and other
data centers.

8.1. Simulation setup

The workload that we use in our experiments is the workload
traces from LCG Grid which is taken from the Grid Workloads
Archive [29]. We use the first 1000 jobs of this trace as the input
workload for the experiments which is long enough to reflect the
behavior of spot price for different SIs. We assume that one EC2
compute unit is the equivalent of a CPU core with capacity of 1000
MIPS.4 We also assume that all jobs can be executed on a single
VM, so we do not have any parallel jobs. As such, the selected

4 Amazon mentioned that one EC2 compute unit has equivalent CPU capacity to
a 1.0–1.2 GHZ 2007 Opteron or 2007 Xeon processor [2].
workload needs about twoweeks (≈400 h) to complete on a single
m1.small instance. For other instance types we consider the linear
speedupwith the computing capacity in terms of EC2 compute unit
which are listed in Table 1. For each experiment, the results are
collected for 50 simulation rounds.

Moreover, we assume a very high user’s bid for each simulation
(for example on-demand price) where we do not have any out-of-
bid event in the execution of the givenworkload.We use themodel
with three components (k = 3) for both spot price and the inter-
price time to show the trade off-between accuracy and complexity.
In our experiments, the results of the simulations are accuratewith
a confidence level of 95%.

8.2. Results and discussion

In the following, we present the results of two different sets
of experiments. First, we discuss the results of model validation
wherewe have the price history that was included in themodeling
process (i.e. Feb-2010–Nov-2010). Second, we report the results
from model validation using a new price history which was not
included in the modeling process. The new price history is from
December 2010 to mid-February 2011.

Fig. 10 shows themodel validation resultswhere the probability
density functions of the total monetary cost to run the given
workload have been plotted for all types of SIs. In each plot, Trace,
Model-Cal, and Model-nCal refer to the result of using the real
price history, the model after calibration and the model before
calibration, respectively. Based on these figures, the proposed
models match the real trace simulations with a high degree of
accuracy, especially for the calibrated models. As we can see in
these plots, in all cases the calibrated models are the better match
with the trace simulations. As we expect, there are discrepancies
in the model and trace simulation results for m1.small instance.
However, themean total cost for running the givenworkload for all
SIs is very accurate where the maximum relative error is less than
3% for both calibrated and non-calibrated model, respectively.

Additionally, we report the model validation results where
we use the new price history from December 2010 to mid-
February 2011 to see the quality of the models for the future
traces. The result of the simulations for the new price history are
plotted in Fig. 11. The results reveal that our models with three
components still conform to the trace simulation results, except
for the m1.small instance. As mentioned earlier, the spot price for
the m1.small instance is hard to fit and this is the reason for this
inaccuracy. This means that for m1.small, we should use a model
with more components (e.g. k = 4) to get better accuracy. The
calibrated models again match better with the trace simulations
in comparison to the non-calibrated models for all SIs. Besides, the
maximum relative error of themean total cost for all SIs is less than
4% for both calibrated and non-calibrated models. Therefore, the
proposed models are accurate enough for the new price history as
well.

9. Conclusions

We considered the problem of discovering models for Spot In-
stances in Amazon’s EC2 data centers for spot price and inter-price
time. The main motivation behind this is to explore characteriza-
tion of SIs that is essential in the design of stochastic scheduling
algorithms and fault tolerant mechanisms (e.g. checkpointing and
replication algorithms) in Cloud environments for the spotmarket.
We studied the price patterns of Amazon’s data centers for a one
year period and provided a global statistical analysis to get a bet-
ter understanding of these patterns. Based on this understanding
and observed bi-modality in probability densities, we proposed a
model with a mixture of Gaussians distribution with three or four
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(a)m1.small. (b) c1.medium. (c)m1.large. (d)m2.xlarge.

(e)m1.xlarge. (f) c1.xlarge. (g) m2.2xlarge. (h) m2.4xlarge.

Fig. 10. Model validation for all SIs in eu-west for the modeling traces (Feb-2010–Nov-2010).
(a)m1.small. (b) c1.medium. (c) m1.large. (d)m2.xlarge.

(e)m1.xlarge. (f) c1.xlarge. (g)m2.2xlarge. (h)m2.4xlarge.

Fig. 11. Model validation for all SIs in eu-west for the new traces (Dec-2010–mid-Feb-2011).
components for eight different types of SIs. The proposed model is
validated through simulations, which reveals that our model pre-
dicts the total price of running jobs on spot instances with a good
degree of accuracy. We believe that the proposed model is helpful
for researchers and users of Spot Instances in Amazon’s EC2 data
centers as well as other IaaS Cloud providers that look to offer such
a service in the near future.

In future work, we intend to consider the user’s bid as another
parameter and investigate how it can affect the distribution of
failures. Moreover, we would like to design a brokering solution to
utilize different types of Cloud resources to optimize themonetary
cost as well as job completion time. This can be easily realized
by extending scheduling or resource provisioning components of
cloud application platforms such as Aneka [30] and incorporating
models and techniques proposed in this paper.
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