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A B S T R A C T

Cloud Storage Providers generally maintain a single copy of the identical data received from multiple sources
to optimize the space. They cannot deduplicate the identical data when the clients upload the data in the
encrypted form. To address this problem, recently, Duplicateless Encryption for Simple Storage (DupLESS)
scheme is introduced in the literature. Besides, the data stored in the cloud is unreliable due to the possibility
of data losses in remote storage environments. The DupLESS scheme, on the other hand, keeps both the
key and the data on a single storage server, which is unreliable if that server goes down. In essence, the
existing related works aim to handle either secure-deduplication or reliability limited to either key reliability
or the data reliability. Hence, there is a need to develop a secure-deduplication mechanism that is not
vulnerable to any malicious activity, semantically secures both data and key, and achieves the reliability.
To address these problems, this paper proposes the dualDup framework that (𝑎) optimizes the storage by
eliminating the duplicate encrypted data from multiple users by extending DupLESS concept, and (𝑏) securely
distributes the data and key fragments to achieve the privacy and reliability using Erasure Coding scheme.
The proposed approach is implemented in Python on the top of the Dropbox datacenter and corresponding
results are reported. Experiments are conducted in a realistic environment. The results demonstrate that the
proposed framework achieves reliability with an average storage overhead of 66.66% corresponding to the
Reed–Solomon(3,2) codes. We validated through security analysis that the proposed framework is secure from
insider and outsider adversaries. Moreover, dualDup framework provides all the aspects of deduplication, attack
mitigation, key security and management, reliability, and QoS features as compared to other state-of-the-art
deduplication techniques.
. Introduction

Cloud computing [1] offers ubiquitous, elastic, and utility comput-
ng services that can be rapidly provisioned and made accessible to
sers via the Internet. Cloud allows the users to outsource the storage
ervices to store tremendous amounts of data, which can be retrieved
s and when required [2]. Google Drive,1 Microsoft OneDrive,2 Apple
Cloud Drive,3 SugarSync,4 OpenDrive,5 IDrive,6 and Dropbox7 are few
xamples of cloud storage offerings. In general, Cloud Service Providers
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E-mail addresses: vchouhan@cs.iitr.ac.in (V. Chouhan), sateesh@ieee.org (S.K. Peddoju), rbuyya@unimelb.edu.au (R. Buyya).

1 http://drive.google.com.
2 https://onedrive.live.com/.
3 https://www.apple.com/in/icloud/icloud-drive/.
4 https://www.sugarsync.com/.
5 https://www.opendrive.com/.
6 https://www.idrive.com/.
7 http://www.dropbox.com/.

(CSPs) store a single copy of the identical data received from multi-
ple sources to optimize the space. However, CSPs cannot distinguish
identical data when the clients upload the data in an encrypted form.
This problem is a secure-deduplication problem. Convergent Encryption
(CE) [3], Message-Locked Encryption (MLE) [4,5], and Duplicateless
Encryption for Simple Storage (DupLESS) [6] methods solve the dis-
similar encryption data problem by applying identical key encryption
concept. However, all three schemes have some limitations. Both CE
and MLE are vulnerable to brute force and statistical attacks. The
DupLESS scheme stores the key and data on the single storage server
and hence, the users cannot access their data if that server is down.
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Moreover, if an attacker gets access to the storage server, there is a high
possibility of the key and data security being compromised. Achieving
high reliability is another important concern in the cloud environment.
It provides unaffected services to the users even if some servers fail or
become inaccessible. It also ensures the recoverability of corrupted/lost
data in some cases. This problem is a reliability problem. Therefore, we
aim to design a system that can provide both secure-deduplication and
reliability as part of cloud storage framework.

1.1. Motivation

Several related studies that attempt to handle secure-deduplication
have been proposed in [4,6–9]. However, they have not considered
how to achieve reliability. Similarly, some researches [10–16] support
the reliability of cloud storage but failed to address deduplication. To
the best of our knowledge, none of the previous works, except the
work proposed in [17], have achieved secure-deduplication and data
reliability at the same time; however, they did not support the key
reliability. The authors in [18,19] have applied CE and Ramp Secret
Sharing Scheme (RSSS) [20] to achieve key reliability, in addition to
deduplication, but they did not support the data reliability. Since all
the operations are executed on the client-side in both [18,19] the client
overhead is increased. Therefore, providing reliability, reducing client-
side overhead, and protecting confidentiality while achieving secure-
deduplication in the cloud environment is still challenging. Hence,
there is a need to develop a secure-deduplication mechanism that is
not vulnerable to any malicious activity, reduces client-side overhead,
semantically secures both data and key, and achieves reliability.

1.2. Contributions

In this paper, we propose a novel dualDup framework that primarily
provides secure-deduplication and reliability for both data and key. We
innovatively extending the DupLESS concept [6] and Erasure Coding
(EC) [10,11] scheme to achieve secure-deduplication and reliability,
respectively. The novelty of the proposed approach lies in the fact that
the DupLESS concept executes at both client and server. In the dualDup
framework, the DupLESS [6] concept is applied to the client to achieve
confidentiality and secure-deduplication. Similarly, at the server, to
protects the data from system admin and other malicious insiders or
users. In addition, the proposed framework provides all the aspects
of deduplication, attack mitigation, key security and management,
reliability, and QoS features as compared to other state-of-the-art dedu-
plication techniques. The main contributions of the proposed approach
are highlighted below:

• We propose the novel algorithms for file upload, download, and
delete operations. Further, we demonstrate the scenario where
multiple clients were uploading the same file content to datacen-
ters.

• The proposed framework employs an EC mechanism to recover
the original data even if some fragments are lost, hence achieving
reliability. For storing a file, the proposed approach splits the
data and key into fragments using the EC technique and securely
distributes them to the distinct Data Storage Servers (DSS) and
Key Storage Servers (KSS), respectively.

• We handle the inside-user and cross-user deduplication at the
Trusted Third Party (TTP) and Cloud Service Provider (CSP)
levels, respectively. In our framework, we used TTP to elimi-
nate client-side storage overhead. The TTP saves the network
bandwidth if the data already exists in the cloud storage.

• We validated through security analysis that the proposed frame-
work is secure from insider and outsider adversaries. In particular,
the dualDup remains secure even if an adversary compromises a
certain number of storage servers. The proposed approach ensures
that a brute force attack cannot reveal sensitive information.
In addition, we perform extensive experiments and discuss the
2

performance analysis of various operations.
1.3. Organization

The rest of the paper is organized as follows. We define the pre-
liminaries, notations and important terms used by dualDup framework
in Section 2. We discuss the concepts of secure-deduplication, and
erasure coding and review the related work in Section 3. Threat Model
and Design goals are presented in Section 4. We explain the proposed
dualDup scheme in detail along with its system components in Section 5.
The evaluations of the proposed dualDup framework in terms of security
and performance analysis are presented in Section 6. Finally, Section 7
concludes the paper with future directions.

2. Preliminaries

We present the list of notations used throughout the paper in Ta-
ble 1, and then describe the primitives used in our proposed framework.

2.1. Fundamental operations

A set of function definitions that are used in symmetric encryption,
security, file, and datacenter operations are discussed below:

• 𝑘 ⟵ 𝐾𝑒𝑦𝐺𝑒𝑛(1𝜆): This probabilistic algorithm takes as an input a
security parameter (1𝜆|𝜆 ∈ N, i.e., sequence of 1’s), and generates
the secret key 𝑘.

• 𝐶 ⟵ 𝐸 (𝑘, 𝑥): The symmetric encryption algorithm that takes
input as the secret key 𝑘 and file content 𝑥, and generates the
corresponding Ciphertext 𝐶.

• 𝑥 ⟵ 𝐷 (𝑘, 𝐶): The symmetric decryption algorithm that takes
input as the secret key 𝑘 and Ciphertext 𝐶, and outputs the file
content 𝑥.

• 𝑙 ⟵ 𝑇 𝑎𝑔𝐺𝑒𝑛 (𝑥): This algorithm maps the input content 𝑥, and
outputs a fixed length tag value that is also known as file locator
𝑙.

.1.1. File and datacenter operations
These operations help in interacting with datacenters, key server,

nd file operations.

• 𝑘𝑑𝑢𝑝 ⟵ 𝑔𝑑 (𝑥): This function takes as input the file content 𝑥,
computing the content hash 𝐻𝑥, and then sends the content hash
𝐻𝑥 to the Key Server (KS), which in return generates the dupless
key 𝑘𝑑𝑢𝑝. Both client and compute server with their input file
contents to obtain their corresponding dupless key.

• 𝛿𝑑 ⟵ 𝑓𝑑𝑠 (𝑥): This function runs at compute server that takes 𝑥
as input data and then returns the fragments of 𝑥. Fragments are
created by calling an encoding module of Erasure Code (EC) [11].

• 𝛿𝑘, 𝑘𝑑𝑢𝑝 ⟵ 𝑓𝑘𝑠 (𝐶): This function runs at compute server by
taking ciphertext as input. This function first calls the function
𝑔𝑑 (𝐶) to obtain the dupless key 𝑘𝑑𝑢𝑝 from KS, and then the
function computes the key fragments 𝛿𝑘 of dupless key using 𝑓𝑑𝑠
function.

• 𝐴 ⟵ 𝑓𝑎 (𝑎𝑟𝑔) : This function runs on compute server to determine
the available storage servers, and returns the set of available data
storage servers with input argument value ε𝑑𝑠𝑠ε and key storage
servers with input argument value ε𝑘𝑠𝑠ε.

• 𝐶𝑑 , 𝐶𝑘, 𝑙𝑑 , 𝑙𝑘 ⟵ 𝑈𝑝𝑓 (𝜂): This function initializes the ciphertext
and locator of both data and key at the client-side during file up-
loading procedure by computing the data ciphertext (𝐶𝑑), key ci-
phertext (𝐶𝑘), data locator (𝑙𝑑), and key locator (𝑙𝑘) corresponding
to the client’s input file 𝜂.

• 𝜂𝐿𝑖𝑠𝑡 ⟵ 𝐺𝑓𝑙
(

𝑈𝑖𝑑
)

: This function runs on the client side that
calls Trusted Third Party (TTP) service using a client ID. The
TTP will return the corresponding file list to the client. File list is
symbolized as 𝜂𝐿𝑖𝑠𝑡 =

∑𝑛
𝑖=1

(

𝜂𝑖, 𝑙𝑑𝑖 , 𝑙𝑘𝑖
)

corresponding to the 𝑈𝑖𝑑 ,

where 𝑛 is the number of files stored in the datacenters.
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Table 1
Notations.

Symbol Description Symbol Description

𝑈𝑖𝑑 User/Client ID 𝑛0 File Counter
𝑇𝑖𝑑 TTP ID 𝜂 Filename
𝑆𝑖𝑑 Compute Server ID 𝜂𝑐 Content Filename
𝑈 User/Client 𝜂𝑘 Key Filename
𝐾∕𝑘 Key 𝑥 File Content
𝑠 Secret Key of User 𝐻𝑥 Hash value of content 𝑥
𝑃𝑘 Private Key 𝜂𝑥 File 𝜂 with content 𝑥
𝐶 Ciphertext 𝑘𝑑𝑢𝑝 Dupless Key
𝐶𝑑 Data Ciphertext 𝑄𝑅 Request Queue
𝐶𝑘 Key Ciphertext 𝛿 Set of n Fragments where 𝛿 = {𝛿1 , 𝛿2 ,… .., 𝛿𝑛}
𝑙 Locator/Tag 𝛿𝑑 Set of Data Fragments
𝑙𝑑 Data Locator 𝛿𝑘 Set of Key Fragments
𝑙𝑘 Key Locator 𝛼 Number of Data Fragments
𝐴 Set of Storage Server 𝛽 Number of Parity Fragments
𝐴𝑖 𝑖𝑡ℎ Storage Server 𝛾 Total Fragments, 𝛼 + 𝛽
𝐷𝐵𝑖(⋅) Insert the input values into the database 𝐷𝐵𝑢(⋅) Update entry in database
𝐷𝐵𝑑 (⋅) Delete entry from database where the input values exist 𝐷𝐵𝑐 (⋅) Count all entry from the database where the input values exist in a row
Fig. 1. A Typical Deduplication Procedure.
• 𝑥 ⟵ 𝑅𝑓 (𝜂): This function reads the file 𝜂 and returns the entire
file contents 𝑥 stored in the file 𝜂.

• 𝑊𝑓 (𝜂, 𝑥): This function creates a file with filename 𝜂 and write
the contents 𝑥 inside the file 𝜂.

• 𝑃𝑢𝑡∗𝑓 (𝜂, 𝑥): This function puts/stores the content 𝑥 with file name
𝜂 to the corresponding storage server which is symbolized by *.

• 𝐷𝑒𝑙∗𝑓 (𝜂): This function deletes the file 𝜂 from storage server which
is symbolized by *.

• 𝐶𝛿𝑖 ⟵ 𝐺𝑒𝑡𝑓 (𝜂): This function gets/retrieves the encrypted frag-
ment of a file 𝜂 from the storage server and then writes the con-
tents of this retrieved fragment to the variable 𝐶𝛿𝑖 (𝑖𝑡ℎ fragment
of stored ciphertext).

• 𝑑𝑒𝑐𝑜𝑑𝑒 (𝛿): This function decodes the set of fragments (𝛿) by
calling decoding module of EC that combines all the fragments
to construct a single meaningful data.

3. Background and related work

We discuss the Erasure Coding (EC) and Convergent Encryption
(CE) mechanisms that are required to achieve reliability and secure-
deduplication, respectively. Further, we discuss the existing solutions
that aim to achieve deduplication and reliability.

3.1. Background

3.1.1. Secure-deduplication
Deduplication [21] refers to the procedure in which CSP stores a

single copy of the identical data from multiple clients to eliminate the
duplicacy in storage. Hence, the deduplication saves the storage and
bandwidth, as the data is not uploaded again if it already exists [22,23].
Fig. 1 shows a typical scenario where a datacenter has the multiple
files

(

𝑓𝑖 ∶ 𝑖 ∈ N+), and the datacenter identifies and spots the multiple
copies of a file to remove the duplicates.

Users tend to store their data in an encrypted form to the Cloud
Storage Servers (CSS) using their secret key. Therefore, when a user
uploads the data in an encrypted form, CSP cannot distinguish the
identical data stored in the cloud. Hence, it leads to multiple dissimilar
3

Fig. 2. Encrypted Copies of Identical Data Stored by Multiple Users.

ciphertext copies of identical data stored by multiple users which
results in redundancy and huge wastage of space in the CSS [3–5,7,24].
Fig. 2 shows a scenario in which multiple users upload the encrypted
copies of the same data to the datacenter. Assume that a set of 𝑛 users
encrypt the file 𝜂𝑥 having same contents 𝑥 with their secret key and
uploads it to the datacenter. At server, encrypted files 𝐶𝑖 = 𝐸

(

𝑘𝑖, 𝜂𝑥
)

,
for 𝑖 = 1,… , 𝑛 are received from 𝑛 users. Thus, cloud datacenter receives
distinct encrypted files {𝐶1, 𝐶2, 𝐶3,… ., 𝐶𝑛} for the same file 𝜂𝑥 and it
leads to the failure of deduplication. The secure-deduplication removes
all such redundant encrypted files to save the storage space. Convergent
Encryption and Duplicateless Encryption for Simple Storage (DupLESS) are
two basic schemes that provide secure-deduplication.

(1) Convergent Encryption
Convergent Encryption (CE) scheme [3–5] solves secure-
deduplication problem with confidentiality by applying identical
key encryption. It reduces the redundancy of encrypted data
by generating a unique key for similar file contents using hash
algorithms.
Fig. 3 shows the convergent encryption and decryption process
of a message 𝑚 = {0, 1}∗. In the encryption process, following
two steps are executed:

(a) The hash function 𝐻 generates a unique key 𝑘 = {0, 1}𝑙𝑘
of length 𝑙𝑘, for the message 𝑚. Encryption function 𝐸 is
applied to encrypt 𝑚 using key 𝑘 to generate 𝐶 .
1
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Fig. 3. Convergent Encryption and Decryption Process.

(b) Further, 𝑘 is encrypted with 𝐸 that takes secret key 𝑠 of
the user to generate the ciphertext 𝐶2 of 𝑘.

Similarly, the decryption process consists of the following two
steps:

(a) User decrypts 𝐶2 with decryption function 𝐷 that uses the
secret key 𝑠 to generate back the key 𝑘.

(b) Further, 𝐷 decrypts 𝐶1 with the key 𝑘 to generate the
original message 𝑚.

CSPs like Dropbox, Google, Bitcasa, and Amazon have adopted
the CE concept [4,18]. However, CE is not semantically se-
cure [4] and also vulnerable to brute force and statistical type of
attacks due to the deterministic property of content hashing [25,
26].

(2) Duplicateless Encryption for Simple Storage
Duplicateless Encryption for Simple Storage (DupLESS) [6] con-
cept is used to enable secure data deduplication, which uses rate-
limiting approach to provide the resistance against brute-force
attack. Rate limiting approach ensures that a server handles a
limited number of requests for a particular client during a fixed
interval of time. This technique uses a key server to generate
an identical key 𝑘𝑥 for all clients with similar data content 𝑥,
by using its hash value 𝐻𝑥. DupLESS key server uses a key gen-
eration protocol that uses an oblivious pseudorandom function
(OPRF) [27] to generate key 𝑘𝑥. The 𝑂𝑃𝑅𝐹 ensures that the
key generation process does not reveal any file information and
learn the KS secret key. Fig. 4 shows a scenario where multiple
users want to upload the same data 𝑥. Initially, with the help
of DupLESS key server, they generate the identical keys 𝑘𝑥, and
then encrypt 𝑥 with 𝑘𝑥 to generate the identical encrypted files
𝐶𝑥. CSS receives multiple identical copies, 𝐶𝑥, and stores only a
single copy, thus achieving deduplication.

3.1.2. Reliability
Major CSPs claim reliability as one of the important aspects of their

services. Reliability ensures that the services offered to the users are
minimally affected even if a certain number of servers failures or data
loss. Reliability is achieved by distributing the fragments across the
multiple storage servers to enhance data recoverability and availability.
Erasure Coding (EC) is a widely used technique for creating reliable
data fragments.

Erasure Coding: EC [10,11] technique splits the actual data into the
number of coded blocks as per the predefined threshold. This threshold,
say 𝑇 , has two components, i.e., 𝛼 and 𝛽. The first component, 𝛼,
denotes a total number of data fragments and 𝛽 is the total number of
parity fragments. The sum of these two components represent the total
number of coded blocks generated by EC, say 𝛾. EC can reconstruct
the actual data from any 𝛼 number of coded blocks and it can tolerate
the loss up to 𝛽 number of coded blocks. This reconstruction provides
reliability. The encoding rate of this technique, i.e., 𝛼

𝛾 must be less
than one to guarantee reliability. It is obvious that if the encoding
rate is equal to one, then the technique cannot tolerate any number
4

Fig. 4. DupLESS Scheme with Deduplication.

of lost coded blocks, which leads towards the loss of reliability. In
this technique, the storage cost is increased by a factor of 𝛾

𝛼 [28].
However, it is better than other techniques providing reliability, such
as N-way replication technique [13], in terms of storage cost and
performance [10].

3.2. Related work

In this subsection, we review related works that focus on secure-
deduplication and reliability. We classify them into two categories: (i)
Reliability Solutions, and (ii) Secure-deduplication Solutions.

3.2.1. Reliability solutions
There exist several related works [10–16] that focus to achieve

the reliability in cloud storage. Zhang et al. [12] proposed an effi-
cient Cauchy coding approach for data storage that generates series of
schedules to select the optimal schedule using heuristic approach. The
authors used Hadoop File System (HDFS) for their implementation. Li
et al. [10] implemented Collective Reconstruction Read for improving
the read operation performance. They reduced the read latency of
EC. They applied read and computation operations in parallel and im-
proved the system availability. Xu et al. [15] proposed a decentralized
encoding framework for EC in cloud storage. They achieved better
read/write performance and low network traffic using an incremental
encoding. The authors in both [10,15] used HDFS-RAID system for their
implementation.

To provide secure data forwarding and system recovery, Lin et al.
[11] proposed a secure distributed storage system which applies the
proxy re-encryption scheme. To achieve efficient I/O performance and
significant stability, Yin et al. [13] introduced ASSembling chain of
Erasure coding and Replication(ASSER) storage scheme that combined
N-way replication and EC to store each object entirely as well as in
segments. They proposed multiversional parity logging mechanism for
handling efficient read/write operations.

All of the schemes discussed above have achieved reliability but
failed to address the deduplication problem. On the contrary, the pro-
posed framework aims to provides both deduplication and reliability.

3.2.2. Secure-deduplication solutions
There exist several related works [4,6–9] to achieve secure-

deduplication. All these works have used the CE concept to avoid re-
dundancies in storage. To address the data security and space efficiency
problem, Storer et al. [7] developed two models: authenticated and
anonymous model. To achieve deduplication, the client encrypted the
file chunks using CE before transferring to the storage. These models
hide the users’ identities and permit only authorized users. However,
their model can lead to information leakage due to lack of key security.

To provide a secure and efficient storage service, Puzio et al. [8]
introduced ClouDedup, which assured block-level deduplication and
data confidentiality simultaneously. They applied an additional en-
cryption layer to provide privacy and confidentiality from malicious
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service providers. Bellare et al. [4] analyzed the security of MLE
scheme family and justified with proofs in the random-oracle-model
practically. Further, theoretically, they addressed the issue of finding
a standard model MLE scheme using Extract-Hash-Check and Sample-
Extract-Encrypt procedure. Few other authors [29–31] support data
deduplication over encrypted data in their works; however, they are not
explored towards providing data reliability to deal with data corruption
or data unavailability.

Kaaniche et al. [9] proposed client-side deduplication solution for
data outsourcing. They ensured the data confidentiality from an unau-
thorized user by using CE and metadata (containing access rights). The
authors used OpenStack Swift for their implementation.

All of these schemes achieved secure-deduplication but failed to
discuss the reliability. On the contrary, the proposed framework aims
to provide both deduplication and reliability.

We further review the secure-deduplication solutions in three cate-
gories: (i) Secure-deduplication with Key Reliability, (ii) Secure-
deduplication with Data Reliability, and (iii) Secure-deduplication with
Client Side Overhead.

• Secure-deduplication with Key Reliability
A huge number of keys are created during the operation of secure-
deduplication that introduces new challenges regarding the key
management. The works in [18,19] store keys to the storage
server to provide key reliability. Li et al. [18] and Zhou et al. [19]
proposed the Dekey approach and Multi-Level Key (MLK) man-
agement approach, respectively, to eliminate the difficulty of key
management by using Ramp Secret Sharing Scheme (RSSS) [20].
These works achieved key level reliability but failed to provide
data reliability. However, the proposed work provides both key
and data reliability.

• Secure-deduplication with Data Reliability
Li et al. [17] proposed a distributed deduplication system that
distributed the data chunks across the storage servers to achieve
data reliability. It used RSSS, message authentication code and
Tag generation algorithm to ensure confidentiality, integrity and
tag consistency. Douceur et al. [3] introduced SelfArranging,
Lossy, Associative Database (SALAD) to maintain the file records
in a decentralized manner, and stored redundant copies to enable
reliability. These approaches achieved data reliability but failed
to discuss key reliability. However, the proposed work provides
both key and data reliability.

• Secure-deduplication with Client Side Overhead
Several related works like [6,17–19] provided both inside-user
and cross-user deduplication. SecDep [19] is a cross-user file-
level and inside-user chunk-level deduplication method with User
Aware Convergent Encryption. It is a variant of CE scheme to de-
fend against brute force attacks. The server-aided method creates
the file-level CE keys to ensure the security of cross-user dedu-
plication. The user-aided method is used to create chunk-level
keys with lower computational overheads. Since all operations
are performed on the client side, it increases the client overhead.
However, the proposed approach in this work eliminates the
client space overhead.

To the best of our knowledge, none of the existing works provide
ecure-deduplication with both key and data reliability. The proposed
ramework in this paper aims to achieve reliability (for both key
nd data) along with deduplication by distributing the keys and data
ragments in a secured manner.

. Threat model and design goals

Generally, the Cloud Storage Servers (CSS), Trusted Third Party
TTP) and Key Server (KS) claims that they are not involved in any
5

alicious activity, such as disclosing the information. However, the f
user may not be able to recognize such activity in case they carry out
some malicious actions. There are two types of adversaries in a system,
i.e., insider adversary and outsider adversary. An insider adversary may
be referred to as a CSS or CSS agent who can outsource some sensitive
information stored in the cloud to the untrusted environment. Outsider
adversary may be a user or any malicious entity who is not aware
of the internal architecture of the cloud and still tries to compromise
the system to retrieve the sensitive information stored on the system.
Hence, the system should be designed in such a way that it is secure
from both insider and outsider adversaries. Thus, we propose a system
dualDup, which achieves the following design goals:

1. Compromise Resilience: It refers to the situation where an adver-
sary may control a certain number of components of the system,
but still is unable to decrypt the stored encrypted information. In
the proposed architecture, both dupless key and file contents are
encrypted and distributed among the CSS to semantically secure
the dupless key.

2. Brute-force Attack Resilience: It refers to the scenario where an
enemy attempts to decrypt the ciphertext by continuously send-
ing the requests to the KS to retrieve the key. The proposed
framework uses DupLESS scheme, that limits the number of
requests made by the user in the fixed interval of time, to set
the key from KS, and resist the brute force attack.

3. Reliability: It refers to the scenario where uploading and down-
loading activities of the users should be minimally influenced
due to some server failures or data losses. The proposed frame-
work applies the EC technique to design a fault-tolerant system
that provides both key and data reliability.

4. Secure-deduplication: In the proposed system, CSP does not store
multiple ciphertext forms of the same data. It applies the file
level deduplication on the encrypted data to reduce the extra
computation and space overhead at 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 servers.

5. Key Security and Management: A key should be secure, and it
must not be decryptable even if an adversary compromises the
key servers. In the proposed architecture, a large number of keys
are created during the uploading of a file by the cloud users. To
secure the keys, proposed framework encrypts and stores them
in a distributed fashion. The key management is achieved by
tracking the address of each fragmented key stored at distributed
servers.

. Proposed 𝒅𝒖𝒂𝒍𝑫𝒖𝒑 framework

This section presents an overview of our work and system model
ollowed by a detailed description of the scheme.

.1. Overview

Our proposed scheme 𝑑𝑢𝑎𝑙𝐷𝑢𝑝 provides secure-deduplication and
eliability for both data and key. It consists of three operations, namely,
ile uploading, downloading and deletion. File uploading scenario is
iscussed in the multitenant environment, in which multiple clients can
pload the identical file to the datacenters. Compute Server receives
he files to be uploaded in encrypted form. Since all computations
re performed on encrypted data, it enables fully homomorphic en-
ryption [32], achieving confidentiality and privacy. Deduplication
roblem is handled by both TTP and Compute Server, in different
cenarios. If an identical file is uploaded multiple times by the same
lient, then TTP handles deduplication. Moreover, if an identical file
s uploaded multiple times by different clients, then Compute Server
anages deduplication.

The proposed scheme uses the EC technique, which partitions data
nto 𝛾 number of fragments. EC encoding module divides these 𝛾
ragments into 𝛼 number of data fragments and 𝛽 number of parity

ragments, i.e., 𝛾 = 𝛼 + 𝛽. Compute Server stores all the 𝛾 fragments
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Fig. 5. The System Model Including Various Entities.
to distinct storage servers during uploading operation. However, to
download the file, Compute Server requires any 𝛼 number of data
fragments, i.e., it needs any 𝛼 number of active storage servers. Even
if any 𝛽 number of servers fail to provide the service, still EC decoding
module can reconstruct the actual data from any 𝛼 number of the
data fragments. This reconstruction of the data even in the failure of
𝛽 number of servers provides reliability to the proposed scheme.

5.2. System components

A representative system model of the proposed scheme is illustrated
in Fig. 5. The model consists of the following entities:

• Client/User : an entity that can perform three operations: file
upload, file download, and file delete in the cloud. It can either
be an individual client or an enterprise. In this paper, we use the
words client and user interchangeably.

• Key Server (KS): an entity, that generates a dupless key 𝑘𝑑𝑢𝑝
corresponding to the received hash value of the data.

• Trusted Third Party (TTP): a trusted entity, that stores the client
file’s information, handles deduplication from the same client,
and forwards the download and delete requests from the user to
the Compute Server.

• Cloud Datacenters (DC): an entity, which is operated by CSP to
store/retrieve the user data.

• Compute Node/Server (CN): an entity, that uploads the client’s file
to the DC’s, and download/delete the file from the DC’s, as per
the user request.

In our system model, CN can access the CSP database as per the
granted permission, and TTP Node can access the TTP database as
per the granted permission. Both user and CN communicate with KS
to generate their corresponding dupless keys by sending the hash
value of their input. The user sends its upload, download, or delete
request to the TTP, which replies with the server id (𝑆𝑖𝑑) to the client.
User uploads the file to the corresponding server (𝑆𝑖𝑑). Further, TTP
forwards the download or delete request to the CN, which handles the
delete request, and sends the corresponding file to the client for the
download request.

Our work considers the following assumptions. First, we assume that
all the connections between the entities use the secure protocol (such
as IPSec or SSL/TLS) to ensure secure communication between entities.
Second, our work uses the secure cryptographic hash algorithm in the
6

generation of the data and key locators. Hence, we assume that the
used hash function is strongly collision-resistant and produces a longer
output which is harder to break. Further, we discuss all the operations
in detail in the next subsections.

5.3. Upload procedure

In the file upload procedure, four entities are primarily involved
which are Client, TTP, CN, and DC. Initially, the client is registered
with TTP to get a particular cloud service where TTP has a list of CSP
and corresponding 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 servers. Fig. 6 describes the file uploading
operations, which are divided into two phases, as discussed below.

5.3.1. Phase I: Client side operations
In this phase, the client calls the upload function 𝑈𝑝𝑓 (𝜂) which

takes file, 𝜂, as an input, and performs the following operations:

1. The function retrieves the information: Client Id (𝑈𝑖𝑑), TTP Id
(𝑇𝑖𝑑), Server Id (𝑆𝑖𝑑) and secret key (𝑠), from the Client Node.

2. It calls the function 𝑅𝑓 (𝜂) to extract the file content, 𝑥, from the
file, 𝜂.

3. Then it calls the function 𝑔𝑑 (𝑥) which interacts with the Key
Server 𝐾𝑆 to obtain a dupless key 𝑘𝑑𝑢𝑝. For this computation,
𝑔𝑑 (𝑥) performs the following steps:

(a) It computes the hash value, 𝐻𝑥 by using Secure Hash
Algorithm (SHA-256), and sends it to the 𝐾𝑆.

(b) The 𝐾𝑆 generates a dupless key 𝑘𝑑𝑢𝑝 by using DupLESS
protocol defined in [6].

4. The function encrypts 𝑥 using the key 𝑘𝑑𝑢𝑝 to produces ciphertext
𝐶𝑑 .

5. It further encrypts 𝑘𝑑𝑢𝑝 using the key 𝑠 into ciphertext 𝐶𝑘.
6. It calls the algorithm 𝑇 𝑎𝑔𝐺𝑒𝑛 which takes 𝐶𝑑 as an input and

generates the corresponding locator 𝑙𝑑 .
7. It again calls the algorithm 𝑇 𝑎𝑔𝐺𝑒𝑛 with 𝐶𝑘 as an input and gives

the locator 𝑙𝑘 as an output.

The operations in the steps 4 𝑎𝑛𝑑 5 are executed in parallel. Sim-
ilarly, the operations in the steps 6 𝑎𝑛𝑑 7 are executed in parallel.
After performing the above operations, the function 𝑈𝑝𝑓 (𝜂) generates
𝐶𝑑 , 𝐶𝑘, 𝑙𝑑 , and 𝑙𝑘 as outputs. The client creates a tuple ⟨𝑈𝑖𝑑 , 𝜂, 𝑆𝑖𝑑 , 𝑙𝑑 , 𝑙𝑘⟩,
and sends it to TTP. A client does not store any tuple into its DB, it
forward all the tuples to the TTP, hence the client is space-efficient.
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Fig. 6. File Uploading Operations.
Now, TTP checks whether the received tuple exists in its 𝐷𝐵 or not.
If the tuple exists, then it updates the file counter value in its 𝐷𝐵
corresponding to the received tuple, and informs the client that the
corresponding file has been stored on the cloud. Otherwise, TTP inserts
the received tuple into its 𝐷𝐵, and informs the client to send the tuple
⟨𝐶𝑑 , 𝐶𝑘⟩ to the CN. CN also acknowledges the client by sending an
𝐴𝐶𝐾, and further processes the received ciphertexts 𝐶𝑑 and 𝐶𝑘 in Phase
II.

The proposed framework achieves the inside-user deduplication at
TTP level if the same client attempts to upload an identical file more
than once. In this case, TTP updates the corresponding file counter
value in its 𝐷𝐵 to save the unnecessary processing overhead. Moreover,
it also achieves confidentiality as the client sends the data and the key
in encrypted form to the CN.

5.3.2. Phase II: Server side operations
In this phase, the CN fragments the received ciphertexts 𝐶𝑘 and 𝐶𝑑

using EC technique and stores them to the storage servers. For this
computation, the CN calls the function 𝑆𝑒𝑟𝑣𝑒𝑟𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (). The function
is executed for both 𝐶𝑘 and 𝐶𝑑 parallelly, and is defined in Algorithm
1.

Algorithm 1 takes ciphertext 𝐶 as an input and calls the algorithm
𝑇 𝑎𝑔𝐺𝑒𝑛 that computes locator 𝑙 for 𝐶. If 𝑙 exists already in the CN’s
database (DB), then there is no need to store the content to the Cloud
Storage Server (CSS). In such a case, the algorithm increments the file
counter 𝑛0 by 1 in the 𝐷𝐵, that represents the number of clients which
have the same file contents.

If 𝑙 does not exist in the 𝐷𝐵, then the algorithm performs the
following operations:

1. It generates a unique file name for the received ciphertext 𝐶,
using 𝐵𝑎𝑠𝑒64 or the preferred encoding. Let 𝜂𝑐 and 𝜂𝑘 be the file
names generated for 𝐶𝑑 and 𝐶𝑘, respectively.

2. It calls the function 𝑓𝑘𝑠 that computes the hash value of contents
in 𝐶, i.e., 𝐻𝐶 , by using Secure Hash Algorithm (SHA-256), and
sends it to the 𝐾𝑆.

3. The 𝐾𝑆 generates a dupless key 𝑘 by using DupLESS protocol
defined in [6]. It further applies EC technique to partition 𝑘 into
equal sized fragments and stores them in a set 𝛿𝑘.

4. Subsequently, it invokes the function 𝑓𝑑𝑠 to partition 𝐶 into
equal sized fragments using EC technique. These fragments are
stored in a set 𝛿𝑑 .

5. Now, the function 𝑓𝑎 (𝑑𝑠𝑠) is called to get the list of available
servers, which is stored in a set 𝐴1 and known as set of Data
Storage Servers (DSS).

6. It encrypts each data fragment 𝛿𝑑𝑖 , where 𝛿𝑑𝑖 ∈ 𝛿𝑑 , with dupless
key 𝑘 to get the resultant ciphertext 𝐶 .
7

𝑖

Algorithm 1: Compute Node Stores the Fragments to the
Datacenters.

Input : 𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝐶
Output: 𝑆𝑢𝑐𝑐𝑒𝑠𝑠∕𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝐴𝐶𝐾

1 begin
2 𝑙 ⟵ 𝑇 𝑎𝑔𝐺𝑒𝑛 (𝐶)
3 if 𝑙 ∈ 𝐷𝐵 then

/* Handle cross-user deduplication */
4 𝐷𝐵𝑢

(

𝑛0 = 𝑛0 + 1
)

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑙
5 𝑟𝑒𝑡𝑢𝑟𝑛 𝑆𝑢𝑐𝑐𝑒𝑠𝑠
6 end
7 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝜂𝑐 , 𝜂𝑘
8 𝛿𝑘 , 𝑘 ⟵ 𝑓𝑘𝑠 (𝐶)
9 𝛿𝑑 ⟵ 𝑓𝑑𝑠 (𝐶)
10 𝐴1 ⟵ 𝑓𝑎 (𝑑𝑠𝑠)

/* Data fragment storage procedure starts */
11 𝐿𝑒𝑡 𝑁1 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝛿𝑑
12 for 𝑖 = 1 𝑡𝑜 𝑁1 do
13 𝐶𝑖 ⟵ 𝐸(𝑘, 𝛿𝑑𝑖 )

14 𝑃𝑢𝑡
𝐴1𝑖
𝑓

(

𝜂𝑐 , 𝐶𝑖
)

𝑤ℎ𝑒𝑟𝑒 𝐴1
𝑖 ∈ 𝐴1

15 𝑆𝑑 .𝑎𝑝𝑝𝑒𝑛𝑑(𝐴1
𝑖 )

16 𝐴1 .𝑟𝑒𝑚𝑜𝑣𝑒(𝐴1
𝑖 )

17 end
/* Data fragment storage procedure ends */

18 𝐴2 ⟵ 𝑓𝑎 (𝑘𝑠𝑠)
/* Key fragment storage procedure starts */

19 𝐿𝑒𝑡 𝑁2 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝛿𝑘
20 for 𝑗 = 1 𝑡𝑜 𝑁2 do
21 𝐶𝑗 ⟵ 𝐸(𝑃𝑘 , 𝛿𝑘𝑗 )

22 𝑃𝑢𝑡
𝐴2𝑗
𝑓 (𝜂𝑘 , 𝐶𝑗 ) 𝑤ℎ𝑒𝑟𝑒 𝐴2

𝑗 ∈ 𝐴2

23 𝑆𝑘 .𝑎𝑝𝑝𝑒𝑛𝑑(𝐴2
𝑗 )

24 𝐴2 .𝑟𝑒𝑚𝑜𝑣𝑒(𝐴2
𝑗 )

25 end
/* Key fragment storage procedure ends */
/* Operations in the steps 12 − 17 and 20 − 25 are executed in

parallel */
26 𝐷𝐵𝑖(𝑙, 𝑆𝑑 , 𝑆𝑘 , 𝑛0 = 1)

/* 𝑆𝑑 and 𝑆𝑘 represent the list of servers where data and
key fragments are stored, respectively */

/* The algorithm returns a success status in case of no
error occurred during the execution of the operations */

27 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑡𝑎𝑡𝑢𝑠

28 end

7. It further calls the function 𝑃𝑢𝑡
𝐴1
𝑖

𝑓 which stores each 𝐶𝑖 to one of
the available server from the set 𝐴1. Then it appends the server
address 𝐴1

𝑖 to the server list 𝑆𝑑 and removes 𝐴1
𝑖 from the set 𝐴1.

8. The algorithm calls the function 𝑓𝑎 (𝑘𝑠𝑠) to get a separate list
of available servers for key fragments stored in set 𝐴2 such that
𝐴1 ∩𝐴2 = 𝜙. The set 𝐴2 is called as a set of Key Storage Servers
(KSS).
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Fig. 7. Scenario of Uploading Same File Content 𝑥 from 𝑈𝑠𝑒𝑟 𝐴 and 𝑈𝑠𝑒𝑟 𝐵, where Number in Red Represents the Sequence of Operations.
e

9. It encrypts each key fragment 𝛿𝑘𝑗 , where 𝛿𝑘𝑗 ∈ 𝛿𝑘, with private
key of CN, i.e., 𝑃𝑘, to get the resultant ciphertext 𝐶𝑗 .

10. It further calls the function 𝑃𝑢𝑡
𝐴2
𝑗

𝑓 which uploads each 𝐶𝑗 to one
of the available server from the set 𝐴2. Then it appends the
server address 𝐴2

𝑗 to the server list 𝑆𝑘 and removes 𝐴2
𝑗 from the

set 𝐴2.
11. The algorithm finally inserts a tuple ⟨𝑙, 𝑆𝑑 , 𝑆𝑘, 𝑛0⟩ into the databas

of CN and returns. 𝑆𝑑 and 𝑆𝑘 represent the list of servers where
data and key fragments are stored, respectively.

If the data already exists in cloud storage, then CN updates the
file counter entry, corresponding to the received locator, in its 𝐷𝐵,
to achieve cross-user deduplication at the server level. Otherwise, it
encrypts each fragment and stores them to the distinct 𝛾 number of
storage servers to achieve confidentiality and reliability.

5.3.3. File uploading scenario
The file uploading scenario from multiple clients simultaneously to

datacenters is illustrated in Fig. 7. Suppose more than one user, say,
user 𝐴 and user 𝐵, wants to upload the same file content 𝑥 to the cloud.
As discussed in Section 5.3.1, both of the client nodes interact with 𝐾𝑆
to get the dupless key 𝑘𝑑𝑢𝑝, and encrypt 𝑥 with 𝑘𝑑𝑢𝑝 to generate the
identical ciphertext, 𝐶𝑑 . Both 𝐴 and 𝐵 further encrypt 𝑘𝑑𝑢𝑝 with their
own secret keys to generate 𝐶𝑘𝑎 and 𝐶𝑘𝑏 respectively.

CN receives the tuple ⟨𝐶𝑑 , 𝐶𝑘𝑎 ⟩ from user 𝐴 and ⟨𝐶𝑑 , 𝐶𝑘𝑏 ⟩ from user
𝐵. All the unique ciphertexts, i.e., 𝐶𝑑 , 𝐶𝑘𝑎 , and 𝐶𝑘𝑏 are given as an input,
separately, to the algorithm 1, which partitions the received data into
fragments. All the fragments of the set 𝛿𝑑 ∶ {𝐶1

𝑑 , 𝐶
2
𝑑 , 𝐶

3
𝑑 ,… , 𝐶𝛾1

𝑑 } are
stored in the distinct available DSS. Similarly, all the fragments of the
set 𝛿𝑘 ∶ {𝐶1

𝑘 , 𝐶
2
𝑘 , 𝐶

3
𝑘 ,… , 𝐶𝛾2

𝑘 } are stored in the distinct available KSS.

5.4. Download procedure

In the file download procedure, three entities are primarily involved
which are Client, TTP, and CN. Fig. 8 describes the file download
operations. Suppose that a client wants to download a file 𝜂 from the
cloud. The following steps are involved in the download procedure:

1. Client retrieves its Client Id (𝑈𝑖𝑑), TTP Id (𝑇𝑖𝑑), and secret key
(𝑠) from its 𝐷𝐵, and calls the function 𝐺𝑓𝑙

(

𝑈𝑖𝑑
)

that sends 𝑈𝑖𝑑
to TTP.
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2. TTP returns all the file names, along with their locators, that
have been uploaded by the client. The tuple ⟨𝜂, 𝑙𝑑 , 𝑙𝑘⟩ represents
the filename (𝜂), data locator (𝑙𝑑), and key locator (𝑙𝑘). It sends
a list of all such tuples corresponding to 𝑈𝑖𝑑 .

3. Out of all the tuples received, client selects the required down-
load tuple. Let the selected 𝑖𝑡ℎ tuple be ⟨𝜂𝑖, 𝑙𝑑𝑖 , 𝑙𝑘𝑖 ⟩. It further
inserts ⟨𝜂𝑖, 𝑙𝑑𝑖 ⟩ into the request queue 𝑄𝑅.

4. It sends the tuple ⟨𝜂𝑖, 𝑙𝑑𝑖 , 𝑙𝑘𝑖 ⟩ to the TTP, which finds the 𝑆𝑖𝑑 of
the CN corresponding to the tuple ⟨𝑈𝑖𝑑 , 𝜂𝑖, 𝑙𝑑𝑖 , 𝑙𝑘𝑖 ⟩, and sends an
𝐴𝐶𝐾 back to the client. If the received tuple is not found in TTP’s
𝐷𝐵, then it cannot process the client’s download request, and
further notifies the client.

5. TTP further sends the tuple ⟨𝑈𝑖𝑑 , 𝑙𝑑𝑖 , 𝑙𝑘𝑖 ⟩ to the CN, to get the
corresponding ciphertexts of both data and key, which are being
referred by locators 𝑙𝑑𝑖 and 𝑙𝑘𝑖 respectively. CN also acknowl-
edges the receipt of the tuple by sending an ACK back to the
TTP.

6. For each locator 𝑙 ∈ {𝑙𝑑𝑖 , 𝑙𝑘𝑖}, CN calls the function 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (𝑙)
that computes the ciphertexts 𝐶𝑑 and 𝐶𝑘 respectively. CN further
communicates the tuple ⟨𝐶𝑑 , 𝐶𝑘⟩ to the Client Node. Algorithm
2 describes the working of 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 (𝑙) function which will be
discussed in Section 5.4.1.

7. Client calls the algorithm 𝑇 𝑎𝑔𝐺𝑒𝑛
(

𝐶𝑑
)

to generate the corre-
sponding locator 𝑙𝑑 .

8. It searches 𝑙𝑑 in 𝑄𝑅 to get the corresponding filename 𝜂 and
removes this tuple from 𝑄𝑅.

9. It decrypts 𝐶𝑘 with secret key 𝑠 to obtain the dupless key 𝑘.
10. It further decrypts 𝐶𝑑 with dupless key 𝑘 to obtain the file

content 𝑥.
11. Finally, it calls the write function 𝑊𝑓 (𝜂, 𝑥) that writes the file

content 𝑥 into the file named 𝜂.

5.4.1. Compute ciphertext from datacenters
Algorithm 2 takes locator 𝑙 as an input, and returns the correspond-

ing ciphertext stored across the cloud DCs’. The algorithm performs the
following operations:

1. Initially, it retrieves the list of servers, 𝑆𝑑 and 𝑆𝑘, where data
and key fragments are stored, respectively, corresponding to
locator 𝑙.
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Fig. 8. File Downloading Operations.
Algorithm 2: Compute Ciphertext from Datacenters.
Input : 𝑙𝑜𝑐𝑎𝑡𝑜𝑟 𝑙
Output: 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 𝐶

1 begin

2 𝐹 𝑖𝑛𝑑 𝑆𝑑 , 𝑆𝑘 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑙 ∈ 𝐷𝐵
3 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝜂𝑐 , 𝜂𝑘
4 𝑐𝑜𝑢𝑛𝑡 = 0

/* Key computation procedure starts */
5 𝐿𝑒𝑡 𝑁1 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆𝑘

6 for 𝑖 = 1 𝑡𝑜 𝑁1 do
/* Run parallelly for any 𝛼1 out of 𝛾1 number of servers

*/
7 if 𝑐𝑜𝑢𝑛𝑡 < 𝛼1 then
8 𝐶𝛿𝑖 ⟵ 𝐺𝑒𝑡𝑓 (𝜂𝑘)
9 𝛿𝑘𝑖⟵𝐷(𝑃𝑘,𝐶𝛿𝑖 )

10 𝛿𝑘 .𝑎𝑝𝑝𝑒𝑛𝑑(𝛿𝑘𝑖 )
11 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1
12 end
13 else
14 𝑏𝑟𝑒𝑎𝑘
15 end
16 end
17 𝑘 ⟵ 𝑑𝑒𝑐𝑜𝑑𝑒

(

𝛿𝑘
)

/* Key computation procedure ends */
18 𝑐𝑜𝑢𝑛𝑡 = 0

/* Ciphertext computation procedure starts */
19 𝐿𝑒𝑡 𝑁2 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆𝑑

20 for 𝑖 = 1 𝑡𝑜 𝑁2 do
/* Run parallelly for any 𝛼2 out of 𝛾2 number of servers

*/
21 if 𝑐𝑜𝑢𝑛𝑡 < 𝛼2 then
22 𝐶𝛿𝑖 ⟵ 𝐺𝑒𝑡𝑓 (𝜂𝑐 )
23 𝛿𝑑𝑖⟵𝐷(𝑘,𝐶𝛿𝑖 )

24 𝛿𝑑 .𝑎𝑝𝑝𝑒𝑛𝑑(𝛿𝑑𝑖 )
25 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1
26 end
27 else
28 𝑏𝑟𝑒𝑎𝑘
29 end
30 end
31 𝐶 ⟵ 𝑑𝑒𝑐𝑜𝑑𝑒

(

𝛿𝑑
)

/* Ciphertext computation procedure ends */
32 𝑟𝑒𝑡𝑢𝑟𝑛 𝐶

33 end

2. Then it generates the unique filename for the stored ciphertext

𝐶 using Base64 encoding. Let 𝜂 and 𝜂 be the filenames for data
9

𝑐 𝑘
fragment and key fragment, respectively, for a particular locator
𝑙.

3. Let 𝛾1 be the total number of servers where all the key frag-
ments are stored, and let 𝛼1 be the minimum number of servers
required to regenerate the dupless key 𝑘. Note that each key
fragment is stored at distinct KSS. The algorithm performs the
following steps, in parallel, at 𝛼1 number of servers:

(a) It calls the function 𝐺𝑒𝑡𝑓
(

𝜂𝑘
)

to get the encrypted frag-
ment 𝐶𝛿𝑖 .

(b) It further decrypts 𝐶𝛿𝑖 with private key 𝑃𝑘 of the CN to
get the key fragment 𝛿𝑘𝑖 and append this fragment to the
key fragment set 𝛿𝑘. Hence, we will have 𝛼1 number of
key fragments available at the end of this step.

4. Decoding module of the EC technique is applied on 𝛿𝑘 to regen-
erate the dupless key 𝑘.

5. Let 𝛾2 be the total number of servers where all the data fragments
are stored and let 𝛼2 be the minimum number of servers required
to regenerate the stored ciphertext 𝐶. Note that each encrypted
data fragment is stored at distinct DSS. The algorithm performs
the following steps, in parallel, at 𝛼2 number of servers:

(a) It calls the function 𝐺𝑒𝑡𝑓
(

𝜂𝑐
)

to get the encrypted frag-
ment 𝐶𝛿𝑖 .

(b) It further decrypts 𝐶𝛿𝑖 with dupless key 𝑘 to get the
encrypted data fragment 𝛿𝑑𝑖 and append this fragment to
the data fragment set 𝛿𝑑 . . Hence, we will have 𝛼2 number
of encrypted data fragments available at the end of this
step.

6. Decoding module of EC technique is applied on 𝛿𝑑 to regenerate
the ciphertext 𝐶, and returns 𝐶.

CN retrieves the stored fragments from any 𝛼 number of storage
servers to reconstruct the actual data, to achieve reliability. Further, it
can tolerate up to 𝛽 = 𝛾 −𝛼 number of server failures or fragments loss.

5.5. Delete procedure

In the file delete procedure, three entities are primarily involved:
Client, TTP, and CN. Fig. 9 describes the file delete operations. Suppose
that a client wants to delete a file 𝜂 from the cloud. The following steps
are required in the deleting process:
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Fig. 9. File Deletion Operations.
1. Client retrieves its Client Id (𝑈𝑖𝑑) and TTP Id (𝑇𝑖𝑑) from its 𝐷𝐵,
and calls the function 𝐺𝑓𝑙

(

𝑈𝑖𝑑
)

that sends 𝑈𝑖𝑑 to TTP.
2. TTP returns all the file names, along with their locators, that

have been uploaded by the client. The tuple ⟨𝜂, 𝑙𝑑 , 𝑙𝑘⟩ represents
the filename (𝜂), data locator (𝑙𝑑), and key locator (𝑙𝑘). It sends
a list of all such tuples corresponding to 𝑈𝑖𝑑 .

3. Out of all the tuples received, client selects the file to be deleted.
Let the selected 𝑖𝑡ℎ tuple be ⟨𝜂𝑖, 𝑙𝑑𝑖 , 𝑙𝑘𝑖 ⟩.

4. It sends the tuple ⟨𝜂𝑖, 𝑙𝑑𝑖 , 𝑙𝑘𝑖 ⟩ to the TTP. Further, TTP calls
the function 𝐷𝐵𝑐

(

𝑈𝑖𝑑 , 𝑙𝑑𝑖 , 𝑙𝑘𝑖
)

to retrieve the stored file counter
value 𝑛, which represents the number of copies of the file re-
ferred by locators 𝑙𝑑𝑖 and 𝑙𝑘𝑖 that were uploaded by client 𝑈𝑖𝑑 . If
𝑛 > 1, then TTP decrements the corresponding file counter value
by 1, updates it in the 𝐷𝐵, and sends a file deletion 𝐴𝐶𝐾 back
to the client. Otherwise, the delete operation proceeds with the
following steps.

5. TTP finds the 𝑆𝑖𝑑 of the CN corresponding to the tuple
⟨𝑈𝑖𝑑 , 𝜂𝑖, 𝑙𝑑𝑖 , 𝑙𝑘𝑖 ⟩. It sends the tuple ⟨𝑙𝑑𝑖 , 𝑙𝑘𝑖 ⟩ to the CN to delete the
corresponding ciphertexts of both data and key. If the received
tuple is not found in TTP’s 𝐷𝐵, then it cannot process the client’s
delete request, and further notifies the client.

6. For each locator 𝑙 ∈ {𝑙𝑑𝑖 , 𝑙𝑘𝑖}, CN calls the function 𝐷𝑒𝑙𝑒𝑡𝑒 (𝑙)
that deletes both the ciphertexts 𝐶𝑑 and 𝐶𝑘. Algorithm 3 de-
scribes the working of 𝐷𝑒𝑙𝑒𝑡𝑒 (𝑙) function, which will be dis-
cussed in Section 5.5.1.

7. After deleting 𝐶𝑑 and 𝐶𝑘, CN sends an 𝐴𝐶𝐾 back to the TTP,
along with tuple ⟨𝑙𝑑𝑖 , 𝑙𝑘𝑖 ⟩.

8. TTP removes the corresponding file entry from the 𝐷𝐵 and sends
a file deletion 𝐴𝐶𝐾 back to the client.

The proposed framework handles the scenario of deleting the file at
the TTP level if the file is uploaded multiple times by the same client.
In this case, TTP decrements the corresponding file counter entry, 𝑛, by
1 in its 𝐷𝐵, if 𝑛 > 1, to save the unnecessary processing overhead. TTP
checks the entry of the received file tuple in their database (i.e., step
4 in the download procedure and step 5 in the delete procedure) to
find the identity of the storage server corresponding to the received
tuple. The following are some of the scenarios that could occur: (i) If a
client forwards the incorrect file locators to the TTP, then the selected
file locator is not found in the TTP database. (ii) Suppose a client saves
some file tuples and later uses them to initiate a file download or delete
request. If the file has already been deleted, it will not be found in the
TTP database.

TTP will only process a user request to download or delete a file if
the file already exists in the system. Therefore, the TTP checks the file
locator entry in their database before processing the client’s request.
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Algorithm 3: Delete File from Datacenters.
Input : 𝑙𝑜𝑐𝑎𝑡𝑜𝑟 𝑙
Output: 𝐴𝐶𝐾

1 begin

2 𝑛0 ⟵ 𝐷𝐵𝑐 (𝑙)
3 if

(

𝑛0 > 1
)

then
4 𝐷𝐵𝑢

(

𝑛0 = 𝑛0 − 1
)

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑙 ∈ 𝐷𝐵
5 return 𝐴𝐶𝐾
6 end
7 𝐹 𝑖𝑛𝑑 𝑆𝑑 , 𝑆𝑘 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑙 ∈ 𝐷𝐵
8 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝜂𝑐 , 𝜂𝑘

/* Key fragment deletion procedure starts */
9 𝐿𝑒𝑡 𝑁1 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆𝑘

10 for 𝑖 = 1 𝑡𝑜 𝑁1 do

11 𝐷𝑒𝑙
𝑆𝑘𝑖
𝑓

(

𝜂𝑘
)

12 end
/* Key fragment deletion procedure ends */
/* Data fragment deletion procedure starts */

13 𝐿𝑒𝑡 𝑁2 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆𝑑

14 for 𝑗 = 1 𝑡𝑜 𝑁2 do

15 𝐷𝑒𝑙
𝑆𝑑𝑗
𝑓

(

𝜂𝑐
)

16 end
/* Data fragment deletion procedure ends */
/* Operations in the steps 10 − 12 and 14 − 16 are executed in

parallel */
17 𝐷𝐵𝑑 (𝑙) 𝑑𝑒𝑙𝑒𝑡𝑒 𝑓𝑟𝑜𝑚 𝐷𝐵
18 𝑟𝑒𝑡𝑢𝑟𝑛 𝐴𝐶𝐾

(

𝑙𝑑 , 𝑙𝑘
)

19 end

5.5.1. Delete file from datacenters
The Algorithm 3 takes locator 𝑙 as an input and deletes all the

fragments, referred by 𝑙, from the corresponding DC. The algorithm
performs the following operations:

1. First it calls the function 𝐷𝐵𝑐 (𝑙) to get the file counter 𝑛0, which
represents the number of copies of the file referred by a locator
𝑙.

2. If 𝑛0 > 1, then 𝑛0 is decremented by 1 and the algorithm returns.
Else, the algorithm proceeds with the following steps.

3. It retrieves the list of servers, 𝑆𝑑 and 𝑆𝑘, where data and key
fragments are stored respectively corresponding to locator 𝑙.

4. Then it generates the unique filename for the stored ciphertext
𝐶 using Base64 encoding. Let 𝜂𝑐 and 𝜂𝑘 be the filenames for data
fragment and key fragment respectively for a particular locator
𝑙.

5. It calls the function 𝐷𝑒𝑙
𝑆𝑘
𝑖

𝑓
(

𝜂𝑘
)

which deletes all the key frag-
ments that are stored at the servers, existing in the list 𝑆𝑘.
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6. It calls the function 𝐷𝑒𝑙
𝑆𝑑
𝑖

𝑓
(

𝜂𝑐
)

which deletes all the data frag-
ments that are stored at the servers, existing in the list 𝑆𝑑 .

7. Finally, it deletes the entries corresponding to the locator 𝑙 from
the 𝐷𝐵, and returns an 𝐴𝐶𝐾 with the tuple ⟨𝑙𝑑 , 𝑙𝑘⟩ to the TTP.

CN updates its 𝐷𝐵 only if more than one copy of the data exists
in its 𝐷𝐵, corresponding to the given file locator. This process avoids
unnecessary storage access.

6. Performance evaluation

We, first, analyze the security aspects of the proposed scheme as
per the goals discussed in Section 4 to evade such attacks. Later,
the implementation setup with details related to packages and other
libraries. Next, we discuss the performance analysis of experiments
conducted and their corresponding results. Finally, we conclude by
providing the complexity analysis of different operations defined in the
framework and comparative analysis of various deduplication schemes.

6.1. Security analysis

The proposed framework uses AES (or any other strong encryption
algorithm alike) with a dupless key generated by the 𝐾𝑆 based on the
hash value of the data and 𝑂𝑃𝑅𝐹 protocol to encrypt the data. We pre-
sume that AES is secure [33,34]. Therefore, the proposed framework is
secure and achieves confidentiality as long as the encryption algorithm
works fine. Besides, our scheme uses 𝑂𝑃𝑅𝐹 protocol between 𝐾𝑆 and
𝑈𝑠𝑒𝑟𝑠. It ensures that 𝐾𝑆 learns nothing about the user data and the
user learns nothing about the key. However, only authentic users can
access the 𝐾𝑆 thus the external attackers cannot compromise the 𝐾𝑆
for user data. The Rate Limiting Protocol slows down the brute-force
attacks from compromised clients. So we can argue that our framework
provides compromise resilience to 𝐾𝑆.

The insider and outsider adversaries try to recover the plaintext data
from the cloud storage. In this section, we analyze the security aspects
of the proposed scheme as per the goals discussed in Section 4 to evade
such attacks.

6.1.1. Security from insider adversaries/CSP
Suppose CSP or other admin insiders want to retrieve user sensitive

information from the stored data in the cloud. The adversary fails to
retrieve the information in plaintext because it receives the data in
ciphertext which is encrypted with 𝑘𝑑𝑢𝑝 using DupLESS [6] algorithm.
It is a brute-force resistance algorithm and denies online attacks by
adopting Rate Limiting Protocol [27]. Moreover, suppose it performs
some illegal activity like data leakage or misuse, etc. The encrypted
form of users’ data and key {𝐶𝑑 , 𝐶𝑘} ensures the privacy of the users’
data in spite of the data is leaked to an untrusted party.

6.1.2. Security from malicious users or outsider adversaries
The proposed framework stores the encrypted data in fragments

at distributed sites, and it is unpredictable for any outsider to locate
the fragments. Such encrypted data copies are semantically secure and
provide privacy against chosen distribution attacks [4]. Suppose that
any outsider gets track of all the data fragments {𝐶1

𝑑 , 𝐶
2
𝑑 , 𝐶

3
𝑑 ,… , 𝐶𝛾1

𝑑 }
from the storage servers to recover the 𝐶𝑑 . The adversary needs the
corresponding key 𝐶𝑘 to recover the dupless key 𝐾𝑑𝑢𝑝. Since the key
𝐶𝑘 is also fragmented and stored at distributed locations, it is difficult
for the adversary to extract 𝐶𝑘. Even if the adversary gets all the
key fragments {𝐶1

𝑘 , 𝐶
2
𝑘 , 𝐶

3
𝑘 ,… , 𝐶𝛾2

𝑘 } to recover 𝐶𝑘, it is not possible to
decipher them as it requires user’s secret key. Even if the attackers
compromise the external entities, i.e., 𝐾𝑆 & 𝑇𝑇𝑃 , they cannot gain
any access to the user data as the 𝐾𝑆 deals with an only hash value of
the user data and the 𝑇𝑇𝑃 deals with only the data and key locators.
Further, suppose that any malicious user compromises the TTP to
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initiate a false download request with its id as 𝑈𝑖𝑑 to get 𝐶𝑑 & 𝐶𝑘 from
the storage servers. Malicious users fail to decipher them as they are in
encrypted form.

Therefore, we argue that the proposed system is secure from both
insider and outsider adversaries.

6.2. Performance analysis

The core of the implementation of dualDup prototype is based on
implementation of DupLESS and cryptographic techniques [6,33,35].

Experimental Setup: The testing environment in the implementa-
tion framework comprises a system with Intel® 𝐶𝑜𝑟𝑒𝑇𝑀 i7-3770 CPU
@ 3.40 GHz processor having 8 cores, 8 GB RAM, Ubuntu 14.04 64-bit
operating system. The software tools include Python2.7-dev package
and various Python-based libraries for each entity, MySQL for the
database operations, SHA-256 for generating cryptographic hash value,
PyECLib-1.2.0 library with liberasurecode-dev for generating erasure
codes, and AES for symmetric-key encryption/decryption algorithms
via Python’s crypto library. Any customizable data center can be used
for storing and retrieving the files. Our implementation consists of
multiple modules including client, TTP, KS, and CN. Several Python
scripts are developed to implement these modules i.e., Client, KS, TTP,
and CN.

Implementation: Our implementation adopts Dropbox as a dat-
acenter. Multiple Dropbox accounts are used to emulate the storage
servers. Out of those accounts, some are used as data storage servers to
store data fragments and the remaining accounts as storage servers to
store key fragments.

The client sends the commands from the developed command-line
interface for uploading, downloading, deleting and accessing the stored
files. For instances, the client uses 𝑢𝑝𝑙𝑜𝑎𝑑 < 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒 > to upload a file
to the Dropbox, 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 < 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒 > to download a file from the
Dropbox, 𝑙𝑠 command to see the list of stored file names in the Dropbox,
and 𝑑𝑒𝑙𝑒𝑡𝑒 < 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒 > to remove a file from the Dropbox. An app
created for each Dropbox account generates corresponding APP_KEY
and APP_SECRET for accessing permissions, eventually to access the
files from Dropbox. Further, we generate self-signed certificate via
OpenSSL to authenticate the key server and other entities.

We consider a dataset 𝑆 of various files of different sizes gener-
ated using a script for analyzing the execution time during different
operations on the top of the Dropbox datacenter as shown in Eq. (1).

𝑆 =
𝑚𝑎𝑥
∑

𝑖=0
22𝑖 Kilobytes. (1)

In the experiments, we took 𝑚𝑎𝑥 = 9 leading to generation of files
with random contents of size 22𝑖 KB, 0 ≤ 𝑖 < 10, i.e., different files of
size 1 KB to 256MB. Further, we create multiple copies of these datasets
for testing the deduplication. In our experiments, tests are performed
by continuously sending requests to perform the operations such as
upload, and download to the datacenter via TTP. Python timeit module
is used to evaluate the computation results of various operations.

In the next few subsections, we analyze the performance of our
proposed framework for the time taken for encryption/decryption of
key and data, for uploading and downloading of files, for the encoding
of data and key, and the generation of keys of various files of different
sizes. We also analyze the space overhead for each distinct file.

6.2.1. Encryption and decryption cost analysis
The execution cost of cryptographic operations including encryption

and decryption are analyzed by repeating the experiments 1000 times
on input datasets defined in Eq. (1). There must be an impact of
variation of distinct files of different sizes on encryption and decryption
operations. This study aims to figure out the minimum, mean, max-
imum, and standard deviation (Std. Dev.) of execution times due to
variation of file sizes. Fig. 10 shows the execution time of encryption
and decryption operations for both data and their corresponding keys.
Encryption and decryption of data, shown in Fig. 10(a) and 10(c),
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akes constant time (< 0.1 s) for data size up to 222 bytes, and then
he time increases exponentially with the increase in file size. Since
he size of the key is very small and independent of data, encryption
nd decryption of keys are measured in microseconds, as shown in
ig. 10(b) and 10(d). These figures show that the average execution
ime for encrypting and decrypting the keys lies between 1 to 6 μs,

and between 1 to 4 μs, respectively. As can be seen in the figures, the
standard deviation of these cryptographic operations is nearly zero for
data and less than one for the key, which represents that the variation
in execution time of these operations for different file sizes is low.

6.2.2. Upload and download time analysis
We evaluate and discuss the execution time of Upload and Down-

load operations for the following possible deduplication circumstances.
Suppose distinct files uploaded by 𝑚 users to the cloud takes equivalent
xecution time as uploading an individual file from each user. When
he existing user (inside-user deduplication) attempts to upload the
reviously uploaded file to the storage, as a result, no need to execute
ploading operation. We can say that it takes constant time to upload
he file. If any other users (cross-user deduplication) uploads the file
o the server, the CN receives the file and subsequently checks if the
ile already exists in the storage. Then, CN updates a file counter
ith the user id. In any case, users need to upload file to the cloud

torage. We measure upload and download operation time for the
atasets 𝑆 using timeit module. We repeat these operations 100 times
o evaluate minimum, mean, maximum and standard deviation of the
perations time on distinct files of different sizes. Fig. 11 shows the
xecution time of uploading and downloading operations for both data
nd their corresponding keys. Fig. 11(a) and 11(c) show time required
o upload and download the dataset 𝑆. Both graphs show the linear
peration time up to data size of 222 bytes, then increases exponentially.
ploading and downloading time of the keys corresponding to their
ata are shown in Fig. 11(b) and 11(d). These figures show that the
12

m

average time for uploading and downloading the keys lies between 0.5
to 1.2 s, and between 0.4 to 1.2 s, respectively for the given data inputs.
As can be seen in the figures, the standard deviation of upload time
for data and key is nearly zero and less than one, respectively, which
represents that the variation in upload time for different file sizes is
low. Similarly, the standard deviation of download time for the key is
less than one. However, the standard deviation of download time for
data increases exponentially after 16MB file size.

6.2.3. Encoding and key generation time analysis
Figs. 12 (a) and 12 (b) show the time required for encoding the

dataset 𝑆 and its key respectively, using Reed–Solomon, 𝑅𝑆 (𝛼 = 3, 𝛽 = 2
encoding scheme. We repeat these encoding operations 1000 times to
valuate minimum, mean, maximum and standard deviation of the
ncoding time. Since the key size is small, its average key encoding
ime lies between 7 to 12 μs. As can be seen in the figures, the standard
eviation of encoding time for data and key is nearly zero and less
han five respectively which represents the variation in encoding time
or different file sizes is low.

Fig. 13 shows the time required to generate the keys corresponding
o the input data of various sizes. We measure this time by excluding
he network overheads. As can be seen in the figure, the average key
eneration time increases exponentially after 16MB file size. Standard
eviation is nearly zero, which represents that the variation in key
eneration time for different file sizes is low.

.2.4. Space and time analysis of RS code
Table 2 summarizes the space overhead

(

𝑆𝑜ℎ
)

of various input file
izes ranging from 1KB to 256 MB. We analyze the results corresponding
o the 𝑅𝑒𝑒𝑑–𝑆𝑜𝑙𝑜𝑚𝑜𝑛,𝑅𝑆 (𝛼 = 3, 𝛽 = 2) codes which can tolerate maxi-
um of 𝛽 = 2 missing fragments, hence increasing the data reliability.
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Fig. 11. Execution Time for Upload and Download Operation of Various File sizes. (a) Execution Time for Uploading Data. (b) Execution Time for Uploading Key. (c) Execution
Time for Downloading Data. (d) Execution Time for Downloading Key.
Fig. 12. (a) Running Time of Data Encoding. (b) Running Time of Key Encoding.
t

𝓁
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F
a

Average space overhead
(

𝑆𝑜ℎ

)

is calculated, as given in Eq. (2).

𝑆𝑜ℎ =

(

𝓁𝛿𝑖 ∗ (𝛼 + 𝛽)
𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒

− 1

)

× 100 % (2)

here 𝓁𝛿𝑖 represents a single fragment size in bytes, 𝛼 represents the
umber of data fragments, and 𝛽 represents the number of parity
ragments. The space overhead is maximum for the smallest 1KB file,
nd it is almost the same when file size increases from 256KB to
56MB. The encoding library adds 80 byte header to each fragment.
hese overhead bytes significantly increase the size of the small files,
hereas, it does not affect the large files. Therefore, small files have
xtra space overheads as compared to the large files. RS(3,2) coding
enerates an average space overhead of 66.66% which is better than
-way replication technique which generates space overhead of 𝑂 (𝑁),
here 𝑁 denotes the number of replicas.
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s

Average fragment size
(

𝓁𝛿𝐴𝑣𝑔

)

for different data size corresponding
o RS codes is computed, as given in Eq. (3).

𝛿𝐴𝑣𝑔 ≈
𝐹 𝑖𝑙𝑒𝑠𝑖𝑧𝑒 ×

(

1 + 𝑆𝑜ℎ
100

)

𝛼 + 𝛽
byte (3)

The execution time of operations is reduced at compute server
due to the parallelism of the proposed architecture which depends
on an adapted EC scheme. For example, suppose the compute server
receives 3 MB file from the client, then it computes fragments of
size nearly equivalent to 1 MB if we use 𝑅𝑆 (3, 2) codes. The time
omplexity of this 3 MB file is shown in Fig. 14 with and without EC.
ig. 14(a) and Fig. 14(b) compares the encryption/decryption time,
nd upload/download time for a 3 MB file with RS(3,2) encoding

cheme. It can also be seen from the figure that time required for all
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Fig. 13. Key Generation Time for Various File Flavors.

Fig. 14. Comparison of Normal Operation Time with Execution Time of RS(3,2) Codes
for a 3 MB File.

these operations gets reduced if RS(3,2) encoding scheme is used for
fragmenting the data.

6.2.5. Complexity analysis
In our implementation, when the compute server receives a unique

file from the client, it makes an entry of the file’s locator in its 𝐷𝐵.
If the locator does not exist in the 𝐷𝐵, then it uploads the file. The
adapted encoding scheme fragments the data, and data uploading time
depends on the fragment size. Our proposed model adapts RS encoding
that generates the set of encrypted fragments of data, and uploads each
fragment in parallel. Reduction in uploading/downloading operation
time depends on the adapted RS coding scheme. If the file locator
already exists in the 𝐷𝐵, then the proposed approach does not perform
operations like evaluating encrypted file fragments, uploading, etc. It
only increments the file counter entry (corresponding to an existing file
locator) in the 𝐷𝐵 by 1. It takes constant time to upload any file and
ensures deduplication at the datacenter. We use a hash index storage
engine to perform the lookup, insert, delete, and update operation in
constant time.

The complexity of the operations is discussed in Table 3. Suppose
that all 𝑚 users upload the distinct files (each of size 𝑛) in parallel, then
the upload operation takes an equivalent time as the time required to
upload a single file, i.e., 𝑂 (𝑛). Space complexity of such a scenario is
𝑂 (𝑚𝑛). Inside-user deduplication detected by the TTP takes constant
time and space and hence saves the server space of 𝑂 (𝑛) if the file
locator exists in the 𝐷𝐵. Otherwise, it takes 𝑂 (𝑛) time to upload the
file and constant space to update its DB. The cross-user deduplication
checks the file locator entry in its 𝐷𝐵. If the corresponding entry exists,
then the file storing operation takes constant time and space, hence
saving 𝑂 (𝑛) space. Otherwise, it takes 𝑂 (𝑛) time and space to store
the file. In the delete operation, inside-user deduplication is checked
14
Table 2
Space overheads and fragment sizes for various input file size corresponding to 𝑅𝑆 (3, 2)
codes.

File size 𝓁𝛿𝑖 (𝑏𝑦𝑡𝑒𝑠) 𝑆𝑜ℎ %

1 KB 422 106.0546875
4 KB 1446 76.51367188
16 KB 5542 69.12841797
64 KB 21926 67.28210449
256 KB 87462 66.82052612
1 MB 349606 66.70513153
4 MB 1398182 66.67628288
16 MB 5592486 66.66907072
64 MB 22369702 66.66726768
256 MB 89478566 66.66681692

by TTP. If the file exists in TTP’s 𝐷𝐵, then it takes constant time to
delete the file because TTP has to decrement the counter value by one
from its 𝐷𝐵. Further, cross-user deduplication is checked using the CSP
database. If the file counter is equal to one, then it takes 𝑂 (𝑛) time in
file deletion because it removes the whole file from the storage; else, if
the file counter value > 1, then deletion operation is done in constant
time because it decrements the file counter entry in the database.

6.2.6. Comparative analysis of various deduplication schemes
Table 4 compares the proposed approach with the existing secure-

deduplication schemes in the aspects of deduplication, attack miti-
gation, key security and management, reliability, and various QoS
features. The deduplication managing entity prevents the data redun-
dancies in storage. In all other works, either client or server or both
act as managing entity. Whereas, in our proposed work, TTP and CSP
act as managing entity to defend against inside-user deduplication and
cross-user deduplication respectively.

All the existing works except the one in [8] incur client storage
overheads. None of them except [8] can achieve all QoS features of data
confidentiality, compromise resilience, and reduction in bandwidth.
However, the work in [8] fails to address the reliability. The strength
of the proposed approach lies in achieving reliability without incurring
client overheads. Moreover, the proposed framework achieves all QoS
features of confidentiality, compromise resilience, and reduction in
bandwidth.

None of the exciting works, except [6,17], can mitigate against both
brute force and side-channel attacks. However, both related works [6,
17] fail to achieve key reliability. On the contrary, our dualDup frame-
work mitigates against both brute force and side-channel attacks. Addi-
tionally, none of the works can target both reliability and key security
together. The proposed work achieves key security and management
in addition to reliability. Hence, we can conclude that the proposed
approach is superior over other related works.

7. Conclusion and future work

This paper proposed a novel dualDup framework combining tech-
niques such as DupLESS, Erasure Coding, and other cryptographic
primitives to provide secure-deduplication, privacy, and reliability to-
gether unlike other models discussed in the literature. The proposed
dualDup framework optimizes the storage by eliminating the duplicate
encrypted data in the storage servers by extending the DupLESS concept
and further achieved privacy and reliability for both data and key
by securely storing their fragments in a distributed fashion based on
the agreed Erasure Coding (EC) scheme. Using the EC concept, the
proposed model prevents data loss due to server failures and software
or hardware faults. The proposed system is designed in such a way
that it is secure from both insider and outsider adversaries as well as
to meets specific design goals such as compromise resilience, brute-
force attack resilience, reliability, secure-deduplication, key security,
and management. Here we summarize some of the important findings
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Table 3
Complexities of various operations.

Operations Time Space Save space

1 Distinct file uploaded by 𝑚 users (assume each file of size n) O(n) O(mn) –
2 At TTP, Inside-user deduplication check and file upload

(a) If file locator exists in TTP’s database O(1) O(1) O(n)
(b) If file locator does not exists in TTP’s database O(n) O(1) –

3 At CSP, cross-user deduplication check and stores the file
(a) If file locator exists in CSP’s database O(1) O(1) O(n)
(b) If file locator does not exists in CSP’s database O(n) O(n) –

4 Inside-user deduplication check before file deletion
(a) If file exists in TTP’s database O(1) – –

5 Cross-user deduplication check and deletes the file
(a) If file exists in CSP’s database & file counter value = 1 O(n) – –
(b) If file exists in CSP’s database & file counter value > 1 O(1) – –
Table 4
Comparison of proposed approach with existing deduplication schemes.

[8] [6] [18] [9] [19] [17] Proposed scheme

Secure-deduplication Y Y Y Y Y Y Y
Managing Entity Manager Server Client Client Client Client & Server TTP & CSP
Inside-user – Y Y Y Y Y Y

Deduplication

Cross-user Y Y Y – Y Y Y

Client Storage Overhead Reduced Y N N – N N Y
Save Bandwidth Y N Y Y – Y Y
Data Confidenciality Y Y Y Y Y Y Y

QoS Features

Compromise Resilience Y Y Y Y Y – Y

(Outsider/User) Y Y Y Y – Y YSide Channel (Insider/CSP) Y Y N Y Y Y YAttack Mitigated

Brute Force – Y – – Y Y Y

Security Y Y Y – Y – YKey
Management Y N Y N Y – Y

Key N N Y N Y N Y
Data N N N N N Y YReliability

Scheme – – RSSS – RSSS RSSS EC
of the research. It is observed that the data encryption and decryption
operations execute in constant time (< 0.1 s) up to 4 MB, and then the
time increases exponentially with the increase in file size. However,
the average execution time for encrypting and decrypting the keys lies
between 1 to 6 μs, and between 1 to 4 μs respectively. Besides, the key
size is small thus the average key encoding time lies between 7 to 12
μs. Since our experiment uses 𝑅𝑆(3, 2) encoding for testing purposes, it
limits the max space overhead up to 66.66% compared to the N-way
replication technique, which generates space overhead of 𝑂 (𝑁), where
𝑁 denotes the number of replicas.

In future work, we aim to enhance the proposed framework with
verification techniques to provide data integrity and user trust. We
believe that any cloud system is trusted and productive if it provides
an effective verification methodology. The verification strategy ensures
that the data and information stored in the cloud are complete, accu-
rate, consistent, and accessible when needed. Because data is stored in
an encoded and encrypted form across cloud datacenters, proper man-
agement and storage correctness assurance strategies are required. In
addition, we intend to implement a disaster recovery plan with storage
correctness assurance. It will automatically trigger the data recovery
module if any data inconsistency or corruption is detected. As a result,
integrating a trustable storage correctness checking mechanism into
the future development of the dualDup architecture helps to improve
customer satisfaction levels and promote business continuity.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
15

influence the work reported in this paper.
References

[1] Mell P, Grance T. The NIST definition of cloud computing. 2019, [Accessed 12
May 2019].

[2] Aljahdali H, Albatli A, Garraghan P, Townend P, Lau L, Xu J. Multi-tenancy in
cloud computing. In: 2014 IEEE 8th international symposium on service oriented
system engineering. 2014, p. 344–51.

[3] Douceur JR, Adya A, Bolosky WJ, Simon P, Theimer M. Reclaiming space
from duplicate files in a serverless distributed file system. In: Proceedings 22nd
international conference on distributed computing systems. 2002, p. 617–24.

[4] Bellare M, Keelveedhi S, Ristenpart T. Message-locked encryption and secure
deduplication. In: Johansson T, Nguyen PQ, editors. Advances in cryptology –
EUROCRYPT 2013: 32nd annual international conference on the theory and
applications of cryptographic techniques, Athens, Greece, May 26-30, 2013.
proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013, p. 296–312.

[5] Abadi M, Boneh D, Mironov I, Raghunathan A, Segev G. Message-locked
encryption for lock-dependent messages. In: Advances in cryptology – CRYPTO
2013: 33rd annual cryptology conference, Santa Barbara, CA, USA, August 18-22,
2013. proceedings, Part I. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013,
p. 374–91.

[6] Bellare M, Keelveedhi S, Ristenpart T. DupLESS: Server-aided encryption for
deduplicated storage. In: Proceedings of the 22Nd USENIX conference on
security. SEC’13, Berkeley, CA, USA: USENIX Association; 2013, p. 179–94.

[7] Storer MW, Greenan K, Long DD, Miller EL. Secure data deduplication. In:
Proceedings of the 4th ACM international workshop on storage security and
survivability. StorageSS ’08, New York, NY, USA: ACM; 2008, p. 1–10.

[8] Puzio P, Molva R, Önen M, Loureiro S. ClouDedup: Secure deduplication with
encrypted data for cloud storage. In: 2013 IEEE 5th international conference on
cloud computing technology and science, Vol. 1. 2013, p. 363–70.

[9] Kaaniche N, Laurent M. A secure client side deduplication scheme in cloud
storage environments. In: 2014 6th International conference on new technologies,
mobility and security. 2014, p. 1–7.

[10] Li P, Jin X, Stones RJ, Wang G, Li Z, Liu X, et al. Parallelizing degraded read for
erasure coded cloud storage systems using collective communications. In: 2016
IEEE Trustcom/BigDataSE/ISPA. 2016, p. 1272–9.

[11] Lin HY, Tzeng WG. A secure erasure code-based cloud storage system with secure
data forwarding. IEEE Trans Parallel Distrib Syst 2012;23(6):995–1003.

[12] Zhang G, Wu G, Wang S, Shu J, Zheng W, Li K. CaCo: An efficient Cauchy coding
approach for cloud storage systems. IEEE Trans Comput 2016;65(2):435–47.

http://refhub.elsevier.com/S2214-2126(22)00127-2/sb1
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb1
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb1
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb2
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb2
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb2
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb2
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb2
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb3
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb3
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb3
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb3
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb3
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb4
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb4
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb4
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb4
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb4
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb4
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb4
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb4
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb4
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb5
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb5
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb5
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb5
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb5
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb5
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb5
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb5
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb5
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb6
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb6
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb6
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb6
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb6
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb7
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb7
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb7
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb7
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb7
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb8
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb8
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb8
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb8
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb8
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb9
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb9
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb9
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb9
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb9
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb10
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb10
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb10
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb10
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb10
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb11
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb11
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb11
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb12
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb12
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb12


Journal of Information Security and Applications 69 (2022) 103265V. Chouhan et al.
[13] Yin J, Tang Y, Deng S, Li Y, Lo W, Dong K, et al. ASSER: An efficient, reliable,
and cost-effective storage scheme for object-based cloud storage systems. IEEE
Trans Comput 2017;66(8):1326–40.

[14] Nachiappan R, Javadi B, Calheiros RN, Matawie KM. Cloud storage reliability
for big data applications: A state of the art survey. J Netw Comput Appl
2017;97:35–47.

[15] Xu F, Wang Y, Ma X. Incremental encoding for erasure-coded cross-datacenters
cloud storage. Future Gener Comput Syst 2018;87:527–37.

[16] Hasan M, Goraya MS. Fault tolerance in cloud computing environment: A
systematic survey. Comput Ind 2018;99:156–72.

[17] Li J, Chen X, Huang X, Tang S, Xiang Y, Hassan MM, et al. Secure dis-
tributed deduplication systems with improved reliability. IEEE Trans Comput
2015;64(12):3569–79.

[18] Li J, Chen X, Li M, Li J, Lee PPC, Lou W. Secure deduplication with efficient
and reliable convergent key management. IEEE Trans Parallel Distrib Syst
2014;25(6):1615–25.

[19] Zhou Y, Feng D, Xia W, Fu M, Huang F, Zhang Y, et al. SecDep: A user-aware
efficient fine-grained secure deduplication scheme with multi-level key manage-
ment. In: 2015 31st Symposium on mass storage systems and technologies. 2015,
p. 1–14.

[20] De Santis A, Masucci B. Multiple ramp schemes. IEEE Trans Inform Theory
1999;45(5):1720–8.

[21] Meyer DT, Bolosky WJ. A study of practical deduplication. ACM Trans Storage
(TOS) 2012;7(4):14:1–20.

[22] Harnik D, Pinkas B, Shulman-Peleg A. Side channels in cloud services:
Deduplication in cloud storage. IEEE Secur Priv 2010;8(6):40–7.

[23] Meister D, Brinkmann A. Multi-level comparison of data deduplication in a
backup scenario. In: Proceedings of SYSTOR 2009: the israeli experimental
systems conference. SYSTOR ’09, New York, NY, USA: ACM; 2009, p. 8:1–8:12.

[24] Qin C, Li J, Lee PPC. The design and implementation of a rekeying-aware
encrypted deduplication storage system. ACM Trans Storage 2017;13(1):9:1–30.

[25] Bellare M, Boldyreva A, O’Neill A. Deterministic and efficiently searchable
encryption. In: Menezes A, editor. Proceedings of the 27th annual international
cryptology conference on advances in cryptology. CRYPTO’07, Berlin, Heidelberg:
Springer-Verlag; 2007, p. 535–52.
16
[26] Rogaway P, Shrimpton T. A provable-security treatment of the key-wrap problem.
In: Advances in cryptology - EUROCRYPT 2006: 24th annual international
conference on the theory and applications of cryptographic techniques, St.
Petersburg, Russia, May 28 - June 1, 2006. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2006, p. 373–90.

[27] Naor M, Reingold O. Number-theoretic constructions of efficient pseudo-random
functions. J ACM 2004;51(2):231–62.

[28] Weatherspoon H, Kubiatowicz J. Erasure coding Vs. Replication: A quantita-
tive comparison. In: Revised papers from the first international workshop on
peer-to-peer systems. IPTPS ’01, London, UK, UK: Springer-Verlag; 2002, p.
328–38.

[29] Yan Z, Ding W, Zhu H. A scheme to manage encrypted data storage with dedu-
plication in cloud. In: International conference on algorithms and architectures
for parallel processing. Springer; 2015, p. 547–61.

[30] Miao M, Wang J, Li H, Chen X. Secure multi-server-aided data deduplication in
cloud computing. Pervasive Mob Comput 2015;24:129–37.

[31] Fan C-I, Huang S-Y, Hsu W-C. Encrypted data deduplication in cloud storage. In:
2015 10th Asia joint conference on information security. IEEE; 2015, p. 18–25.

[32] Van Dijk M, Gentry C, Halevi S, Vaikuntanathan V. Fully homomorphic
encryption over the integers. In: Proceedings of the 29th Annual interna-
tional conference on theory and applications of cryptographic techniques.
EUROCRYPT’10, Berlin, Heidelberg: Springer-Verlag; 2010, p. 24–43.

[33] J. Dworkin M, B. Barker E, R. Nechvatal J, Foti J, E. Bassham L, Roback E, et
al. National institute of standards, and technology. FIPS PUB 197: Advanced
encryption standard. 2001, URL http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf.

[34] Biryukov A, Khovratovich D. Related-key cryptanalysis of the full AES-192 and
AES-256. In: Proceedings of the 15th international conference on the theory
and application of cryptology and information security: advances in cryptology.
ASIACRYPT ’09, Berlin, Heidelberg: Springer-Verlag; 2009, p. 1–18.

[35] H. Dang Q. National institute of standards, and technology. FIPS PUB 180-4:
secure hash standard. 2015, URL https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.180-4.pdf.

http://refhub.elsevier.com/S2214-2126(22)00127-2/sb13
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb13
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb13
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb13
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb13
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb14
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb14
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb14
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb14
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb14
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb15
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb15
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb15
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb16
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb16
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb16
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb17
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb17
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb17
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb17
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb17
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb18
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb18
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb18
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb18
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb18
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb19
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb19
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb19
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb19
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb19
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb19
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb19
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb20
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb20
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb20
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb21
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb21
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb21
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb22
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb22
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb22
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb23
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb23
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb23
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb23
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb23
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb24
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb24
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb24
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb25
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb25
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb25
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb25
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb25
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb25
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb25
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb26
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb26
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb26
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb26
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb26
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb26
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb26
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb26
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb26
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb27
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb27
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb27
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb28
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb28
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb28
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb28
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb28
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb28
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb28
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb29
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb29
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb29
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb29
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb29
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb30
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb30
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb30
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb31
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb31
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb31
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb32
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb32
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb32
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb32
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb32
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb32
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb32
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb34
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb34
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb34
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb34
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb34
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb34
http://refhub.elsevier.com/S2214-2126(22)00127-2/sb34
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

	dualDup: A secure and reliable cloud storage framework to deduplicate the encrypted data and key
	Introduction
	Motivation
	Contributions
	Organization

	Preliminaries
	Fundamental operations
	File and datacenter operations


	Background and related work
	Background
	Secure-deduplication
	Reliability

	Related work
	Reliability solutions
	Secure-deduplication solutions


	Threat model and design goals
	Proposed dualDup framework
	Overview
	System components
	Upload procedure
	Phase I: Client side operations
	Phase II: Server side operations
	File uploading scenario

	Download procedure
	Compute ciphertext from datacenters

	Delete procedure
	Delete file from datacenters


	Performance evaluation
	Security analysis
	Security from insider adversaries/CSP
	Security from malicious users or outsider adversaries

	Performance analysis
	Encryption and decryption cost analysis
	Upload and download time analysis
	Encoding and key generation time analysis
	Space and time analysis of RS code
	Complexity analysis
	Comparative analysis of various deduplication schemes


	Conclusion and future work
	Declaration of competing interest
	References


