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Abstract—Infrastructure-as-a-Service cloud providers offer diverse purchasing options and pricing plans, namely on-demand,

reservation, and spot market plans. This allows them to efficiently target a variety of customer groups with distinct preferences and to

generate more revenue accordingly. An important consequence of this diversification however, is that it introduces a non-trivial

optimization problem related to the allocation of the provider’s available data center capacity to each pricing plan. The complexity of the

problem follows from the different levels of revenue generated per unit of capacity sold, and the different commitments consumers and

providers make when resources are allocated under a given plan. In this work, we address a novel problem of maximizing revenue

through an optimization of capacity allocation to each pricing plan by means of admission control for reservation contracts, in a setting

where aforementioned plans are jointly offered to customers. We devise both an optimal algorithm based on a stochastic dynamic

programming formulation and two heuristics that trade-off optimality and computational complexity. Our evaluation, which relies on an

adaptation of a large-scale real-world workload trace of Google, shows that our algorithms can significantly increase revenue

compared to an allocation without capacity control given that sufficient resource contention is present in the system. In addition, we

show that our heuristics effectively allow for online decision making and quantify the revenue loss caused by the assumptions made to

render the optimization problem tractable.

Ç

1 INTRODUCTION

IN the infrastructure as a service (IaaS) model of cloud
computing, customers purchase units of computing time

on virtual machine (VM) instances in a flexible pay-as-you-go
manner through the Internet [1]. Cloud providers maintain
large-scale data centers to offer these computational resour-
ces on-demand and at a relatively low cost thanks to the
associated economies of scale. Yet, to ensure business suc-
cess, they need to obtain the highest possible revenue from
selling available resource capacity. Methods such as adopt-
ing differentiated pricing plans, market segmentation [2],
and demand forecasting [3] can be used so that the maximal
amount of capacity is sold at the highest possible price.

As the computational resources involved constitute a
non-storable or perishable commodity [4], cloud providers
benefit from maximizing resource utilization to maximize
revenue. Consequently, many IaaS providers offer various
pricing plans (or markets) such as reservation (subscription)
and spot market-based plans, in addition to an on-demand
pay-as-you-go pricing plan. In the reservation plan, users
pay an upfront reservation fee to reserve resources for a

specific period of time (e.g., one year). In exchange, they
receive a significant discount on the hourly resource usage
price. The spot market allows users to submit the maximum
price they are willing to pay to an auction-like mechanism
as a bid. Users gain access to the acquired resources as long
as their bid exceeds the provider’s last computed market
clearing price, which also determines the resource’s uni-
form usage price until the next market clearing.

The segmentation of demand through different pricing
plans is attractive to the provider for a number of reasons.
For instance, risk-free income from reservations, on the one
hand, provides guaranteed cash flow through long-term
commitments. As such, it can compensate for the demand
uncertainty associated with the on-demand pay-as-you-go
pricing plan [2]. The spot market, on the other hand, can
attract price-sensitive users that can tolerate service inter-
ruptions, allowing the provider to generate additional reve-
nue from spare capacity without exposure to the risks of
overbooking capacity.

The use of multiple pricing plans introduces a number of
non-trivial trade-offs to IaaS providers with respect to reve-
nue maximization. Although on-demand pay-as-you-go
requests often generate the highest revenue per hour of
usage sold, they suffer from future demand uncertainty. The
upfront fee of the reservation plan is beneficial from a cash
flow perspective, but in the long-run, the total revenue gen-
erated is lower than the one obtained by selling equivalent
usage hours under an on-demand plan. Moreover, the pro-
vider is liable to offer guaranteed availability for reserved
requests to honor the associated service level agreement
(SLA). This might be costly when customers do not fully uti-
lize their reserved capacity in the reservation’s lifetime [4].

� A. N. Toosi, K. Ramamohanarao, and R. Buyya are with Department of Com-
puting and Information System, University ofMelbourne, Parkville Campus,
Melbourne, VIC 3010, Australia.
E-mail: adeln@pgrad.unimelb.edu.au, {kotagiri, rbuyya}@unimelb.edu.au.

� K. Vanmechelen is withDepartment ofMathematics and Computer Science,
University of Antwerp, Belgium. E-mail: kurt.vanmechelen@ua.ac.be.

Manuscript received 26 May 2014; revised 28 Oct. 2014; accepted 25 Nov.
2014. Date of publication 17 Dec. 2014; date of current version 4 Sept. 2015.
Recommended for acceptance by B. He and B. Veeravalli.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2014.2382119

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2015 261

2168-7161� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



Allocating this underutilized reserved capacity to on-
demand requests (i.e., overbooking resources), creates the
risk of SLA violations. Spot instances on the other hand, can
be terminated by the provider whenever their resources are
required to honor commitments made with respect to other
pricing plans. The provider therefore has the freedom to
accommodate spot instances in the underutilized reserved
capacity of the data center. Consequently, the benefits of this
flexibility from a revenue management perspective must be
consideredwhen admitting new reservation contracts.

We address the problem of maximizing revenue when
these three pricing models are jointly applied. Our main
research question is the following: with limited resources
available, and considering the dynamic and stochastic
nature of customers’ demand, how can expected revenue be
maximized through an optimal allocation of capacity to
each pricing plan?

We frame our algorithmic contributions within a revenue
management framework that supports the three presented
pricing plans and that incorporates an admission control sys-
tem for requests of the reservation plan. To the best of our
knowledge, we are the first to consider a joint offering of on-
demand pay-as-you-go, reservation, and spot markets in a
revenuemaximization problem for IaaS cloud providers.

In summary, our main contributions are:

� We formulate the optimal capacity control problem
that results in the maximization of revenue as a finite
horizon Markov decision process (MDP) [5]. We pres-
ent a stochastic dynamic programming technique to
compute the maximum number of reservation con-
tracts the provider is to accept from the arriving
demand in order to maximize revenue.

� For a provider with large capacity, the use of the sto-
chastic dynamic programming technique is compu-
tationally prohibitive. We, therefore, present two
algorithms to increase the scalability of our solution.
The first increases the spatial and temporal granular-
ity of the problem in order to solve it in a time suit-
able for practical online decision making. The
second sacrifices accuracy to an acceptable extent
through a number of simplifying assumptions on the
utilization of reserved capacity and the lifetime of
on-demand requests.

� We evaluate our proposed framework through large-
scale simulations, driven by cluster-usage traces pro-
vided by Google. We propose a scheduling algorithm
that generates VM requests based on the demand cap-
tured in these traces. Using pricing conditions that are
aligned with those of Amazon EC21, we demonstrate
that our admission control algorithms substantially
increase revenue for the provider.

This paper is organized as follows: after reviewing the
related work in Section 2, we introduce the system model in
Section 3. Therein we discuss the cloud pricing models used
in this paper, the optimal revenue management problem,
and a stochastic dynamic programming technique to tackle
the problem. We propose two admission control algorithms
namely pseudo optimal and heuristic in Section 4. Section 5

focuses on the revenue management framework and its
high-level architecture. The performance evaluation of the
framework and a comparison between the admission con-
trol algorithms is presented in Section 6. Our conclusions
and future work are presented in Section 7.

2 RELATED WORK

Revenue management (also known as yield management) is the
process of maximizing revenue from a fixed capacity for per-
ishable resources using market segmentation and demand
management techniques. During the last few decades, reve-
nue management has witnessed significant scientific and
practical advances especially in the airline and hotel indus-
tries. As the literature on the topic is vast, we focus on its rele-
vant applications to cloud computing. Interested readers can
find a detailed overview of revenuemanagement in [6].

An early attempt to incorporate revenue management into
cloud computing by P€uschel and Neumann [7] investigates
techniques such as client classification and dynamic pricing
in a policy-based admission control model. Similar work has
been done by Meinl et al. [8] who applies derivative markets
and yieldmanagement techniques for revenuemaximization.

Mac�ıas et al. [9] investigate dynamic pricing, over-provi-
sioning, and selective SLA violation to maximize cloud pro-
vider revenue. Recently, Kashef et al. [10] propose a system
architecture for cloud service providers that combines
demand-based pricing with resource provisioning. They
compare two revenue management techniques for cloud
computing. The first sets the timing for offering price dis-
counts, whereas the second determines the number of VMs
that should be offered at full price.

Anandasivam et al. [11] utilize a bid-price control tech-
nique that originates from the revenue management litera-
ture for capacity management which accepts or denies
incoming requests for service in order to increase revenue.
Bid-price control is an accepted and efficient method in air-
line revenue management in which threshold values, also
called bid prices, are set for each leg of an itinerary and a
ticket is sold if its fare exceeds the sum of the bid prices
along the path. Their model considers multiple resources
such as CPU, memory, storage, and bandwidth, while our
model comprises bundles of resources, i.e., VM instances.

The main difference between these works and ours is
that none of them considers the joint adoption of the multi-
ple different pricing plans presented in this paper. As a
result they are not applicable for many cloud providers that
are currently offering different pricing plans.

In our model, the provider is faced with stochastic and
dynamic arrivals and departures of customer requests and
must decide on whether to admit an incoming reservation
contract or to reject it. Similarly, Nair and Bapna [12] intro-
duced a revenue management technique based on the
admission control for the application domain of an Internet
service provider (ISP). They formulate the problem as a con-
tinuous time Markov decision process over an infinite plan-
ning horizon to dedicate ISP capacity to customers at any
instant of time. Despite these similarities, their application
domain differs from ours and their approach cannot be
directly applied in the cloud context. Interested readers can
find an approximate analytical model for performance anal-
ysis of cloud data centers in [13].1. http://aws.amazon.com/ec2/pricing
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Mazzucco and Dumas [14] examine the problem of allo-
cating servers to two classes of customers, premium and
basic, in a revenue maximizing way. The authors rely on a
queuing model to tackle the optimization problem. Their
work differs from ours since they target platform as a ser-
vice providers; therefore their assumptions, pricing plans,
and experimental settings differ.

There is a large body of research devoted to minimizing
cost for cloud consumers when multiple pricing models are
offered, see for example [15], [16], [17], [18]. However, lim-
ited investigation has been done on resource allocation and
capacity planning techniques to maximize provider reve-
nue. The problem of dynamically allocating resources to dif-
ferent spot markets for revenue maximization has been
investigated by Zhang et al. [3]. Supply adjustment and
dynamic pricing are used as a means to maximize revenue
and meet customer demand. They model the problem as a
constrained discrete-time and finite-horizon optimal control
problem and adoptmodel predictive control (MPC) techniques
to design the dynamic algorithm solution. MPC is a widely
used industrial technique for advanced multivariable con-
trol in the presence of nonlinearities and uncertainties. The
study does not consider the coexistence of multiple markets,
focusing solely on the spot market. Deciding on the optimal
capacity segmentation for on-demand and spot market
requests has been formulated as a Markov decision process
by Wang et al. [2]. As a part of their work, they propose an
optimal mechanism for a spot market based on a uniform
price auction. In their model, they only consider on-demand
pay-as-you-go and spot market requests and assume that
reservation contracts are always fulfilled.

Xu and Li [4] present an infinite horizon stochastic
dynamic program to maximize revenue under stochastic
demand arrivals and departures. They focus on the spotmar-
ket and do not consider the joint offering of multiple pricing
plans. Similarly, Truong-Huu and Tham [19] formulate the
competition among cloud providers as a non-cooperative
stochastic game which is modeled as a Markov decision pro-
cess to maximize revenue. At each step of the game, pro-
viders dynamically propose optimal price policies with
regard to the current policies of their competitors. According
to providers’ price policies, customers will decide on which
provider to submit their requests. Authors also introduce a
novel approach for the cooperation among providers to
enhance revenue and acquire the needed resources at any
given time. Both studies rely on dynamic pricing as the main
technique to maximize revenue, whereas our work focuses
on capacity management and admission control without
imposing any particular dynamic pricing policies.

3 SYSTEM MODEL

In this section, we review common cloud pricing plans, and
formulate the optimal capacity control technique with a rev-
enue maximization objective. Fig. 1 schematically illustrates
our system model.

3.1 Cloud Pricing Plans

3.1.1 On-Demand Pay-As-You-Go Plan

This plan charges customers for compute capacity based on
actual usage, without requiring any contractual long-term

commitments. The service is charged for at a fixed rate p per
billing cycle (e.g., hourly) from the time the VM instance is
launched until it is terminated. Customers can retain an
instance for an indefinite time. A request for a new on-
demand instance can be denied if the provider has insuffi-
cient resources available. Note that p is fixed at most IaaS
providers for a long period of time (i.e., months to years),
and can therefore be viewed as a constant value. Moreover,
the one-hour billing cycle, selected based on the Amazon
EC2 billing period, can be replaced with any other billing
period, e.g., per-minute or per-day billing cycle without any
specific change to our model.

3.1.2 Reservation Plan

This plan allows customers to reserve an instance for a cer-
tain reservation period (e.g., months or years) and assures
that the reserved capacity is available whenever it is
required in that period. During the reservation period, the
reservation is said to be live.

The customer pays an upfront reservation fee of ’, after
which the usage is either free (e.g., as in GoGrid2) or heavily
discounted (e.g., Amazon EC2). The one-time fee must be
paid irrespective of how much the instance is used during
the reservation period. The total amount of instance hours
consumed by a single customer account are aggregated per
billing cycle and then automatically matched to any
reserved capacity contracts the customer has in its portfolio.

Let a 2 ½0; 1� be the discount factor on the on-demand
plan’s rate p that is obtained when reserving a given
instance type. A total of h hours of usage in the reservation
period then costs ’þ aph. For example, in Amazon EC2, a
premium of $61 reserves an m1.small instance (Linux, US
East, Light Utilization) for 1 year, resulting in a $0.034 per
hour usage price within the reservation period compared to
the on-demand hourly rate of $0.060 (a ¼ 0:57), see also
Table 1. Partial utilization of the reserved capacity can still

Fig. 1. Schematic system model for the capacity control problem.

2. GoGrid, http://www.gogrid.com/.
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lead to cost benefits for customers. For example, for the m1.
small reserved instance, a cost reduction is obtained if the
instance runs for more than 2,347 hours (or roughly 98
days), that is, 61þ 2347� 0:034 ’ 2347� 0:060. Therefore,
the break-even point for acquiring a reservation is 98 days.

Some cloud providers offer multiple reservation plans
with different reservation periods and expected utilization
levels. For example, Amazon offers one or three-year terms
contract for light, medium, and heavy levels of utilization.
For the sake of simplicity, we limit the discussion to one
type of reservation within a given reservation period (t).
Our model can be extended to include more than one type
of reservations.

3.1.3 Spot Market

In this plan, customers submit their bids for acquiring instan-
ces while the provider reports a market-wide clearing price
at which allocated instances are charged. The instance can be
terminated by the provider as soon as the spot market’s
clearing price rises above the customer’s bid. The customer
therefore does not have full control over the instance’s life-
time. A variety of market mechanisms can be used, e.g., var-
iants on auction mechanisms, that determine the market’s
allocation and pricing rules. Likewise, the frequency of the
mechanism’s clearing can vary (e.g., upon each bid arrival,
instance termination, every hour). At present, providers offer
limited transparencyw.r.t. the actual mechanisms used.

Consequently, we do not consider any specific spot pric-
ing mechanism and situate the fine-grained computation
of spot price dynamics outside the scope of this work.
Instead, wemodel the spot instance price by a constant factor
b 2 ½0; 1� that determines the average discount rate relative to
the on-demand price. We therefore assume that on average,
the spot market price lies below the on-demand rate, which is
reasonable given the lower quality of service (QoS) provided.
According to Amazon EC23, recent spot prices are typically
86 percent lower on average compared to on-demand pay-as-
you-go instances, i.e., b ¼ 0:14. We assume that a provider
always retains the capability of terminating spot instances in
favor ofmore profitable requests as a tool to increase revenue.

A disadvantage of the reservation plan is that the pro-
vider is liable to provide guaranteed availability for
reserved instances while customers do not necessarily uti-
lize their reserved capacity fully [20]. An opportunity there-
fore exists to make this underutilized capacity available to

demands from other pricing plans. As spot instances are
allowed to be terminated by the provider, we model the
possibility that the provider accommodates them in the
data center’s underutilized reserved capacity. In principle,
it is also possible to make underutilized capacity available
to on-demand instance requests. This however, creates the
risk of SLA violations occurring as the provider has no
direct control over the lifetime of an on-demand instance.
We therefore rule out such a strategy in this work.

3.2 The Optimal Capacity Control Problem

To maximize revenue, the cloud provider aims to optimally
allocate its available capacity to requests from different pric-
ing plans. In this section, we formally describe the problem
of optimizing admission decisions on reservation contracts
such that the overall revenue is maximized.

Suppose that the provider’s capacity is C for a specific
instance type, i.e., at any given time, up to C instances of
that type can be hosted simultaneously. We consider the
given instance type as the only one in the system. Conse-
quently it represents our unit of capacity. However, this is
not a limiting assumption as we can model other instances
as multiples of the unit capacity with a limited error.

We discretize the time horizon of the admission control-
ler into identically sized slots. The slot size is aligned with
the provider’s billing cycle (e.g., an hour). We assume that,
given the large degree of workload multiplexing, the pro-
vider is able to predict upcoming demand for its different
pricing plans for G time slots.4

Suppose that at the current time t ¼ 0, the provider pre-
dicts the number of requests in the reservation, on-demand
and spot markets for a window size G as ðdr0; . . . ; drG�1Þ,
ðdo0; . . . ; doG�1Þ and (ds0; ::; d

s
G�1Þ, respectively. The provider

makes a decision to admit rt reservation contracts at time t
with 0 � rt � drt to maximize the revenue generated in the
window. Our formulation is therefore greedy with respect
to the size of the prediction window.

Let lrt denote the total number of previously admitted
reservation contracts remaining live at time t (i.e., reserved
capacity at time t is lrt þ rt). Similarly, the total number of
previously running on-demand and spot instances that
remain active at that time are denoted by lot and lst , respec-
tively. Therefore at time t the provider can potentially
accommodate ot additional on-demand instances without
overbooking the infrastructure:

ot ¼ min
�
C � lrt � rt � lot ; d

o
t

�
: (1)

Let ut 2 ½0; 1� denote the utilization of the reserved
capacity at time t, e.g., if the total number of live reser-
vations at time t is 1;000 and 600 reserved instances are
running at that time, ut ¼ 0:6. After accommodating the
reservation contracts and on-demand requests, the
remaining capacity can be used for spot instances, that
is, minðC � ut � ðlrt þ rtÞ � lot � ot; d

s
t ).

Problem definition. The provider’s problem is to find
r0; r1; . . . ; rG�1, such that the revenue within the prediction

TABLE 1
Pricing of the On-Demand, Reserved and Spot Standard Small

Instances (m1.small, Linux, us-east) in Amazon EC2

Pricing Plan Upfront Hourly rate

On-demand $0 $0.060
1-year Reserved (light Utilization) $61 $0.034
1-year Reserved (Medium Utilization) $139 $0.021
1-year Reserved (Heavy Utilization) $169 $0.014
Spot $0 Spot Market

Price

Amazon EC2 pricing as of March. 30, 2014, http://aws.amazon.com/ec2/
pricing/.

3. Amazon EC2 Spot Instances, http://aws.amazon.com/ec2/
purchasing-options/spot-instances/.

4. Note that our aim, in this paper, is not to present specific work-
load prediction techniques and this has previously been addressed in
the literature [3], [21].
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window is maximized:

max
rt

XG�1

t¼0
rt’þ aputðlrt þ rtÞ þ pðlot þ otÞ þ bpðlst þ stÞ ; (2)

where the first term is the revenue from the upfront reserva-
tion fees and the second, third and fourth terms are the rev-
enues per time slot from running reserved, on-demand and
spot instances respectively. We can define the maximization
problem as:

max
rt

XG�1

t¼0
rt’þ aput

�
lrt þ rt

�þ p
�
lot þ ot

�þ bp
�
lst þ st

�

s:t lrt þ rt þ lot þ ot � C ;

utðlrt þ rtÞ þ lot þ ot þ lst þ st � C ;

8t ¼ 0; . . . ;G� 1 :

(3)

The first constraint ensures that the number of live reser-
vations and running on-demand instances remains within
the provider’s capacity, thereby ensuring that no SLA viola-
tions on the reservation contracts can occur. The second
constraint limits the total amount of running instances over
all pricing plans to that capacity.

The optimization problem (3) is non-trivial and by no
means easy to solve. The root cause of the problem’s com-
plexity lies in the fact that the number of running instances
in each slot for each pricing plan depends on the history of
admitted requests in previous slots. Moreover, the duration
that instances remain active in the system is not known a

priori as the provider is often unaware of the application
type running on the VM instance.

3.3 Optimal Capacity Control with Dynamic
Programming

We devise a stochastic dynamic programming formulation
to tackle problem (3) in this section. We formulate the prob-
lem as a Markov decision process defined by a four-tuple (&,
r, g, P ) where & is the state space, r is the action space, g is
the reward function, andP stands for the transition probabil-
ities that govern how the state of the process changes as
actions are taken over time. The decision problem consists of
t stages indexed 0 to t � 1, each representing a time slot. The
providermust decide on the number of admitted reservation
contracts (rt) at each time slot t tomaximize its revenue.

Before we formulate the details of our dynamic program-
ming solution, we first introduce a number of assumptions
made for solving the optimization problem. After that,
using a set of recursive Bellman equations [5], we show that
the problem can be broken down into simpler sub-prob-
lems, each of which can be solved optimally. Finally, we
present two additional algorithms as the dynamic program-
ming approach, while optimal, is computationally prohibi-
tive for large-scale cloud providers. For reference, Table 2
summarizes the symbols used throughout the paper and
their definitions.

3.3.1 Assumptions

In general, the lifetime hj of an on-demand instance j, i.e.,
the amount of time between booting the instance and its

TABLE 2
Symbols and Definitions

Symbol Definition Symbol Definition

G Prediction window size t Reservation period in number of time slots
p On-demand pay-as-you-go instance price

per hour
ut Reserved capacity utilized by reserved

instances at time t
’ Upfront reservation fee (premium) hj Lifetime of instance j in number of hours
a Reservation discount rate, the reserved

instance price is ap per hour
&t Data center state at stage t, &t ¼ ðlrt ; lot ; itÞ

b Ratio of average price of spot to on-demand
instances, the average price of spot instan-
ces is bp per hour

q Termination probability of a running on-
demand instance in the next time slot

rt Number of reservation contracts admitted
at time t

�t Discount factor for upfront reservation fee at
time t

ot Number of on-demand pay-as-you-go
instances accepted at time t

jZj Number of reserved capacity utilization class
intervals

st Number of spot instances accepted at time t �u Mean reserved capacity utilization
drt Predicted number of reservation contracts

at time t
ert Number of expired reservations by the end

of time t
dot Predicted number for on-demand pay-as-

you-go requests at time t
V ð&tÞ Expected revenue obtained from t ¼ 0 to

t � 1
dst Predicted number of spot instances at time t P ð&tþ1j&t; rtÞ Transition probability from &t to &tþ1 given

the chosen action rt
lrt Number of previously admitted reservation

contracts live at time t
gð&t; rtÞ The revenue for each state-action pair

lot Number of previously running on-demand
instances active at time t

B Number of instances per block of capacity

lst Total number of previously running spot
instances active at time t

T Number of billing cycles (hours) per time slot

it Reserved capacity utilization class interval
to which ut belongs

zi Representative value of the class interval i
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termination, is not known to the provider in advance. To
make the analysis tractable, we assume, in line with [2], that
the hj’s are exponentially i.i.d. (independent and identically
distributed) random variables. In our discrete setting, this
means that hj follows a geometric distribution [5] with a proba-

bility mass function (pmf) of P ðhj ¼ kÞ ¼ ð1� qÞk�1q for
k ¼ 1; 2; 3; . . ., where q is the probability that the customer ter-
minates the currently running instance in the next time slot.
Since the expected value of hj is 1=q, the expected payment
over the lifetime of an on-demand instance isE½hjp� ¼ p=q.

In practice, the spot market’s underlying market mecha-
nism must be run at each time slot, involving bids from
newly arrived requests and currently running spot instan-
ces. In fact, the provider does not distinguish between
newly submitted requests and those requests that are
admitted previously in each round of the auction [2]. More-
over, spot instances can be terminated by the provider at
any time by adjustment of the market clearing price. This
allows the provider to shape the load according to the avail-
able capacity and user bids. Therefore, to avoid the resulting
complexity with respect to the lifetime of spot instances, we
assume that the load for the spot market in each time slot is
independent of the previous slots and is solely defined by
demand on that time slot (dst ), i.e., l

s
t ¼ 0. The load predic-

tion component in our framework therefore computes dst
based on the aggregated load of the spot market in past
time slots, that is, dst implicitly includes lst .

We treat ut, the reserved capacity utilization at time t, as
a categorical random variable. We categorize the reserved
capacity utilization range into a set of jZj classes. Each class
is associated with a utilization interval, denoted by i, of
which the midpoint is used as the representative value of
the corresponding class. The representative value of the i’th

class interval is denoted by zi 2 Z with 0 � i < jZj. For

instance, if we take jZj ¼ 5, the utilization range of ½0; 1� is
divided to five class intervals of ½0; 0:2�; ½0:2; 0:4�; . . . ; ½0:8; 1�.
Z ¼ f0:1; 0:3; 0:5; 0:7; 0:9g is used as a set of discrete values

for categorizing the reserved capacity utilization. If ut lies

within ½0:2; 0:4�, then it belongs to class interval 1 and the
class interval representative value of 0:3 is used as the utili-
zation value at time t. Note that the class interval to which
the reserved capacity utilization at time t belongs is denoted
by it, and in our calculation, we use the representative value
of that class as the reserved capacity utilization at time t (i.e.,
zit ). Treating ut as a discrete random variable is necessary
for the dynamic programming solution we propose. The
number of class intervals can be chosen depending on the
desired granularity of the analysis. The provider is assumed
to have sufficient load history available in order to derive
the pmf of ut a priori, i.e., P ðut ¼ zitÞ is known for all zit .

In anMDP formulation, each state &t at time t is to depend
solely on the state at time t� 1 (&t�1) and be independent of
all earlier states &t�2; &t�3; . . . ; &0. For our optimization prob-
lem &t represents the state of the market which clearly
depends on the total number of live reservations at time t.

Clearly, with a reservation period of size t, the total num-
ber of live reservations at time t depends on rt�tþ1; . . . ; rt�1,
as reservations admitted earlier than t� t þ 1 will no be
longer available at time t. To make &t only dependent on
&t�1, one could resort to the inclusion of t � 1 values in the

state, each one representing the number of instances
reserved at time t� i, i ¼ t � 1; :::; 1. This leads to a high-
dimensional state space. Note that t is often large (e.g., the
number of hours in one year) and the number of instances
that are reserved at each time slot t can be as large as C. Iter-
ation over the possible states in the problem space therefore
results in exponential time complexity, leading to the curse
of dimensionality [22].

In practical online cases, the provider is interested in
finding the admission threshold at the current time instant.
Moreover, the impact of admitting a reservation at time t is
only affected by future events in the reservation period
½t; tþ t � 1�. We therefore limit the prediction window
G ¼ t. This significantly reduces the dimensionality of each
state as every admitted reservation in the window remains
live until the end of the prediction window.

3.3.2 Dynamic Programming Formulation

Let us now define the four components of our MDP, i.e., &,
r, g and P .

We define &t ¼ ðlrt ; lot ; itÞ, with lrt the number of reserva-
tions that remain live from previous time slots in time slot t
and lot the total number of running on-demand instances
remain active from previous time slots. All information
about the load in the data center at time t can be obtained
from &t. Apart from total number of live reservations and
active on-demand instances, the number of running
reserved instances can be computed based on zit , that is,
ðlrt þ rtÞ � zit . The number of spot instances is also bounded
by the available capacity or the spot market demand and
can be calculated as follows:

st ¼ min
�
C � �

lrt þ rt
�
zit �

�
lot þ ot

�
; dst

�
: (4)

The MDP consists of t stages indexed 0 to t � 1, each rep-
resenting a time slot. The provider must decide to perform
one of the possible actions (possible choices on the number
of reservations) to admit rt reservation contracts at stage t,
with 0 � rt � drt .

The amount of the revenue obtained by the provider in
each stage depends on the current state (&t) and the
provider’s choice for rt. The revenue of each state-action
pair (i.e., the reward function g) is therefore defined as:

gð&t; rtÞ ¼ �trt’þ ap
�
lrt þ rt

�
zit þ p

�
lot þ ot

�þ bpst ; (5)

where the consecutive terms are the total revenue of reserva-
tions, reserved, on-demand and spot instances respectively.

We define �t as a discount factor that linearly scales the
reservation fee with respect to the remaining time until the
end of the prediction window. This measure is required as
the prediction window is taken to be as large as the reserva-
tion period, which in itself is required for making sound
optimization decisions. For a reservation admitted at time t
and expiring at time tþ t � 1, a total of t � t time slots lie
within the prediction window for all 0 � t < t. Therefore,
we apply a discount on the premium fee (’) proportional to
the effective reservation period in the window. In each
stage t, we thus define �t ¼ ðt � tÞ=twith 0 � t < t.

Suppose there are n on-demand instances in the data
center at time t� 1 (i.e., n ¼ lot�1 þ ot�1) and right before
t, X of them are terminated by customers. This results in
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lot ¼ n�X active instances remaining at the beginning of
t. According to the assumption of the geometric lifetime
of on-demand instances, one can see that X follows
a binomial distribution [5] with P ðX ¼ kÞ ¼ Binðk;n; qÞ,
where Binðk;n; qÞ ¼ n

k

� �
qkð1� qÞn�k. Here, q is the proba-

bility that the instance is terminated in the next time slot.
As stated before, each admitted reservation within the

window remains active until the last stage (t ¼ t � 1). How-
ever, at the beginning of each time slot t, some reservations
expire as they are admitted before time t ¼ 0. We define ert
as the number of reservations that are expired by the end of
t. Therefore, for a window of size t, ðer0; . . . ; ert�2Þ encodes all
information regarding expired reservations in each stage.
ðer0; . . . ; ert�2Þ can easily be obtained based on the provider’s
history of admitted reservation contracts.

From the above discussion, it follows that &tþ1 can be
computed based on &t only. In fact, total number of live res-
ervations at time t solely depends on lrt , e

r
t and rt by the rela-

tion lrtþ1 ¼ lrt þ rt � ert .

From the memorylessness5 property of the geometric dis-
tribution, lotþ1 can also be easily computed only using the
previous state. Finally, according to the definition, zitþ1 is

independent of zit . Therefore, we make an important obser-
vation, that state &tþ1 only depends on state &t at the previ-
ous time and is independent of earlier states &0; . . . ; &t�1.

Let P ð&tþ1j&t; rtÞ denote the transition probability to &tþ1
given state &t and action rt. Given k ¼ ðlot þ otÞ � lotþ1, the
desired transition probability is computed as follows:

P ð&tþ1j&t; rtÞ ¼ P ðutþ1 ¼ zitþ1Þ �Binðk; lot þ ot; qÞ ; (6)

where P ðutþ1 ¼ zitþ1Þ is the probability that the reserved
capacity utilization at stage tþ 1 falls in the class interval
itþ1 and Binðk; lot þ ot; qÞ denotes the probability that k on-
demand instances are terminated in a transition from &t to
&tþ1. Since these two events are independent, the probability
of both occurring is the product of their probabilities. Note
that the probability of change in the reserved capacity from
lrt þ rt to lrtþ1 given the exact values of rt is 1, as it is known

how many of the reservation contracts expire at the end of
time slot t based on the admittance history.

Now we can characterize the problem of revenue maxi-
mization through optimal admittance of reservation con-
tracts by the following Bellman equations [5]:

V ð&tÞ ¼ max
rt
½gð&t; rtÞ þ

X

&tþ1
P ð&tþ1j&t; rtÞV ð&tþ1Þ� ; (7)

where V ð&tÞ is the expected revenue obtained from t to
t � 1.

In (7), the maximum revenue the provider can obtain at
state &t by optimally choosing rt is given by the expected
maximum revenue over all possible states &tþ1. The bound-
ary conditions of (7) are given by V ð&tÞ ¼ 0 for all &t. The
above analysis converts problem (3) into a dynamic pro-
gramming problem (7).

3.3.3 Complexity of Optimal Capacity Control

Equation (7) represents a Markov decision process that can
be solved by numerical dynamic programming through
backward induction. It commences the search for a solution
by simulating the load for each pricing plan based on the
predicted demand in the last stage t � 1 and calculating the
optimal number of reservations to be admitted in that stage.
Using results for the last stage, it then proceeds to determine
the optimal solution for the previous stage (backward induc-
tion). This process continues until the optimal solution at
stage t ¼ 0 is obtained.

The number of possible actions at each stage is at most
C þ 1 taking into consideration drt � C. The number of possi-

ble states at stage t is at most ðC þ 1Þ2 � jZj since
0 � lrt ; l

o
t � C. In each stage t, the maximization must be done

over every possible action for all stateswhich by itself requires
a computation of expected revenue over all possible states at
stage tþ 1. Therefore, the time complexity of a single-stage

calculation is OðC � ðC2 � jZjÞ2Þ. As there are t stages, the

overall computational complexity isOðt � C5 � jZj2Þ.
The space complexity of the dynamic algorithm to solve

(7) is Oðt � C2 � jZjÞ. This follows from the fact that the

number of possible states at stage t, is at most ðC þ 1Þ2 � jZj
and we have t different stage. Note that, we do not require
to store values for all the states in the algorithm, as different
states at each stage only depend on the previous stage.
Therefore, the overall space complexity can easily be

reduced to Oð2� C2 � jZjÞ or equally OðC2 � jZjÞ.
For IaaS cloud providerswith large capacity (e.g,C ¼ 105)

and a long reservation period (e.g., t ¼ 1 year) finding the
exact solution of (7) is computationally prohibitive as deci-
sions need to be made in real time. However, solving prob-
lem (7) at the granularity of a single VM and a billing cycle of
an hour is not essential for large cloud providers with a large
amount of cash flow. Thus, we define a pseudo optimal algo-
rithm based on larger blocks of capacity and time that
approximates the optimal solution and can solve the prob-
lem in a reasonable time. We also propose a heuristic algo-
rithm which significantly reduces the time complexity at the
price of sacrificing a fraction of the revenue.

4 PROPOSED ALGORITHMS

4.1 Pseudo Optimal Algorithm

The Pseudo Optimal algorithm reduces the dimensionality of
the problem. Define B as the number of VM instances per
block of capacity (e.g., B ¼ 100 VMs) and T the number of
billing cycles per time slot (e.g., T ¼ 168 hours). We apply
the same approach presented in Section 3.3, while increas-
ing the granularity of the problem formulation with respect
to capacity and time. We therefore map the values of the
original problem variables onto representative values given
the chosen block sizes and use these in Algorithm 1. For
example, for B ¼ 100, all capacity values are rounded to the
nearest multiple of 100. On line (1) of Algorithm 1, the reve-
nue of each state-action pair is therefore scaled in terms of T
and B. Note that all previously used notations related to the
capacity or time must be interpreted in multiples of B and
T , e.g., if T ¼ 24 hours and the reservation period is 365� 24
hours (365 days) then t ¼ 365. Likewise, if B ¼ 100 and the

5. In probability theory, memorylessness is a property of those dis-
tributions (e.g., the exponential distributions and the geometric distri-
butions), wherein any derived probability from a set of random
samples is distinct and has no information of earlier samples.
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total number of reservations that remain live at time t equals
500 then lrt ¼ 5.

Algorithm 1. Pseudo Optimal Algorithm

Input: t; lrt ; l
o
t ; it

Output:maxrev
1: dp f�1g "matrix dp is used for memoization and all

cells are initialized with -1.
2: function V(t, lrt , l

o
t , it)

3: if dp½t�½lrt �½lot �½it� 6¼ �1 then
4: return dp½t�½lrt �½lot �½it�
5: end if
6: if t ¼ t then
7: dp½t�½lrt �½lot �½it� ¼ 0
8: return 0
9: end if
10: maxrev 0
11: for rt  0 tominðC � lrt � lot ; d

r
t Þ do

12: rev 0
13: lrtþ1  lrt þ rt � ert
14: ot  minðC � lrt � lot � rt; d

o
t Þ

15: st  minðC � ðlrt þ rtÞzit � lot � ot; d
s
t Þ

16: � ðt � tÞ=t
17: gð&t; rtÞ  B�rt’þBT ðapðlrt þ rtÞzitþ

pðlot þ otÞ þ bpstÞ
18: for lotþ1  0 to lot þ ot do
19: for itþ1  0 to jZj do
20: P ð&tþ1j&t; rtÞ  P ðutþ1 ¼ zitþ1Þ

�Binðlot þ ot � lotþ1; l
o
t þ ot; qÞ

21: rev revþ gð&t; rtÞ þ P ð&tþ1j&t; rtÞ
�Vðtþ 1; lrtþ1; l

o
tþ1; itþ1Þ

22: end for
23: end for
24: if rev � maxrev then
25: maxrev rev
26: end if
27: end for
28: dp½t�½lrt �½lot �½it�  maxrev
29: returnmaxrev
30: end function

Reducing the granularity of the optimization problem
not only reduces the problem size but also removes the
necessity for accurately predicting future demand at a fine-
grained level of VMs and billing cycles. Depending on the
prediction technique used, a reformulation of the problem
at a higher granularity might therefore be better aligned
with the actual accuracy of the predictions made.

4.2 Heuristic Algorithm with a Low Computational
Complexity

The pseudo optimal algorithm proposed in the previous
section can be run in an acceptable time frame if T and B are
taken to be sufficiently large. But it still suffers from the pro-
hibitively high polynomial order for small values of T and B.
Therefore, we propose our heuristic algorithm that can find an
approximated solution for any values of T andB inOðt � CÞ.

The idea behind the heuristic algorithm is that whenever
the provider admits a reservation it might require to reject
upcoming future on-demand requests in order to fully guar-
antee the availability of the reserved instances. Clearly, the
admission of a reservation contract is well justified if and

only if the revenue loss due to rejections of on-demand
instances does not exceed the total revenue the reservation
generates. Two main factors can affect that revenue: 1) the
utilization of the reserved capacity, and 2) the demand in
the spot market. The more the reservation is utilized, the
higher revenue it generates in total. As stated in earlier sec-
tions of this paper, the provider is able to accommodate
spot instances in the reserved capacity without any concern
for the availability of the reserved instances, since spot
instances can be terminated as the need arises. Therefore, if
admission of a reservation provides capacity for accommo-
dation of a spot request that might be rejected otherwise
due to the lack of capacity, this additional revenue must be
taken into account by the revenue management system.

The heuristic algorithm has two main simplifications
compared to the pseudo optimal algorithm. First, instead of
using the instance lifetime distribution to estimate load
induced by on-demand requests, the future load is gener-
ated assuming all arriving requests pertain to instances
with the same lifetime equal to the estimated mean lifetime.
Second, it relies on the average utilization of the reserved
capacity �u to control admission of reservation contracts. In
fact, �u is the expected value of the categorical pmf related to
reserved capacity utilization.

Algorithm 2 presents the details of the proposed heuris-
tic and Fig. 2 illustrates the operation of the algorithm. As
we estimate the load for on-demand instances beforehand,
with a slight abuse of notation, let lrt and lot denote the num-
ber of live reservations (reserved capacity) and the number
of running on-demand instances at time slot t, respectively.
lot is computed according to the previously instantiated VMs
(before time t ¼ 0) and the arriving demand (drt ) assuming
each on-demand instance’s lifetime equals the mean life-
time. The shaded area in the bottom of Fig. 2 exemplifies
such a load. Using ert and the history of reservation contracts
admitted earlier than t ¼ 0, the initial value of lrt is com-
puted within the prediction window.

The algorithm attempts to admit asmany reservation con-
tracts as possible by filling the blocks from the end of the
window to the beginning (denoted by the question marks in
Fig. 2). In each iteration of the inner loop (see Line 8), it adds
one unit to lrt , computes the revenue of adding a new reserva-
tion, and adds this value to the sum of the total revenue. The
corresponding price of the on-demand instances (B� T � p)
must be deducted from the total revenue until this point, if

Fig. 2. Illustration of Algorithm 2. Each small block shows the capacity
unit per time unit (e.g., instance-hour). Schematically, reserved instan-
ces occupy the available capacity top-down and on-demand instances
use the capacity bottom-up. For clarity, spot instances are not shown in
the figure.
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the admission of a reservation overlaps with on-demand
instance load for the specific capacity block. Thus, the sum-
mation is performed in Line 16, assuming a rejection of an
on-demand request does not occur, or in Line 19 when a
rejection occurs (denoted by the question marks in blocks
with a white or gray color in Fig. 2, respectively).

Algorithm 2.Heuristic Algorithm

Input: lr; lo " lrt is the initial reserved capacity at time t for
those requests admitted before time t ¼ 0. lot indicates the
number of on-demand instances at time t taking into
account previously instantiated VMs, arriving demand,
and assuming that every on-demand instance’s lifetime
equals the mean lifetime.

Output: r
1: functionHEURISTIC(lr, lo)
2: r f0g " Create the array r with size of t and initial-

ize all elements with zero.
3: loop
4: max �1
5: index �1
6: sum 0
7: clr false
8: for t t � 1 to 0 do
9: lrt  lrt þ 1
10: if lrt > C then
11: clr true
12: break
13: end if
14: ls 0
15: if lrt þ lot < C then
16: sum sumþ T �Bðpa�uÞ
17: ls dst � ðC � lrt � lot Þ
18: else
19: sum sumþ T �Bðpa�u� pÞ
20: ls dst
21: end if
22: if ðlrt � 1Þ � ð1� �uÞ < ls then
23: sum sumþ T �Bð1� �uÞbp
24: end if
25: � ðt � tÞ=t
26: if sumþB’� � max and drt > 0 then
27: max sumþ B’�
28: index t
29: end if
30: end for
31: if index ¼ �1 ormax < 0 then
32: break
33: end if
34: if clr then
35: k 0
36: else
37: k t
38: end if
39: for t k to index� 1 do
40: lrt  lrt � 1
41: end for
42: rindex  rindex þ 1
43: drt  drt � 1
44: end loop
45: return r
46: end function

This computation takes into account the potential reve-
nue that spot instances can generate as well. Accordingly,
the spot market’s demand that must be accommodated in
the underutilized reserved capacity (ls) is computed. The
condition in Line 15 checks whether there is underutilized
capacity outside the reserved capacity to accommodate spot
instances or not. If there is such a capacity, then only that
part of spot market’s demand accommodated in the
reserved capacity is taken into account (see Line 17); other-
wise, the total demand in the spot market is accommodated
in the reserved capacity, i.e., ls dst (see Line 20). In this
process, if the generated revenue of ls is not used (compen-
sated) by previously admitted requests (see Line 22), then
the revenue which is proportional to the underutilized
reserved capacity is added to the sum (Line 23).

Lines 26-29 keep track of the maximum revenue found
thus far for each iteration of the outer loop (Line 3). The
upfront reservation fee that is proportional to the effective
part of the reservation period in the window is also taken
into account (B’� in Line 27). After the maximum value
and its corresponding time slot have been found, if there is
available reservation demand on that time slot (drt > 0), a
reservation contract is admitted (rt ¼ rt þ 1 ) and drt is
reduced by one unit (see Fig. 2). The process finishes when
the maximum value is negative (Line 31). If the reservation
load exceeds the available capacity (Line 10), a boolean vari-
able clr (capacity limit reached) is set to true. This aids in find-
ing a starting point to undo added reservation contracts
after the break statement at line 12 (see the loop in Lines 39
to 41). The undo process is then performed for all time slots
starting from the first time slot (k ¼ 0) or from the break
point in the iteration (k ¼ t).

The computational complexity of Algorithm 2 is Oðt �
CÞ, as in the worst case all available blocks in the window
must be investigated. The algorithm has two nested
loops, an outer loop at line 3 that iterates over the capac-
ity to find the best allocation of reservation contracts max-
imizing revenue at each time slot and an inner loop at
line 8 that finds the best time slot to accept the next reser-
vation in the window. The outer and inner loop at most
iterate C and t times, respectively, which leads to above
computational complexity. The space complexity of the
algorithm is OðtÞ as the algorithm only needs to store t

values of the vector of r. The heuristic is thus consider-
ably more efficient than the pseudo optimal algorithm in
terms of computational complexity which makes it suit-
able for online admission control.

5 REVENUE MANAGEMENT FRAMEWORK

In this section, we briefly discuss how Algorithms 1 and 2
could be used in a real-world system for online decision
making on the admittance of reservation requests. The algo-
rithms are integrated in an admission control module part
of a revenue management framework outlined in Fig. 3, of
which we discuss the modules in the following.

The collector collects and stores demand information for
the different price plans. It also tracks the number of
rejected requests for those individual plans. The collected
information is used by the prediction module and the reserved
capacity analyzer to be fed into the admission controller.
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The main role of the reserved capacity analyzer is to
obtain the categorical probability distribution of the
reserved capacity utilization for the pseudo optimal algo-
rithm, or the expected value (�u) for the heuristic algorithm.
In our simulation in Section 6, the probability distribution is
dynamically derived from the history of the data center
load. During each time slot, the reserved capacity analyzer
measures the period of time that the utilized reserved
capacity falls into the different utilization class intervals
introduced in Section 3.3. It then computes the probability
of each utilization class interval occurring based on the sta-
tistics collected in each time slot. Eventually, the categorical
pmf is generated by averaging the computed probabilities
of the last t time slots. We also use the expected value of the
distribution to set �u in case of the heuristic algorithm.

The prediction module forecasts future demands for a
window of size t for each market. Forecasting future
demand is a well-studied area in the literature [3], [21] and
it is beyond the scope of this paper to present the best fore-
casting method here. Hence, we adopt a basic method for
forecasting future demands in our simulation, which can be
replaced with a customized prediction method in practical
implementations. There the prediction module forecasts
demands based on the history of the data center load by
assuming the observed demands for past t time slots would
be repeated for the future t time slots.

For the reservation market, the number of reservation
contracts received by the provider per time slot is rounded
to the nearest multiple of B. A similar transformation is
used for the demand in the on-demand market. For spot
instances, the prediction module computes the average load
per time slot and rounds it to the nearest capacity block rep-
resentative value (B). That is, the area below the spot mar-
ket’s load curve is computed and divided by the slot time
duration. The prediction module also incorporates the
rejected demands into the predicted future demand using
the number of rejected requests per slot and the mean life-
time of instances. The number of rejected requests in each
slot is divided by multiplication of the mean lifetime of
VMs and the size of the time slots. Using the above frame-
work, the provider adaptively updates the required param-
eters by the admission control algorithm.

At the beginning of each time slot, the predicted future
demands and the computed pmf of ut are fed into the
admission control module. It then calculates the maximum
number of reservations (rt) that must be admitted in this
time slot based on the admission control algorithm. The

admission control module accepts reservation contracts as
long as the received demand is lower than rt during the
time slot (t ¼ 0). Note that the admission control algorithm
is repeated for each time slot and only rt at the first time slot
in the window (i.e., t ¼ 0) is used to perform actions during
the time slot. The produced result by the admission control
algorithm remains valid as long as the observed demand is
lower than the predicted demand or rt < drt for the current
slot. The algorithm in the admission controller module runs
periodically and is executed at the beginning of each time
slot. It then uses the updated information from the reserved
capacity analyzer and prediction modules.

6 PERFORMANCE EVALUATION

In this section, we conduct two different groups of experi-
ments. First, we use a large-scale trace to evaluate the reve-
nue management framework with the proposed heuristics
for admission control. Then, we further evaluate the perfor-
mance of our algorithms using small-scale simulations that
allow for a comparison to the optimal solution found by the
dynamic programming approach.

6.1 Framework Evaluation

6.1.1 Workload Setup

To our knowledge, no publicly available workload traces of
real-world IaaS clouds currently exist, as such information
is often regarded by providers as being strictly confidential.
Recently, Google has published a data set pertaining to
workloads on Google Compute Clusters [23]. This data set
includes the resource requirements of tasks submitted by
users to a cluster of 12,000 physical machines over a time
period of 29 days. Although the Google cluster does not
constitute an actual public IaaS cloud, we argue that its
usage can represent demands of public cloud users to some
extent as it records the execution of actual cloud application
services provided by Google.

An issue however is that these traces do not include any
details on VM instances used to execute the application-
level requests. We therefore need to generate VM requests
for each user as if the user was running the trace workload
in a virtualized IaaS cloud such as EC2. In this regard, it is
worth mentioning that in the Google cluster, tasks of differ-
ent users might be scheduled onto a single machine, while
in a public IaaS cloud a customer’s VM executes only
requests originating from applications that are hosted by
that customer. In the following, we provide the details of
the VM scheduling algorithm that is used to generate VM
requests based on the workload of each user.

VM scheduling. The trace includes records of a user or
application submitting several tasks, each of which has
resource requirements related to CPU, memory and disk
[23]. As 93 percent of the Google cluster nodes have the
same computing capability [15], we assume that the cluster
nodes are homogeneous.

We align the compute capacity of a VM instance (i.e., our
capacity unit) to that of a node in the cluster. This enables
us to accurately map resource requirements of tasks in the
trace to VM instances.

For each user, we use the following simple scheduling
algorithm to instantiate and terminate VM instances based

Fig. 3. Key modules of the revenue management framework.
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on the resource requirements of the tasks. Whenever a user
submits a task, the scheduling algorithm checks if there is
available capacity in the pool of currently running VM
instances, otherwise it instantiates a new VM instance. The
algorithm groups the VM requests that are instantiated at
the same time into a single request for multiple VMs that is
sent to the provider. As such, we obtain VM requests for
each user and create a trace of 250; 171 requests. The sched-
uling algorithm also terminates VM instances when there is
no running task on the VM.

Labeling requests with different pricing plans. After genera-
tion of the VM requests, they need to be assigned to one of
the pricing plans offered by the provider. In IaaS public
clouds, customers adopt a given pricing plan based on their
applications’ requirements and cost considerations. Cus-
tomers who are interested to run their application at very
low compute prices and who require a large amount of
capacity for a short period of time often rely on spot instan-
ces. The average lifetime of these instances is relatively short
as instances face interruptions from time to time. The
reverse holds for reserved instances as they usually execute
applications with steady state or predictable long-term
usage. Applications with short term, spiky, or unpredictable
workloads that cannot tolerate interruption usually rely on
on-demand instances, which have an average lifetime in
between that of the other two categories.

On the basis of the above discussion we use the follow-
ing, necessarily synthetic, approach to associate each
request to one of the pricing plans. First, we normalize the
lifetime of VM requests to the maximum lifetime in the
traces and sort requests in ascending order of their lifetime.
Next, we label requests based on random numbers gener-
ated according to three Gaussian distributions shown in
Fig. 4. This results in 17;000 reserved instance requests,
120;000 spot instance requests and 113;171 on-demand
instance requests.

Reservation requests. Up to this point, we generated work-
load traces for on-demand, reserved and spot instances. In
order to generate requests for obtaining an actual reserved
contract, we devise an online lazy reservation strategy for
each user. Whenever the user submits a request directed to
a reserved instance and does not have enough reserved
capacity to handle the request, a new reservation contract is
acquired. This way, we assure that there is enough reserved
capacity at each point in time to run all reserved instances
of the user. If more than one contract must be acquired at
the same time, they are grouped in a single reservation con-
tract for multiple instances. A cost-conscious user might
rely on more advanced workload prediction techniques to
optimize the timing and volume of reserved contracts

acquired, see for example Van den Bossche et al. [24] or
Chaisiri et al. [18].

6.1.2 Simulation Setup

To evaluate our approach, we extend CloudSim [25] with
support for the different pricing plans discussed in this
paper and the proposed revenue management system.
CloudSim is a discrete-event Cloud simulator that includes
models of virtualized computing infrastructures and vari-
ous VM provisioning policies.

Pricing. We adopt the pricing details of Amazon EC2 in
the us-east region at the time of writing. The VM configura-
tion used for evaluating the revenue management system is
aligned with Amazon EC2 standard small instances. Rates of
$0.06, $0.021 and $0.012 per hour are used for the on-
demand, reserved, and spot instances, respectively and
accordingly a ’ 0:35 and b ¼ 0:2. Similar to Amazon EC2,
spot instances are not charged for their last partial hour
upon their termination. On-demand or reserved instances
that are terminated by their owner are charged for a discrete
number of hours, with a partial hour of usage accounted for
as a full hour.

Since the Google traces only span 29 days, we map each 5
minutes of workload data to one hour by linear scaling,
resulting in a total simulation time of 12 months.

We assume each reservation is effective for two months
(t ¼ 60 days) and that the upfront reservation fee is $22.849
which is proportional to Amazon EC2’s value of ’ for a
standard small instance (Linux, us-east, medium utilization)
for a one-year term.

Benchmark algorithm. We compare the proposed pseudo
optimal and heuristic algorithms with a benchmark algorithm
that uses no admission control referred to as no-control. As
its name implies, it admits all reservation contracts and
gives preference to them over requests from the on-demand
and spot markets. All reported revenues in Section 6.1.3 are
normalized to the outcome of the no-control algorithm.

6.1.3 Experimental Results

We evaluate the revenue performance of the pseudo optimal
and heuristic algorithms, varying C from 600 to 3,400 with a
step size of 400. We configure B ¼ 100, T ¼ 75 and jZj ¼ 5.
The first and last two months of the 12-month simulation
period are used as warm-up and cool-down periods, their
respective outcomes are omitted from the experiment data.
The lifetime of the on-demand instances in our workload
trace does not precisely follow a geometric distribution.
However, the admission controller assumes the mean life-
time of on-demand instances to be equal to the expected
value of the geometric distribution, i.e., 1=q. We therefore
set q to T divided by the mean lifetime of on-demand
instances in the workload.

The box plots in Fig. 5 show the revenue normalized to
the no-control algorithm for 30 runs of the experiment. As
expected, the revenue management system significantly
improves revenue, especially under resources scarcity. As
capacity increases, revenue gains decrease due to the fact
that less opportunities for admission control arise. In no
condition does the system lead to lower revenues compared
to the no-control policy however. For C ¼ 3;400, when the

Fig. 4. Three Gaussian functions for different pricing plans.

TOOSI ET AL.: REVENUE MAXIMIZATIONWITH OPTIMAL CAPACITY CONTROL IN INFRASTRUCTURE AS A SERVICE CLOUD MARKETS 271



demand to supply ratio (DSR) is sufficiently low and there
is no resource contention, both algorithms generate the
same revenue as no-control. Note that at a capacity level of
600 with a correspondingly high DSR, the no-control algo-
rithm assigns the whole capacity to reservation contracts
and all underutilized reserved capacity to the spot market.
Our admission control algorithms increase revenue drasti-
cally under these conditions. In such cases however, a real-
world provider would likely increase C instead of entirely
relying on admission control. An investment decision we
would like to address in future developments of our reve-
nue management framework.

According to Fig. 5, the pseudo optimal algorithm gener-
ates slightly more revenue than the heuristic algorithm;
however, as stated before it has a significantly higher
computational complexity. The heuristic algorithm gener-
ates a competitively higher revenue with a significantly
lower order of computational complexity. Therefore, in
online cases, it can operate with reasonable delay using
smaller values for T and B.

6.2 Evaluation of the Proposed Heuristic
Algorithms

In the previous section, we showed that the revenue man-
agement system performs well even though a simple
demand prediction model and large values of T and B are
used. Due to high computational complexity of the optimal
algorithm, it is infeasible to compare our proposed algo-
rithms with the optimal algorithm in the large-scale sce-
nario. In addition, prediction model errors and specific
characteristics of the workload do not allow us to conduct
fair experiments to show how close the algorithms can
approximate the optimal solution. In this section, we evalu-
ate the efficiency of the algorithms in comparison with the
optimal solution in scenarios of smaller scale, and investi-
gate the impact of system parameters on the performance of
the proposed algorithms.

We set both capacity (C) and the reservation period (t) to
30. With exception of the reservation fee which is updated
to the 30-hour period, i.e., $0:48, all pricing related variables
retain their values. The amount of requests per pricing plan
is generated based on a Poisson distribution with parameter
� ¼ 1:5 requests per hour. We used a Binomial distribution

with parameters q ¼ 0:5 and n ¼ jZj ¼ 5 for the categorical
pmf related to the reserved capacity utilization. All reported
revenue values are normalized to the outcome of the opti-
mal algorithm. Each experiment is carried out 30 times. For
each experiment, we generate requests randomly according
to the corresponding probability distributions. Afterwards,
we schedule the arriving requests for a period of t based on
the computed actions by each algorithm separately. To com-
pute the expected revenue, we apply the same computed
actions for 1,000 runs in each of which the lifetime of on-
demand instances are randomly generated based on the
Binomial distribution and its related parameter q.

Fig. 6 shows box plots of the normalized revenue for the
pseudo optimal and heuristic algorithms with different val-
ues of B and T when q ¼ 0:2. The figure shows as T and B
increase, the revenue performance of the algorithms
decrease. The top left panel demonstrates a head-to-head
comparison of the revenue performance of the heuristic and
pseudo optimal algorithm with T ¼ 1 and B ¼ 1 (i.e., the
optimal solution).

One important observation which may not be obvious
from the figure is that even though the increase in the values
B and T decreases the performance, the decrease is smaller
when the two values are increased simultaneously. The rea-
son is that scaling in only one dimension without consider-
ing the other causes the rounding errors to increase. In
other words, an increase in T enlarges the number of
requests in one time slot and dividing large values to a pre-
defined value of B results in a smaller rounding error.

Our sensitivity analysis reveals the only parameter which
has significant effect on the revenue performance of the
algorithms is q. Fig. 7 shows the box plots for the revenue
performance of the heuristic algorithm with regards to q. As
shown in the figure, as q increases, the revenue performance
of the algorithm improves compared to the optimal solu-
tion. This is due to the fact that the optimal solution takes
the probability distribution of the instance lifetime into
account, while the heuristic algorithm only uses the mean
lifetime value to maximize revenue. Larger values of q
result in smaller lifetime values, consequently the heuristic
algorithm’s estimated load shape more closely approxi-
mates the real load shape, until it eventually perfectly

Fig. 5. The revenue performance of the proposed revenue management
framework under different algorithms normalized to the outcome of the
no admission control algorithm (B ¼ 100 and T ¼ 75). Fig. 6. The revenue performance of the pseudo optimal and heuristic

algorithms with different values of B and T. All values are normalized to
the outcome of the optimal solution. (q ¼ 0:2).
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matches at q ¼ 1. This leads to a lower error for the solu-
tion found by the heuristic algorithm, around one percent
at q ¼ 1. Finally, it is worth mentioning that the low
computational complexity and considerably high revenue
performance of the heuristic algorithm make it a suitable
choice by cloud providers aimed at revenue maximization
in practical online cases.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a revenue management
framework to tackle the problem of optimal capacity con-
trol for allocating resources to customers of an IaaS cloud
provider who are segmented into different cloud markets,
i.e., reservation, on-demand pay-as-you and spot markets.
The main challenge is that the provider must find an opti-
mal capacity to admit demands from the reservation mar-
ket such that the expected revenue is maximized. We
consider the stochastic lifetime of on-demand requests
and reserved capacity utilization and we formulate the
problem as a finite horizon Markov decision process.
Finding the optimal solution is computationally prohibi-
tive in practical settings. We therefore present two algo-
rithms namely pseudo optimal and heuristic that reduce the
computational complexity. Large-scale simulations driven
by Google cluster usage traces with Amazon EC2 pricing
data are conducted to evaluate the revenue performance
of the proposed revenue management framework using
our admission control algorithms. We compare the per-
formance of these algorithms to the optimal solution
small-scale scenarios. Our experimental results suggest
that significant revenue increases can be attained with the
proposed revenue management approach given that suffi-
cient resource contention is present in the system.

The broad literature of revenue management provides
many meaningful future directions for this study. More
research needs to be done on modeling customer reactions
to a negative admission control decision (e.g., switching to a
different price plan). Future research also needs to be done
to incorporate our proposed reserved capacity control with
support for investment decisions on extending the infra-
structure in a real-world system. Another future direction
of this work involves the extension of the revenue manage-
ment framework with overbooking strategies.

ACKNOWLEDGMENTS

The authors would like to thank Yaser Mansouri and
Mehran Garmehi for many helpful discussions and the
rest of the CLOUDS lab members for their comments on
improving the paper. A. Nadjaran Toosi is the correspond-
ing author.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Genera-
tion Comput. Syst., vol. 25, no. 6, pp. 599–616, 2009.

[2] W. Wang, B. Li, and B. Liang, “Towards optimal capacity segmen-
tation with hybrid cloud pricing,” in Proc. 32nd IEEE Int. Conf. Dis-
trib. Comput. Syst., Jun. 2012, pp. 425–434.

[3] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic resource allocation
for spot markets in cloud computing environments,” in Proc. 4th
IEEE Int. Conf. Utility Cloud Comput., Dec. 2011, pp. 178–185.

[4] H. Xu and B. Li, “Dynamic cloud pricing for revenue maxi-
mization,” IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 158–171,
Jul. 2013.

[5] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 2005.

[6] L. R. Weatherford and S. E. Bodily, “A taxonomy and research
overview of perishable-asset revenue management: Yield man-
agement, overbooking, and pricing,” Oper. Res., vol. 40, no. 5,
pp. 831–844, 1992.

[7] T. P€uschel and D. Neumann, “Management of cloud infastruc-
tures: Policy-based revenue optimization,” in Proc. Int. Conf. Inf.
Syst., Dec. 2009, pp. 2303–2314.

[8] T. Meinl, A. Anandasivam, and M. Tatsubori, “Enabling cloud
service reservation with derivatives and yield management,” in
Proc. IEEE 12th Conf. Commerce Enterprise Comput., Nov. 2010,
pp. 150–155.

[9] M. Mac�ıas, J. O. Fit�o, and J. Guitart, “Rule-based SLA manage-
ment for revenue maximisation in cloud computing markets,” in
Proc. Int. Conf. Netw. Serv. Manage., Oct. 2010, pp. 354–357.

[10] M. M. Kashef, A. Uzbekov, J. Altmann, and M. Hovestadt,
“Comparison of two yield management strategies for cloud ser-
vice providers,” in Proc. Grid Pervasive Comput., 2013, pp. 170–180.

[11] A. Anandasivam, S. Buschek, and R. Buyya, “A heuristic
approach for capacity control in clouds,” in Proc. IEEE Conf. Com-
merce Enterprise Comput., Jul. 2009, pp. 90–97.

[12] S. K. Nair and R. Bapna, “An application of yield management for
internet service providers,” Naval Res. Logistics, vol. 48, no. 5,
pp. 348–362, 2001.

[13] H. Khazaei, J. Misic, and V. Misic, “Performance analysis of cloud
centers under burst arrivals and total rejection policy,” in Proc.
IEEE Global Telecommun. Conf., Dec. 2011, pp. 1–6.

[14] M. Mazzucco and M. Dumas, “Reserved or On-demand instan-
ces? A revenue maximization model for Cloud providers,” in
Proc. 4th IEEE Int. Conf. Cloud Comput., Jul. 2011, pp. 428–435.

[15] W. Wang, D. Niu, B. Li, and B. Liang, “Dynamic cloud resource
reservation via cloud brokerage,” in Proc. IEEE 33rd Int. Conf. Dis-
trib. Comput. Syst., Jul. 2013, pp. 400–409.

[16] Y.-J. Hong, J. Xue, andM. Thottethodi, “Dynamic server provision-
ing tominimize cost in an IAAS cloud,” in Proc. ACMSIGMETRICS
Joint Int. Conf. Meas.Model. Comput. Syst., 2011, pp. 147–148.

[17] K. Vermeersch, “A broker for cost-efficient QoS aware resource
allocation in ec2,”Master’s thesis, Department of Mathematics and
Computer Science, Univ. of Antwerp, Antwerpen, Belgium, 2011.

[18] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Trans. Serv. Comput.,
vol. 5, no. 2, pp. 164–177, Apr. 2012.

[19] T. Truong-Huu and C.-K. Tham, “A novel model for competition
and cooperation among cloud providers,” IEEE Trans. Cloud Com-
put., vol. 2, no. 3, pp. 251–265, Jul.-Sep. 2014.

[20] A. N. Toosi, R. K. Thulasiram, and R. Buyya, “Financial option
market model for federated cloud environments,” in Proc. 5th
IEEE/ACM Int. Conf. Utility Cloud Comput., Nov. 2012, pp. 3–12.

[21] K. Papagiannaki, N. Taft, Z.-L. Zhang, and C. Diot, “Long-term
forecasting of internet backbone traffic: Observations and initial
models,” in Proc. 22nd Annu. Joint Conf. IEEE Comput. Commun.
Soc., Mar. 2003, pp. 1178–1188.

Fig. 7. Impact of q, the termination probability of the running on-demand
instance in the next time slot, on the revenue performance of the heuris-
tic algorithm with B ¼ 1 and T ¼ 1. All values are normalized to the out-
come of the optimal solution.

TOOSI ET AL.: REVENUE MAXIMIZATIONWITH OPTIMAL CAPACITY CONTROL IN INFRASTRUCTURE AS A SERVICE CLOUD MARKETS 273



[22] W. B. Powell, Approximate Dynamic Programming: Solving the
Curses of Dimensionality. Hoboken, NJ, USA: Wiley, 2007, vol. 703.

[23] C. Reiss, J. Wilkes, and J. L. Hellerstein. (2011, Nov). Google clus-
ter-usage traces: Format + schema. Google Inc., Mountain View,
CA, USA. [Online]. Available: http://code.google.com/p/
googleclusterdata/wiki/TraceVersion2

[24] R. V. den Bossche, K. Vanmechelen, and J. Broeckhove, “Optimizing
IaaS reserved contract procurement using load prediction,” in Proc.
7th IEEE Int. Conf. Cloud Comput., Jun. 2014, pp. 1–8.

[25] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R.
Buyya, “CloudSim: A toolkit for modeling and simulation of
Cloud computing environments and evaluation of resource
provisioning algorithms,” Softw.: Prac. Exp., vol. 41, no. 1,
pp. 23–50, Jan. 2011.

Adel Nadjaran Toosi received the BSc degree
in 2003 and the MSc degree in 2006, both in
computer science and software engineering
from the Ferdowsi University of Mashhad, Iran.
He is working towards the PhD degree at the
Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, Department of Comput-
ing and Information Systems, the University of
Melbourne, Australia. He was awarded Interna-
tional Research Scholarship (MIRS) and Mel-
bourne International Fee Remission Scholarship

(MIFRS) supporting his PhD studies. His research interests include dis-
tributed systems and cloud computing. His main focus is on pricing
strategies and economics-inspired mechanisms for cloud computing.
He is the member of the IEEE.

Kurt Vanmechelen is a post-doctoral researcher
and lecturer at the University of Antwerp (UA),
Belgium in the Department of Mathematics and
Computer Science. His research focuses on the
interplay between economics and computer-sci-
ence related aspects to systems and services.
His research interests include resource manage-
ment in general, and market-based resource
management in computational grids, clouds, and
smart grids in particular. In addition, he is an
active member of the parallel discrete-event sim-

ulation community. He is the member of the IEEE.

Kotagiri Ramamohanarao (Rao) received the
PhD degree from Monash University. He was
awarded the Alexander von Humboldt Fellowship
in 1983. He has been at the University of Mel-
bourne since 1980 and was appointed as a pro-
fessor in computer science in 1989. He held
several senior positions including Head of Com-
puter Science and Software Engineering, Head
of the School of Electrical Engineering and Com-
puter Science at the University of Melbourne and
Research Director for the Cooperative Research

Center for Intelligent Decision Systems. He served on the editorial
boards of the Computer Journal. At present he is on the editorial boards
for Universal Computer Science, and Data Mining, IEETKDE and VLDB
(Very Large Data Bases) Journal. He was the program co-chair for
VLDB, PAKDD, DASFAA, and DOOD conferences. He received distin-
guished contribution award for Data Mining. He is a fellow of the Institute
of Engineers Australia, a fellow of Australian Academy Technological
Sciences and Engineering, and a fellow of Australian Academy of Sci-
ence. He was awarded Distinguished Contribution Award in 2009 by the
Computing Research and Education Association of Australasia. He is a
steering committee member of the IEEE ICDM, PAKDD, and DASFAA.

Rajkumar Buyya is professor and future fellow of
the Australian Research Council, and the director
of the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of
Melbourne, Australia. He is also serving as the
founding CEO of Manjrasoft, a spin-off company
of the University, commercializing its innovations
in Cloud Computing. He has authored more than
425 publications and four text books including
“Mastering Cloud Computing” published by
McGraw Hill and Elsevier/Morgan Kaufmann,

2013 for Indian and international markets, respectively. He is one of the
highly cited authors in computer science and software engineering
worldwide. Microsoft Academic Search Index ranked him as the world’s
top author in distributed and parallel computing between 2007 and 2012.
Software technologies for grid and cloud computing developed under his
leadership have gained rapid acceptance and are in use at several aca-
demic institutions and commercial enterprises in 40 countries around
the world. He has led the establishment and development of key com-
munity activities, including serving as foundation chair of the IEEE Tech-
nical Committee on Scalable Computing and five IEEE/ACM
conferences. His these contributions and international research leader-
ship are recognized through the award of “2009 IEEE Medal for Excel-
lence in Scalable Computing” from the IEEE computer society.
Manjrasoft’s Aneka Cloud technology developed under his leadership
has received “2010 Frost & Sullivan New Product Innovation Award” and
“2011 Telstra Innovation Challenge, People’s Choice Award”. He is cur-
rently serving as the foundation editor-in-chief (EiC) of the IEEE
Transactions on Cloud Computing. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

274 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2015



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


