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Abstract—Renewable energy supply is a promising solution for
datacenters’ increasing electricity monetary cost, energy consump-
tion and harmful gas emissions. However, due to the instability of
renewable energy, insufficient renewable energy supply may lead
to the use of stored energy or brown energy. To handle this problem,
in this paper, we propose an instability-resilient renewable energy
allocation system. We define a job’s service-level-objective (SLO)
as the successful running probability by only using supplied renew-
able energy. The system allocates jobs with the same SLO level to
the same physical machine (PM) group, and powers each PM group
with renewable energy generators that have probability no less than
its SLO to produce the amount no less than its energy demand.
We use a deep learning technique to predict the probability of
producing the amount no less than each value of each renewable
energy source, and predict the energy demands of each PM area.
We formulate an optimization problem to match renewable energy
resources with different instabilities to different PM groups for
supply, and use reinforcement learning method and linear pro-
gramming method to solve it. We further propose an energy-driven
computing resource assignment method, which adjusts the amount
of computing resource of each job based on job deadline and
failure probability in each PM group, and a failure prediction based
energy saving method. Real trace driven experiments show that our
methods achieve much lower SLO violations, total energy monetary
cost and total carbon emission compared to other methods and the
effectiveness of individual methods.

Index Terms—Cloud datacenter, machine learning prediction,
renewable energy scheduling.

I. INTRODUCTION

OVER the past years, more and more Internet services
(e.g., e-commerce, content distribution, gaming, and so-

cial networking) have been deployed over the cloud datacenters,
which are reliable, elastic, and cost-effective. Consequently, the
size and energy consumption of datacenters have been increas-
ing significantly. As a result, datacenters’ increasing electricity
monetary cost, energy consumption and energy harmful gas
emissions have become a severe problem to the society. Some of
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the world’s largest datacenters require more than 100 megawatts
(MW) of power capacity, which is enough to power around
80,000 U.S. households [1]. In 2020, the US datacenter industry
consumed around 196 to 400 terawatt-hours (TWh), which is
equivalent to 1%–2% of worldwide annual data center energy
consumption [2]. A large amount of datacenters around the world
are powered by electricity generated by brown energy such as
fuel fossil, coal and oil. On a global level, datacenters contribute
to 0.3% of all global CO2 emissions [3].

To solve this problem, governments in many countries began
to set up laws and regulations to brown energy utilization. The
government and the Environmental Protection Agency (EPA)
will punish the datacenters with severe fines based on the car-
bon emission [4]. As a solution, cloud service providers start
using renewable energy such as solar, wind and hydro to power
the cloud datacenters. For example, Microsoft partnered with
Swedish company Vattenfall to build and deliver a large-scale
24/7 renewable energy matching solution at the new datacenter
region on an hourly basis to ensure that every megawatt hour
(MWh) of energy consumed at the datacenter is matched with a
MWh of renewable energy generation that was generated during
the same hour of consumption [5].

In the future, a system with thousands of active consumers
who own solar and wind energy generators and have an ability to
sell the renewable energy is envisioned [6]. Consider the scenario
with geo-distributed renewable energy sources (or generators),
previous research methods focus on how to schedule jobs to
the datacenters to use these renewable energy resources to
minimize either energy monetary cost or carbon emission while
satisfying time latency constraints of jobs [7], [8], [9], [10], [11],
[12]. These methods predict the amount of generated renewable
energy from each generator powering a specific datacenter, and
the energy demands from jobs, and then schedule the jobs to
different datacenters to achieve the goals.

However, renewable energy resources are featured by instabil-
ity. For example, the amount of produced solar energy depends
on solar irradiance, and the amount of produced wind energy de-
pends on wind turbines; both factors depend on the time of a day,
the season, the climate and so on. The energy amount instability
brings about a new challenge since insufficient renewable energy
supply may lead to the use of stored energy or brown energy,
which increases power monetary cost and/or carbon emissions.
Though the previous works attempt to more accurately predict
the amount of produced renewable energy, due to the energy
instability, sufficient renewable energy supply cannot be always
guaranteed. Thus, it is important to study the problem about how
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to choose renewable energy generators to power a datacenter
to mitigate the adverse effects due to overestimation of the
amount of produced renewable resources from the generators.
The adverse effects include the power monetary cost increase
and/or harmful gas emission increase caused by using stored
energy and brown energy.

This article aims to handle this problem. For this purpose, we
define a job’s service-level-objective (SLO) as the successful
running probability by only using supplied renewable energy.
To reduce the SLO violations due to overestimation of the
amount renewable resources, we propose an instability-resilient
renewable energy allocation system system. It allocates jobs
with the same SLO level to the same physical machine (PM)
group, and power the PM group with an SLO=x% and predicted
energy demand of ykWh with the renewable energy generator
that is predicted to generate no less than ykWh amount with no
less than x% probability at each time slot in the next time period.

Our system runs after each time period and schedule which
energy generator will supply energy to which PM area in the next
time period in order to minimize the number of SLO violations
(due to insufficient supplied renewable energy), total energy
monetary cost and total carbon emission. It has the following
steps:
� First, we use long short term memory (LSTM) deep learn-

ing model to predict the tail distribution of the amount of
generated renewable energy of each energy source repre-
sented, i.e., the probability that it will generate no less than
each certain amount of energy at each time slot of the next
time period. Second, we use LSTM to predict the energy
demand of each PM area.

� Third, we allocate renewable energy generators to the PM
areas based on the aforementioned rule. That is, if an energy
source’s generated renewable energy amount is no less
than the PM area energy demand, and the probability of
producing that amount is no less than the SLO value of the
PM areas, it can be a candidate to be assigned to the PM
area. Specifically, we use a reinforcement learning (RL)
method and a linear programming method to solve the
aforementioned problem.

An early version of this work was presented in [13]. In this
early work, we assumed that the resource supply prediction
is correct. However, since many factors affect the amount of
the generated renewable energy, the actual amount may vary
from the predicted value. To handle this problem, in this article,
we propose an energy-driven computing resource assignment
method (ECRA), which adjusts the amount of computing re-
source of each job based on job deadline, SLO and failure prob-
ability. In addition, to avoid unnecessary energy consumption to
avoid the adverse effect of insufficient energy supply, we propose
a failure prediction based energy saving method (FPES). The
additional contribution is summarized as below:
� Energy-driven computing resource assignment (ECRA): In

order to further handle the renewable energy overage and
shortage (caused by the supply instability) while avoiding
SLO violation, ECRA reduces the computing resources of
the jobs with loose deadlines and SLOs when an energy
shortage happens and assign more computing resource to

the jobs with strict deadlines and SLOs, and low failure
probability when an energy overage happens.

� Failure prediction based energy saving (FPES): When a
job fails, it restarts from the previous checkpoint. Then, the
computing resources and energy resources used during the
time from the previous checkpoint and the failure time are
wasted. In order to avoid such resource and energy waste
caused by job failures, FPES predicts each job’s failure
probability using bi-directional LSTM [14] and restarts the
job right after the checkpoint before the failure if the failure
is not right after a check point. This way, it reduces energy
consumption for unnecessary job execution.

We conduct comprehensive real trace-driven experiments to
compare our methods with other three methods in terms of SLO
satisfactory ratio, total energy monetary cost and total carbon
emission. The experimental results show that our methods can
achieve much lower number of SLO violations, total energy
monetary cost and total carbon emission compared to the other
methods and the effectiveness of the individual methods. Specif-
ically, for 100 servers in a month, RL uses around 60% less
brown energy, generates around 7-8% higher uninterrupted PM
area ratio and SLO satisfaction ratio, causes $150000 (19%)
less monetary cost and 0.2Tons (9%) less carbon emission. In
addition, ECRA reduces around 50% brown energy of RL, and
FPES further can reduce around 50% brown energy. ECRA
increases around 0.7% uninterrupted PM area ratio and around
0.2% SLO satisfaction ratio of RL. ECRA reduces $20000
(3%) monetary cost and 0.4Tons (20%) carbon emission of
RL, and FPES further can reduce $40000 (6%) monetary cost
and 0.2Tons (13%) carbon emission. We distributed our source
code [15].

The rest of the article is organized as follows. Section II
presents the related work. Section III presents the background
and our research problem. Section IV presents the basic
instability-resilient renewable energy allocation system. Sec-
tions V and VI present the energy-driven computing resource
assignment method and the failure prediction based energy sav-
ing method, respectively. Section VII presents the performance
evaluation of our system. Section VIII concludes the article with
remarks on our future work.

II. RELATED WORK

Energy-Efficient Resource Management: Reducing the num-
ber of running servers is a common approach to reduce
energy consumption of a datacenter. Chen et al. [16] proposed
algorithms to minimize the number of running servers via dy-
namically distributing workload to the servers, which saves up to
30% energy. Heller et al. [17] introduced ElasticTree, an energy
manager with a focus on the datacenter network elements (links
and switches). It monitors traffic conditions in the datacenter, and
simply turns off the switches and links if they are not needed. Lin
et al. [18] proposed an Energy-Efficient Adaptive File Replica-
tion System (EAFR). EAFR decreases the number of replicas for
cold files without compromising their read efficiency, stores the
cold files to servers and put these servers to the sleep mode to save
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energy. Dabbagh et al. [19] developed a framework for predict-
ing future virtual machine requests and associated resource re-
quirements. It puts unneeded machines into the sleep mode to re-
duce energy consumption. These methods focus on reducing the
energy use while we focus on the renewable energy allocation.
We can use these methods to further save renewable energy for a
datacenter.

Renewable Energy Management: Given a number of geo-
distributed datacenters, with each datacenter being powered by
certain renewable energy sources, several methods have been
proposed to reduce total energy monetary or carbon emission.
The method in [10] aims to minimize monetary cost while giving
higher priority to using renewable energy via rescheduling (or
migrating) jobs between datacenters using RL based on neural
network (NN) model. The method in [7] uses an integer linear
programming method to allocate jobs to the different datacenters
to minimize the carbon emissions of the datacenters by using
renewable energy while satisfying a few requirements. This
method uses a pattern-based method to predict the amount of
generated renewable energy in each energy source. Liu et al. [8]
proposed an integrated workload management system for one
datacenter. Since different renewable energy sources have dy-
namic energy generation and price through time, the system
tries to minimize the monetary cost by scheduling jobs to differ-
ent time slots while satisfying job processing time constraint
and using solar energy as much as possible since it is easy
to predict. It uses the k-nearest neighbor (k-NN) method to
predict renewable energy and energy demand of each node based
on historical data. De Courchelle et al. [11] proposed a job
scheduling method for a datacenter aiming to use renewable
energy as much as possible. Gu et al. [9] aim to minimize the
brown energy usage via task allocation and renewable energy
scheduling in edge computing using a mixed integer linear
programming. Xu et al. [20] proposed a job reallocation based
method, which adjusts the number of jobs among multiple cloud
datacenters, aiming to reduce carbon emission caused by brown
energy and maximize the renewable energy (solar energy) usage
as much as possible. Liu et al. [21] proposed a renewable
energy matching system, aiming to achieve lower monetary cost
and carbon emission using mixed linear programming. Nayak
et al. [22] proposed user requests scheduling system, which
assigns different user requests to different datacenter, aiming
to reduce the user requests’ completion time and also renewable
energy cost.

Due to renewable energy instability, the above works may
overestimate the amount of produced renewable resource
from a generator. Different from the above works, our work
handles how to choose renewable energy generators to power
a datacenter to mitigate the adverse effect on the datacenter
jobs from overestimation of the amount of produced renewable
resources from the generators. It can complement other
renewable energy management methods to reduce the number
of SLO violations due to insufficient renewable energy supply.

SLO-aware Resource Scheduling: A significant amount of
previous research focuses on achieving job SLO guarantee,
where the SLO usually reflects the job latency. Wen et al. [23]
proposed StepConf, SLO-aware dynamic resource configuration

for serverless function workflows. Safaryan et al. [24] designed
a tool called SLAM to solve the issue of minimizing cost and
meeting SLO requirements for an application consisting of many
FaaS functions. SLAM determines the optimal memory config-
uration for the given serverless application. Shukla et al. [25]
presented analysis of the impact of cluster heterogeneity on the
achieved server utilization and energy footprint to meet the SLO
of latency-critical services. Zhang et al. [26] proposes MArk
(Model Ark), a general-purpose machine learning (ML) infer-
ence serving system, to tackle the dual challenge of response-
time SLO compliance and serving cost effectiveness. Shukla
et al. [27] proposed a user-centric End-to-end Service Level
Objective (ESLO) that guarantees stricter bounds on end-to-end
delay and thereby achieving a higher QoE. The authors showed
how the variability in the external network delay can be both
addressed and leveraged to meet the ESLO and improve server
utilization, and proposed ESLO-aware infrastructure. Alsadie
et al. [28] presented a dynamic threshold-based fuzzy approach
(DTFA) to detect overloaded and underutilized PMs and the
Lowest Interdependence Factor Exponent Multiple Resources
predictive (LIFE-MP) approach for placing virtual machines
(VMs) on PMs. Ramesh et al. [29] used ML model to predict the
resource utilization of VM and PM for load balancing to satisfy
SLOs in the cloud. Cortez et al. [30] characterized Azure’s VM
workload to demonstrate how the VM characteristics can be
utilized for better resource management. Hua et al. [31] used
various forms of LSTM for time series forecasting for resource
management. Chen et al. [32] proposed a deep Learning based
Prediction Algorithm (L-PAW) to achieve adaptive and accu-
rate prediction of workloads that are highly variable, thereby
resulting in lower resource wastage and lower SLO violations.
Kumar et al. [33] used LSTM based workload prediction model
for efficient resource scaling and energy consumption. Ding
et al. [34] used predicted resource utilization and Performance-
to-power Ratio (PPR) of heterogeneous hosts in order to ensure
the balance of workload and energy. The methods in [35], [36],
[37] use an RL or Markov decision process (MDP) algorithm for
resource management and VM placement to minimize energy
consumption and/or achieve load balance.

Different from these SLO-aware methods, our defined SLO is
for successful job execution using the renewable energy. We use
the previous methods to guarantee job deadline SLO, and our
method is orthogonal to these previous SLO-aware methods.

III. BACKGROUND AND RESEARCH PROBLEM

Different renewable energy resources are influenced by differ-
ent natural features [38], [39]. Solar energy is influenced by solar
irradiance, and wind energy is influenced by wind speed. The
renewable energy resources are featured by instability due to the
environment and climate change. For example, in summer sunny
days, solar can generate more stable energy resource than wind,
and it can generate more energy at the daytime than that at night.
In winter cloudy days, wind can generate more stable energy
resource than solar. This instability feature brings a challenge
when we use renewable energies as energy supply in local dat-
acenters. To handle this problem, previous research attempts to
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TABLE I
NOTATIONS

increase the prediction accuracy of the produced energy amount,
e.g., by using pattern match or machine learning methods, but
it is hard to guarantee 100% prediction accuracy due to the
instability (as verified in our experiments in Section VII). In
addition, prediction at a higher frequency is needed due to the
instability, which generates high computation overhead. There-
fore, renewable energy sources sometimes may not generate
enough energy as predicted to power the datacenters. In this
case, a datacenter can use brown energy or stored energy from the
energy grid. However, it degrades the performance of achieving
the goals of minimizing the total energy monetary cost and total
carbon emission. We assume that the cost of stored renewable
energy is higher than that of directly using the renewable energy
since there is an additional cost for energy storage. Thus, we
define SLO as the successful running probability by only using
supplied renewable energy and aim to minimize the number of
SLO violations.

We denote Gk as the kth renewable energy source (or gen-
erator), gGk,t as the predicted energy generation amount of
renewable energy source Gk at time t. Complementary cumula-
tive distribution function or simply tail distribution represents
the probability distribution that the amount of the generated
renewable energy is no less than each certain amount. We use
PGk,tn to denote the tail distribution of renewable energy source
Gk at tn time.

PGk,tn = {< g1Gk,tn
, p(g1Gk,tn

) >,< g2Gk,tn
, p(g2Gk,tn

) >, ...}
(1)

where p(giGk,tn
) means the probability that the amount of the

generated energy is no less than giGk,tn
. Table I shows the

notations used in this article.
Note that different jobs have different SLOs. To avoid a job’s

SLO violation due to insufficient supplied renewable energy,
we can assign the job the renewable energy generator that has
probability no less than the SLO to produce the energy amount
no less than the job’s energy demand. A problem here is how to
conduct such a mapping since energy is supplied to PMs rather
than jobs. To handle this problem, we propose to divide PMs

to PM areas, and each PM area hosts jobs with one SLO value.
Then, we supply each PM area with renewable energy sources
to avoid SLO violations. Note that when we allocate jobs to the
PM areas, we need to consider the constraint of PM computing
resource capacity and try to consolidate jobs to as few PMs
as possible to save energy. We can reply on previous methods
(e.g., [40]) for these purposes, which are out of the scope of this
article. Avoiding job deadline SLO violations due to insufficient
computing resources has been handled in previous research. This
is not the focus of this article and we directly use the previous
methods for this purpose in this work. In this article, we focus on
avoid violating our redefined SLO due to insufficient supplied
renewable energy. Specifically, our renewable energy resource
assignment problem is as follows:

Given a datacenter and many geo-distributed renewable en-
ergy sources (or generators) that the datacenter can use, how
the renewable energy sources should be mapped to the PM
areas in order to minimize the number of SLO violations (due to
insufficient renewable energy), total energy monetary cost and
total carbon emission?

To handle this problem, we propose an instability-resilient
renewable energy allocation system that conducts such mapping
periodically (e.g., every hour) (Section IV). To enhance this sys-
tem, we further propose the energy-driven computing resource
assignment method (Section V) and the failure prediction based
energy saving method (Section VI). In this article, we assume
that a PM area has enough computing resources for the jobs. We
present each of the system components in the following.

IV. INSTABILITY-RESILIENT RENEWABLE ENERGY

ALLOCATION SYSTEM

The instability-resilient renewable energy allocation system
conducts the mapping between renewable energy generators and
PM areas to solve the above assignment problem. Therefore, it
incorporates the following components:

1) It predicts the tail distribution of each renewable energy
source and the energy demand in each PM area at each
time slot in the next time period (Section IV-A).

2) Based on the predicted renewable energy generation and
predicted energy demand, it assigns renewable energy
sources to PM areas using RL-based method and linear
programming method (Section IV-B).

A. Prediction for Renewable Energy Generation

We assume that our system conducts the mapping between
renewable energy sources and PM areas every one hour, though
it can be any time length. For each renewable energy source,
it predicts the amount of generated energy every time slot ti
(e.g., 5 minutes) within the next hour, and for each PM area, it
predicts the amount of energy demand every time slot within the
next hour. Then, it conducts the mapping to make sure that the
renewable energy sources mapped to a PM area will satisfy its
energy demand at each time slot ti within the next hour. That
is, if a PM area demands ykWh at ti and its SLO level is x%,
the matched renewable energy source must produce no less than
ykWh with probability no less than x% at time ti for each time
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slot within the next hour. Such a mapping strategy is to avoid
SLO violation due to insufficient renewable energy supply.

Therefore, for each renewable energy source, we need to
predict the tail distribution of each renewable energy source, e.g.,
the probability of generated energy amount no less than 1 kWh
is 95%, no less than 2 kWh is 92%, and so on. To do this, we use
the long short term memory (LSTM) deep learning model [41],
[42] since it is effective in handling time series data and can
observe the correlation between different time slots. The inputs
of LSTM include a set of time sequence data, which records
the historical amount of generated energy of a renewable energy
source, and the factors affecting the amount of the renewable
energy resource (e.g., solar irradiance for solar energy, wind
speed for wind energy), and the output of LSTM is the tail
distribution at each ti in the next hour. We explained the tail
distribution of energy resource Gk at time tn (PGk,tn ) in the
above. We use PGk

to denote the tail distribution of renewable
energy generator Gk at each time in the next time period.

PGk
= {PGk,t1 , PGk,t2 , . . . , PGk,tn , . . . , PGk,tN } , (2)

where N is the number of time slots in time period T .
We need to predict the amount of energy consumption in each

PM area at each tn in the next hour. For this purpose, we also
use the LSTM deep learning technique based on the historical
energy consumption time-series data of a PM area.

B. Mapping Renewable Energy Sources and PM Areas

After we predict the tail distribution of the amount of gen-
erated energy in each renewable energy source, and the energy
demand of each PM area, we need to map the renewable energy
sources to the PM areas for energy supply to solve the problem
in Section III. In this article, we use two methods to solve this
problem. First, we formulate this problem as a Markov Decision
Process (MDP), and use a reinforcement learning (RL) method
based on Deep Q-Network (DQN) [43] to solve the MDP prob-
lem [44], [45], [46]. Second, we formulate this problem as an
optimization problem and then use integer linear programming
approach to solve it. We present each method in the following.

1) RL-Based Method: We first formulate this problem as an
MDP, denoted by M = (S,A,P,R), where S is the state, A is
the action, P is the probability between each two states and R is
the reward. Below, we introduce these elements for our problem.

a) State space: The state space S is defined as the input
of the RL model, and it consists of the information of renewable
energy sources and PM areas in a datacenter. The information
of renewable energy sources includes the tail distribution (PG),
distance with the datacenter (DG), unit price (CG). We denote
the renewable energy generators by:

G = {G1, G2, ...Gk, ...GK} (3)

where Gk means the kth renewable energy generator and K
means the total number of renewable energy generators. The
tail distribution at each time for the next time period (e.g., one
hour) of all energy sources is denoted by PG.

PG = {PG1
, PG2

, . . . , PGk
, . . . , PGK

} . (4)

The distance DG vector indicates the distance between each
energy source and the datacenter:

DG = DG1
, DG2

, ...DGk
, ...DGK

(5)

The unit price vector indicates the unit price of each energy
source at each time slot:

CG = CG1
, CG2

, ..., CGk
, ..., CGK

, where (6)

CGk
= {cGk,t1 , cGk,t2 , . . . , cGk,tn , ...cGk,tN } , (7)

where cGk,tn denotes the energy price of generator Gk at time
slot tn. As in [10], we assume that the unit price at each time slot
of an energy resource is pre-known. If it is not pre-known, we
can also use LSTM for the price prediction based on the factors
influencing the price.

The features of the PM areas in the cloud datacenter include
the predicted energy demand of each PM area at each time slot
in the next time period and the SLO of each PM area. We use
J to denote the total number of PM areas in the datacenter, and
use Mj to denote the jth PM area. We use EMj

to denote the
predicted energy demand of PM area Mj at each time slot in the
next time period, and use EM to denote the vector of EMj

for
all PM areas. Therefore,

EM =
{
EM1

, EM2
, . . . , EMj

, . . . EMJ

}
, where (8)

EMj
=

{
EMj ,t1 , EMj ,t2 , . . . , EMj ,tn , . . . , EMj ,tN

}
(9)

where EMj ,tn denotes the predicted energy demand of PM area
Mj at time slot tn. We use LM to denote the vector of the SLO
level of each PM area in the cloud datacenter.

LM =
{
LM1

, LM2
, ...LMj

, ...LMJ

}
(10)

where LMj
is the SLO of the jth PM area. As a result, the whole

state space can be defined as follow:

S = {S = (PG,DG, CG, EM ,LM )}. (11)

These features are selected because they are needed to determine
whether a PM area’s energy demand can be satisfied, the energy
monetary cost and carbon emission, which are our energy allo-
cation goals. It is important to select correct features for decision
making since more features will increase the state space, which
increases the training time of the RL model.

b) Action space: The action space is defined as the as-
signment plans to assign renewable energy sources to the PM
areas as energy supply. We use ak,j to denote a binary variable;
ak,j = 1 means that renewable energy source Gk is assigned to
PM area Mj , and ak,j = 0 means otherwise. Action space A is
expressed in the following:

A =
{(

A1, A2, ...Ai, ...AK(J+1)

) |Ai = (aG1,M1
,

aG1,M2
, ...ak,j , ...aGK ,MJ

)} (12)

i ∈ {1, 2, ...K(J + 1)}, k ∈ {1, 2, ...K}, j ∈ {1, 2, ...J}
(13)

where Ai is the ith action, AK(J+1) means that there are total
K(J + 1) actions in the action space because each renewable
energy source has the chance to be assigned to each PM area.
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c) Probability: When a decision about which energy
source is assigned to which PM area is made, the state is changed
with certainty, so the probability between states is always 1.

d) Reward: Based on problem in Section III, we consider
the following factors in reward function.

Monetary cost: The unit price of energy source Gk at time
t is denoted by cGk,t. The monetary cost for purchasing gGk,t

amount of energy from energy source Gk at time t to be used by
the jth PM area (denoted by Cj,k,t) is calculated:

Cj,k,t = cGk,t · gGk,t (14)

Carbon emission: The amount of carbon emission per kWh
of energy sourceGk at time t is denoted bywk,t, The total carbon
emission for gGk,t amount of energy from energy source Gk at
time t is calculated by

Wj,k,t = wk,t · gGk,t (15)

SLO violations: To avoid SLO violations, when we map single
source Gk to the jth PM area, we need to ensure that each PM
area is powered by renewable energy generators that have prob-
ability no less than its SLO to produce the amount no less than
its energy demand. That is, bGk,t = gGk,t − gGk,t · ε ·DGk

≥
EMj ,t and p(gGk,t) ≥ LMj ,t for each time slot in the next time
period, in which gGk,t · ε ·DGk

is the energy loss in energy
transmission from the source to the PM area, ε is the loss rate,
andLMj ,t is the SLO of PM areaMj . This can be easily extended
to the case when multiple energy sources are mapped to one PM
area to meet its energy demand. If either of the above conditions
is not satisfied, the running jobs in the PM area may experience
SLO violations. We use VAi

to denote the number of SLO
violations for actionAi; that is, the number of jobs running in the
PM areas, where either of the above conditions is not satisfied.
Our RL-based method is distinguishing in that it can directly use
these conditions to measure a variable in the reward function for
an action rather than collecting the resulting variable value by
taking many actions in practice, which reduces training time.

Based on the aforementioned problem, we define the reward
R for action Ai by the following equation:

R =
1∑

t∈T
∑

j∈J
∑

k∈K(Cj,k,t +Wj,k,t) + VAi

(16)

Our principle of the reward function is setting a higher reward
for reducing more SLO violations, total energy monetary cost
and total carbon emission.

e) Reinforcement learning training: To collect the training
data of DQN, the datacenter initially can use the optimization
solution from our linear programming method. We can also
select the action randomly and calculate the reward from the
selected action offline. The data is used for the DQN training
to train the DQN network. The RL agent iteratively makes the
decisions and updates the network parameters, which is the
training process of DQN. After the DQN is trained, we deploy
it in a centralized server where the trained RL agent runs and
generates the mapping plan between the energy sources and PM
areas periodically.

2) Optimization Problem Based Method: Given the features
in renewable energy resources and PM areas, represented by

the state in Formula (11), we formulate the renewable energy
resource assignment problem as follow:

Min
∑
t∈T

∑
j∈J

∑
k∈K

ak,j · (Cj,k,t +Wj,k,t) (17)

Subject to:
∑
k∈K

ak,j ≥ 1, ∀j ∈ J (18)

∑
k∈K

ak,j · bGk,t ≥ EMj ,t & ak,j · p(gGk,t) ≥ LMj ,t,

∀t ∈ T, ∀k ∈ K, ∀j ∈ J (19)

Equation (17) aims to minimize the total energy monetary cost
and total carbon emission. Equation (18) ensures that a PM area
must have no less than one energy sources to supply energy.
Equation (19) aims to avoid SLO violations due to insufficient
renewable energy supply in each PM area. Since in our scenario,
the number of renewable energy sources and the number of PM
areas are integers, the elements decision variables are integers
too. Thus, our problem can be transformed into an optimization
problem solved by integer linear programming method [47].

V. ENERGY-DRIVEN COMPUTING RESOURCE

ASSIGNMENT (ECRA)

Since many factors affect the amount of the generated re-
newable energy, the actual amount may vary from the predicted
value. For example, the wind speed may change dramatically
in a short time, which changes the amount of generated wind
energy [48]. Under the renewable energy supply variance, when
a PM area’s received renewable energy supply is smaller than its
energy demand, the SLOs of its running jobs could be violated.
When its received renewable energy supply is larger than its
energy demand, it could store or sell the extra energy and use up
the extra energy by providing more computing resources to the
jobs to expedite their execution. In this article, we propose the
ECRA method for how to decrease energy use for the energy
shortage case or use up the extra energy for the energy overage
case by adjusting the computing resources allocated to jobs
while still meeting their SLOs and deadline requirements as
much as possible.

The energy consumption is determined by the consumption
of computing resources including CPU, memory and bandwidth
and it can be calculated based on CPU [49]. If a job is offered with
less amount of CPU resource, its job completion time will be
increased. On the other hand, if a job is offered with more amount
of CPU resource, its job completion time will be decreased and
then its deadline requirement is more likely to be met. Also, if
a job has a loose SLO, it can tolerate more energy shortages,
so we can reduce its computing resource, which lengthens its
completion time. On the other hand, if a job has a strict SLO, we
should provide it more computing resource to make it complete
soon to avoid future energy shortages. By leveraging these,
when an energy shortage happens, ECRA reduces the computing
resources of the jobs based on their strictness of deadlines and
SLOs, when an energy overage happens, ECRA assigns more
computing resource to the jobs based on their strictness of
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deadlines and SLOs and failure probability, in order to increase
the probability that a job’s deadline and SLO will be met. The
job remaining time can be estimated directly according to [50].

We use the time difference between a job’s deadline and
its estimated job remaining time to represent its urgent value
(denoted by u). For example, job a has 8 minutes estimated job
remaining time and its deadline is in 20 minutes. Then, its urgent
value is 20-8=12 minutes. Job b has 20 minutes estimated job
remaining time and its deadline is 30 minutes. Then, its urgent
value is 30-20=10 minutes. The urgent value represents the time
a job can pause and resume in order to complete by its deadline.
A lower urgent value means higher urgency. When an energy
shortage happens, ECRA should reduce the computing resource
assigned to job a first to make it completes by its deadline due
to two reasons. First, since job a is less urgent compared with
job b so that job deadline requirements have lower probability
to be violated in an energy shortage. Second, since job a has
a larger urgent value, the resource amount reduced to make it
completes on its deadline is larger than that of job b. Then, we
can limit the number of jobs that need to cut resource amount in
order to solve the energy shortage issue. When an energy overage
happens, ECRA should give higher priority to job b to increase
computing resources since job b is more urgent compared with
job a so that job deadline requirements have lower probability
to be violated and the extra energy can be utilized.

When the SLO of a job equals x% (e.g., 90%), it is allowed to
experience energy shortage with probability (1-x%) (e.g., 10%)
during its execution. Here, we use the concept of error budget
for SLOs in Google’s Site Reliability Engineering (SRE) [51]. A
job with x% SLO has θ = (1−x%) error budget. Since different
jobs have different remaining times, solely considering the error
budget is not fair to all the jobs. Thus, we introduce the concept of
error budget per time unit: θ̄ = θ/r, where r is the job remaining
time. A job with a lower θ̄ should have a higher priority to
avoid SLO violations (i.e, receiving more computing resources
to complete earlier to avoid shortage) and vice versa. Therefore,
when an energy shortage occurs, we should cut computing
resources from a job with a higher θ̄ since it is allowed to
experience more shortages and vice versa. When there is an
energy overage, we should add computing resources to a job
with a lower θ̄, so it will experience less shortages.

Therefore, to jointly consider the job deadline and SLO, we
use metric u · θ̄. When energy shortage occurs, ECRA reduces
the computing resources of the jobs with higher u · θ̄ first, and
when energy overage occurs, ECRA increases the computing
resources of the jobs with lower u · θ̄ first. In addition, in a
datacenter, a job can be failed caused by hardware failure,
resource competition or software bugs [52]. When a job fails,
it will restart from its previous checkpoint. To save the energy
resource, only when a job’s predicted failure probability is less
than a threshold (γ), ECRA adds computing resources to it.
How to predict a job’s failure probability will be presented in
Section VI.

Algorithm 1 shows the pseudocode of the ECRA algorithm.
ECRA monitors the energy supply and the actual energy usage
of each PM area (line 1). It collects the data periodically (e.g.,
very 10 minutes). For each PM area, when the renewable energy

Algorithm 1. Dynamically Energy-Driven Computing Re-
source Assignment (ECRA) Algorithm Executed by a PM
Area Periodically.

supply is less than the energy usage (lines 2–3), ECRA first
estimates the job remaining time for each job (lines 4–5). It then
sorts the running jobs in descending order based on the u · θ
values (line 6). Next, it picks the job on the top one by one and
reduces its computing resource assigned to it so that the job can
complete on the deadline. This process repeats until the sum of
the picked jobs’ reduced consumed energy equals the energy
shortage value (lines 7–8). For example, if job a (introduced
above) is selected to reduce computing resource, the amount of
computing resource is set to make the remaining time as 20,
which equals its deadline. As a result, the supplied energy is
enough to satisfy the jobs’ deadline requirements and SLOs. It
is possible that after ECRA reduces the computing resources of
all the jobs, the amount of supplied renewable energy still cannot
satisfy the energy demand of the PM area. In this case, the PM
area resorts to the stored energy or brown energy.

When the renewable energy supply is larger than the energy
usage, ECRA first estimates the job remaining running time for
each job (lines 9–11). It then sorts the running jobs in ascending
order based on the u · θ value (line 12). Next, it picks the job
on the top one by one and increases the computing resource
assigned to it so that the job can complete earlier by a certain
percentage (e.g., 10%) of its deadline. This process repeats until
the sum of the picked jobs’ increased consumed energy equals
the energy overage value (lines 13–14). In this way, the extra
supplied energy is used to expedite the execution of each job by
a certain ratio of its deadline.

VI. FAILURE PREDICTION BASED ENERGY SAVING (FPES)

As mentioned above, a job can be failed caused by hardware
failure, resource competition or software bugs. In the previous
methods, once a job fails, this job is restarted from the check-
point [53]. However, we notice that such an approach could
waste energy resource. As shown in Fig. 1, one job needs 6 time
unites to finish including 3 units for failed job running and 3
units for the successful job running after the failure occurs at
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Fig. 1. Failure prediction energy saving example.

time point 3 and it restarts from the checkpoint at time point 2.
Thus, the energy for the original job execution from time point 2
to time point 3 is wasted. To deal with this problem, we propose
the FPES method. Using FPES, after 2 time units running, a
failure prediction method predicts that the job will be failed and
the job restarts from checkpoint 2 in advance. Then, this job uses
5 time units to finish, which saves 1 time unit for job running. If
the job failure occurs right after checkpoint 3 at time point 3, the
job doesn’t have to be restarted since the job running from time
point 2 to time point 3 is still useful. Since longer job completion
time means more energy usage, so such failure prediction can
help greatly reduce energy usage. Note FPES is novel in that it
saves the energy resource and job computing time of the previous
checkpointing methods.

It was indicated that 41% of the total jobs suffer job failure
and 35.8% [14] of the total jobs suffer the failure more than once
in Google datacenter from Google cluster trace [54]. The failure
prediction accuracy can be as high as 93% [14]. The failure can
be predicted 5 minutes before the failure occurrence and then
it can save around 10% energy for a job with 50 minutes job
latency. In addition, for some jobs with longer job completion
time, the failure may occur several times within this job’s life-
time. For example, suppose one job’s job completion time is 600
minutes and the failure happens 6 times. If we can predict the
failure 10 minutes in advance, we can save around 60 minutes
in total, resulting in 10% energy save. Then, for a datacenter
consumed 4× 105 kwh per year [55], failure prediction can save
1.6× 104 kwh ≈ 4× 105 kwh × 41%× 93%× 10% (4% of
the total energy consumption) per year. Since the failure predic-
tion accuracy is high, this approach still can save a lot of energy
consumption.

We now present the details of FPES. It also runs periodically
(e.g., every 10 minutes) but FPES and ECRA run separately.
FPES first predicts the failure probability of each running
job using multi-layer Bidirectional LSTM [14]. FPES uses a
threshold for the predicted failure probability (γ) to determine
whether a job has a high failure probability. If the predicted
failure probability of one job is larger than γ, FPES then checks
whether the failure time point is within a small time range after a
checkpoint. If not, the job will be restarted. The small time range
is determined so that not restarting the job will not waste long
job running time or energy consumption caused by failure. As
the failure prediction model, the Bidirectional LSTM considers

Algorithm 2. Failure Prediction Based Energy Saving
(FPES) Algorithm Executed by a PM Area Periodically.

job features as input, such as resource utilization including
CPU percentage, memory usage, bandwidth usage), the job
re-submission status (new or resubmitted) and the job’s waiting
time. The multi-layer structure in this model can handle multi-
ple input features for higher prediction accuracy. Algorithm 2
shows the pseudocode of the FPES algorithm. FPES collects the
running job’s information for prediction (line 1). For each job,
FPES first predicts failure probability (lines 2–3). If the predicted
failure probability is larger than the threshold γ and the failure
time point is not within a small time range after a checkpoint
(lines 4–5), FPES restarts this job right now (line 6). Otherwise,
the job continues to run (line 7). In this way, the restarted jobs
have high probabilities to complete earlier and save energy for
job running.

VII. PERFORMANCE EVALUATION

A. Experiment Settings

In our experiment, we use the following real world datasets.
All the datasets are from May 1, 2011 to May 30, 2011.

1) Datacenter and job workload: The Google cluster
trace [54] records resource utilization of CPU and memory
usage of each job in about 12.5 thousand PMs. For each job,
we assign it an SLO value randomly chosen from the rage of
[90%, 100%) [56]. Then we transfer the jobs with the same
SLO value into the same PM area. The number of PM areas is
determined by the SLO value. We vary the number of PM areas
from 10 to 100 by controlling the division interval of the SLO
range; 10 PM areas mean that the SLO range is divided by an
interval of 1%, and 100 PM areas mean that the SLO range is
divided by an interval of 0.1%. Unless otherwise specified, the
number of PM areas is 100, and the mapping time period is one
hour.

2) Renewable energy resources: In our experiments, We
choose solar and wind as the renewable energy resources. We
assume 500 renewable energy generators at the Virginia State
(VA); half are solar energy generators and half are wind energy
generators. To set the amount of energy produced by each
generator at each time slot, we calculate the amount according
to the methods in [57] and [58] as follows.

The amount of solar energy that can be generated in a time
slot is calculated by:

Esolar(t) = α ·Asolars(t) ·Δt (20)
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where α is the ratio of how much solar energy can be transferred
in to electricity, Asolar is the total active irradiation area of the
solar panels, s(t) is the solar irradiance, which means the energy
per unit area (watt per square metre, W/m2), andΔt is the length
of a time slot. The amount of wind energy that can be generated
in a time slot is calculated by:

Ewind(t) = β ·
(
1

2

)
Awindρairv3(t) ·Δt (21)

where β is the ratio of how much wind energy can be transferred
in to electricity, Awind is the total rotor area of all wind turbines,
ρair is the air density, and v(t) is the wind speed.

We obtained the datasets about regional solar irradiance (s(t))
and wind speeds (v(t)) at the VA from the National Renewable
Energy Laboratory (NREL) [59], [60]. The data was recorded
daily per hour, and we assume that the value keeps similar in
different time slots in an hour. ρair is set to 1.29 Kg/m3 and this
value usually does not change in normal environment. For other
parameters, we use the parameter settings in [57] and [58] for
our renewable generator model. For each energy generator, the
conversion efficiency ratio (α and β) is set to a value randomly
chosen from [20%, 30%]. For each solar energy generator,
Asolar is set to a value randomly chosen from [10000, 15000]
m2. For each wind energy generator, Awind is set to a value
randomly chosen from [20000, 25000] m2.

3) Carbon emission rate (gCO2e/kWh): Is to measure the
amount of carbon emissions from the energy use. According
to [61], coal has 968 carbon emission rate, wind has 22.5 carbon
emission rate, solar has 53 carbon emission rate. Since coal is
the most widely used brown energy for electricity, we use coal
as our brown energy in our experiments.

4) Electricity price: The electricity price is obtained from
the websites of Energy Information Administration [62] and
the Switch [63], which contain the price of brown energy and
renewable energy electricity price respectively at each hour.
The electricity price varies from each hour as well. In general,
the price for the solar energy is in the rage of [250, 350]
USD/MWh, that of the wind energy is in the rage of [130, 220]
USD/MWh, and that of the brown energy is in the rage of [50,
150] USD/MWh.

For increasing the computing resource assigned to jobs in
ECRA, we set the percentage of the deadline to be reduced
to 10%. We set γ = 0.85 and 30 seconds for the time range
used in FPES. In addition, FPES runs every 5 minutes. In
our experiments, first we use 80% of the renewable energy
generation data as training set, and the rest 20% data as testing
data to predict the tail distribution of each energy source. Second,
we use 80% of the CPU utilization historical data in each PM
throughout time as the training data and the rest 20% data as
testing data, and then add the values of all PMs in the same PM
area to get the predicted energy consumption of each PM area.

B. Compared Methods

As our work is the first to handle the problem, we cannot
find comparable methods within our knowledge. We choose the
following three methods for comparison, and the details of the

methods are described in Section II. 1) Renewable and Cooling
Aware Workload Management (RCA) [8]. 2) Green Scheduling
for Cloud Datacenters (GS) [7]. 3) Renewable Energy-Aware
Reinforcement Learning (REA) [10]. As the works in [7], [10]
are for multiple datacenters and the energy sources already sup-
ply energy to their associated datacenters, we make changes to
adapt these works to our single-datacenter scenario. Specifically,
we evenly distribute the energy sources to the PM areas, that is,
each energy source group supplies energy to one PM area. Also,
we set the parameter values based on these articles.

In our experiments, first, we compare our renewable en-
ergy generation prediction method with the other two renew-
able energy generation prediction methods, which are pattern
matching [7] and K-nearest neighbors (KNN) [8]. Second, we
compare our energy demand prediction method with the other
three energy demand prediction methods, which are pattern
matching [64], Neural Network (NN) [65] and Fast Fourier
Transform (FFT) [66]. Third, we compare the performance
of our method with the other compared methods in [7], [8],
[10] with their own prediction methods and with our LSTM
prediction method. For our methods, we use RL to represent
the RL-based method, RL+E to represent the RL-based method
with ECRA only and RL+E+F to represent our RL-based method
with the two enhancement methods.

C. Performance Metrics
� Prediction accuracy. To measure the prediction accuracy of

renewable energy generation and energy demands, we mea-
sure the prediction accuracy as below: An = 1− |Pn−Rn|

Rn

where An is the prediction accuracy of nth prediction, Pn

is the predicted value of nth prediction and Rn is the real
value of nth prediction.

� Uninterrupted PM area ratio. It is defined as the percentage
of PM areas that always receive renewable energy no less
than their demands. It is calculated by: B = 1− V

J where
V is the number of PM areas that the energy demands
cannot be satisfied and J is the total number of PM areas.

� SLO satisfaction ratio. It is defined as the percentage of
jobs whose SLOs are satisfied. If one PM area does not
receive enough renewable energy for its energy demand
in time period T , we assume that all the jobs running on
this PM area cannot successfully run in that time period.
We run the trace data 50 times in our experiment. In the
experiment, if the number of successful running times for
one job over the total number of the job running times is
higher or equal to this job’s SLO, we consider that this
job’s SLO is satisfied.

� Monetary cost and carbon emission. We calculate the total
monetary cost based on the real price dataset [62], [63]
and Equation (14). Similar to monetary cost, we calculate
the total amount of carbon emission based on the real
dataset [61] and Equation (15).

� Time overhead. We use training time latency and testing
time latency to show the time overhead of the prediction
methods and the source-PM area mapping methods.
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Fig. 2. Standard deviation of renewable energy in AZ, CA, and VA.

Fig. 3. Prediction of renewable energy generation.

D. Experimental Results

1) Renewable Energy Instability: In addition to VA, we also
obtained the datasets about regional solar irradiance (s(t)) and
wind speeds (v(t)) at the Arizona (AZ), California (CA) in
May, 2011 from the National Renewable Energy Laboratory
(NREL) [59], [60]. We choose these three locations because
there are large datacenters in these states [67]. For each area,
we calculate the standard deviation of s(t) each day in the 30
days and then calculate the average standard deviation per day,
and we also calculate the average standard deviation per day for
v(t).

Fig. 2 shows the average standard deviation of solar irradiance
and wind speed in a month in the three different areas. The error
bar means the peak and valley standard deviation value in the
month. The result follows AZsolar ≈ CAsolar ≈ VAsolar <
AZwind≈CAwind≈VAwind. We see that the solar irradiations
at different time slots in one day deviate greatly, so that the solar
energy generation in one day is not stable. We found that the
peak of the solar irradiation time is around 11 AM to 1PM each
day, and in the rest of the day time, the solar irradiation varies.
On the other hand, as the wind speed also varies in a day though
it is more stable than the solar irradiation. Therefore, the energy
generated by wind is also not stable.

2) Renewable Energy Generation Prediction Accuracy:
Fig. 3 shows the predicted and actual amount of renewable
energy and the prediction accuracy for the solar energy and wind
energy on one randomly selected solar generator and one wind
energy generator using LSTM in 3 days randomly selected from
one month. We see that the predicted values and actual values
are almost overlapped and the accuracy stays above 0.8 most of
the time. The result also shows that the accuracy of solar energy
prediction is higher than wind energy prediction. However, we
observe that the deviation of the generated energy amount at

Fig. 4. Energy demand prediction accuracy.

Fig. 5. Solar energy prediction accuracy.

Fig. 6. Wind energy prediction accuracy.

different time slots in one day of solar energy is larger than that
of wind energy, which also is reflected by the result that the
standard deviation of solar irradiance is larger than that of wind
energy in Fig. 2. The reason for the higher prediction accuracy of
the solar energy compared to the wind energy is that since solar
irradiation has certain time pattern, the amounts of the generated
renewable energy at the same time in different days are similar,
so it is easy to predict. But for wind energy, the relation between
wind speed and time is not highly related between the same
time points in different days. Therefore, for wind energy, the
performance of prediction accuracy is not as high as that of the
solar energy.

Figs. 5 and 6 show the CDF (Cumulative distribution function)
of the solar energy prediction and wind energy prediction. The
result for solar energy prediction follows: Pattern ≈ KNN ≈
LSTM. All prediction methods achieve high accuracy due to the
same reason as explained in Fig. 3. The result for wind energy
prediction follows: Pattern<KNN< LSTM. The reason is that,
for pattern matching, it only observes the wind energy for each
time slot in each day and uses the same value for the same time
slot in different days. Since the wind speed is not highly related
between the same time point in different days, the accuracy for
pattern matching is worse than KNN and LSTM. For KNN, it can
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Fig. 7. Energy utilization of different energies.

classify the time period with similar wind speed, so in certain
time slots, it achieves better accuracy than pattern matching.
However, it can’t consider the wind speed sequence in the entire
time period. LSTM can consider the entire time period when
predicting the wind speed in each time slot, thus producing the
highest accuracy.

3) Energy Demand Prediction Accuracy: Fig. 4 shows the
CDF of different prediction methods for energy consumption of
PM areas. We choose 100 PM areas in this figure. The result
follows: Pattern < NN ≈ FFT < LSTM. For pattern matching,
it observes the energy consumption for each PM area in each
time slot each day and uses the same value for the same time
slot in different days. FFT can process the time-series data
and then find the most prominent pattern so that it achieves
better performance than pattern matching. NN can consider the
relationships between time points in the time sequence data,
and LSTM can consider the relationship between time points in
a longer time length, so LSTM can more accurately predict the
energy consumption in each time slot than NN.

4) Performance Comparison With Compared Methods: LP
is used to represent out linear programming method. Fig. 7
shows the energy utilization of different types of energies of each
method. We observe that for brown energy: REA > RCA ≈ LP
> RL > RL+E ≈ GS > RL+E+F. RCA and LP use around 17%
less brown energy than REA, RL uses around 60% less brown
energy than RCA, RL+E and GS use around 50% less brown
energy than RL, and RL+E+F consumes around 50% less brown
energy than RL+E and GS. For REA, it aims to minimize the
total energy monetary cost. Since the brown energy is cheaper
than solar energy, it uses more brown energy to minimize the
total price. For RCA, although it aims to minimize the total
monetary cost, it tries to use more solar energy. LP consumes
slightly more brown energy than RL. Since GS aims to minimize
the total carbon emission, it uses renewable energy resource
as much as possible, which leads to low total brown energy
usage. ECRA can dynamically adjust the amount of computing
resource assigned to each job to handle renewable energy supply
shortage and overage under varying renewable energy supply.
Thus, RL+E uses more renewable energy compared with RL,
resulting in less brown energy utilization. Specifically, RL+E
uses 5% more wind energy, 20% less solar energy and 50% less
brown energy than RL. FPES restarts some potentially failed
jobs earlier to avoid energy waste for useless job running due to
job failures so that RL+E+F consumes less brown energy than
RL and RL+E. Specifically, RL+E+F consumes 10% less wind

Fig. 8. Performance with different matching periods.

energy, 14% less solar energy and 50% less brown energy than
RL+E.

We observe that the wind energy utilization follows RL+E >
RL > LP ≈ RL+E+F ≈ GS > RCA ≈ REA, RL+E uses around
5% more wind energy than RL, RL uses around 2% more wind
energy than LP, RL+E+F, and GS, which use around 17% more
wind energy than RCA and REA. We also observe that the solar
energy utilization follows RL ≈ GS > RCA > REA ≈ LP >
RL+E >RL+E+F. RL and GS use around 6% more solar energy
than RCA, RCA uses around 9% more solar energy than REA
and LP, which use around 10% more solar energy than RL+E.
RL+E uses around 17% more solar energy than RL+E+F. The
wind energy is cheaper than the solar energy and also its carbon
emission is lower than solar and brown energy. Therefore, since
RL and LP aim to both reduce the total carbon emission and total
energy monetary cost, wind is a better choice, so they use more
wind energy than others. Because LP uses more brown energy, it
uses less wind and solar energy than RL. In addition, RL+E uses
more wind energy and less solar energy compared with RL. It
is because wind energy is more unstable and cheaper compared
with solar energy, ECRA can adjust the amount of computing
resource assigned to the jobs upon supply shortage and overage
and they consume the same amount of total energy. FPES can
restart the potentially failed jobs earlier to avoid energy waste for
useless job running so RL+E+F consumes less wind energy and
also solar energy compared with RL+E. GS aims to minimize
the total carbon emission, so it uses more wind energy and solar
energy than others. REA and RCA aim to minimize the total
energy monetary cost and RCA tries to use more solar energy.
As a result, REA uses more brown energy (the cheapest energy)
and RCA uses more solar energy than others.

Fig. 8 shows the uninterrupted PM area ratio and SLO satis-
faction ratio versus different matching time periods. In Fig. 8(a),
the result follows RL≈RL+E≈RL+E+F≈LP>RCA≈REA
> GS. On average, our approaches and LP generate around
8% higher uninterrupted PM area ratio than RCA and REA,
which generate around 2% higher uninterrupted PM area ratio
than GS. Our RL and LP use LSTM to more accurately pre-
dict the amount of generated renewable energy of each energy
generator and energy demand of each PM area, so PM areas’
energy demands are satisfied most of the time, thus producing
the highest uninterrupted PM area ratio. As shown previously
in Figs. 5, 6 and 4, other prediction methods used in RCA,
REA and GS have lower accuracy than LSTM, so more PM
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Fig. 9. Performance with different number of PM areas.

areas experience interruptions. Therefore, RCA, REA and GS
generate lower uninterrupted PM area ratios. As shown in Fig. 7,
GS uses more renewable energies than REA and RCA, so GS
has lower uninterrupted PM area ratio than those of REA and
RCA because of the instability of the renewable energies. We
see that when the matching period is high, RL+E+F and RL+E
generates around 0.7% higher uninterrupted PM area ratio than
RL. This is because ECRA reduces or increases the computing
resources of jobs considering their deadlines and SLOs upon an
energy shortage or overage happens.

In Fig. 8(b), we can observe that the SLO satisfaction ratio
result follows RL ≈ RL+E ≈ RL+E+F ≈ LP > RCA ≈ REA
> GS. On average, our approaches and LP generate around
7% higher SLO satisfaction ratio than RCA and REA, which
generate around 2% higher SLO satisfaction ratio than GS.
RL and LP try to power each PM area with renewable energy
generators that have probability no less than the PM area’s SLO
to produce the amount no less than its energy demand to ensure
that insufficient renewable energy supply will not lead to SLO
violations. As a result, they produce the highest SLO satisfaction
ratio. REA, RCA and GS do not consider the possible SLO
violations due to insufficient renewable energy supply and the
subsequent energy supply switch. Therefore, they produce lower
SLO satisfaction ratios. Since GS has the lowest uninterrupted
PM area ratio, more jobs tend to experience SLO violations, so
GS produces the lowest SLO satisfaction ratio. We see that when
the matching period is high, RL+E+F and RL+E generates 0.2%
higher SLO satisfaction ratio than RL due to the same reason as
in Fig. 8(a).

In Fig. 8, we also observe that as the matching period in-
creases, the values of the two metrics of all methods decrease.
This is because when the matching period is longer, the pre-
dicted values tend to be less inaccurate. Therefore, less frequent
scheduling and longer scheduling time period make it less likely
to guarantee that the supplied renewable energy is no less than
the energy demand of a PM area. However, the slower decreasing
rates of RL and LP mean that their scheduling time period can be
longer than other methods, which saves computation resources.

Fig. 9(a) and (b) show the uninterrupted PM area ratio and
the SLO satisfaction ratio versus different number of PM areas.
The results show RL ≈ RL+E ≈ RL+E+F ≈ LP > RCA >
REA > GS. On average, for both ratios, our approaches and LP
produce around 6–7% higher ratios than RCA, RCA produces
around 0.6–0.7% higher ratios than REA, and REA produces

Fig. 10. Performance with different matching time periods using our predic-
tion method.

Fig. 11. Total monetary cost.

around 1-2% higher ratios than GS. The relative performance
results are consistent with those in Fig. 8 due to the same
reasons as explained. For all the methods, as the number of
PM areas increases, the uninterrupted PM area ratio and the
SLO satisfaction ratio increase slightly. The reason is that, more
PM areas mean fewer PMs in a PM area. Then, when a PM
area does not receive sufficient renewable energy, fewer PMs
and hence fewer jobs are interrupted. Therefore, more PM areas
lead to higher uninterrupted PM area ratio and SLO satisfaction.
RL, RL+E and RL+E+F have similar performance since the
matching period is not long (one hour).

Fig. 10 shows the uninterrupted PM area ratio and the SLO
satisfaction ratio versus different matching time period with
our LSTM prediction method for energy demand. In the figure,
GS*, REA* and RCA* means that we used LSTM and their
scheduling methods as new methods. The results follow RL ≈
RL+E ≈ RL+E+F ≈ LP > RCA* > REA* > GS*. On average,
for both ratios, our approaches and LP produce 4-6% higher
ratios than RCA*, RCA* produces 0.3–0.5% higher ratios than
REA*, and REA* produces 2% higher ratios than GS*. The
relative performance results are the same as in Fig. 8 due to the
same reasons. Comparing this figure and Fig. 8, we observe that
the uninterrupted PM area ratio and the SLO satisfaction ratio
of GS*, REA* and RCA* are higher than those of GS, REA
and RCA, respectively. This result indicates that our prediction
method is more accurate and it can help achieve higher unin-
terrupted PM area ratio and SLO satisfaction ratio. We see that
when the matching period is high, RL+E+F and RL+E generates
0.7% higher uninterrupted PM area ratio than RL and 0.2%
higher SLO satisfaction ratio than RL.

Fig. 11 shows the total monetary cost of each method and
the results follow GS > RCA > RL > LP ≈ RL+E ≈ REA
> RL+E+F. RCA costs $20000 (2%) less than GS, RL costs
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Fig. 12. Carbon emission.

$150000 (19%) less than RCA, LP, RL+E and REA costs $20000
(3%) less than RL, and RL+E+F costs $40000 (6%) less than LP,
RL+E and REA. GS aims to minimize the total carbon emission,
so it uses renewable energy resource as much as possible though
the price of the solar energy is much more higher than the wind
and brown energy, thus generating the highest energy monetary
cost. RCA aims to minimize the total monetary cost while trying
to use solar energy as much as possible. Our LP and RL tend to
choose wind energy due to its cheaper price and lower carbon
emission as explained above, their total energy monetary cost is
lower than GS and RCA. REA tends to use more brown energy
since the goal for REA is to only minimize the total energy
monetary cost. Since the price of each energy resource follows
solar > brown ≈ wind, REA and LP generate lower monetary
cost compared with RL. Due to the same reason explained in
Fig. 7, RL+E generates $20000 (3%) lower monetary cost than
RL and RL+E+F generates $40000 (6%) lower monetary cost
than RL+E. So RL+E+F generates the lowest monetary cost.

Recall that the carbon emission rate for each energy resource
follows brown> solar>wind. Fig. 12 shows the carbon emission
of each method. The results show REA > RCA > LP ≈ RL >
GS≈RL+E>RL+E+F. RCA reduces 0.6Tons (12%) of carbon
emission of REA, LP and RL reduce 0.2Tons (9%) carbon
emission of RCA, GS and RL+E reduce 0.4Tons (20%) carbon
emission of LP and RL, and RL+E+F reduce 0.2Tons (13%)
carbon emission of GS and RL+E. REA tends to use more brown
energy since it aims to minimize the total energy monetary cost.
Since the carbon emission amount of the brown energy is much
higher than the solar energy and wind energy, REA produces the
most carbon emission. RCA uses more renewable energy than
REA since RCA tries to use solar energy as much as possible, so
that RCA generates less carbon emission than REA. Since both
LP and RL based methods aim to reduce carbon emission and
also total energy monetary cost, they use more wind energy, thus
producing less carbon emission. GS only aims to minimize the
total carbon emission, so it uses renewable energy resource as
much as possible, which produces the lower carbon emission.
Due to the same reason explained in Fig. 7, RL+E produces
0.4Tons (20%) lower carbon emission than RL and RL+E+F
produces 0.2Tons (13%) lower carbon emission than RL+E, So
RL+E+F produces the lowest carbon emission. Combining the
results in Figs. 11 and 12, we can conclude that our LP and
RL based methods perform well in both reducing total energy
monetary cost and carbon emission, while other methods cannot
achieve both goals simultaneously.

Fig. 13. Time overhead.

Fig. 13 shows the time overhead for one decision of each
method. The time overhead contains the testing time overhead
for RL based methods and REA. Since the training process is
offline, we only show the testing time. The time overhead of
ECRA includes the operations in Algorithm 1. Since the failure
prediction model training can be offline, the time overhead of
only FPES includes the prediction model inference time and the
operations in Algorithm 2. The results show LP ≈ GS ≈ RCA
> REA ≈ RL+E ≈ RL ≈ RL+E+F. REA and our approaches
generates 95% less time overhead than other compared methods,
and our approaches generate similar time overhead. REA and
RL based methods use the reinforcement learning model, which
needs a long time for training but much less time to make
the decision. After the model is trained, the decision making
process takes a short time, which is much shorter than other
methods. Other methods need to solve an optimization problem
without the need for training. LP considers more input features
(including carbon emission, energy price and SLO violation)
than GS and RCA, so its time overhead for making a decision is
much more than GS and RCA. Since GS and RCA consider less
input features, their optimization problems are easier to solve,
so their time overheads of making a decision are lower than LP.
Since the time overhead of the two enhancement methods is low,
RL, RL+E, and RL+E+F have similar overhead.

VIII. CONCLUSION

Renewable energy supply is a promising solution to current
datacenter energy supply, which is much more environment-
friendly. However, the instability of renewable energy may lead
to insufficient energy supply to the datacenter, resulting in job
running interruption or even failures. Previous work attempting
to achieve higher energy generation prediction cannot com-
pletely handle this problem since sufficient renewable energy
supply cannot be guaranteed due to energy instability.

In this article, we propose a renewable energy resource allo-
cation system for a cloud datacenter. Our objective is to avoid
SLO violations due to interruption from insufficient renewable
energy supply while minimizing the total energy monetary cost
and total carbon emission. First, using deep learning technique,
the system predicts the tail distribution of each renewable energy
source at each time slot in the next time period. Second, it
predicts the energy demand in each PM area by predicting the
CPU utilization for each PM in a PM area. Third, based on the
predicted results, the system assigns renewable energy sources
to PM areas to solve the above problem using RL-based method
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and linear programming method. In addition, we propose two
enhancement methods: energy-driven computing resource as-
signment method (ECRA) and failure prediction based energy
saving (FPES). ECRA dynamically adjusts the amount of com-
puting resources assigned to each job based on its urgent value
to handle renewable energy supply overage and outrage while
avoiding SLO violations and reducing job completion time.
FPES restarts some jobs with high predicted failure probabilities
to avoid energy waste for useless job running of failed jobs. Our
extensive real trace driven experiments show that our system
achieves superior performance than other methods in terms
of the aforementioned goals, our enhancement methods are
effective in improving system performance. Since job migration
between PMs in load balancing in a cloud datacenter can be very
resource intensive, in our future work, we will further study how
to minimize the energy cost of the job migration process.

REFERENCES

[1] How much energy do data centers really use?, 2020. [Online].
Available: https://energyinnovation.org/2020/03/17/how-much-energy-
do-data-centers-really-use/

[2] The real amount of energy a data center uses, 2022. [Online].
Available: https://www.akcp.com/blog/the-real-amount-of-energy-a-
data-center-use/

[3] For the balance sheet and the sake of the planet, its time data cen-
ters reduce power consumption by improving utilization, 2021. [On-
line]. Available: https://datacenterfrontier.com/data-center-management-
solutions-reduce-costs-and-carbon-emissions/

[4] Emission regulation. Accessed: Jan. 2023. [Online]. Available: http://
sapientservicesllc.com/regulations-govern-data-center-operations/

[5] How Microsoft’s new datacenter region in Sweden incorporates the
company’s sustainability commitments, 2021. [Online]. Available:
https://news.microsoft.com/europe/features/how-microsofts-new-
datacenter-region-in-sweden-incorporates-the-companys-sustainability-
commitments/

[6] A. Malekpour and A. Pahwa, “Stochastic networked microgrid energy
management with correlated wind generators,” IEEE Trans. Power Syst.,
vol. 32, no. 5, pp. 3681–3693, Sep. 2017.

[7] C. Gu, C. Liu, J. Zhang, H. Huang, and X. Jia, “Green scheduling for cloud
data centers using renewable resources,” in Proc. IEEE Conf. Comput.
Commun. Workshops, 2015, pp. 354–359.

[8] Z. Liu et al., “Renewable and cooling aware workload management for
sustainable data centers,” in Proc. ACM SIGMETRICS Joint Int. Conf.
Meas. Model. Comput. Syst., 2012, pp. 175–186.

[9] L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, and W. Dai, “Energy efficient
task allocation and energy scheduling in green energy powered edge
computing,” Future Gener. Comput. Syst., vol. 95, pp. 89–99, 2019.

[10] C. Xu, K. Wang, P. Li, R. Xia, S. Guo, and M. Guo, “Renewable energy-
aware big data analytics in geo-distributed data centers with reinforcement
learning,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1, pp. 205–215, First
Quarter 2020.

[11] I. De Courchelle, T. Guérout, G. Da Costa, T. Monteil, and Y. Labit, “Green
energy efficient scheduling management,” Simul. Modelling Pract. Theory,
vol. 93, pp. 208–232, 2019.

[12] H. Wang, J. Gong, Y. Zhuang, H. Shen, and J. Lach, “Healthedge: Task
scheduling for edge computing with health emergency and human behavior
consideration in smart homes,” in Proc. IEEE Int. Conf. BigData, 2017,
pp. 1213–1222.

[13] J. Gao, H. Wang, and H. Shen, “Smartly handling renewable energy
instability in supporting a cloud datacenter,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., 2020, pp. 769–778.

[14] J. Gao, H. Wang, and H. Shen, “Task failure prediction in cloud data
centers using deep learning,” IEEE Trans. Serv. Comput., vol. 15, no. 3,
pp. 1411–1422, May/Jun. 2022.

[15] Source code. Accessed: Jan. 2023. [Online]. Available: https://github.com/
pcl-projects/Renewable-Energy-Allocation-System

[16] G. Chen et al., “Energy-aware server provisioning and load dispatching
for connection-intensive internet services,” in Proc. USENIX Symp. Netw.
Syst. Des. Implementation, 2008, pp. 337–350.

[17] B. Heller et al., “ElasticTree: Saving energy in data center networks,” in
Proc. USENIX Symp. Netw. Syst. Des. Implementation, 2010, pp. 249–264.

[18] Y. Lin and H. Shen, “EAFR: An energy-efficient adaptive file replication
system in data-intensive clusters,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 4, pp. 1017–1030, Apr. 2017.

[19] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient
cloud resource management,” in Proc. IEEE Conf. Comput. Commun.
Workshops, 2014, pp. 386–391.

[20] M. Xu and R. Buyya, “Managing renewable energy and carbon footprint
in multi-cloud computing environments,” J. Parallel Distrib. Comput.,
vol. 135, pp. 191–202, 2020.

[21] Z. Liu, H. Yu, R. Liu, M. Wang, and C. Li, “Configuration optimization
model for data-center-park-integrated energy systems under economic,
reliability, and environmental considerations,” Energies, vol. 13, 2020,
Art. no. 448.

[22] S. Nayak, S. Panda, S. Das, and S. Pande, “An efficient renewable
energy-based scheduling algorithm for cloud computing,” in Proc. Int.
Conf. Distrib. Comput. Internet Technol., 2021, pp. 81–97.

[23] Z. Wen, Y. Wang, and F. Liu, “StepConf: Slo-aware dynamic resource
configuration for serverless function workflows,” in Proc. IEEE Conf.
Comput. Commun., 2022, pp. 1868–1877.

[24] G. Safaryan, A. Jindal, M. Chadha, and M. Gerndt, “SLAM: SLO-aware
memory optimization for serverless applications,” in Proc. IEEE 15th Int.
Conf. Cloud Comput., 2022, pp. 30–39.

[25] S. K. Shukla, D. Ghosal, and M. K. Farrens, “Understanding and leveraging
cluster heterogeneity for efficient execution of cloud services,” in Proc.
IEEE 10th Int. Conf. Cloud Netw., 2021, pp. 56–64.

[26] C. Zhang, M. Yu, F. Yan, and W. Wang, “Enabling cost-effective, SLO-
aware machine learning inference serving on public cloud,” IEEE Trans.
Cloud Comput., vol. 10, no. 3, pp. 1765–1779, Third Quarter 2022.

[27] S. K. Shukla and M. K. Farrens, “Leveraging network delay variability to
improve QoE of latency critical services,” in Proc. IEEE Int. Conf. Netw.,
Archit. Storage, 2021, pp. 1–8.

[28] D. Alsadie, Z. Tari, E. J. Alzahrani, and A. Y. Zomaya, “Life: A predictive
approach for VM placement in cloud environments,” in Proc. Int. Symp.
Netw. Comput. Appl., 2017, pp. 1–8.

[29] R. K. Ramesh, H. Wang, H. Shen, and Z. Fan, “Machine learning for
load balancing in cloud datacenters,” in Proc. IEEE/ACM 21st Int. Symp.
Cluster, Cloud Internet Comput., 2021, pp. 186–195.

[30] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R.
Bianchini, “Resource central: Understanding and predicting workloads
for improved resource management in large cloud platforms,” in Proc.
Symp. Operating Syst. Princ., 2017, pp. 153–167.

[31] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Deep learning
with long short-term memory for time series prediction,” IEEE Commun.
Mag., vol. 57, no. 6, pp. 114–119, Jun. 2019.

[32] Z. Chen, J. Hu, G. Min, A. Y. Zomaya, and T. El-Ghazawi, “Towards accu-
rate prediction for high-dimensional and highly-variable cloud workloads
with deep learning,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 4,
pp. 923–934, Apr. 2020.

[33] J. Kumar, R. Goomer, and A. Singh, “Long short term memory recurrent
neural network (LSTM-RNN) based workload forecasting model for cloud
datacenters,” Procedia Comput. Sci., vol. 125, pp. 676–682, 2018.

[34] W. Ding, F. Luo, C. Gu, H. Lu, and Q. Zhou, “Performance-to-power ratio
aware resource consolidation framework based on reinforcement learning
in cloud data centers,” IEEE Access, vol. 8, pp. 15472–15483, 2020.

[35] X. Zhou, K. Wang, W. Jia, and M. Guo, “Reinforcement learning-based
adaptive resource management of differentiated services in geo-distributed
data centers,” in Proc. Int. Symp. Qual. Serv., 2017, pp. 1–6.

[36] S. Telenyk, E. Zharikov, and O. Rolik, “Modeling of the data cen-
ter resource management using reinforcement learning,” in Proc. Int.
Sci.-Practical Conf. Problems Infocommunications Sci. Technol., 2018,
pp. 289–296.

[37] H. Shen and L. Chen, “Distributed autonomous virtual resource manage-
ment in datacenters using finite-Markov decision process,” IEEE/ACM
Trans. Netw., vol. 25, no. 6, pp. 3836–3849, Dec. 2017.

[38] R. Komp, Practical Photovoltaics: Electricity From Solar Cell, 3rd ed.
Ann Arbor, MI, USA: Aatec publications, 2003.

[39] P. Gipe, Wind Power, Revised Edition: Renewable Energy for Home, Farm,
and Business. Chelsea, VT, USA: Chelsea Green, 2004.

[40] H. Shen and L. Chen, “CompVM: A complementary VM allocation
mechanism for cloud systems,” IEEE/ACM Trans. Netw., vol. 26, no. 3,
pp. 1348–1361, Jun. 2018.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735–1780, 1997.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2023 at 03:47:42 UTC from IEEE Xplore.  Restrictions apply. 

https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://datacenterfrontier.com/data-center-management-solutions-reduce-costs-and-carbon-emissions/
https://datacenterfrontier.com/data-center-management-solutions-reduce-costs-and-carbon-emissions/
http://sapientservicesllc.com/regulations-govern-data-center-operations/
http://sapientservicesllc.com/regulations-govern-data-center-operations/
https://news.microsoft.com/europe/features/how-microsofts-new-datacenter-region-in-sweden-incorporates-the-companys-sustainability-commitments/
https://news.microsoft.com/europe/features/how-microsofts-new-datacenter-region-in-sweden-incorporates-the-companys-sustainability-commitments/
https://news.microsoft.com/europe/features/how-microsofts-new-datacenter-region-in-sweden-incorporates-the-companys-sustainability-commitments/
https://github.com/pcl-projects/Renewable-Energy-Allocation-System
https://github.com/pcl-projects/Renewable-Energy-Allocation-System


1034 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 3, MARCH 2023

[42] J. Gao, H. Wang, and H. Shen, “Task failure prediction in cloud data
centers using deep learning,” in Proc. IEEE Int. Conf. BigData, 2019,
pp. 1111–1116.

[43] V. Mnih, K. Kavukcuoglu, and D. Silver, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[44] L. Tan, S. Song, P. Wu, Z. Chen, R. Ge, and D. Kerbyson, “Investigating
the interplay between energy efficiency and resilience in high performance
computing,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2015,
pp. 786–796.

[45] A. Legrand, D. Trustram, and S. Zrigui, “Adapting batch scheduling to
workload characteristics: What can we expect from online learning?,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., 2019, pp. 686–695.

[46] P. Kochovski, R. Sakellariou, and M. Bajec, “An architecture and stochas-
tic method for database container placement in the edge-fog-cloud con-
tinuum,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2019,
pp. 396–405.

[47] J. Abara, “Applying integer linear programming to the fleet assignment
problem,” Interfaces, vol. 19, pp. 20–28, 1989.

[48] M. Canale, L. Fagiano, and M. Milanese, “KiteGen: A revolution in wind
energy generation,” Energy, vol. 34, pp. 355–361, 2009.

[49] X. Fan, C. Ellis, and A. Lebeck, “The synergy between power-aware
memory systems and processor voltage scaling,” in Proc. Int. Workshop
Power-Aware Comput. Syst., 2003, pp. 164–179.

[50] W. Fang, Y. Guo, W. Liao, K. Ramani, and S. Huang, “Big data driven
jobs remaining time prediction in discrete manufacturing system: A deep
learning-based approach,” Int. J. Prod. Res., vol. 58, pp. 2751–2766, 2020.

[51] Implementing SLOs, 2020. [Online]. Available: https://sre.google/
workbook/implementing-slos//

[52] Y. Sharma, B. Javadi, W. Si, and D. Sun, “Reliability and energy efficiency
in cloud computing systems: Survey and taxonomy,” J. Netw. Comput.
Appl., vol. 74, pp. 66–85, 2016.

[53] M. Kweun, W. Lee, G. Kim, J. Hwang, and Y. Lee, “Lineage checkpoint
approach for long-lineage problem in apache spark,” in Proc. IEEE Int.
Conf. Big Data, 2020, pp. 5733–5735.

[54] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces:
Format+ schema,” Google Inc., White Paper, vol. 1, 2011.

[55] R. Bashroush and A. Lawrence, “Beyond pue: Tackling it’s wasted ter-
awatts,” 2020. [Online]. Available: https://uptimeinstitute.com/beyond-
puetackling-it’s-wasted-terawatts

[56] Oracle SLO requirements. Accessed: Jan. 2023. [Online]. Available: https:
//docs.oracle.com/en/enterprise-manager/index.html

[57] C. Ren, D. Wang, B. Urgaonkar, and A. Sivasubramaniam, “Carbon-aware
energy capacity planning for datacenters,” in Proc. Int. Symp. Model. Anal.
Simul. Comput. Telecommun. Syst., 2012, pp. 391–400.

[58] C. Stewart and K. Shen, “Some joules are more precious than others:
Managing renewable energy in the datacenter,” in Proc. Workshop Power
Aware Comput. Syst., 2009, pp. 15–19.

[59] NREL solar radiation research laboratory-solar dataset. Accessed:
Jan. 2023. [Online]. Available: https://midcdmz.nrel.gov/apps/sitehome.
pl?site=BMS

[60] NREL wind technology center-wind dataset. [Online]. Available: https:
//midcdmz.nrel.gov/apps/sitehome.pl?site=NWTC

[61] Measurement and instrumentation data center. Accessed: Jan. 2023. [On-
line]. Available: https://midcdmz.nrel.gov/l

[62] Wholesale electricity and natural gas market data. Accessed: Jan. 2023.
[Online]. Available: https://www.eia.gov/electricity/wholesale/

[63] Which is the cheapest renewable energy supplier in 2019. Ac-
cessed: Jan. 2023. [Online]. Available: https://theswitch.co.uk/blog/
energy/cheapest-green-supplier

[64] R. Karp and M. Rabin, “Efficient randomized pattern-matching algo-
rithms,” IBM J. Res. Develop., vol. 31, pp. 249–260, 1987.

[65] D. Specht, “A general regression neural network,” IEEE Trans. Neural
Netw., vol. 2, no. 6, pp. 568–576, Nov. 1991.

[66] H. Sorensen, “Real-valued fast fourier transform algorithms,” IEEE Trans.
Acoust. Speech. Signal Process., vol. 35, no. 6, pp. 849–863, Jun. 1987.

[67] M. Xua and R. Buyyab, “Managing renewable energy and carbon footprint
in multi-cloud computing environments,” J. Parallel Distrib. Comput.,
vol. 135, pp. 191–202, 2019.

Haiying Shen (Senior Member, IEEE ) received the
BS degree in computer science and engineering from
Tongji University, China in 2000, and the MS and
PhD degrees in computer engineering from Wayne
State University in 2004 and 2006, respectively. She is
currently an Associate Professor with the Department
of Computer Science, the University of Virginia. Her
research interests include distributed computer sys-
tems, cloud computing, Big Data, distributed machine
learning and cyber-physical systems. She is a Mi-
crosoft Faculty fellow of 2010, and a senior member
of the ACM.

Haoyu Wang received the BS degree from the Uni-
versity of Science & Technology of China, and the
MS degree from the Columbia University in the city
of New York. He is currently working toward the PhD
degree with the Department of Computer Science of
University of Virginia. His research interests include
data center, cloud and distributed networks.

Jiechao Gao received the BS degree from Jilin Uni-
versity 2016, and the MS degree from Columbia Uni-
versity in the city of New York 2018. He is currently
working toward the PhD degree with the Depart-
ment of Computer Science of University of Virginia.
His research interests include distributed networks,
cloud computing, machine learning algorithms and
applications.

Rajkumar Buyya (Fellow, IEEE) is a Redmond
Barry distinguished professor and director of
the Cloud Computing and distributed systems
(CLOUDS) Laboratory with the University of Mel-
bourne, Australia. He has authored more than 850
publications and seven text books including ”Master-
ing Cloud Computing” published by McGraw Hill,
China Machine Press, and Morgan Kaufmann for In-
dian, Chinese and international markets respectively.
Software technologies developed under Dr. Buyya’s
leadership have gained rapid acceptance and are in use

with several academic institutions and commercial enterprises in 50+ countries
around the world.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 20,2023 at 03:47:42 UTC from IEEE Xplore.  Restrictions apply. 

https://sre.google/workbook/implementing-slos//
https://sre.google/workbook/implementing-slos//
https://uptimeinstitute.com/beyond-puetackling-it's-wasted-terawatts
https://uptimeinstitute.com/beyond-puetackling-it's-wasted-terawatts
https://docs.oracle.com/en/enterprise-manager/index.html
https://docs.oracle.com/en/enterprise-manager/index.html
https://midcdmz.nrel.gov/apps/sitehome.pl{?}site=BMS
https://midcdmz.nrel.gov/apps/sitehome.pl{?}site=BMS
https://midcdmz.nrel.gov/apps/sitehome.pl{?}site=NWTC
https://midcdmz.nrel.gov/apps/sitehome.pl{?}site=NWTC
https://midcdmz.nrel.gov/l
https://www.eia.gov/electricity/wholesale/
https://theswitch.co.uk/blog/energy/cheapest-green-supplier
https://theswitch.co.uk/blog/energy/cheapest-green-supplier


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


