
Journal of Network and Computer Applications 165 (2020) 102674

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

QoS-aware service provisioning in fog computing

Faizan Murtaza a, Adnan Akhunzada a,b,∗, Saif ul Islam c, Jalil Boudjadar d,
Rajkumar Buyya e

a DTU Compute - Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
b RISE SICS Vasteras AB, Sweden
c Department of Computer Science, KICSIT, Institute of Space Technology, Islamabad, Pakistan
d ECE, Department of Engineering, Aarhus University, Denmark
e Cloud Computing and Distributed Systems (CLOUDS) Laboratory School of Computing and Information System, The University of Melbourne, Parkville,
Australia

A R T I C L E I N F O

Keywords:
Fog computing
Cloud computing
Quality of service
LRFC
Quality of experience
Internet of everything

A B S T R A C T

Fog computing has emerged as a complementary solution to address the issues faced in cloud computing. While
fog computing allows us to better handle time/delay-sensitive Internet of Everything (IoE) applications (e.g.
smart grids and adversarial environment), there are a number of operational challenges. For example, the
resource-constrained nature of fog-nodes and heterogeneity of IoE jobs complicate efforts to schedule tasks
efficiently. Thus, to better streamline time/delay-sensitive varied IoE requests, the authors contributes by intro-
ducing a smart layer between IoE devices and fog nodes to incorporate an intelligent and adaptive learning
based task scheduling technique. Specifically, our approach analyzes the various service type of IoE requests
and presents an optimal strategy to allocate the most suitable available fog resource accordingly. We rigorously
evaluate the performance of the proposed approach using simulation, as well as its correctness using formal
verification. The evaluation findings are promising, both in terms of energy consumption and Quality of Service
(QoS).

1. Introduction

In the emerging Internet of Everything (IoE) paradigm, billions of
devices are being connected to the Internet. The number, types and
nature of Internet-connected devices will also increase for the fore-
seeable future. For example, it was reported that more than 50 bil-
lion devices will be linked to the Internet by 2020 (Mohan and Kan-
gasharju, 2017), with an estimated market worth of $7.1 trillion (Wort-
mann and Flüchter, 2015). Quality of Experience (QoE) is one of sev-
eral key metrics for the IoE users (Mahmud et al., 2019). To deal with
limitations inherent in a cloud computing environment (e.g. privacy of
users sourcing the data to the cloud, particularly hosted in an overseas
jurisdiction, and performance issues such as latency), there has been
attempts to ‘push’ the computing to the edge of the network via fog
nodes (Choo et al., 2018; Osanaiye et al., 2017). Hence, the fog com-
puting paradigm has been emerged to handle time/delay-sensitive IoE

∗ Corresponding author. DTU Compute - Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark.

E-mail addresses: adnak@dtu.dk (A. Akhunzada), akhunzadaadnan@gmail.com (A. Akhunzada).

applications (Deng et al., 2016; Bitam et al., 2017; Toor et al., 2019a;
Intharawijitr et al., 2016; Zeng et al., 2016; Dar et al., 2019).

As shown in Fig. 1, only low-latency computational tasks are pro-
cessed by the fog nodes but the computationally demanding tasks will
still be routed to the cloud servers for processing (Mohan and Kan-
gasharju, 2017). Fog nodes can be any computing devices that has
some computational capabilities in terms of data management, analyt-
ics, computation, storage and networking, and examples range from an
intelligent home assistant (e.g. Amazon Echo) in a smart home to a mil-
itary vehicle in an Internet of Battlefield Things environment. The con-
nections between fog nodes and the cloud can be wired and/or wireless
(Dastjerdi and Buyya, 2016) (see Fig. 2).

While there are many challenges associated with a fog computing
environment (Ficco et al., 2017), we will only focus on one of these
challenges. Specifically, we will study the task scheduling problem
for better fog resource management, particularly with the exponential

https://doi.org/10.1016/j.jnca.2020.102674
Received 2 February 2019; Received in revised form 29 October 2019; Accepted 21 April 2020
Available online 16 May 2020
1084-8045/© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.jnca.2020.102674
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2020.102674&domain=pdf
mailto:adnak@dtu.dk
mailto:akhunzadaadnan@gmail.com
https://doi.org/10.1016/j.jnca.2020.102674

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Fig. 1. An example fog-cloud environment.

increase in the number of IoT devices while achieving a satisfactory
QoE.

The existing proposed techniques in fog computing lacks the adap-
tive and intelligent behavior. They only consider the direct commu-
nication of end devices preferably with closest fog nodes. However,
this type of architecture only supports individual node queue level task
scheduling. Further, it is quite complex to implement adaptive and
intelligent learning-based task scheduling in this kind of architecture.
Subsequently, we cannot take the real advantage of heterogeneity of
fog nodes surrounded by a set of IoT devices. In order to facilitate intel-
ligent and adaptive task scheduling policies in this dynamic and hetero-
geneous environment, we need a smart layer (Aazam and Huh, 2014)
between end devices and fog nodes that should have three main capa-
bilities: 1) the ability to define whether the incoming request should
be served by a cloud or a fog node, 2) the capability to schedule the
incoming task to most appropriate fog node among the available fog
devices, and 3) and for efficient task scheduling this layer should have
the functionality that extensively implements adaptive and intelligent
learning-based task scheduling. In this paper, we propose an intelligent
and adaptive task based learning technique for optimal task scheduling
in a fog computational paradigm. The key contributions of the paper
are summarized as follows:

• A proposition and implementation of a smart layer between IoE/IoT
devices and Fog nodes.

• We propose a QoS-Aware approach (hereafter referred to as the
learning repository fog-cloud - LRFC). The proposed service has
been provisioned at multiple geographically distributed gateways
deployed among IoE devices and their corresponding Fog nodes
proximity. Consequently, making our proposed scheme highly scal-

able, and thus reliving potential performance bottlenecks. Finally,
our proposed deployment model significantly suits nearly all exist-
ing and futuristic environments (i.e., IoT, IoE, smart X (smart city,
smart grid, smart building, smart forest etc.)).

• For a comprehensive and unbiased comparison, we implement the
state-of-the-art task scheduling policies on our proposed smart layer.

• We thoroughly evaluate the performance of the proposed approach
using simulation, and prove its correctness through formal verifi-
cation. The proposed approach shows promising results in terms of
processing delay, overall network propagation time and power con-
sumption.

The remainder of this paper is organized as follows. In the next
section, we present the background of the proposed approach and rele-
vant works. Section 3 describes the complete methodology (i.e., system
model and algorithms) of the proposed approach. The formal verifi-
cation of our proposed scheme is detailed in Section 4. Performance
evaluation is comprehensively elaborated in Section 5. Finally, Section
6 concludes the paper along with thoughts for future work.

2. Related work

The section briefly explains the background and related research.

2.1. Learning based approaches

Rule-based learning is the simplest form of artificial learning (Núñez
et al., 2006). In general, rules are expressed in IF-THEN condition,
and they can be simple or multi conditional IF-ELSE statement (Ligêza,
2006) (Keshtkar et al., 2014). It has been shown that rule-based learn-

2

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Fig. 2. High level architecture.

ing can be applied in a wide range of applications, such as to reduce
and predict the energy gap between predicted and actual energy con-
sumption in buildings (Yuce and Rezgui, 2017), big data classifications
problems (Elkano et al., 2017), user behavior classifications (Alrashed,
2017), developing decision support system for risk assessment and man-
agement strategies in distributed software development (Aslam et al.,
2017), and so on.

Case-based Learning (CBR), a lazy learning approach, works well
where rich structured knowledge is not available earlier (e.g. in auto-
nomic computing) (Aha, 1991) (Khan et al., 2011). For learning pur-
pose, it involves the processing of a set of cases to train the system
and predict values from these cases (and prior knowledge). In (Amin,
2017), for example, the authors proposed an architecture for sharing of
experience using an agent-based system architecture layout (SEASALT).
The latter works with diverse data repositories to maintain, retrieve,
adopt and retain cases. Similarly, in (Brown et al., 2017), the authors
proposed a temporal CBR for diabetes insulin by looking at prior events
such as blood pressure level, physical activities and carbohydrate inges-
tion. Additionally, similarity metrics like Euclidean distance have also
used with CBR for pattern classification (Yan et al., 2017).

Hybrid approaches can be more effective than either a rule- or case-
based learning approach to solve complex problems (Van Den Bossche
et al., 2010), (Prentzas and Hatzilygeroudis, 2003). In (Kumar et al.,
2009), the author used a hybrid approach for domain-independent clin-
ical decision support in a hospital’s intensive care unit. The potential
for a hybrid approach was demonstrated in a medical diagnosis system
by the authors in (Sharaf-El-Deen et al., 2014) and (Tung et al., 2010).

2.2. Task scheduling in fog-cloud environment

Efficient task scheduling in fog computing to maximize resource
management is one of several research focuses in recent years (Moura-
dian et al., 2017; Bitam et al., 2018). We mainly classify the task

scheduling approaches into two main categories in Fog-Cloud environ-
ments.

2.2.1. QoS-aware task scheduling in fog-cloud environment
In (Bitam et al., 2017), the authors proposed a bio-inspired opti-

mization approach (i.e., Bees Life Algorithm (BLA)), seeking to address
the job scheduling challenge in a fog computing environment. The
approach is based on the optimized distribution of a set of tasks
among fog nodes to deal with users’ excessive requests to computa-
tional resources. This approach also seeks to minimize energy con-
sumption and CPU execution time. In a different work, the authors
of (Intharawijitr et al., 2016) proposed three different strategies for
optimum resource utilization. Firstly, a random methodology is used to
select the fog nodes to execute tasks upon arrival. Secondly, the focus
will be on the lowest latency fog devices. Finally, the fog resources
having the maximum available capacity should be primarily consid-
ered. The three proposed policies were then evaluated using a math-
ematical model. The authors in (Zeng et al., 2016) introduced a joint
optimization task scheduling and image placement algorithm, which
is designed to minimize the overall completion task time for better
user experience. The first sub-problem investigated is to balance the
workload both on client devices and computational servers. The second
sub-problem investigated is on the placement of task image on storage
servers, and the final sub-problem is to balance the input-output inter-
rupt requests among the storage servers. The research (Bittencourt et
al., 2017) discusses applications scheduling in the fog computing pro-
cess and focuses on the influence of user mobility on application perfor-
mance. Different policies have been used in scheduling, when different
application requests arrive these policies decides to execute them on
cloudlet or on the cloud. Policies include concurrent policy, in this pol-
icy all request received at the cloudlet or allocated to cloudlet without
measuring the usage. First Come First Server (FCFS) policy works in
a traditional way serving the requests on arrival until it consumes all

3

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

resources. The third was Delay-priority policy in which all request that
requires lower delay was scheduled first. In (Deng et al., 2016), the
authors proposed a workload allocation framework to balance the com-
putational latency and power consumption in a fog-cloud environment.
Likewise (Deng et al., 2016), the authors in (Zeng et al., 2016) studied
the trade-off between power consumption and computational latency in
fog. The approach is based on the convex optimization technique such
as interior-point method (He et al., 2014), the mixed integer nonlin-
ear programming problem using generalized benders decomposition (Li
and Sun, 2006), and the Hungarian method (Kuhn, 2010) to address
the problem in a fog-cloud environment. Furthermore, A. Toor et al.
(2019b) proposed and evaluated energy and performance aware fog
computing scheme using Dynamic Voltage Frequency Scaling (DVFS)
technique while utilizing the green renewable energy resources. Simi-
larly, effective resource utilization and computing service of delay sen-
sitive applications were considered in (Song et al., 2016). The study pro-
posed a graph representation base system and a task-oriented dynamic
load balancing algorithm that maps the physical resources to virtual-
ized resources. Each resource is represented by a node and has a certain
capacity. On the arrival of a new fog node, the algorithm reallocates the
load in its nearby neighborhood to maintain the balance and accounting
task distribution degree and the links among nodes. A reverse strategy
was adopted to remove edges not having sufficient resources.

2.2.2. QoE-aware task scheduling in fog-cloud environment
QoE refers to the user experience towards the various service

aspects. It considers user needs, perceptions and intentions regarding
provided services (Mahmud et al., 2019). Our published work (Mah-
mud et al., 2019) mainly focuses on QoE-aware task scheduling in Fog
computing environment. The article uses a learning fuzzy logic based
approach to enhance QoE in hierarchical, distributed and heteroge-
neous Fog-IoT environment. The technique follows the prioritized appli-
cation placement to the suitable Fog servers using fuzzy logic models.
Similar to (Deng et al., 2016), the authors in (Oueis et al., 2015) also
studied load balancing while focusing on quality of experience (QoE).
The proposed algorithm uses clustering in order to meet the computa-
tion demands and minimize the power consumption. The first in first
out (FIFO) mechanism is used for task scheduling and earliest dead-
line first (EDF) policy is used for resource allocation. The authors in
(Aazam, 2015) and (Aazam and Huh, 2015) considered multiple fac-
tors and formulated resource management on the basis of changing the
relinquishing probability of the customer, service type, service price.
However in (Aazam and Huh, 2015), resources were taken into account
on the nature of devices. A loyalty based task scheduling model, a
service-oriented resource management model to perform efficient and
fair management of resources for IoT deployment, was proposed that
incorporates the user’s history of resource usage to increase the fairness
and efficiency, when the resources were actually consumed.

Table 1 summarizes the literature discussed in this section.
In today’s dynamic and heterogeneous environment necessitates a

smart layer between end devices and fog nodes to encourage intelli-
gent and adaptive task scheduling approaches. The main capabilities of
the smart layer should include: a) the capacity to define whether the
approaching request ought to be served by a cloud or a fog node, b) the
layer should be able to assign the incoming task to most fitting fog node
among the accessible fog nodes in a geographical proximity; and c) to
extensively implement adaptiveness and learning-based intelligence for
varied task scheduling processes.

3. Methodology

The methodology of the proposed scheme is detailed below.

3.1. System model

In this paper, we have designed the complete architecture of the
Fog Cloud system as shown in 2. The architecture contains three lay-
ers. The first layer comprises of several IoE devices generating N num-
ber of requests. The second layer includes geographically distributed
gateways deployed among the proximity of IoE devices and their cor-
responding Fog nodes. Provisioning of our proposed service at varied
geographically distributed gateways makes our technique highly scal-
able and thus avoiding performance bottleneck. The proposed deploy-
ment model suits the existing and futuristic environments (i.e., IoT, IoE,
smart X (smart city, smart building, smart forest etc.)).

3.2. Learning repository fog-cloud

To ensure effective job scheduling, we propose an intelligent and
adaptive approach, named, Learning Repository Fog-Cloud (LRFC) that
is a soft solution deployed at various gateways in the second layer. The
basic sequence and operations of our proposed system are shown in
Fig. 3. The sequence starts with the generation of asynchronous tuples
to the LRFC layer. Jobs are decomposed into tasks in second step. Fur-
ther, the Learning Repository creates its Meta in step three. In step four,
best fitted fog servers are selected to serve the jobs. Hence, the LRFC
schedules the task either for Fog or Cloud (i.e., if no suitable fog server
is found or all the fog servers are completely occupied, then the tasks
will be sent to cloud for further processing) in step five. In step six,
Fog executes the task and returns the response details to LRFC layer;
whereas, the cloud executes the received requests and returns response
to LRFC layer in step seven, respectively. LRFC receives the response
and updates the information iteratively in step eight. Finally, the results
are generated accordingly.

3.3. An adaptive and intelligent task scheduling approach

We propose a hybrid approach based on the idea of both rule-based
learning and case-based reasoning to produce efficient results. For this
purpose, a learning repository is created that stores the particulars of
each incoming task such as tuple identification (ID), tuple type, and the
information of the resource where the task is served. Moreover, it also
maintains the information such as propagation time, execution time,
energy consumption of the tuple at a specific resource. The tasks are
scheduled to the available resources based on the information stored
in learning repository. Additionally, the selection of the service type
(i.e., Fog, Cloud) is also made through the learning repository infor-
mation. The learning repository is regularly updated, and the schedul-
ing decisions are made accordingly. We have a tptotal total number of
tuples and fgtotal total number of fog servers. Initially, we are creating
learning repository. Five percent of the tptotal are used for training our
proposed approach. The remaining ninety-five percent (95%) of tptotal is
used for testing purpose. Algorithms 1 and 2 provide a detailed and self-
explanatory description of our proposed approach. The learning repos-
itory storage FS and CS are created for Fog and Cloud, respectively.
The initial tuples used for training are abbreviated as tpini. The tuples
used for are testing are presented as tpfinal. The SR stands for Storage
Repository. Whereas, DT represents the type of IoT job. Internal Pro-
cessing Time ITP is the time that a tuple/job takes for processing using
a resource of Fog or Cloud. The link propagation time is abbreviated
as PTL. In the LRexe process, the selection of fog server is decided on
the distance between the request generated from and the server loca-
tion where it is physically placed. The nearest server is selected with its
server id fgid. The fgid of the serving server will be saved in LR storage
as well. In the case of cooperation, if the selected server fgi is busy then
the tuple will wait in the queue or will be sent to the Cloud.

4

F.M
urtaza

etal.
JournalofN

etw
ork

and
Com

puter
A

pplications
165

(2020)
102674

Table 1
Summary of related work.

Ref Year Problem Methodology Pros Cons

Mahmud et al. (2019) 2019 QoE in the hierarchical, distributed and
heterogeneous Fog-IoT environment

Prioritized application placement to the
suitable Fog servers using fuzzy logic
models

QoE-aware application placement Energy consumption is
not evaluated

Bittencourt et al. (2017) 2017 Scheduling in the fog computing. Concurrent, FCFS and DelayPriority
scheduling policies.

CPU execution time and delay Non cooperative
simulation environment

Intharawijitr et al.
(2016)

2016 Computational and communication delays
in high load condition.

5G fog-based infrastructure is simulated. Communication latency,
Computing latency.

Simulated on partial fog
computing system.

Bitam et al. (2017) 2017 Higher traffic and efficiency. Bio-inspired optimization approach for
job scheduling, Bees Life Algorithm (BLA)

CPU execution time, Allocated
memory in term of service cost

Static execution of jobs,
considered limited jobs.

Zeng et al. (2016) 2016 Task scheduling, resource management,
and I/O together formulated as a
mixed-integer nonlinear programming
problem.

Joint optimization task scheduling and
image placement algorithm.

Resource Management, Power
consumption, Computational
latency

Large-scale requests are
ignored during task
assigning.

Deng et al. (2016) 2015 Optimal resource allocation between fog
and cloud.

Convex optimization technique (interior
point method), Bender decomposition,
and Hungarian method.

Power consumption,
Computational latency

Centralized fog
computing architecture

Song et al. (2016) 2016 Resource utilization and computing
service of delay sensitive applications

Graph representation base, task-oriented
dynamic load balancing algorithm that
maps the physical resources to virtualized
resources

Network flexibility, Dynamic
load balancing

High load balancing
complexity

Oueis et al. (2015) 2015 QoE in terms of fog load balancing. Low complex task scheduling algorithm Energy efficiency, Task latency,
Power consumption

High complexity for
large scale fog
architecture.

Aazam (2015) 2015 Resource management on the basis of
changing relinquish probability of the
customer, service type, service price, and
variance of the relinquish probability

Loyalty base task scheduling algorithm Resource management Scalability

Aazam and Huh (2015) 2015 Resource allocation Loyalty base task scheduling model, a
service-oriented resource management

Resource management,
Performance measure

The large-scale request is
ignored.

Cardellini et al. (2016) 2015 Exploiting local resources in data stream
processing

An extension to storm open source data
stream processing as QoS-aware
scheduler.

Network latency, Inter-node
traffic

Availability of
applications, Not
suitable for composite
fog computing

5

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Fig. 3. Proposed system sequence diagram.

Algorithm 1 Learning Repository Fog-Cloud
Approach

procedure LRFC(tptotal, fgtotal)
CT = [true, false]
St = {S1, S2, S3}
Dc
Co = {true, false}
Gw = {true, false}
Fs,Cs ⊳ storage for fog and cloud
tpini = (tptotal × 5∕100) ⊳ getting 5% to

initial execute
tpfinal = (tptotal × 95∕100) ⊳ 95% of remaining
split = Splitting tpini into 5 chunks
for (j = 0; to j =splitlength) do

for (ti in split[jdo
Rdnum = [0,1]
if (Rdnum = 0) then

fgi = exec FOGSIM(fgtotal, ti,CT ,0)
else

(continued on next page)

Algorithm 1 (continued)

Si = get service from St
SendToCloud(ti, false, Si,Dc)

temp = {ti.DT , ti.ID, ti.ITP, ti.PT,Dc.Name, ti.Link}
Cs + = temp

end if
end for
j + +

end for
for each: (ti in tpfinal) do

FFs = getting ti from Fs on the basis of DT and order by ti.IPT ∧
ti.PTL

CCs = getting ti from Cs on the basis of DT and order by ti.IPT ∧
ti.PTL

Boolean f, c
f = set true if FFs is null
c = set true if CCs is null
if (FFs is null OR CCs is null) then

if (f) then
exec FOGSIM(fgtotal , ti ,CT ,0)

end if

4. Formal verification of the proposed scheme

In this section, we analyze the efficiency of our scheduling algo-
rithm in a formal way. To achieve that goal, we have used Uppaal

6

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Fig. 4. Template of the IoT device.

timed automata to describe the behavior or IoT devices and schedul-
ing algorithm. Then used the underlying model checker to verify a set
of derived properties. Given the rich expreviness of Uppaal formalism,
the behavior of IoT devices, fogs and algorithm can be constrained with
time attributes such as the response time of the scheduler to acquire a
request, minimum/maximum time interval between two requests from
the same IoT device, time to communicate with a fog, etc.

Request types describe the combination of the resource types that
an IoT device can request. A request type can include a single resource
(e.g computation resource), or a combination of different resources (e.g
computation and storage resources). We use ReqT to denote a request
type. A request R targets a set of resources each with a different amount,
e.g R=(Compute = 500, RAM = 12). We use notation |Ri| to refer to the
amounts of individual resources of the request R. As example, |R1| =
(Compute,500).

Fig. 4 shows a parameterizable model of IoT devices. A device
behavior is initially at location Init, waiting for certain time interval
before issuing a request. The request type and budget are randomly
generated using function Fresh(). While performing a request, the IoT
device synchronizes with the scheduler using event Demand! The IoT
device waits then to be scheduled to a fog at location Ready. Whenever
scheduled, the device waits until the request is fully satisfied upon event
Terminate[]? then it can start another request. Function Expired(Req)
calculates when a request gets satisfied, given the performance charac-
teristics of the fog and the budget requested by the IoT device.

To simulate the learning process, we use dynamic priorities for the
allocation of fogs to different request types. The priority to allocate a
fog F to a request type changes on the fly according to the dynamics
of the system. Initially all priorities are set to zero (Prio(ReqT,F,0)=0),
meaning that there is no preference in allocating a given fog to a given
request type. For a given request type ReqT, if a fog F has recently been
used many times to satisfy requests of type ReqT then the priority to
allocate F to the given request type gets increased over time. Otherwise,
the priority will be decreased on each time interval of length 𝛿 if F has
not been allocated to any request of the concerned type during the last
𝛿 time interval.

Prio(ReqT, F, t)

=

⎧⎪⎪⎨⎪⎪⎩

Prio(ReqT, F, t − δ) + + if ∃ (R1,‥,Rn) ∈ ReqT,
∃ t′ ∈ [t − δ, t],
∧ Allocate(Ri, F, t′) = True

Prio(ReqT, F, t − δ)− Otherwise

Fig. 5 shows the learning model where for each time interval delta,
function All_Prio(delta) calls the aforementioned function Prio() for all
potential fogs and request types as parameters.

When receiving a request from an IoT device, our scheduler con-
siders first fogs having high priorities for the allocation to that request
type. If two fogs have the same priority to serve a request and both
have sufficient available resource budget, then the scheduler consid-
ers the neighborhood attribute where the closer fog gains the alloca-
tion. The allocation considers the resource availability at the fog level,

Fig. 5. Template of the learning process.

the learning-based priority and the neighborhood. The neighborhood
attribute is calculated based on the geo-location of the device and fog.

Algorithm 2 Learning Repository Fog-Cloud Approach - Part 2

if (c) then
SendToCloud(ti, false, Si,Dc)
temp = {ti.DT , ti.ID, ti.ITP, ti.PT,Dc.Name, ti.Link}
Cs + = temp

else
Ccost = CCs.IPT + CCs.PTL
Fcost = FFs.IPT + FFs.PTL
if (Ccost >= Fcost) then

exec FOGSIM(fgtotal, ti,CT , Fcost .fgId)
else

SendToCloud(ti, false, Si,Dc)
temp = {ti.DT , ti.ID, ti.ITP, ti.PT,Dc.Name, ti.Link}
Cs + = temp

end if
end if

end if
end for

end procedure
function FOGSIM (fgtotal, tpi,Ct , Fcost .fgId)

for each: (fg in tpfinal) do
if (fghasPower() && hasResources()) then ⊳ for requested

tuple ti with fgid
CalcDisMinProxity ()
fgi = fg
if (fgi = null &&Co = true) then

CalcDisMinProxity()
fgi = fg

end if
end if

end for
temp = {ti.DT , ti.ID, ti.ITP, ti.PT, fgi.ID, ti.Link}
Fc + = temp

end function

The following function is used to show how to check whether a fog
F satisfies a given request R issued at time instant t.

Satisfy(R, F, t)

=
{

True if ∀ − Ri− ∈ R budget(|Ri|, t) < budget(F, |Ri|, t)
False Otherwise

Function budget(X, t) returns the amount requested by R for a resource
type X at time instant t. We overload this function to return the avail-
able amount of a given resource type (|Ri|) in a fog at time instant t,

7

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Fig. 6. Template of the scheduler model.

Fig. 7. Template of the fog model.

simply writing budget(F, |Ri|, t).
The allocation of a fog to satisfy a request is performed via the fol-

lowing function:

Allocate(R, F, t) =

⎧⎪⎪⎨⎪⎪⎩

True if Satisfy(R, F, t) ∧ ∀ Fj Satisfy(R, Fj, t) ⇒
not (Prio(R, F, t) < Prio(R, Fi, t) ∧
Near(Fi, IoT(R)) < Near(F, IoT(R)))

False Otherwise

Function IoT(R) returns the actual IoT device that performed request
R. So that we calculate the neighborhood Near(Fi, IoT(R)) of the request
issuer to the fog.

Fig. 6 shows our scheduler model. Basically, whenever a device
issues a request it asks the scheduler to reserve a fog to it upon the
event Demand[]? If there exists a fog satisfying function Allocate() for
the given request, the fog will be immediately reserved using event
Reserve[]! from location Scheduling. If such a fog does not exist, at loca-
tion Not_Optimal, the scheduler searches a fog that satisfies the request
while being the most used one to serve such a request type recently.
Otherwise, the scheduler searches a fog which is the nearest one to the
IoT device. If none of the cited options exists, the scheduler mediates
the request to the cloud.

When a request processing terminates, the corresponding fog
resources are released and become available. We omit describing the
termination function as it is very trivial.

Fig. 7 shows the fog model. It is simple and consists in receiving a
Reserve[] event from the scheduler, synchronizing with the requesting

Table 2
Cloud services considered in the simulation setup.

bf Service RAM (MB) Storage (MB) MIPS Data Rate
(kbps)

Service 1 8192 5000 9000 500
Service 2 16,384 10,000 18,000 500
Service 3 32,768 15,000 27,000 500

IoT device to start supplying resources. The fog updates the availability
of its resources according to the current request budget, both when
starts and terminates.

The efficiency property we have formally analyzed using model
checking is the following:

Property 1. Each request, from an IoT device, is always satisfied by the
nearest fog having sufficient budget and an experience to satisfy such type of
requests. Formally, we write:

∀R Allocate(R, Fj, t) ⇒ ¬(∃ Fk ∣ Satisfy(R, Fk, t)

∧ Near(Fk, IoT(R)) < Near(Fj, IoT(R))

∧ Prio(R, Fi, t) < Prio(R, Fk, t)

5. Performance evaluation

The simulation environment is set up using CloudSim (Calheiros
et al., 2011) and iFogSim (Gupta et al., 2017). The arguments on
why using CloudSim and iFogSim in fog/edge computing environments
has been detailed in (Ficco et al., 2017). Modelling of environment is
inspired by Azure Cloud Service (Chappellet al., 2008), and Amazon
S3 service (Palankar et al., 2008). Analysis is performed based on rel-
evant parameters such as data generation from IoTs (Chandio et al.,
2014) data type, internal processing time, total processing time, queue
delay, propagation delay, power consumption, available resources and
resources required by a tuple, cooperation of fog nodes, and distance
measurement in kilometers between nodes. The cloud services in simu-
lation setup are presented in Table 2. Moreover, cloud data centers con-
sidered in simulation environment are shown in Table 3. Furthermore,
the detail about dataset, deployment of fog and IoE devices, specifica-
tions of fog servers and performance evaluation metrics is given below:

5.1. Dataset

Fig. 8 presents the categories of the dataset used in the simulation
(Iot-compute-dataset and http, 2019). It is a synthetic dataset. We have
considered 30 and 50 thousand tuples to perform the experiments. The
x-axis shows the different types of tuples and y-axis presents the num-
ber of tuples. This dataset is used to evaluate the performance of the
proposed scheme.

5.1.1. Dataset characteristics
Dataset consists of multiple tuples. These tuples contains various

properties such as - size, bandwidth, MIPS, and memory. Where, the
tuple size refers to the required size of the tuple. It is important in
terms of memory consumption at fog server and processing is performed
based on the tuple size. The bandwidth of a tuple defines the bandwidth
required by the tuple to reach its destination fog server. Every tuple
has its specific bandwidth requirements and should be handled accord-
ingly. Tuple MIPS refers to the processing requirements of a tuple to
be executed at fog server. The memory of a tuple exhibits the memory
required (in megabytes) by a tuple at a fog server. The dataset contains
the job of heterogeneous nature having the information - name of the
tuple, Tuple ID, tuple size, MIPS (required by a tuple), bandwidth, loca-
tion (coordinates), type of IoE job (for instance, textual tuple of small

8

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Table 3
Cloud data-centers in simulation setup.

DC Geo Location Memory (MB) Storage (MB) MIPS BW (kbps) Arch OS Status

USA Data-center 37.422421,-22.0866703 51,200 1000 k 500 k 50 k x86 Linux Live
Singapore Data-center 1.277911, 103.849662 51,200 1000 k 500 k 50 k x86 Linux Live

Fig. 8. IoE dataset used in simulation.

size, medical tuples and abrupt, etc.), IsReversed (if not served by any
resource), IsServerd (it has a boolean value and defines whether the
tuple is served ot not by any available resource - cloud/fog), Isserver-
byCloud (exhibits if the tuple is served by the cloud resource), type of
the device (sensor, mobile, actuator etc), queue delay (the time a task
rests in queue), processing time etc. The dataset can be used in varied
computing environments.

5.2. Geographic deployment

Fog servers and IoE devices are deployed randomly at varied lat-
itude and longitude of Rawalpindi and Islamabad cities, in the sim-
ulation setup. The specifications of the fog servers are presented in
Table 4. Whereas, Cloud data centers are deployed in Singapore and
United States of America (USA).

5.3. Evaluation metrics

The following evaluation metrics have been considered to evaluate
the performance of the proposed scheme. Processing Time: The time
taken by a tuple/job for processing at a fog server is termed as process-
ing time. We compute the processing time using Equation (1).

Tp =
Pi(t)

CPi(fs)
(1)

The Tp refers to the total processing time. Where, Pi(t) is the power of
the ith and CP stands for the current power of a fog server fs. Response
time: The round trip time of a tuple when it is generated from the
source and returned back after completion. The following Equation (2)
shows the computation of response time. Where, RT stands for response
time, Tp is the propagation time, Tp shows processing time and Tq
presents the queue delay.

RT = Tp + Tp + Tq (2)

5.4. Policies

Here, following IoE data generation policies are considered to eval-
uate the proposed scheme. Random policy: This policy sends the
tuples to fog servers arbitrarily without following their First-Come-
First-Served: It refers to the synchronous forwarding of the tuples to
fog servers (Bittencourt et al., 2017) according to their order of gener-
ation from IoE devices. Shortest-Job-First: SJF policy sends the small
tuples on higher priority to fog servers in comparison to other tuples.

5.5. Results

Fog Servers Utilization: Fig. 9 shows the utilization of Fog
resources. Fig. 9. a shows the simulation time (in seconds) at x-axis
and y-axis represents the number of tuples a Fog server is serving. Each

Table 4
Fog servers specifications.

Fog_ID Ram (MB) MIPS UpBw (kbps) DownBw (kbps) No. of Cores Longitude Latitude

F-0 10,240 85,000 1500 1200 2 72.94457212 33.74430192
F-1 8192 75,000 1200 1000 2 72.99649278 33.57278
F-2 8192 75,000 1200 1000 2 73.03918583 33.78799432
F-3 10,240 85,000 1500 1200 2 72.89806118 33.75918676
F-4 16,384 110,000 2500 1700 4 73.05820695 33.58553272
F-5 6144 50,000 1000 700 1 72.95355966 33.73420675
F-6 10,240 85,000 1500 1200 2 73.05820695 33.58553272
F-7 16,384 110,000 2500 1700 4 72.95355966 33.73420675
F-8 8192 75,000 1200 1000 2 73.01082938 33.70381249
F-9 12,288 95,000 2000 1500 3 72.89806118 33.75918676

9

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Fig. 9. Fog servers utilization.

Fig. 10. Average Power and Energy Consumption of fog resources by different task scheduling policies.

Fog server has specific computing capacity in terms of MIPS. Similarly,
the incoming job also has a specific size in terms of MIPS. The size,
mean-inter-arrival time and the change in number of tuples directly
affect the utilization of a Fog device. Fig. 9. b shows utilization of a
Fog server in 100 s of simulation time. Fig. 9. c shows the utilization
of 7 Fog servers. The x-axis presents fog devices and y-axis shows their
percent utilization. In case of LRFC, the minimum utilization of Fog
servers is 86.295 and it reaches the 90.435 at maximum. Servers uti-
lization is used as a key metric to determine the resource utilization in
Fog environment. Hence, it has a main role in resource management.
Subsequently, the utilization of Fog resources has a direct impact on the
their energy consumption. The under-utilization of Fog servers results
in wastage of resources. Consequently, the efficient utilization of dis-

tributed resources is crucial to reduce the energy and to enhance the
performance in fog environment.

Power and Energy Consumption: Fig. 10a and 10. b exhibits the
power and energy consumption of fog resources respectively. Two types
of power consumption occurs in fog servers - static power consumption
and dynamic power consumption. When a fog server is powered-on
and it has no load, it consumes a constant amount of power that is
required by its hardware and software for basic functions is called static
power. The rest of its power consumption is proportional to its utiliza-
tion - known as dynamic power consumption. In the experiments, both
types of power consumption is computed. Fig. 10. a presents the aver-
age power consumed by fog resources while applying different types
of task scheduling policies considered in our simulation environment.

10

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Fig. 11. A comparison of Cloud-only and Fog-cloud environments in terms of Propagation Time and End-to-end Delay.

It can be seen that the proposed policy exhibits the lowest power con-
sumption in comparison to the rest of the policies. It is due to the fact
that LRFC allocates the resources according to the requirements of the
jobs that ultimately has an impact on the overall power consumption
of fog resources. The efficient task scheduling results in reduced power
consumption in distributed environment (Lee and Zomaya, 2010). Simi-
larly, the energy consumption (that is the power consumed in a specific
time period) is also considerately decreased while allocating resources
efficiently. Most of the state-of-the art policies concentrate on the load-
balancing that improves the quality of service (QoS); however, the
energy consumption is somehow compromised. Moreover, allocating
resources without considering nature of the jobs results in inefficient
resource utilization that ultimately increases their power and energy
consumption. Similarly, the overall computation time is also increased
if the inappropriate resources are allocated. The LRFC policy selects
the resources that perform best for specific types of jobs. This activ-
ity decreases the computation time that consequently minimizes the
energy consumed by fog servers. The FCFS policy exhibits the highest
energy consumption as it simply follows the flow of traffic and lacks in
selecting the best resources. The shortest job first policy performs bet-
ter than FCFS as it initially serves the smaller jobs. Subsequently, the
smaller jobs do not wait and are served timely. In FCFS, smaller and
bigger jobs are served at the same time and resources are occupied by
bigger jobs that increase the overall computation time and hence the
energy consumption. The random policy creates a load-balancing in the
overall system and performs better than FCFS and SJF. The LRFC shows
the optimal results because of the desirable task scheduling according
to the job requirements.

Fig. 11. a shows the average propagation delay in cloud-only and
cloud-fog environments. It is clear that Fog-cloud environment is clear
winner in terms of propagation delay. It is due to the remote deploy-
ment of cloud resources that create a huge latency in flow of jobs gen-
erated far from the cloud infrastructure. Contrarily, Fog exists nearer
to the IoE devices and significantly reduces the delay (Mahmud et al.,
2018).

Whereas, Fig. 11b and 11. c shows a comparison of end-to-end delay
of IoE jobs served on cloud-only and fog-cloud environments. The y-
axis of both Figures present the end-to-end delay in milliseconds. It
exhibits the usage of network and processing resources by IoE jobs.
As, the cloud is remote from the end devices so the jobs traverse all
the network and use all underlying network resources and bandwidth.
Whereas, fog is closer to devices where jobs are generated and results in
lower utilization of network resources. In the given scenario, majority
of the requests are served by fog that not only results in lower latency
but it also reduces the burden of traffic on cloud.

Fig. 12. a presents the processing delay occurred at the Fog servers
while serving various IoE requests and applying different task schedul-
ing policies. The x-axis presents the different task scheduling policies;
whereas, y-axis shows the processing time in milliseconds. The strategy
of allocating available Fog resources to incoming jobs has an impor-
tant impact on the overall processing delay. If the jobs are not placed
optimally at the fog resources, it causes the resource contention that
increases the processing delay. Moreover, electing the best resource
according to the job requirements improves the performance of the sys-
tem by decreasing the delay. Fig. 12. a presents that when resources are
allocated dynamically and intelligently, it reduces the server level pro-

11

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Fig. 12. Performance evaluation of proposed scheme.

cessing delay. Hence, LRFC outperforms rest of the policies considered
in our simulations, in terms of overall average processing delay.

Fig. 12. b presents the average propagation time taken by all IoE
jobs while traveling in the network. It includes the time taken in trans-
mission of the data at links, at routers and switches and also in fog-to-
fog communication in case of cooperation among fog servers. Fig. 12.
b clearly depicts that LRFC policy shows the better results compared
to Random and FCFS; however, a slight increase is noted compared to
SJF policy. Initially, LRFC takes some time to be matured and jobs are
assigned randomly to the fog resources. However, it gets smarter with
the passage of time. The prematurity time may have a negative impact
on the performance at initial stages.

The resultant end-to-end delay depends on the efficiency of task
scheduling algorithm (Mahmud et al., 2018). Fig. 12. c shows the per-
formance evaluation of different task scheduling algorithms in a fog-
cloud environment, in terms of end-to-end delay. The x-axis shows the
policies considered in our simulation and y-axis presents their corre-
sponding end-to-end delay in milliseconds. The proposed LRFC policy
exhibits the lowest end-to-end delay compared to FCFS, Random and
SJF policies. As described earlier, the efficient task scheduling has a
crucial role on the end-to-end delay. When the resources are allocated
according to the job requirement keeping in view the other important
factors like availability, capacity and proximity of resources (as done in
LRFC), the average end-to-end time is reduced. Consequently, QoE of
the system is improved. Additionally, assigning best resource for incom-
ing job reduces the extra delays such as queuing and migration delays
as well.

Finally, a comparative analysis of considered evaluation metrics is
performed using 30k and 50k IoT jobs, as shown in Fig. 13. It can be
observed that the proposed policy exhibits a slight difference among
the varied performance evaluation metrics used in the paper even with
a considerable amount of increase in IoT jobs. Consequently, the system
shows a normal behaviour that confirms the scalability of the proposed
approach in terms of number of number of IoE jobs.

6. Conclusion and future work

The paper explores task scheduling thoroughly in Fog computing
environments. An adaptive and intelligent task scheduling technique,
Learning Repository Fog-Cloud (LRFC), has been proposed to improve
QoS (i.e., response time, and processing time of tuples) and energy con-
sumption (i.e., power consumption of fog devices). The authors have
proposed a smart soft layer between IoE/IoT-devices and Fog nodes that
can be extended to implement various types of learning based policies.
The proposed deployment model exhibits scalability and thus avoid
performance bottlenecks. The proposed approach has been thoroughly
evaluated using extensive simulations and verified formally. The ver-
ification of the proposed approach with current state-of-the-art shows
promising results both in terms of energy efficiency and QoS. Our future
work includes the utilization of our proposed smart layer with various
experimentation of intelligent learning based techniques in combina-
tion with varied state-of-the-art scheduling policies to mainly access
varied futuristic large scale distributed computational paradigms (i.e.,
Edge, Fog, and Cloud etc.)

12

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Fig. 13. Performance evaluation of LRFC with 30 k and 50 k.

Declaration of competing interest

We declare that there is no author’s conflict of interest.

Acknowledgments

This work is supported by the European Commission, under the
ASTRID and FutureTPM projects; Grant Agreements no. 786922 and
779391, respectively.

References

Aazam, M., 2015. Dynamic Resource Provisioning through Fog Micro Datacenter,
Pervasive Computing and Communication Workshops. PerCom Workshops), pp.
105–110.

Aazam, M., Huh, E.-N., 2014. Fog Computing and Smart Gateway Based Communication
for Cloud of Things, pp. 464–470.

Aazam, M., Huh, E.N., 2015. Fog computing micro datacenter based dynamic resource
estimation and pricing model for IoT. In: Proceedings - International Conference on
Advanced Information Networking and Applications, AINA 2015-April, pp. 687–694.

Aha, D.W., 1991. Case-based learning algorithms. Database 1, 1–13.
Alrashed, S., A. A. J. o. I. A. &, U., 2017. User behaviour classification and prediction

using fuzzy rule based system and linear regression. Res. Notes 12 (2017).
Amin, K., 2017. Building an Integrated CBR-Big Data Oriented Architecture for

Case-Based Reasoning Systems.
Aslam, A., Ahmad, N., Saba, T., Almazyad, A.S., Rehman, A., Anjum, A., Khan, A., 2017.

Decision support system for risk assessment and management strategies in
distributed software development. IEEE Access 5, 20349–20373.

Bitam, S., Zeadally, S., Mellouk, A., 2017. Fog computing job scheduling optimization
based on bees swarm. Enterprise Inf. Syst. 1–25 00.

Bitam, S., Zeadally, S., Mellouk, A., 2018. Fog computing job scheduling optimization
based on bees swarm. Enterprise Inf. Syst. 12, 373–397.

Bittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F., Parashar, M., 2017.
Mobility-aware application scheduling in fog computing. IEEE Cloud Comput. 4,
26–35.

Brown, D., Aldea, A., Harrison, R., Martin, C., Bayley, I., 2017. Temporal Case-Based
Reasoning for Type 1 Diabetes Mellitus Bolus Insulin Decision Support.

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R., 2011. Cloudsim: a
toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software Pract. Ex. 41, 23–50.

Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M., 2016. On QoS-Aware scheduling of
data stream applications over fog computing infrastructures. In: Proceedings - IEEE
Symposium on Computers and Communications 2016-Febru, pp. 271–276.

Chandio, A.A., Bilal, K., Tziritas, N., Yu, Z., Jiang, Q., Khan, S.U., Xu, C.-Z., 2014. A
comparative study on resource allocation and energy efficient job scheduling
strategies in large-scale parallel computing systems. Cluster Comput. 17, 1349–1367.

Chappell, D., et al., 2008. Introducing the Azure Services Platform. White paper. Oct
1364.

Choo, K.-K.R., Lu, R., Chen, L., Yi, X., 2018. A foggy research future: advances and
future opportunities in fog computing research. Future Generat. Comput. Syst. 78,
677–679.

Dar, B.K., Shah, M.A., Islam, S.U., Maple, C., Mussadiq, S., Khan, S., 2019. Delay-aware
accident detection and response system using fog computing. IEEE Access 7,
70975–70985.

Dastjerdi, A.V., Buyya, R., 2016. Fog computing: helping the internet of things realize its
potential. Computer 49, 112–116.

Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H., 2016. Optimal workload allocation in
fog-cloud computing toward balanced delay and power consumption. IEEE Intern.
Thing. J. 3, 1171–1181.

Elkano, M., Galar, M., Sanz, J., Bustince, H., 2017. CHI-BD: A Fuzzy Rule-Based
Classification System for Big Data Classification Problems, Fuzzy Sets and Systems.

Ficco, M., Esposito, C., Xiang, Y., Palmieri, F., 2017. Pseudo-dynamic testing of realistic
edge-fog cloud ecosystems. IEEE Commun. Mag. 55, 98–104.

Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R., ifogsim, 2017. A toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Software Pract. Ex. 47, 1275–1296.

He, J., Cheng, P., Shi, L., Chen, J., Sun, Y., 2014. Time synchronization in WSNs: a
maximum-value-based consensus approach. IEEE Trans. Automat. Contr. 59,
660–675.

Intharawijitr, K., Iida, K., Koga, H., 2016. Analysis of fog model considering computing
and communication latency in 5G cellular networks, 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops. PerCom
Workshops 2016, 5–8.

Iot-compute-dataset, 2019. Retrieved on (2019-10-28). https://github.com/
saifulislamPhD/IoT-Compute-Dataset.

13

http://refhub.elsevier.com/S1084-8045(20)30148-X/sref1
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref2
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref3
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref4
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref5
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref6
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref7
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref8
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref9
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref10
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref11
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref12
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref13
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref14
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref15
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref16
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref17
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref18
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref19
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref20
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref21
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref22
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref23
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref24
https://github.com/saifulislamPhD/IoT-Compute-Dataset
https://github.com/saifulislamPhD/IoT-Compute-Dataset

F. Murtaza et al. Journal of Network and Computer Applications 165 (2020) 102674

Keshtkar, A., Member, S., Arzanpour, S., 2014. Design and Implementation of a
Rule-Based Learning Algorithm Using Zigbee Wireless Sensors for Energy
Management, pp. 1–6.

Khan, M., Awais, M., Shamail, S., Awan, I., 2011. An empirical study of modeling
self-management capabilities in autonomic systems using case-based reasoning.
Simulat. Model. Pract. Theor. 19.

Kuhn, H.W., 2010. The Hungarian method for the assignment problem. In: 50 Years of
Integer Programming 1958-2008: from the Early Years to the State-Of-The-Art, vol.
2, pp. 29–47.

Kumar, K.A., Singh, Y., Sanyal, S., 2009. Hybrid approach using case-based reasoning
and rule-based reasoning for domain independent clinical decision support in ICU.
Expert Syst. Appl. 36, 65–71.

Y. C. Lee, A. Y. Zomaya, Energy efficient resource allocation in large scale distributed
systems, in: Distributed Computing and Applications to Business Engineering and
Science (DCABES), 2010 Ninth International Symposium on, IEEE, pp. 580583.

Li, D., Sun, X., 2006. Nonlinear Integer Programming - Duan Li, Xiaoling Sun - Google
Books. Springer Science \& Business Media.

Ligza, A., 2006. Logical Foundations for Rule-Based Systems. Logical Foundations for
Rule-Based Systems, pp. 191–198.

Mahmud, R., Ramamohanarao, K., Buyya, R., 2018. Latency-aware application module
management for fog computing environments. ACM Trans. Internet Technol. 19, 9.

Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R., 2019. Quality of experience
(qoe)-aware placement of applications in fog computing environments. J. Parallel
Distr. Comput..

Mohan, N., Kangasharju, J., 2017. Edge-fog Cloud: A Distributed Cloud for Internet of
Things Computations, 2016 Cloudification of the Internet of Things, CIoT 2016.

Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A., 2017.
A Comprehensive Survey on Fog Computing: State-Of-The-Art and Research
Challenges. IEEE Communications Surveys and Tutorials.

Nez, H., Angulo, C., Catal, A., 2006. Rule-based learning systems for support vector
machines. Neural Process. Lett. 24, 1–18.

Osanaiye, O.A., Chen, S., Yan, Z., Lu, R., Choo, K.-K.R., Dlodlo, M.E., 2017. From cloud
to fog computing: a review and a conceptual live vm migration framework. IEEE
Access 5, 8284–8300.

Oueis, J., Strinati, E.C., Barbarossa, S., 2015. The fog balancing: load distribution for
small cell cloud computing. In: 2015 IEEE 81st Vehicular Technology Conference
(VTC Spring), pp. 1–6.

M. R. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel, Amazon s3 for science grids: a
viable solution?, in: Proceedings of the 2008 International Workshop on Data-Aware
Distributed Computing, ACM, pp. 5564.

Prentzas, J., Hatzilygeroudis, I., 2003. Integrations of rule-based and case-based
reasoning. In: Proceedings of the International Conference on Computer,
Communication and Control Technologies, 4, pp. 81–85.

Sharaf-El-Deen, D.A., Moawad, I.F., Khalifa, M.E., 2014. A new hybrid case-based
reasoning approach for medical diagnosis systems. J. Med. Syst. 38, 9.

Song, N., Gong, C., An, X., Zhan, Q., 2016. Fog computing dynamic load balancing
mechanism based on graph repartitioning. China Commun. 13, 156–164.

Toor, A., ul Islam, S., Ahmed, G., Jabbar, S., Khalid, S., Sharif, A.M., 2019. Energy
efficient edge-of-things. EURASIP J. Wirel. Commun. Netw. 2019, 82.

Toor, A., ul Islam, S., Sohail, N., Akhunzada, A., Boudjadar, J., Khattak, H.A., Din, I.U.,
Rodrigues, J.J., 2019. Energy and Performance Aware Fog Computing: A Case of
Dvfs and Green Renewable Energy. Future Generation Computer Systems.

Tung, Y.H., Tseng, S.S., Weng, J.F., Lee, T.P., Liao, A.Y.H., Tsai, W.N., 2010. A
rule-based CBR approach for expert finding and problem diagnosis. Expert Syst.
Appl. 37, 2427–2438.

Van Den Bossche, R., Vanmechelen, K., Broeckhove, J., 2010. Cost-optimal scheduling in
hybrid iaas clouds for deadline constrained workloads, Proceedings - 2010 IEEE 3rd
International Conference on Cloud Computing. CLOUD 2010, 228–235.

Wortmann, F., Flchter, K., 2015. Internet of things: Technology and value added.
Business Inform. Syst. Eng. 57, 221–224.

Yan, A., Yu, H., Wang, D., 2017. Case-based reasoning classifier based on learning
pseudo metric retrieval. Expert Syst. Appl. 89, 91–98.

Yuce, B., Rezgui, Y., 2017. An ANN-GA semantic rule-based system to reduce the gap
between predicted and actual energy consumption in buildings. IEEE Trans. Autom.
Sci. Eng. 14, 1351–1363.

Zeng, D., Gu, L., Guo, S., Cheng, Z., 2016. Joint optimization of task scheduling and
image placement in fog computing supported software-defined embedded system.
IEEE Trans. 65, 3702–3712.

Faizan Murtaza received his MS degree in Software Engineering from the Department of
Computer Science, COMSATS University, Islamabad, Pakistan in 2018. He is a senior soft-
ware developer at Enabling Technologies, Rawalpindi, Pakistan. His main research inter-
est includes energy and performance aware resource management in Internet of Things
(IoT) enabled Fog-Cloud environment.

Dr. Adnan Akhunzada is an enthusiastic and dedicated professional with extensive 12
years of R&D experience both in ICT industry and academia, with demonstrated history
and a proven track record of high impact published research (i.e., Patents, Journals,
Transactions, Commercial Products, Book chapters, Reputable Magazines, Conferences
and Conference Proceedings). His experience as an educator & researcher is diverse. It
includes work as a lecturer, a senior lecturer, a year tutor, occasional lecturer at other
engineering departments, as an Assistant Professor at COMSATS University Islamabad
(CUI), Senior Researcher at RISE SICs Vasteras AB, Sweden, as a Research Fellow & Sci-
entific Lead at DTU Compute, The Technical University of Denmark (DTU), and visiting
professor having mentorship of graduate students, and supervision of academic and R&D
projects both at UG and PG level. He has also been involved in international accredita-
tion such as Accreditation Board for Engineering and Technology (ABET), and curriculum
development according to the guidelines of ACM/IEEE. He is currently involved in vari-
ous EU and Swedish funded projects of cyber security. His main research capabilities and
interest lies in the field of Cyber Security, Machine Learning, Deep Learning, Reinforce-
ment learning, Artificial Intelligence, Blockchain and Data Mining, Information Systems,
Large scale distributed systems (i.e., Edge, Fog, & Cloud, SDNs), IoT, Industry 4.0, and
Internet of Everything (IoE)). He is a member of technical programme committee of var-
ied reputable conferences and editorial boards. He is presently serving as an associate
editor of IEEE Access.

Dr. Saif ul Islam received his PhD in Computer Science at the University Toulouse III
Paul Sabatier, France in 2015. He is Assistant Professor at the Department of Com-
puter Science, Dr. A. Q. Khan Institute of Computer Science and Information Technol-
ogy, Rawalpindi, Pakistan. He served as a focal person of a research team at COMSATS
working in O2 project in collaboration with CERN Switzerland. He has been part of the
European Union funded research projects during his PhD. His research interests include
resource and energy management in large scale distributed systems and in computer/
wireless networks.

Dr. Jalil Boudjadar is an Assistant Professor in Software Engineering group, ECE division
at the Department of Engineering at Aarhus University, Denmark. He is also a member of
the DIGIT research Centre. He received his MS degree in June 2008 from Limoges Univer-
sity, and his PhD in December 2012 from Toulouse University France. His research inter-
ests include: Modeling and analysis of safety and security of software-intensive embedded
systems, Performance and energy-consumption analysis of Embedded and cyber-physical
systems, Real-time scheduling and resource sharing, Architecture and Architectural stan-
dards of software systems, Formal verification, semantics and refinement of real-time
systems.

Prof. Rajkumar Buyya is a Fellow of IEEE, Professor of Computer Science and Soft-
ware Engineering, Future Fellow of the Australian Research Council, and Director of the
Cloud Computing and Distributed Systems (CLOUDS) Laboratory at the University of
Melbourne, Australia. He is also serving as the founding CEO of Manjrasoft Pty Ltd., a
spin-off company of the University, commercializing its innovations in Grid and Cloud
Computing. Dr. Buyya has authored/co-authored over 450 publications. He is one of the
highly cited authors in computer science and software engineering worldwide. Microsoft
Academic Search Index ranked Dr. Buyya as one of the Top 5 Authors during the last 10
years (2001–2012) and #1 in the world during the last 5 years (2007–2012) in the area
of Distributed and Parallel Computing. For further information on Dr. Buyya, please visit:
http://www.buyya.com

14

http://refhub.elsevier.com/S1084-8045(20)30148-X/sref26
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref27
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref28
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref29
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref31
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref32
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref33
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref34
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref35
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref36
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref37
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref38
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref39
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref41
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref42
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref43
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref44
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref45
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref46
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref47
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref48
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref49
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref50
http://refhub.elsevier.com/S1084-8045(20)30148-X/sref51
http://www.buyya.com

	QoS-aware service provisioning in fog computing
	1. Introduction
	2. Related work
	2.1. Learning based approaches
	2.2. Task scheduling in fog-cloud environment
	2.2.1. QoS-aware task scheduling in fog-cloud environment
	2.2.2. QoE-aware task scheduling in fog-cloud environment

	3. Methodology
	3.1. System model
	3.2. Learning repository fog-cloud
	3.3. An adaptive and intelligent task scheduling approach

	4. Formal verification of the proposed scheme
	5. Performance evaluation
	5.1. Dataset
	5.1.1. Dataset characteristics

	5.2. Geographic deployment
	5.3. Evaluation metrics
	5.4. Policies
	5.5. Results

	6. Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References

