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a b s t r a c t

Fog computing aims at offering Cloud like services at the network edge for supporting Internet of Things
(IoT) applications with low latency response requirements. Hierarchical, distributed and heterogeneous
nature of computational instances make application placement in Fog a challenging task. Diversified
user expectations and different features of IoT devices also intensify the application placement problem.
Placement of applications to compatible Fog instances based on user expectations can enhance Quality
of Experience (QoE) regarding the system services. In this paper, we propose a QoE-aware application
placement policy that prioritizes different application placement requests according to user expectations
and calculates the capabilities of Fog instances considering their current status. In Fog computing
environment, it also facilitates placement of applications to suitable Fog instances so that user QoE is
maximized in respect of utility access, resource consumption and service delivery. The proposed policy
is evaluated by simulating a Fog environment using iFogSim. Experimental results indicate that the
policy significantly improves data processing time, network congestion, resource affordability and service
quality.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Modern computing and networking techniques are rapidly ex-
panding Internet of Things (IoT) applications in many domains.
Real-time interaction and stringent service delivery deadline re-
sist IoT-applications to be placed in remote Cloud. Therefore, Fog
computing paradigm is introduced to extend Cloud-based utilities
for IoT-applications at the edge network [6]. In Fog, networking
entities like gateway servers, routers, switches, etc. are known
as Fog nodes and used for computational purposes. Fog can also
support unified use of both Edge and Cloud resources. Fog comput-
ing facilitates IoT-application placement in proximity of the data
source. Hence, it reduces network load and ensures in-time service
delivery [27].

* Corresponding author.
E-mail address:mahmudm@student.unimelb.edu.au (R. Mahmud).

Unlike Cloud datacentres, Fog nodes are geographically dis-
tributed and resource constrained. Among Fog nodes, network
round-trip time, data processing speed and resource availability
also vary significantly. Therefore, application placement in Fog be-
comes quite challenging. To attain certain service level objectives
in Fog, different application placement policies are required. Qual-
ity of Service (QoS) [7,34], resource [36], situation-aware [33] ap-
plication placement in Fog have already been exploited. However,
the impact of Quality of Experience (QoE) in Fog-based application
placement is yet to be investigated extensively. In some cases, QoS
and QoE can complement each other, although subtle differences
between them often lead towards separate policy-based service
management.

QoE is widely accepted as the user centric measurement of
different service aspects. It observes user requirements, intentions
and perceptions regarding a service in particular context [22].
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Since QoE deals with user interests, QoE-aware policies can en-
hance user loyalty and decrease service relinquish rate. In Fog,
QoE-aware policies have already been used for optimizing service
coverage [24] and resource estimation [1]. Apart from resource
and service provisioning, application placement in Fog reckoning
user QoE can improve data processing time, resource consumption
and network quality. However, in real-time environment like Fog,
user interests regarding different system services vary from one
to another and QoE dominating factors change very frequently.
Therefore, developing efficient QoE-aware policies for Fog is a
challenging task.

Currently different techniques are applied to identify and
measure QoE. Feedback-based approaches such as Mean Opinion
Scores (MOS), Standard deviation of Opinion Scores (SOS) and Net
Promoter Score (NPS) [1,18] are commonly used to define user
QoE. In IoT, where human interventions are limited and real-time
interactions happen very often, giving feedback after every certain
interval to notify QoE, is not feasible. Similarly, prediction-based
QoE models [15,23] also fail when QoE dominating factors vary
significantly. Evaluation of QoE after placing applications creates
complexities, if any placement modification based on the evalu-
ation is required to be made. In this sense, prior to application
placement, it is more viable to identify QoE dominating factors
and their combined impact on user QoE. Later, applications can be
placed to suitable computing instances by meeting the factors so
that user QoE does not degrade. Thus, discrepancy between user
feedback and QoE on specific service attribute can be monitored.

In this paper, several user expectation parameters are identified
that can influence the QoE. The user Expectation Metric includes
parameters regarding service access rate of the application user,
required resources to run the application and expected data pro-
cessing time. Based on user Expectation Metric, each application
placement request is prioritized. Fog computing instances are also
classified according to their Status Metric parameters (proximity,
resource availability and processing speed). Finally, prioritized ap-
plication placement requests aremapped to competent computing
instances so that user QoE regarding the system services gets
maximized.

The main contributions of the paper are:

• A QoE-aware application placement policy comprising of
separate Fuzzy logic based approaches that prioritizes dif-
ferent application placement requests and classifies Fog
computational instances based on the user expectations and
current status of the instances respectively.

• A linearly optimized mapping of application placement re-
quests to Fog computing instances that ensures maximized
QoE-gain of the user.

• The proposed policy is evaluated through simulation using
iFogSim [16]. The experimental results show significant im-
provement in QoE enhancement compared to other QoE and
QoS-aware policies.

The rest of the paper is organized as follows. In Section 2,
relevant research works are reviewed. In Sections 3 and 4, the mo-
tivation and the addressed problem of this research are discussed.
Section 5 represents the system overview and assumptions. The
proposed QoE-aware application placement policy and an illus-
trative example are described in Sections 6 and 7 respectively.
Section 8 enlightens the simulation environment and the perfor-
mance evaluation. Finally Section 9 concludes the paper and offers
direction for future work.

The list of acronyms used in this paper is shown in Table 1.

Table 1
List of acronyms.

CCS Capacity Class Score
CoAP Constrained Application Protocol
EEG Electroencephalogram
FCN Fog Computational Node
FGN Fog Gateway Node
IoT Internet of Things
ITU International Telecommunication Union
MCI Micro Computing Instance
MeFoRE MEdia FOg Resource Estimation
NPS Net Promoter Score
NRR Network Relaxation Ratio
PTRR Processing Time Reduction Ratio
QoE Quality of Experience
QoS Quality of Service
REST Representational State Transfer
RG Resource Gain
RoE Rating of Expectation
SCIP Solving Constraint Integer Programs
SNMP Simple Network Management Protocol
TIPS Thousand Instructions Per Second

2. Related work

A summary of several QoS/QoE-aware application manage-
ment policies in different computing paradigms is shown in Ta-
ble 2. Mahmud et al. in [26] propose a context-aware application
scheduling policy in Mobile Cloud Computing (MCC) to enhance
user’s QoE. The policy runs in a centralized Cloudlet and prioritizes
users requests based on battery level of the requesting device and
signal to noise ratio of the network. It ensures users to get response
of their requests before terminating access to the service due to
poor connectivity or device failure. It also focuses on QoE gain
through differences between service delivery deadline and actual
service delivery time.

Zhou et al. in [43] propose a MCC-based QoE-aware cache
management policy for multi-media applications. The policy finds
the best data streaming bit rate in different scenarios. It ranks the
user’s video streaming requests based on the access rate and then
allocates available resources at the caching server according to
the rank of the requests. The relationship between user provided
feedback and server response rate determines the enhanced QoE
of the users. End device, base stations and cache servers participate
simultaneously to conduct the policy.

Peng et al. in [32] propose a QoE-aware application manage-
ment framework for Mobile Edge Computing (MEC) by applying
network function virtualization and software defined networking.
Due to proximity ofMEC instances, the proposed framework inher-
ently meets user’s expectation regarding service access. Besides,
it takes user’s resource requirements and the global view of the
available resources into account while managing the applications
through a centralized orchestrator. The developedMECeco-system
is capable of enhancing user’s QoE in both uplink and downlink
directions.

Dutta et al. discuss a QoE-aware transcoding policy for MEC
in [11]. According to the policy, a centralized edge orchestrator
assesses the user’s expected service processing time (tolerable
buffering delay) and adjusts the video processing speed (encoding
rate) so that user’s QoE in respect of service responsiveness does
not degrade. After a fixed time interval, the policy checks whether
the encoding rate is acceptable for the user or further opera-
tions are required. The policy enforces edge content customization
based on user expectations.

AQoE-aware bandwidth scheduling policy forwireless commu-
nication is discussed by X. Lin et al. in [25]. It takes user’s service
access rate and tolerance towards packet processing delay into
account while defining the user QoE indicator for the network.
The policy operates in a decentralized manner over the gateway,
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Table 2
A summary of related work and their features comparison.

Work Observes user
expectations in

Meets instances status
regarding

Decentralized
management

Prioritized
placement

Compound
QoE gain

Service
access

Resource
requirement

Processing
time

Proximity/
Response rate

Resource
availability

Processing
speed

Mahmud et al. [26] ✓ ✓ ✓ ✓ ✓

Zhou et al. [43] ✓ ✓ ✓ ✓ ✓

Peng et al. [32] ✓ ✓ ✓ ✓ ✓

Dutta et al. [11] ✓ ✓ ✓

X. Lin et al. [25] ✓ ✓ ✓ ✓

Anand et al. [3] ✓ ✓ ✓ ✓

Skarlat et al. [34] ✓ ✓ ✓ ✓ ✓ ✓

Brogi et al. [7] ✓ ✓ ✓ ✓

Y. Lin et al. [24] ✓ ✓ ✓ ✓ ✓ ✓

Aazam et al. [1] ✓ ✓ ✓ ✓

Iotti et al. [21] ✓ ✓ ✓ ✓

This work
(QoE-aware)

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

core network and traditional wireless networking equipment. The
policy enhances the QoE in terms of attained and committed ratio
of the networking resources.

Anand et al. in [3] propose aQoE-optimized scheduler formulti-
class system (e.g. web interactive, file downloads, etc.) in wireless
networks. The QoE of end user is modeled through a cost function
based on mean flow delay and prioritizes the service requests
accordingly. In addition, the policy addresses resource allocation
among different classes considering the sensitivity towards flow
delay. The proposed scheduler is an extension of Gittin index
scheduler.

In Fog computingparadigm, differentQoS andQoE-aware appli-
cation management policies are also studied. Skarlat et al. in [34],
formulate a Fog Service Placement Problem that targets QoS-aware
application placement on virtualized Fog resources. They consider
deadline satisfaction of the applications as QoS-metric and follows
the earliest deadline prioritization while executing the applica-
tions. The proposed policy runs through a colony based orchestra-
tion among the Fog nodes and conciliates resource requirements
of the applications with available resources of the system. Each
colony connects Cloud through a middleware for additional re-
sources.

Another QoS-aware application placement policy is developed
by Brogi et al. in [7]. The policy deals with responsiveness and
processing speed of the infrastructure in association with mone-
tary issues. It is used to place multi-component IoT applications in
hierarchical Fog environment. Driven by the policy, a Java based
tool named FogTorch is developed. The tool can be applied at any
level of a application’s life-cycle.

In [24], Y. Lin et al. identify three factors (response time, net-
work congestion, service coverage) that dominate user’s QoEwhile
playing interactive games. They propose a lightweight system
named Cloud-Fog to extend service coverage for the end users.
It prioritizes service requests according to the tolerance towards
latency. To maintain the games continuity even in congested
network, a video encoding rate adaptation strategy is applied in
that system. Besides, deadline-satisfied game state scheduling im-
proves the service response delay. In both the approaches, data
packets are dropped to a certain extent.

A QoE-based Fog resource estimation policy, named MEdia FOg
Resource Estimation (MeFoRE), is discussed by Aazam et al. in [1].
The policy considers user’s history of service giving up (Relinquish
Rate) and QoE (NPS) while prioritizing service requests and esti-
mating Fog resources. It aims at maximizing resource utilization
and QoS. Service Level Agreement (SLA) violations are tracked
though poor NPS values given by a user. Number of resources is
increased based on the degree of SLA violations so that the user’s
loyalty can be re-gained.

In [21], Iotti et al. have developed a model for Fog-based In-
ternet access networks that assist dynamic placement of Cloud or
Web content at the edge networks. The model facilitates proac-
tive caching and enforcement of traffic policies so that network
infrastructures can interact with external applications smoothly.
According to the authors, the model bears great potentiality in
optimizing network usage, latency and QoE and in some cases
preserve resources for authorized users.

Our proposed QoE-aware application placement policy for Fog
differs from the aforementioned works since we have considered
multiple user expectation parameters such as service access rate,
amount of required resources and sensitivity towards data pro-
cessing delay simultaneously. The policy prioritizes application
placement requests based on user expectations. In addition, the
policy investigates resource availability, proximity and processing
capabilities of Fog computational instances concurrently to iden-
tify their competency for meeting expectations of the users. The
policy aims at maximizing compound QoE gain of the users in
respect of less congested network, adequate resource allocation
and reduced application processing time. Besides, we have devel-
oped the policy in decentralized manner so that it gets less prone
to single point failure and management overhead. In fact, for Fog
computing, the proposed policy can encapsulate and deal with
those multidimensional aspects of QoE-aware application place-
ment which the existing solutions cannot address individually.

3. Motivation and requirements

3.1. Scope of quality of experience

In Fog-enabled IoT system, the scope of QoE can be very diverse
and complex. To understand the scope of QoE, it can be compared
with QoS. According to International Telecommunication Union
(ITU), QoS refers to the overall features of system services which
help to meet the stated and implied needs of the end users [12].
Conversely, ITU defines QoE as the total acceptability of a service
that is determined by subjective perception of the end users [14].
Moreover, QoE encapsulates user’s requirement, intentions and
perceptions while provisioning system services (network, appli-
cation execution platform) whereas, QoS drives through an agree-
ment between user and provider that strongly monitors technical
attributes (cost, service delivery deadline, packet loss ratio, jit-
ter, throughput, etc.) of system services. In addition, QoE is the
subjective measurement of system services that can be expressed
through both qualitative and quantitative parameters; on the con-
trary, QoS is more focused on objective parameters of the underly-
ing network and application execution platform [39].

The definitions of QoS and QoE highlights that they are fun-
damentally different to each other. However, sometimes user’s
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expectation for enhanced QoE can help system services to improve
theirQoS [29]. For example, in an Internet-enabled system, on fixed
charge, a user can expect less buffering while viewing multimedia
contents. In order to enhance the user’s QoE regarding that system,
the network service providers can allocate sufficient bandwidth
and maintain acceptable jitter that can significantly improve the
QoS of the corresponding service. Conversely, end users perceived
QoE can degrade the acceptability of a service greatly even when
the proper QoS regarding the service is maintained [30]. It actually
happens due to diversified characteristics of the users. Extending
the aforementioned example, let us assume, on fixed charge, the
Internet-enabled system provisions the network service in such
way so that the QoS guarantees downloading of a particular file
in maximum 5 min time. Now, two users require that file in 3 and
7 min respectively. If the system downloads the file in exact 5 min
time, the expectation of the second user will be met; however, for
the first user it will fail. As a consequence, QoE of both users will
not be the same for that system although the systemmaintains the
QoS. Moreover, in QoS-assured 5 min time it may happen that a
particular user’s QoE becomes higher when the file is downloaded
within 1 min and gets lower when the file is downloaded in 4 min.
Therefore, it is often very difficult to apply the same technique
to meet both QoS and QoE regarding a system service. Since the
inclusion of QoE makes service response more stringent and com-
plicated, it requires separate treatment in comparison to QoS.

3.2. Application scenario

In real-world, users interact with different Fog-enabled IoT
applications in diversified ways. For example, to play Electroen-
cephalogram (EEG) Tractor Beam game [42], a user requires wearing
aMINDO-4Swireless EEG headset and connecting the smart phone
to a local Fog node. The game initiates as a mobile application
at each user’s smart phone and with the connected Fog nodes;
users exchange information with each other. During the game,
wearable IoT-device sensed EEG data streams are sent to the Fog
nodes through the user’s smart phones. For each user, real-time
EEG signal analysis and brain state (concentration) prediction are
conducted at the Fog nodes. On the display, the multi-user game
shows that all the players are on a ring surrounding a target object
and exerting an attractive force onto the target in proportion to the
level of their concentration. The user, who pulls the object towards
him/her by exercising concentration, finally wins the game. In this
game, for real-time interactions, Fog service access rate of the users
is required to be fast and timely. Since it is a multi-user game,
the amount of required resources to run the service in Fog will be
large.Moreover, in such competitive scenario, the expected service
delivery time for each user can become stringent.

Unlike the multi-player virtual reality game applications, there
also exist comparatively less interactive IoT applications. Fog Com-
puting based face identification [20] can be mentioned here as an
example that captures facial image of a user by vision sensors or
cameras. Later, the images are sent to the Fog nodes from end
devices with a view to extract the facial region by using efficient
face detection algorithms. Image pre-processing algorithms are
also applied to improve the quality and reduce the noises of the
extracted image segment. Through specific feature extraction al-
gorithms or pattern recognition techniques, feature vector of the
facial image segment is then identified. Finally, the feature vector
is either sent to system database for storage or stored data is used
to compare the feature vector for identifying a registered user.
This kind of application is event driven that often does not require
consistent access to Fog services. As, the application does not deal
with multi-user simultaneously, associate services consume fewer
amounts of Fog resources compared to themulti-user applications.
In addition, the expected service delivery time for the application
will not get stringent until any emergency situation arises.

The aforementioned examples represent that in a Fog envi-
ronment, multiple applications with different user interests and
requirements can run together. In such case, a general placement
policy for every application, cannot guarantee the enhanced QoE
for all the users. It is also very difficult to ensure the convergence
of user’s multiple expectations to the system’s affordability for the
higher gain of QoE. Therefore, an efficient QoE-aware application
placement strategy for Fog computing is required to develop that
can meet the diversified user expectations and the system status
for enhanced QoE of all the application users.

4. Problem description

4.1. Exploration of expectation and status metrics

From the discussion of Section 3, it is realized that user’s ex-
pectations can vary from application to application. Different ex-
pectation parameters have individual impact on user’s overall QoE
and can drive theQoS ofmultiple system components e.g. network,
application execution platform, etc. simultaneously. In this work,
user expectations while accessing the services, requiring compu-
tational resources and processing data signals through the appli-
cations, are investigated. The target of meeting user’s expectation
for faster service access can help improving the responsiveness
of network. The performance of application execution platform in
on-demand resource provisioning and low-latency service delivery
can get enhanced if it aims at satisfying user expectations of high
computational resources and processing data signals within rigid
time-frame. However, the expectation parameters are subjective
and can be expanded to multiple levels. For example, user ser-
vice access rate for different applications can be slower, normal
or faster. Besides, the priority of different applications based on
multiple expectation parameters is difficult to determine while
developing aQoE-aware application placement policy for Fog com-
puting.

In addition, Fog is a distributed computing paradigm closer
to the edge network. In this environment, heterogeneous and
resource constrained Fog nodes are deployed in hierarchical order
with a view to execute IoT applications in real-time. Moreover, it
is considered that the lower-level Fog nodes are more resource
constrained compared to the higher-level nodes [31]. Extending
the aforementioned characteristics of Fog environment, we have
considered three different status parameters of Fog instanceswhile
identifying their capacity towards satisfying user expectations.
Different round-trip-time status of the Fog instances meets the
hierarchical and distributed orientation of the Fog environment
along with the networking capabilities. Besides, diversified re-
source availability and processing speed status signify the hetero-
geneity among Fog instances in respect of resource capacity and
application run-time environment. Since, different status param-
eters of Fog instances facilitate different aspects of user expecta-
tions, it is required to calculate the QoE-enhancement capabilities
of Fog instances based on all the status parameters. Besides, the
calculation should be more generalized so that it can cope up with
any computational improvement of the Fog instances.

4.2. Enhancement of quality of experience

The main challenge of QoE-aware application placement is to
determine which applications will be placed to which Fog in-
stances. Thismapping of applications and instances should be done
in such a way that user’s QoE gain in all aspects get maximized and
system QoS in respect of packet loss rate, service cost and deadline
satisfaction get observed. In this case, the priority of user expec-
tations regarding the applications and capability of instances in
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meeting user expectations can be considered actively. For simplic-
ity of the mapping, their calculation can be aligned through a gen-
eralized approach. However, in real-time and resource constrained
Fog environment, mapping of applications and instances along
with associated calculations should not take significant amount of
time and computation effort that can obstruct the ultimate goal of
the proposed policy.

5. System overview

5.1. Application model

Fog-enabled IoT applications are usually divided into multiple
interconnected Application Modules [16]. The module, running at
end user’s proximate devices (e.g. smart phone, set top boxes,
bed-side monitors, etc.), initiates the system and offers interfaces
for authentication, sensing frequency calibration, data aggregation,
local data storage and outcome representation. Among the Fog
nodes, the subsequent Application Modules are either extended
from Cloud to meet the latency issues [40] or offloaded from
the user’s proximate devices due to resource constraints [37]. For
simplicity, here we assume that, Fog-enabled IoT applications are
composed of two Application Modules; Client Module and Main
Application Module.

The ClientModule runs at the user’s proximate devices. It grasps
the user’s preferences and the contextual information; and deliv-
ers output (acknowledgment/instruction) of the Main Application
Module to the users. The Main Application Module conducts all
data operations of the application and output of the Main Ap-
plication Module is regarded as final product of the Fog-enabled
IoT systems. The data operations within Main Application Module
can include data filtration, data analysis, event processing, etc.
Besides, execution of the Main Application Module can be ended
with notification and storage operation based on the results of
overall data operations. Since, the placement of Client Module is
predefined, here we mainly focus on placing Main Application
Module over Fog node. For simplicity, in rest of the paper, by the
term ‘‘application’’ we refer to theMain ApplicationModule of Fog-
enabled IoT systems.

5.2. Organization of Fog layer

In the system model, Cloud datacentres are the superior com-
putational platform and IoT devices exclusively generate data sig-
nals. IoT devices do not process data due to resource and energy
constraints. Fog operates as an intermediate computing paradigm
between Cloud datacentres and IoT devices. In Fog, nodes are
organized in hierarchical order as shown in Fig. 1. Here, Fog nodes
are classified into two categories; Fog Gateway Nodes (FGN) and Fog
Computational Nodes (FCN) [38].

The lowest level of Fog nodes, known as Fog Gateway Nodes
(FGNs), reside closer to the users. Through FGN, IoT devices and
associate applications get subscribed to Fog environment for being
monitored, placed and executed. The upper level Fog nodes, called
as Fog Computational Nodes (FCNs), provide resources to the appli-
cations for processing and analyzing the data signals. According to
OpenFog Consortium [31], there exist differences in computation
intensity and resource capacity between FGNs and FCNs. However,
we assume, each FGN has minimum ability to perform its assigned
operations during QoE-aware application placement.Moreover, by
applying existing Fog computing standards [9,19], each Fog node
can offer RESTful services or Application Program Interface to the
applications for querying and provisioning computation facilities.
Fog infrastructure providers can apply port knocking, privileged
port authentication, attribute-based encryption and other tech-
niques to secure the communication daemon running on differ-
ent Fog nodes for receiving requests and responses. Due to such

Fig. 1. Organization of Fog.

security concerns, each node gets accessible to only a set of Fog
nodes. We assume that a Fog node maintains rapid and dynamic
communication with all of its accessible nodes through efficient
protocols such as CoAP and SNMP [35].

However, distance between Fog node and IoT devices in hierar-
chical setting is reflected through the round-trip delay of the data
signals. Besides, computation capability and resource availability
of lower level Fog nodes are less compared to that of upper level
Fog nodes. There also exists diversity among Fog nodes of the
same level. Thus, in the system, heterogeneity of the Fog nodes in
capacity and efficiency always gets intensified.

5.3. Architecture of Fog nodes

5.3.1. Fog computational nodes (FCNS)
Extending the OpenFog Consortium reference architecture [31],

we assume that a FCN is composed of three components; Controller
Component, Computational Component and Communication Compo-
nent as depicted in Fig. 2.

Computational Component is equipped with resources (e.g.
CPU, memory, bandwidth, etc.) to run different applications. In
Computational Component, resources are virtualized amongMicro
Computing Instances, (MCI), where the applications are assigned for
execution [27]. Additional resources for an MCI can be dynami-
cally provisioned from either un-allocated resources or other MCIs
without degrading the service quality. All configuredMCIs in a FCN
operate independently. Communication Component serves tradi-
tional networking functionalities like routing, packet forwarding,
etc. Controller Component is responsible for monitoring and man-
aging the overall activities of Computational Component and Com-
munication Component. In Controller Component, there is data
container that storesmeta-data regarding the running applications
and Status Metric parameters of the MCIs. In Controller Compo-
nent, we propose a Capacity Scoring Unit to determine a capacity
index for each MCI based on associate Status Metric parameters so
that MCIs can be ranked according to their competence.

5.3.2. Fog gateway nodes (FGNS)
User’s premises equipment (set top boxes, cable modems) and

hand-held devices (tablets, smart phones) are well suited to be
used as FGNs. Extending the concept of IoT-gateway [41], a general
architecture of FGNs is represented in Fig. 3. Sometimes, like FCNs,
FGNs facilitate the computation of incoming data signals from
IoT devices. For a particular Fog-enabled IoT system, we assume
corresponding FGNs run the Client Module and assist to place
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Fig. 2. Architecture of a Fog computational node.

Fig. 3. Architecture of a Fog gateway node.

the subsequent module to upper level FCNs. In this approach, at
first connections between IoT devices and FGNs are established.
The Application Initiation Unit of FGNs initiates the Client Mod-
ule, through which a user conveys expectations regarding the
application to FGNs. At FGN, the capacity index of MCIs at upper
level FCNs is obtained through RESTful services and kept in a data
container. In addition, the data container stores QoS attributes
and user Expectation Metric regarding the applications for further
processing. However, in FGN,we propose inclusion of two separate
units named Expectation RatingUnit andApplication PlacementUnit.
For each application placement request, Expectation Rating Unit
calculates a priority value by taking user Expectation Metric into
account. Besides, the Application Placement Unit of FGN conducts
mapping of applications to suitable Fog instances based on the
priority value of application placement requests and the capacity
index of MCIs respectively.

Relevant notations and definitions used in system model and
problem formulation are represented in Table 3.

6. QoE-aware application placement

The flowchart of the proposed QoE-aware application place-
ment policy is depicted in Fig. 4. The basic steps of the policy are
to calculate a priority value named Rating of Expectation (RoE) of
each application placement request based on the user expectation
parameters, identify a capacity index named Capacity Class Score
(CCS) of MCIs in FCNs according to the status parameters and
ensureQoEmaximized placement of the applications to competent
MCIs using associate RoE and CCS values. In order to conduct the
steps, Expectation Rating Unit, Application Placement Unit of FGNs
and Capacity Scoring Unit of FCNs actively participate. Details of
the steps are discussed in the following subsections.

6.1. Calculation of rating of expectation (ROE)

After subscribing to a FGN m, the IoT device user apprises
the Eam ∈ {Uam

ω ,Uam
γ ,Uam

λ } regarding an application am to the
system through Application Initiation Unit. The Eam is stored in
data container and forwarded to Expectation Rating Unit of FGN
m. For every parameter in Eam , the range and unit of the numerical
values are not the same. In order to simplify further calculation, the

Fig. 4. Flowchart of QoE-aware application placement.

numerical value of each parameters in Eam is normalized to fall in
the interval [−1, 1] using Eq. (1):

Uam
x = 2

(
Uam
x − αx

βx − αx

)
− 1. (1)

Here, Uam
x is the exact numerical value of parameter x within

the range [αx, βx]. For each parameter, [αx, βx] is set according to
the scope for that parameter offered in the Fog environment. If
numerical value of any Expectation Metric parameter does not fit
within the associate range, the application will be discarded from
placing in Fog. In this case, Cloud or other computing facilities
can be pursued for placing the application. However, in Expecta-
tion Rating Unit, to calculate the ηam of the application from the
normalized parameters in Eam , a Fuzzy logic based approach is
followed. Fuzzy logic usually includes three phases; fuzzification,
fuzzy inference and defuzzification.

In fuzzification, the normalized value Uam
x of any Eam parameter

x is converted into equivalent fuzzy dimension by using associate
membership function µx. In this work, membership functions of
different Expectation Metric parameters form three distinct fuzzy
sets over the normalized range [−1, 1]. The fuzzy sets are listed as:

• Access rate: Ar ∈ {Slow,Normal, Fast}
• Required resources: Rr ∈ {Small, Regular, Large}
• Processing time: Pt ∈ {Stringent,Moderate, Flexible}.

Based on observations, the membership degree, µx(U
am
x ) for any

normalized value of parameter x on the respective fuzzy set is
shown in Fig. 5.

During fuzzy inference, fuzzy inputs are mutually compared to
determine the corresponding fuzzy output. A set of fuzzy rules
assist in this case. Here, the fuzzy output set for RoE is listed
as; Fr ∈ {High,Medium, Low} and the applied fuzzy rules are
represented in Fig. 6. For instance, the rule to determine the fuzzy
output fam ∈ Fr for application am with normal access rate, large
resource requirements and moderate processing time expectation
is interpreted as:

If access rate (ω) is normal or resource requirement (γ ) is large
or processing time expectation (λ) is moderate then RoE (fam )
is high.
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Table 3
Notations.

Symbol Definition

M Set of all FGNs.
N Set of all FCNs.
Am Set of all application placement requests in FGNm ∈ M .
In Set of all MCIs in FCN n ∈ N .
ω Access rate parameter in Expectation Metric.
γ Resource requirement parameter in Expectation Metric.
λ Processing time parameter in Expectation Metric.
Ω Round trip time parameter in Status Metric.
Γ Resource availability parameter in Status Metric.
Λ Processing speed parameter in Status Metric.
Eam Expectation Metric for application a ∈ Am .
Sin Status Metric for instance i ∈ In .
ηam RoE of application a ∈ Am .
υam Data signal size for a ∈ Am .
τin CCS of instance i ∈ In .
Uam
x Expectation (value) of parameter x for application a ∈ Am;

x ∈ {ω, γ , λ} .
V in
y Status (value) of parameter y for instance i ∈ In; y ∈ {Ω, Γ , Λ} .

µx Fuzzy membership function for any Eam parameter x.
µ′

y Fuzzy membership function for any Sin parameter y.
Fr Fuzzy output set for RoE calculation.
F ′
c Fuzzy output set for CCS calculation.

φfam Singleton value for a Fuzzy output (RoE) fam ∈ Fr of a ∈ Am .
Φ

f ′in Singleton value for a Fuzzy output (CCS) f ′

in ∈ F ′
c of i ∈ In .

µr Membership function for any Fuzzy output in RoE calculation.
µ′

c Membership function for any Fuzzy output in CCS calculation.
zamin ∈ {0, 1} Equals 1 if a ∈ Am mapped to i ∈ In , 0 otherwise.
Qδ,ζ ,ρ QoS parameter for service delivery time, service cost, data signal loss

rate respectively.
Ar, Rr, Pt Fuzzy set for service access rate, resource requirement, processing

time respectively.
Rtt, Ra, Ps Fuzzy set for round-trip time, resource availability, processing speed

respectively.

Fig. 5. Membership function of expectation metric parameters.

While setting the fuzzy rules, comparatively rigid expectation
parameters (e.g. large resource requirements) are given higher
weight. As a consequence, exact value of RoE for the requests
becomesmore alignedwith the rigid expectation parameters com-
pared to the relaxed parameters (e.g. normal service access rate,
moderate processing time). Such characteristics of fuzzy rules
ensure that even having two relaxed expectation parameters, the
RoE of an application placement request can get increased due
to a single rigid expectation parameter. Since the Expectation
Metric parameters are independent and not closely coupled, the
logical or operator is used in associate fuzzy rules to compare the
Expectation Metric parameters and determine the fuzzy output.
Generally, in logical or operation, the membership degree of fuzzy
output is set according to themaximummembership degree of the
compared parameters. For application am, the membership degree

Fig. 6. Fuzzy rules for RoE calculation.

of fuzzy output, µr (fam ) is determined using Eq. (2):

µr (fam ) = max(µω(U
am
ω ), µγ (U

am
γ ), µλ(U

am
λ )). (2)

In fuzzy inference, based on the Expectation Metric parame-
ters, any j number of fuzzy rules can be triggered. In this case,
membership degrees of associate fuzzy output are required to be
combined together. Through defuzzification, the exact RoE of an
application placement request is calculated from such combined
membership degrees of the fuzzy output. A set of singleton values
assists in this calculation. For each fuzzy output, fam of application
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Fig. 7. Membership function of status metrics parameters.

am, there is a singleton value φfam that refers to the maximum
rating of the application for that fuzzy output. The singleton values
are determined in such away so that logical distinction of different
fuzzy output becomes clearly visible. For defuzzification, we have
used the discrete center of gravity equation as shown in Eq. (3).

ηam =

∑k=j
k=1 µr (f kam ) × φ

fam
k∑k=j

k=1 µr (f kam )
. (3)

ηam is the exact RoE for application am obtained by applying
Fuzzy logic on different parameters of Eam . Later, ηam is used by
Application Placement Unit to place the application in a suitable
Fog computing instance.

6.2. Calculation of Capacity Class Score (CCS)

After calculating RoE of different application placement re-
quests, FGN m queries accessible FCNs about available MCIs and
associated CCS values. For each MCI in in a FCN n, the CCS is calcu-
lated in Capacity Class Scoring unit from the corresponding Status
Metric, Sin ∈ {V in

Ω , V in
Γ , V in

Λ }. Like Expectation Metric parameters
of application placement request, Status Metric parameters are
heterogeneous in numeric range and unit. Therefore, using Eq. (4)
different parameters y of Sin have been normalized to [−1, 1].

V in
y = 2

(
V in
y − α′

y

β ′
y − α′

y

)
− 1. (4)

The exact numeric value V in
y of parameter y remains with in

the range of [α′
y, β

′
y]. The range is set according to the capacity of

Fog environment for that parameter. In Capacity Scoring Unit, to
calculate the CCS of instances based onmultiple status parameters,
another Fuzzy logic based approach is applied.

For parameter y, the membership degree of normalized V in
y

value to associate fuzzy sets is determined by the membership
function µ′

y. The fuzzy input sets for different parameters of Status
Metric are listed as:

• Round trip time: Rtt ∈ {Short, Typical, Lengthy}
• Resource availability: Ra ∈ {Poor, Standard, Rich}
• Processing speed: Ps ∈ {Least, Average, Intense}.

Based on observations, the membership degree, µ′
y(V

in
y ) for any

normalized value of parameter y on the respective fuzzy set is
shown in Fig. 7.

The fuzzy rules applied for determining the fuzzy output for
CCS calculation are represented in Fig. 8. Here, the associate fuzzy
output set is listed as; F ′

c ∈ {Higher,Medial, Lower}. For the
instancewith lengthy round trip delay (experienced from the FGN),
standard resource (number of processing cores) availability and

Fig. 8. Fuzzy rules for CCS calculation.

average per core processing speed, the rule to determine the fuzzy
output, f ′

in ∈ F ′
c is interpreted as:

If round-trip time (Ω) is lengthy and resource availability (Γ )
is standard and processing speed (Λ) is average then CCS (f ′

in )
is lower.

In fuzzy rules for calculating CCS, comparatively impediment
status parameters (e.g. lengthy round trip delay) are given higher
weight. As a consequence, exact CSS value of the instances high-
lights the limitations more, rather than the convenience (e.g. stan-
dard resource availability, average processing speed). Besides, in
hierarchical orchestration, location of FCNs influences different
parameters of Status Metric. Generally, MCIs of lower level FCNs
support shorter amount of round trip delay compared to the upper
level FCNs. Conversely, MCIs of upper level FCNs are well-stuffed
in processing capabilities than the lower FCNs. On the basis of loca-
tion, the Status Metric parameters can be coupled with each other.
Therefore, in fuzzy rules while comparing different Status Metric
parameters, logical and operator have been used. In logical and
operation, the membership degree of fuzzy output is set according
to the minimummembership degree of the compared parameters.
For computing instance in, themembership degree of fuzzy output,
µ′

c(f
′

in ) is determined using Eq. (5):

µ′

c(f
′

in ) = min(µ′

Ω (V in
Ω ), µ′

Γ (V in
Γ ), µ′

Λ(V
in
Λ )). (5)

In order to calculate the exact CCS τin of the instance in, the
membership degrees of the output, generated by triggering any j
number of fuzzy rules, are combined together using the discrete
center of gravity equation as shown in Eq. (6).

τin =

∑k=j
k=1 µ′

c(f
′k
in ) × Φ

f ′in
k∑k=j

k=1 µ′
c(f

′k
in )

. (6)

Here, the singleton value Φ
f ′in refers to the maximum score of

an instance for the fuzzy output f ′

in . The exact CCS of the instance
τin , obtained through the aforementioned fuzzy approach, is for-
warded to the querying FGN to conduct the following application
placement steps.

6.3. Mapping of applications to Fog instances

The product of RoE of an application and CCS of a computing
instance is called Rating Gain for placing the application on that
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instance. The mapping of applications to computational instance
is done in such a way so that total Rating Gain of the applications
gets maximized. The maximum Rating Gain promotes the QoE-
aware placement of the applications. The high RoE of the applica-
tions denotes the high combined intensity of associate Expectation
Metric parameters. Similarly, the higher CCS refers to the higher
capability of the instances tomeet different user expectations even
within the limitations. Both RoE and CCS are calculated under
identical environment variables that enhance resemblance among
the values. Since RoE of an application is the representative pa-
rameter for all of its expectation parameters, maximized Rating
Gain of that application ensures the best possible convergence of
the expectation parameters to corresponding status parameters of
the instances. As a consequence, the possibility to manage Fog fa-
cilities (service accessibility, computational resources, application
runtime), without degrading the user expectations, increases and
the QoE regarding the application gets optimized.

In a FGNm, themapping of applications to computing instances
is conducted in the Application placement unit through the follow-
ing multi-constraint objective function:

max
∑

∀am∈Am

∑
∀n∈N

∑
∀in∈In

zamin (ηam × τin ) (7)

subject to,∑
am∈Am

zamin = 1; ∀n ∈ N, ∀in ∈ In (8)

δam ≤ Qδ (9)

ζam ≤ Qζ (10)

ρam ≤ Qρ . (11)

The objective function in Eq. (7) maximizes the Rating Gain for all
application placement requests received by the FGN that subse-
quently enhances the overall user QoE. The constraint in Eq. (8)
ensures one to one mapping between applications and instances.
Besides, constraints in Eqs. (9), (10) and (11) maintain the QoS of
the application in terms of service delivery time, service cost and
packet loss rate respectively. If a FGN fails to arrange constraint-
satisfied placement of the applications, it re-queries the nodes for
further instances.

The formulated objective function is a decentralized optimiza-
tion problem.When application placement requests are submitted
to a FGN, the optimization problem is solved and placement of
the applications is conducted. By using any integer programming
solver e.g. SCIP [2], the FGN can solve this multi-constraint opti-
mization problem. To solve the optimization problem, FGN consid-
ers a local viewof the Fog system.Due to location, the probability of
receiving large number of application placement requests by a FGN
on a particular time is low. Therefore, the optimization problem is
less prone to be an NP-hard problem.

6.4. Rationality of the applied techniques

In this paper, we have used Fuzzy logic to determine the Rating
of Expectation of application placement requests based on multi-
ple user expectation parameters and Capacity Class Score of Fog
instances according to their different status parameters. In a real-
time system, where the dominance of multiple parameters is sig-
nificant, Fuzzy logic based reasoning is considered among the best
possible solutions. Fuzzy logic and its mathematical implication
are simple and easy to understand. It has a great potential to man-
age uncertain and linguistic information and can assist efficiently
in converting qualitative data to quantitative data [28]. By tuning
associated Fuzzy sets and rules, Fuzzy logic based solutions can
be scalable according to context of the system. It requires less

Fig. 9. Illustrative Fog environment.

Table 4
Scope of expectation parameters.

Parameter Value

[αω, βω] [2, 10] per sec
[αγ , βγ ] [1, 8] CPU cores
[αλ, βλ] [30, 120] ms

amount of data to train the system for future operations. Besides,
in a Fuzzy logic-enabled system, stable results can be determined
very quickly [4].

After determining RoE and CCS of application placement re-
quest and Fog instances respectively, we have applied a multi-
constraint single objective optimization technique on them to
maximize the QoE Gain and deploy the applications according to
the solution. Single-objective multi-constraint optimization prob-
lem often acts linearly and can be solved using any light-weight
optimization solver within a shorter period of time [2].

However, rather than using Fuzzy logic and single objective
optimization, in the proposed policy, multi-objective optimization
can be applied. To conduct multi-objective optimization, often
huge computational effort is required [10]. In most of the cases,
multi-objective optimization problem is designed to meet a par-
ticular scenario which makes them less adaptive and scalable.
Besides, solving a multi-objective optimization problem is time
consuming and complex. Therefore, in real-time environment
like Fog, where computation is done in resource constrained
nodes, solving a multi-objective optimization problem often gets
obstructed and affects the stringent service requirements [17].
Considering these challenges of multi-objective optimization, we
rather preferred to apply Fuzzy logic and single objective optimiza-
tion in our proposed policy.

7. Illustrative example

In order to numerically illustrate the basic steps of proposed
QoE-aware application placement policy,wehave considered a Fog
environment as depicted in Fig. 9.

In this Fog environment, at any time t , the FGN m receives five
application placement requests with υam = 1000–2000 instruc-
tions (∀am ∈ Am). The scope in the Fog for different expectation
parameters of application placement requests is represented in
Table 4 .

The exact expectation parameters of the requests along with
normalized values, degree of membership to different fuzzy sets
and RoE are shown in Table 5. Here, the singleton values are set as;
φHigh

= 10, φMedium
= 5, φLow

= 2 and the degree of membership
to a particular fuzzy set is represented in the similar order of the
set elements as listed in Section 6.1.

The FGN m can query each of the FCNs of the system about
MCIs. There are seven instances in the system (two at lower level,
two at mid level and three at upper level). Different Status Metric
parameters of the instances remain within the range shown in
Table 6.
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Table 5
Parameters of application placement requests.

Id ω γ λ η

app#1 U1
ω = 2 U1

γ = 2 U1
λ = 120 5.69

U1
ω = −1.0 U1

γ = −0.71 U1
λ = 1.0

µω(U1
ω) → Ar : µγ (U1

γ ) → Rr : µλ(U1
λ ) → Pt :

{1.0, 0.0, 0.0} {0.89, 0.11, 0.0} {0.0, 0.0, 1.0}

app#2 U2
ω = 5 U2

γ = 5 U2
λ = 70 6.69

U2
ω = 0.0 U2

γ = 0.14 U2
λ = −0.11

µω(U2
ω) → Ar : µγ (U2

γ ) → Rr : µλ(U2
λ ) → Pt :

{0.0, 1.0, 0.0} {0.0, 0.83, 0.18} {0.14, 0.86, 0.0}

app#3 U3
ω = 3 U3

γ = 3 U3
λ = 90 6.21

U3
ω = −0.75 U3

γ = −0.43 U3
λ = 0.33

µω(U3
ω) → Ar : µγ (U3

γ ) → Rr : µλ(U3
λ ) → Pt :

{0.94, 0.06, 0.0} {0.54, 0.46, 0.0} {0.0, 0.59, 0.41}

app#4 U4
ω = 7 U4

γ = 8 U4
λ = 60 7.28

U4
ω = 0.25 U4

γ = 1.0 U4
λ = −0.33

µω(U4
ω) → Ar : µγ (U4

γ ) → Rr : µλ(U4
λ ) → Pt :

{0.0, 0.69, 0.31} {0.0, 0.0, 1.0} {0.41, 0.59, 0.0}

app#5 U5
ω = 8 U5

γ = 3 U5
λ = 50 7.03

U5
ω = 0.5 U5

γ = −0.43 U5
λ = −0.56

µω(U5
ω) → Ar : µγ (U5

γ ) → Rr : µλ(U5
λ ) → Pt :

{0.0, 0.38, 0.63} {0.54, 0.46, 0.0} {0.7, 0.3, 0.0}

Table 6
Scope of status parameters.

Parameter Value

[αΩ , βΩ ] [100, 600] ms
[αΓ , βΓ ] [1, 10] CPU cores
[αΛ, βΛ] [10, 70] TIPS

On time t , the exact status parameters of the instances along
with normalized values, degree of membership to different fuzzy
sets and CCS are shown in Table 7. Here, the singleton values are
set as; ΦHigher

= 10, ΦMedial
= 5, ΦLower

= 2 and the degree of
membership to a particular fuzzy set is represented in the similar
order of the set elements as listed in Section 6.2.

By applying Eq. (7) on RoE of the requests and CCS of the
instances, the FGN m calculates the maximized Rating Gain of the
applications. It also provides the optimal mapping of applications
and instances. In this illustrative example we use SCIP solver to
solve the optimization problem. The solution is represented in
Table 8. Here the constraints (Qδ = 250–750 ms, Qζ = 0.1–0.15 $
per min, Qρ = 3%–5% data signals) are assumed to be met. Based
on the optimization solution, after exploring the expectation and
the status parameters (from Tables 5, 7) of mapped applications
and instances, it is found that, for almost every parameter, user
expectations have been satisfied.

In the illustrative example, numeric values of Fog instances are
extended from the literature [5,13]. The values explicitly represent
the computational limitations of Fog instances compared to the
Cloud instances. The illustrative example also exhibits how our
proposed policy/model can deal with the lower computational ca-
pabilities of different Fog instances and distinguish them through
CCS while meeting the well-known features of the Fog environ-
ment. In addition, the configuration of FGNm used in this example
is Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33 GHz 2 GB DDR2 RAM.
On this configuration, FGN m takes 20 ms to calculate RoE of the
application placement requests and 8ms to solve the optimization
problem.

8. Performance evaluation

The proposed QoE-aware application placement policy is com-
pared with different QoS and QoE-aware policies. The QoS-aware

Table 7
Parameters of computing instances.

Id Ω Γ Λ τ

ins#1 V 1
Ω = 100 V 1

Γ = 3 V 1
Λ = 20 3.41

V 1
Ω = −1.0 V 1

Γ = −0.56 V 1
Λ = −0.67

µ′

Ω (V 1
Ω ) → Rtt : µ′

Γ (V 1
Γ ) → Ra : µ′

Λ(V 1
Λ) → Ps :

{1.0, 0.0, 0.0} {0.70, 0.30, 0.0} {0.84, 0.16, 0.0}

ins#2 V 2
Ω = 100 V 2

Γ = 2 V 2
Λ = 20 2.62

V 2
Ω = −1.0 V 2

Γ = −0.78 V 2
Λ = −0.67

µ′

Ω (V 2
Ω ) → Rtt : µ′

Γ (V 2
Γ ) → Ra : µ′

Λ(V 2
Λ) → Ps :

{1.0, 0.0, 0.0} {0.97, 0.03, 0.0} {0.84, 0.16, 0.0}

ins#3 V 3
Ω = 200 V 3

Γ = 4 V 3
Λ = 40 4.50

V 3
Ω = −0.6 V 3

Γ = −0.33 V 3
Λ = 0.0

µ′

Ω (V 3
Ω ) → Rtt : µ′

Γ (V 3
Γ ) → Ra : µ′

Λ(V 3
Λ) → Ps :

{0.75, 0.25, 0.0} {0.41, 0.59, 0.0} {0.0, 1.0, 0.0}

ins#4 V 4
Ω = 300 V 4

Γ = 5 V 4
Λ = 30 3.79

V 4
Ω = −0.20 V 4

Γ = −0.11 V 4
Λ = −0.33

µ′

Ω (V 4
Ω ) → Rtt : µ′

Γ (V 4
Γ ) → Ra : µ′

Λ(V 4
Λ) → Ps :

{0.25, 0.75, 0.0} {0.14, 0.86, 0.0} {0.41, 0.59, 0.0}

ins#5 V 5
Ω = 400 V 5

Γ = 6 V 5
Λ = 50 4.64

V 5
Ω = 0.20 V 5

Γ = 0.11 V 5
Λ = 0.33

µ′

Ω (V 5
Ω ) → Rtt : µ′

Γ (V 5
Γ ) → Ra : µ′

Λ(V 5
Λ) → Ps :

{0.0, 0.75, 0.25} {0.0, 0.86, 0.14} {0.0, 0.59, 0.41}

ins#6 V 6
Ω = 500 V 6

Γ = 8 V 6
Λ = 70 5.00

V 6
Ω = 0.60 V 6

Γ = 0.56 V 6
Λ = 1.0

µ′

Ω (V 6
Ω ) → Rtt : µ′

Γ (V 6
Γ ) → Ra : µ′

Λ(V 6
Λ) → Ps :

{0.0, 0.25, 0.75} {0.0, 0.30, 0.70} {0.0, 0.0, 1.0}

ins#7 V 7
Ω = 500 V 7

Γ = 6 V 7
Λ = 60 4.74

V 7
Ω = 0.60 V 7

Γ = 0.11 V 7
Λ = 0.67

µ′

Ω (V 7
Ω ) → Rtt : µ′

Γ (V 7
Γ ) → Ra : µ′

Λ(V 7
Λ) → Ps :

{0.0, 0.25, 0.75} {0.0, 0.86, 0.14} {0.0, 0.16, 0.84}

Table 8
Solution of the optimization problem.

Application Instance Rating gain

app#1 ins#4 21.57
app#2 ins#5 31.04
app#3 ins#3 27.95
app#4 ins#6 36.40
app#5 ins#7 33.32

application placement policy in [34] meets execution deadline of
the applications. Among the QoE-aware policies, Cloud-Fog [24]
optimizes service coverage, response time and network congestion
whereas MeFoRE [1] ensures efficient resource estimation based
on user’s feedback. However, while comparing the proposed policy
with the aforementioned policies; network congestion, amount of
allocated resources, reduced processing time and percentage of
QoS-satisfied data signals are considered as performance metrics.

8.1. Simulation environment

To evaluate the proposed policy, a Fog environment is simu-
lated using iFogSim [16]. iFogSim is an extension of CloudSim [8]
framework which has been widely used for simulating different
computing paradigms. In iFogSim, varying configuration and count
of FCNs, different number of applications have been placed. In
simulation, we consider synthetic workload as compatible real
workload for the proposed application placement policy is not
currently available. For each application, the workload includes
computation for different tasks such as data filtration, analysis and
event processing. Table 9 represents the details of workload and
system parameters.
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Table 9
Simulation parameters.

Parameter Value

Expectation metrics:
Access rate 2–10 per sec
Resource requirement 1–8 CPU cores
Processing time 30–120 ms
Status metrics:
Round trip time 100–600 ms
Resource availability 1–10 CPU cores
Processing speed 10–70 TIPS
Applications service delivery deadline 250–750 ms
Data signal loss rate of the network 3%–5%
Service cost 0.1–0.15 $ per min
Number of accessible FCN per FGN 4–10
Data signal size 1000–2000 instructions

Fig. 10. Network relaxation ratio vs. number of applications.

8.2. Experiment and discussion

The applicability of the proposed QoE-aware application place-
ment policy has been validated through simulation experiments on
network congestion, resource allocation, processing time, applica-
tion placement time and QoS satisfaction rate. To demonstrate the
potentiality of the proposedQoE-aware policy in handling network
congestion, we have calculated average Network Relaxation Ratio
(NRR) for the applications placed by any FGN m at time t using
Eq. (12):

avg(NRRm) =
1

|At
m|

∑
∀am∈Am

2

Uam
ω × V in

Ω

(12)

subject to, zamin = 1 and V in
Ω in second.

Any value ofNRR > 1 for an application refers to less possibility
of network congestion. For example, an application with Uam

ω = 2
per second, in every service access receives a data signal to process.
Intermediate delay between receiving two data signals for that
application will be 0.5 s. Let us assume the application has been
placed in an instance where V in

Ω = 0.3 s. In that case, roughly even
after propagating a data signal to the application, the network will
remain free up to 0.35 s and the NRR for that application will be
3.33. As a consequence, there will be lesser possibility of network
congestion. The proposed QoE-aware policy actively participates
in relaxing network (Fig. 10). As the number of applications in-
crease, the data transmission load over the network increases and
avg(NRR) declines, which is natural. However, compared to other
approaches the declining rate of avg(NRR) in the QoE-aware policy
is lower. Among other approaches Cloud-Fog performs well as it
discards data signals of increasing applications tomitigate network
congestion. MeFoRE prefers application placement to upper level
FCNs to meet increasing user demand based on the feedback that

Fig. 11. Resource gain vs. number of applications.

Fig. 12. Processing time reduction ratio vs. number of applications.

Fig. 13. Application placement time vs. number of applications.

eventually increases data transmission time and chance of network
congestion. Similarly, in the QoS-aware placement, additional time
is required to maintain intra–inter communication within the
colonies that adversely affect network flexibility.

Resource Gain (RG) of applications refers to the QoE of users
in respect of resource consumption. Here, the average RG for the
applications placed by FGN m at time t has been calculated using
Eq. (13):

avg(RGm) =
1

|At
m|

∑
∀am∈Am

V in
Γ

Uam
γ

(13)

subject to, zamin = 1.
If an application with Uam

γ = 2 processing cores, is placed
to a computing instance having V in

Γ = 3 cores, the RG for the
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Fig. 14. Percentage of QoS satisfied data signals.

application will be 1.5. Any value of RG > 1 refers that by
paying almost same cost, the user is consuming additional re-
sources. The proposed QoE-aware policy ensures higher avg(RG)
for the application, although with the increasing number of
applications, avg(RG) declines (Fig. 11). Re-provisioning of the
resources for additional applications contribute in this case. How-
ever, avg(RG) in other policies are competitively low. Since Cloud-
Fog changes operations on data according to the load, it can run
the applications evenwith less resources compared to expectation.
MeFoRE resists resource under-utilization that ultimately reduces
avg(RG). In QoS-aware policy, additional resources are only allo-
cated when users ask for them, that affects the fixed-cost RG of the
applications.

In the experiments, reduction in processing time of the applica-
tions has been represented through Processing Time Reduction Ratio

(PTRR). Average PTRR of the applications placed by FGN m at time
t has been calculated using Eq. (14):

avg(PTRRm) =
1

|At
m|

∑
∀am∈Am

Uam
λ × V in

Λ

υam
(14)

subject to, zamin = 1 and Uam
λ in second.

If an application, with Uam
λ = 0.12 s and υam = 1000 in-

structions, is placed to a computing instance having V in
Λ = 30

Thousand Instructions Per Second (TIPS), the PTRR for the appli-
cation will be 3.6. Any value of PTRR > 1 ensures faster data
process than the expectation. The QoE-aware policy increases
avg(PTRR) for the applications although it declines with the num-
ber of applications (Fig. 12). Compared to other policies, avg(PTRR)
in the proposed policy is much higher. Cloud-Fog maintains better
avg(PTRR) by discarding data signals although incentive based
resource sharing during high computational load fails to retain
the higher avg(PTRR). MeFoRE increases avg(PTRR) by iteratively
placing applications in upper level FCN. It happens only when
user feedback in respect of application processing time gets poor.
The QoS-aware policy concentratesmore on optimizing processing
time in priority basis rather thanmaintaining higher avg(PTRR) for
all the applications.

Fig. 13 represents the average application placement time in
different approaches. In the proposed QoE-aware policy place-
ment decision is taken at the FGN. Since necessary calculations
in other entities can be done in parallel, the required time to
place applications gets lower. With the increasing number of ap-
plications, placement time increases. Time to find the solution of
the optimization problem for increasing number of applications
contributes in this case. However, in Cloud-Fog remote Cloud in-
terferes in application placement, in MeFoRE iterative approach is
used for placing application and in QoS-aware policy a controller

Fig. 15. QoE gain of applications from different service aspects.
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node places the application over the Fog cells. All these facts
adversely affect the application placement time.

The percentage of QoS-satisfied data signals in the proposed
QoE-aware policy is higher as it considersmultiple QoS parameters
(cost, deadline, packet loss rate) while placing the applications
(Fig. 14). In QoS-aware policy only deadline has been considered as
the QoS metric. In that policy, for many data signals the deadline
satisfied QoS cannot be ensured when the overhead in controller
node increases significantly. To maintain congestion free network
and tolerable response delay, Cloud-Fog discards large number of
data packets that eventually degrade QoS. SinceMeFoRE prefers to
place application in upper level FCNs, it often fails to maintain cost
and deadline satisfied QoS requirement of the data signals.

In the QoE-aware policy three different aspects of QoE (service
accessibility, resource affordability and service processing time)
have been maintained simultaneously. Since, intensity of expec-
tations for different applications is diversified, it is not possible to
ensure maximized QoE gain (NRR, RG, PTRR) for every application.
Fig. 15 represents that among the placed applications on different
experiments, how many applications achieved the QoE gain in
every aspect. According to the results almost 92% applications get
higher PTRR. In respect of RG and NRR, this percentage belongs to
88% and 80% respectively.

9. Conclusions and future work

As a computing paradigm, Fog has a significant potential to
support IoT applications. To exploit benefits of Fog, different ap-
plication placement policies are required to be investigated. In this
work, we have discussed about QoE-aware application placement
in Fog that considers both expectations of user regarding the ap-
plications and status of the Fog computing instances while placing
the applications. We have applied two separate fuzzy logic models
to simplify the mapping of applications to compatible instances
by calculating application’s Rating of Expectations and Capacity
Class Score of the instances. The developed linear optimization
problem ensures the best convergence between user expectations
and scope within the Fog environment that eventually maximizes
the QoE. The simulation results demonstrate that our proposed
policy performs well in attaining the objective compared to the
other policies.

In future, we aim to evaluate performance of the proposed
policy in real Fog environment. In this case, Raspberry Pi/personal
computer/Cisco IOx equipment can be used as Fog Computa-
tional Nodes and hand-held smartphones can be employed as
Fog Gateway Nodes. Due to recent technological advancements,
these devices are now capable of running Fuzzy inference engines,
lightweight optimization solvers, RESTful services and virtualizing
resources through Docker (Containers) or VMWare (Virtual Ma-
chines). With the help of these features, we can expect to translate
the proposed policy in real-environment. Besides, we intent to ex-
plore different application models and their cost-based placement
in Fog.
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