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Abstract—Apache Cassandra has emerged as one of the most
widely adopted NoSQL databases. However, there is still a limited
understanding on how to optimally operate Cassandra in the
cloud using autoscaling methods, by which resources can be
scaled up or down to reduce operational costs and meet service-
level objectives (SLOs).

To address this limitation, we present PAX, a partition-aware
elastic resource management system for Apache Cassandra. PAX
uses low-overhead query sampling and knowledge of the data-
partitioning across the nodes to automatically adapt capacity in
Cassandra clusters. Differently from existing autoscaling methods
for Cassandra, which incur large acquisition times for new
nodes, PAX exploits Cassandra’s hinted handoff mechanism and
a shared hints storage to minimize the time needed to acquire a
node into the cluster.

We propose a reactive and a proactive implementation of PAX
and compare their performance against different workloads with
varying intensities and item popularity distributions, finding that
the proactive version significantly reduces SLO violations.

I. INTRODUCTION

NoSQL databases offer the ability to store large quantities
of information and retrieve them with lower latency than in
traditional databases [1]. Apache Cassandra [2] is a widely
adopted NoSQL database that features a decentralized architec-
ture providing fault-tolerance, tunable consistency, selectable
replication factors, and throughput scalability. In particular,
the architecture of Cassandra lacks a single point of failure,
making it well-suited for operation in unreliable environments
such as the cloud. In spite of this, only recently researchers
have started to systematically investigate autoscaling methods
for Cassandra [3], [4], [5], [6].

Autoscaling methods have been investigated for several years
in cloud-native web applications [7], [8]. Such methods help
both cloud service providers and users to reduce operational
costs and cope with workload variations [9]. Databases are
also increasingly adapted to support autoscaling [10], [11], but
they can face long acquisition times for the new nodes due to
the wait time of data synchronization. Indeed, the time needed
to add an entirely new node can take days if the dataset is
very large, while at the same time affecting the performance
of the existing nodes.

To illustrate the problem, we show in Figure 1 a measurement
of the time required for Cassandra to add a new node to a

cluster. In this example, the cluster runs on the Microsoft
Azure cloud and consists of four virtual machines (VMs).
Throughout the paper, all experiments are run using the YCSB
benchmark [12]. Even though the cluster is small and the data
stored in the nodes is not too large, around 15GB per VM, the
system spends almost 30 minutes to create and transfer the
data to the newly instantiated VM. Only at the conclusion of
this process the new node is finally acquired into the Cassandra
cluster and becomes operational. On top of this, the system
requires additional time to stabilize its performance with the
new node. If multiple nodes are simultaneously added to the
system, the situation further degrades, with the transfer time
period becoming even longer. Clearly, this problem hinders the
ability for an autoscaling system to quickly adapt Cassandra
to the incoming workload.

In this paper, we define a novel autoscaling method, called
PAX, which relies on Cassandra’s hinted handoff mechanism
to efficiently add nodes to the cluster [13] and we introduce
proactive and reactive policies that control Cassandra using
workload and data partitioning information. The hinted handoff
mechanism exploited for autoscaling is the mechanism that
Cassandra uses for synchronizing pending writes to nodes that
return online after some downtime. We argue that this mecha-
nism can also be effectively used also to enable autoscaling for
Cassandra, provided that instead of creating and booting up
new VMs one keeps idle a large enough set of dormant (i.e.,
powered-down) VMs. Such VMs can be quickly synchronized
to the cluster using the hinted handoff mechanism instead
deploy an entirely new VMs.

After implementing autoscaling based on this mechanism, we
show that PAX can effectively autoscale Cassandra as the rate
of incoming queries varies over time. We introduce in particular
a reactive and a proactive implementation of PAX, which scale
resources based on CPU utilization, workload demands and
arrival rate forecasting. To further optimize autoscaling, we
show that PAX can leverage query sampling to decide the best
dormant VMs to activate, based on the data partitions they
contain. Our experiments indicate that partition-aware node
acquisition can provide substantial improvements in throughput
up to 69%.

We validate our approach through an extensive experi-
mentation using time-varying arrival rates and different item978-1-5090-0223-8/16/$31.00 © 2016 IEEE



Fig. 1: Data synchronization period when a new node joins
the cluster of 4 nodes with 15GB of data each with RF of 2.

popularity distributions. Among the main findings, we show
that, compared to a system without autoscaling, PAX can
delivery large cost savings without compromising the user
QoS. In addition, thanks to the ARIMA predictive algorithm,
the system seldom violates SLOs.

The rest of the paper is organized as follows. Section II
reviews related work on elastic resource management for
Cassandra. Section III introduces the architecture of Cassandra,
including data partitioning and the hinted handoff mechanism.
Section IV presents our elastic architecture and the PAX
controller. The experimental validation is given in Section
VI. Section VII concludes the paper and propose future work
for dealing with burstiness.

II. RELATED WORK

Over the last few years, several NoSQL databases have
been adapted to support elasticity resource management [11],
[14], [15], [16], [17], [18], [19]. For instance, [17] presents a
controller for elastic resource provisioning of HBase clusters
using Markov Decision Processes (MDPs). Similarly, [18]
defines a framework to automatically reconfigure HBase nodes
based on their access pattern. The work in [19] shows instead
a controller based on feed-forward and feedback signals for
the Voldemort database.

Prior work on Cassandra autoscaling includes in partic-
ular [3], [4] and [5]. Both [3] and [4] present a reactive
autoscaling mechanism. [3] develops a Cassandra controller
that gathers node and workload performance data to calculate
an exponentially-weighted moving average (EWMA) of the
response time currently experienced by the users. When this
moving average exceeds a pre-defined threshold, the controller
adds a new node to the system. The work in [4] instead
implements a controller driven using an MDP to model the
cluster state and take optimal autoscaling decisions. Compared
to PAX, these works do not support proactive autoscaling and
suffer high synchronization latency due to the effect shown in
Figure 1.

Recently, [5] presents a proactive controller for Cassandra
that uses regression trees to predict latency. Upon exceeding a
latency threshold, resources are scaled vertically to increase
capacity and avoid SLO violations. Compared to this approach,
PAX reasons on CPU utilization measurements, thus it is
designed to optimize the infrastructure usage and cost, as
opposed to user-perceived latency. Moreover, PAX adopts

Fig. 2: Cassandra read request representation. The system is
set with a RF of 3 and the query uses a CL of TWO.

horizontal scaling and ARIMA time series forecasting of arrival
rates. Recent work has shown that horizontal scaling tends
to be more appropriate than vertical scaling for Cassandra
databases [16].

The cost of adding or removing nodes to Cassandra and other
databases has been measured in [11], [14], [15], [16], [20],
[21]. For all the databases that do not use a shared filesystem,
measurements indicate that the time required to add a new node
is sensitive to the quantity of data stored in the entire database
and the transmission rate between nodes. It is observed in [16]
that the usage of higher transmission rate affects the response
time of the read operations.

III. A PRIMER ON CASSANDRA

Cassandra features a decentralized architecture composed
of multiple nodes, arranged in a ring topology as shown in
Figure 2. Each node is responsible to maintain, on its local
storage, part of the database. Each node can then accept and
reply directly to queries issued by the users. For a given query,
the node that receives the request is termed request coordinator
and is responsible to orchestrate the local or remote operations
required to respond to the query.

Differently from other NoSQL databases, Cassandra uses the
notions of Replication Factor (RF) and Consistency Level (CL).
The Replication Factor (RF) controls the number of identical
replicas of each datum across the cluster. The RF is defined
at keyspace level and ensures high-availability in the presence
of failures. The Consistency Level (CL) allows to control
the consistency, strong or eventual, at the granularity of each
individual query. CL may be set to ONE, TWO, QUORUM,
or ALL. For reads, CL controls the number of copies of the
datum that need to be retrieved before replying; for writes, CL
controls the number of nodes that need to acknowledge the
successful write. Note that reads in Cassandra are synchronous,
whereas writes happen asynchronously with respect to the issue
time of the write operation.

A. Data partitioning

Cassandra partitions the database into smaller, partially
overlapping, datasets that are stored locally to each node. Thus,
contrary to other NoSQL databases such as HBase, Cassandra
does not require a shared filesystem (e.g., HDFS). A hash
function is used to distribute the record primary keys across
the nodes. This is done by partitioning the hash key range



Fig. 3: Data synchronization through the hinted handoff.

into sub-ranges called partitions (also called TokenRanges).
In clusters without replication (RF = 1), each node i can
be configured to locally store Ti unique partitions. The total
number of unique partitions is thus P =

∑N
i=1 Ti, where N

is the total number of nodes. For systems based on horizontal
scaling, Ti is set to the same value on all the nodes, since the
VMs are usually identical.

With replication (RF > 1), each node stores also some
replicas. So, the total number of partitions available on a node
i is Pi = Ti ·RF , where RF is the replication factor. For load
balancing, the partitions are distributed randomly across the
nodes with the constraint that a given partition can be stored
only once on the same server.

B. Hinted handoff mechanism

When a node is not responding for a long period of time,
Cassandra assumes that the node has failed. The hinted handoff
mechanism will be tasked, when the node returns online, to
ensure that data remains consistent. The mechanism works as
follows. When the request coordinator believes that a node has
failed, pending writes are stored locally within a hinted handoff
table, one for each failed node. Each table record is called a
hint. When the failed node becomes active again, before starting
to serve client requests, it receives from all the other active
nodes the tables and applies the changes on its local copy of
the data. The transfer rate of the tables can tuned by the system
administrator, and the overall synchronization time depends
on the amount of writes received while the node was offline
as shown is Figure 3. As active nodes may need to transfer
large tables, this operation can reduce system performance
until termination.

IV. PAX: PARTITION-AWARE AUTOSCALING

In this section, we present PAX, the proposed partition-aware
autoscaling method. Figure 4 illustrates the PAX architectural
setup, which relies on three components: i) the Cassandra
cluster, consisting of a fixed set of nodes (VMs), which can
be either in active or dormant (i.e., powered-down) state; ii)
the controller, which analyzes the workload measurements and
actuates the autoscaling decisions; iii) a hinted handoff storage
area, which archives the hints to be committed to the dormant
nodes upon their return to the active state.

Fig. 4: PAX architecture

1) Controller: The core architectural element of PAX is
the elasticity controller. The main aim of the controller is
to ensure that the average node utilization U remains within
a pre-defined CPU range [U−, U+] at all times. Since PAX
relies on horizontal scaling, it can be assumed that VMs have
homogeneous sizes, and thus averaging utilization across nodes
is a well-defined metric. It is possible to use other target metrics
with the PAX controller, such as the maximum utilization
across the nodes, but due to space limitations, we focus only
on discussing the implementation of PAX for the average
node utilization metric U . However, we have experimentally
analyzed also the maximum utilization metric and observed
that it leads to make the autoscaling more aggressive than the
average node utilization. This is due to the skewed distribution
of partitions across the nodes. In practice, we found that U
is a sufficient metric to implement effective autoscaling, as
shown later in the experimental results.

PAX can operate either as a reactive controller or as a
proactive one. Let a cluster configuration be a particular
assignment of the active and dormant states to the nodes.
Also, a configuration is said to be valid if it guarantees
that all data partitions have at least CLmax replicas stored
in the active nodes, where CLmax is maximum consistency
level allowed for a query. In the reactive mode, when the
system performance is out of target CPU range, PAX interacts
with the cloud provider API to adjust the configuration by
starting and stopping VMs until U returns within the range.
The only exceptions is when the cluster cannot scale up or
down any longer, either due to shortage of dormant nodes or
because it has reached a configuration that cannot use less
nodes without becoming invalid. In the proactive mode, PAX
couples this control mechanism with a workload forecasting
method based on ARIMA processes. To better illustrate the
operation of the controller, in the next subsection we review
the workload analysis and forecasting features that are supplied
to the controller by the architecture.

2) Workload analyzer (WA): The workload analyzer (WA) is
responsible for monitoring the system, analyzing the resource
consumption data and the demand estimation. When PAX is
configured as a proactive controller, WA is also responsible of
workload forecasting.

WA monitors the type of requests issued to the cluster



Fig. 5: Mean service demand change with the number of active
nodes.

Fig. 6: Overhead of the tracing tool.

(read or write operations) and the requested primary keys. The
main goal is to identify the partitions that are more frequently
requested (hot partitions). This information is used by the
PAX autoscaling algorithm to select the best dormant node to
activate or, during scale down, to choose the active node to
power off. While PAX does not require initial training about the
hot data distribution across the nodes, it can converge faster to
a good configuration if supplied with an initial estimate of the
hot partitions, based on historical data. However, the controller
works correctly also without this information.

At runtime, the WA can obtain the list of hot partitions
either using the nodetool or the tracing utilities shipped with
Cassandra. The command nodetool toppartitions samples the
activity of a Cassandra cluster for a specified period of time,
returning the hot partitions. However, the command can degrade
the database performance and, in one of the latest Cassandra
versions we used (3.0.9), the tool frequently crashed. For these
two reasons, we have used in our implementation the tracing
tool.

The tracing tool is a troubleshooting utility to profile the
internal operations that are executed by Cassandra to complete
a query. In order to prevent performance degradation, the tool
allows to randomly sample queries with a given probability.
Figure 6 shows the tracing overhead we observe on the same
testbed used in Figure 1 for different sampling probability
values. If the sampling probability is chosen small enough,
the system performance is not significantly affected by the
background execution of the tracing tool. Thus, we choose
the maximum acceptable sampling probability for PAX to
be 0.001, for which the system throughput is degraded by
2.9% on average, however PAX can also work smoothly with
lower sampling probabilities, although it can take a longer
time to converge to an optimal configuration. At runtime,
every minute WA retrieves and clears from the database the

tracing information provided by the tracing tool. The list of
hot partitions is then calculated and made available to the
controller.

A. Workload forecasting

The WA component also retrieves performance metrics for
each node and predicts changes to the arrival rates of queries.
In our implementation, performance metrics such as CPU
utilization and the total number of operations executed are
retrieved from each active Cassandra node using JMX. However,
other monitoring systems may be used.

To predict the future workload, WA maintains an Autoregres-
sive Integrated Moving Average (ARIMA) model. ARIMA is a
method for non-stationary time series prediction that combines
an autoregressive and a moving average model. It is commonly
used in autoscaling mechanisms [22], [23], [24], [25], [26].
The ARIMA prediction is calculated taking in consideration
the mean time required to boot up a dormant VM. In our
experiments on Microsoft Azure based on VMs of class A2,
we have measured this time to be around 3 minutes on average.
ARIMA predictions are thus set at 3 minutes in the future.

WA predicts the global arrival rate λ to the cluster, measured
in transactions-per-second (tps). Since we are concerned with
the mean utilization across identical nodes, the value yields
the predicted CPU utilization as [27] Upred = λD, where D
is the mean service demand of a node and it is estimated by
linear regression of the current measurements of U and λ. We
have observed that the demand D changes almost linearly with
the number of active nodes, as shown in Figure 5. This is
mainly due to the increasing number of read requests issued
by the request coordinator [28]. In our tests, each additional
active node increases D on average by α = 10%. This
correction is included upon forecasting the utilization after
an autoscaling decision. In general, the value of α is sensitive
to the consistency level CL of the queries. In other setups it
may requires runtime estimation by fitting to a line the obtained
measurements of U and λ as the cluster configuration changes.

B. Autoscaling algorithms

Central to the PAX autoscaling algorithm are the decisions
on: i) which nodes to scale; ii) how many nodes to scale; iii)
when to trigger the autoscaling action. We discuss these aspects
separately in the next subsections.

1) Data-aware node acquisition: When the PAX controller
decides to take an action, so to increase or decrease the number
of active nodes, it is necessary to identify the set of nodes that
are going to be involved in the action. This is decided based on
the information generated by the WA component by prioritizing
the acquisition of nodes including the hot data partitions. PAX
associates to each Cassandra node a score (Vn). The algorithm
receives from the WA components the primary keys (K) and
the key access rate λk (request per second) for the queries
randomly sampled in the last control period. To identify the
location of the data accessed by the sampled query, the primary
key is hashed and the partition (p ∈ P ) that contains the data
is identified. For each of the node that stores that partition,



Fig. 7: Gains due to data-aware node acquisition.

the associate node value Vn is then incremented by λk. Thus,
across the entire cluster

Vn =
∑
p∈Pn

∑
k∈Kp

λk

where Pn is the set of local partitions on the node n and Kp

is the set of primary keys contained in the partition p. The
values Vn are used to decide the order in which dormant VMs
are activated during scale-up or scale-down.

To assess the effectiveness of this data-aware scale-up
approach, referred to as PAX (or data-aware best) selection ,
we show in Figure 7 a comparison against a method that selects
the node with the worst Vn score and with a method that picks
the node at random. The experiment is conducted on a 16 nodes
Cassandra cluster where the minimum number of active nodes
is 5 and the workload used a Zipfian popularity distribution for
the data. To understand the best achievable performance, we
use a static workload characterization. The remaining nodes
are activated one by one until all the nodes are active. The
performance gap between the two algorithms is quite evident
and reaches a maximum with 10 active nodes. We attribute the
fact that the gap is maximal around the middle to the fact that
the number of possible combinations for choosing the active
nodes is maximal at this point, subject to the configuration
validity constraint, increasing the probability of errors for the
random and worst schemes. Here the PAX selection reaches a
throughput of 19070 tps, while the worst selection has only
11220 tps. Progressively, the gap is reduced since the offline
nodes are fewer and thus the worst and random methods
eventually pick up also the nodes with the hot partitions. The
random algorithm shows as expected a performance in-between
the two other methods, but it still fairly worse than the best
one. Overall, this experiment confirms that data-awareness can
produce visible gains during Cassandra autoscaling. We present
in the next sections more advanced scenarios with dynamic
workload characterization and varying experimental setups.

2) Number of nodes to scale: PAX offers three strategies to
control the number of nodes involved in a scaling action. These
strategies are called: conservative, average and aggressive.

During scale up, with the conservative strategy the smallest
possible number of nodes that PAX predicts to bring back
U within the target range is used. The aggressive strategy
instead activates the largest possible number of nodes such
that the predicted U remains above U−. The average strategy
targets instead the center of the target range. Viceversa, during
scale down, the conservative policy switches off the maximum

(a) (b)

(c) (d)

Fig. 8: Comparison between the three aggressive strategies:
Conservative, Normal (average), Aggressive. The four images
represent: a) throughput; b) number of nodes used over time;
c) CPU utilization; d) Tu

number of node, while the aggressive ones powers down the
minimum number of nodes.

Figure 8 presents experimental results for the three strategies.
Figure 8(a) shows the throughput changes over time. The
conservative reacts slowly to these changing, performing many
more scaling up actions than the other policies, as seen in 8(b).
As visible from Figure 8(c), this means that the conservative
strategy remains close to the upper bound of the utilization band.
Conversely, the aggressive strategy performs only 2 actions.
However, it activates more nodes than the other strategies but
it never violates the CPU upper bound, as shown in Figure
8(d). For this reason, we have decided to adopt in PAX by
default the aggressive strategy.

3) Triggering a scaling action: The data-aware acquisition
and the strategies to select the number of nodes allow PAX to
implement a scaling decision. This involves CPU utilization
prediction for all the possible node configurations, retaining
only the valid ones within the target range. Among these,
PAX selects the one with the desired number of nodes, based
on the strategy selected, and with the best nodes, based on
data-awareness.

As mentioned, PAX implements the decision in either
reactive or proactive approach. In both cases, PAX requires
the CPU trend needs to violate for at least 3 consecutive
times, spaced by 1-minute intervals, the CPU bounds before
the controller takes any action. This avoid unnecessary or
inaccurate actions triggered by errors in the predictive model.
Moreover, we set a stabilization period of time of 5 minutes
in-between any two actions to reduces the likelihood of
instabilities due to fluctuations in the measurements.

Figure 9 compares the proactive and reactive implementa-
tions of PAX and also illustrates the impact of data-awareness
on these by considering the best data-aware node acquisition
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Fig. 9: Comparison between Proactive PAX (PB), Proactive
Data-Aware Worst (PW), Reactive PAX (RB), Reactive Data-
Aware Worst (RW). The figures represent: a) the average
throughput; b) TU ; c) AU ; d) the cloud costs for the experiment.

of PAX against the worst-case acquisition method. The ex-
periments run on a 8 nodes cluster with a 2 hours workload
peaking at a maximum of 80 clients.

The metrics we collect are similar to those presented in [29].
We define the under-provisioning time TU as the time that the
system spends above U+. We condition this to the system not
using the maximum number of nodes, since we regard this
situation as an error in static provisioning of the cluster size,
rather than a shortcoming of the autoscaler. We also consider
the under-provisioning area AU between the cluster utilization
and the upper bound of the target CPU range. This is computed
only in periods when the utilization is above U+.

The results show that the reactive controller introduces some
under provisioning time due to the lack of utilization prediction.
On the other hand, the proactive controller exhibits negligible
under-provisioning time and area. However the proactive system
anticipate some actions consuming more resources and with a
higher experimental cost. The throughput results convincingly
argue that the proactive data-aware controller performs much
better than all the other methods.

Based on this analysis, we consider the reactive controller
better suited in situations where the user wants to reduce the
operational cost, when the user is renting the VM. On the other
hand, the proactive controller limits considerably the under-
provisioning time of the system making it more appropriate in
that situations where the user wants to reduce CPU utilization,
as in the case of providers exposing Cassandra services from
within their own infrastructure. Given its increased ability to
control the system, in the next sections, we will focus on
evaluating the proactive version of PAX.

TABLE I: Performance comparison results.

Ti = 2 Ti = 256

N = 8 8683 ops/sec 9067 ops/sec
N = 16 10663 ops/sec 10684 ops/sec

TABLE II: Minimum configuration size M under different Ti
values. Experiments executed with a Cassandra cluster with
N = 8 nodes, assuming a CLmax of ONE

RF = 2 RF = 4
Ti Pi M Pi M

1 2 4 4 2
2 4 4 8 2
4 8 5 16 3
8 16 6 32 3
32 64 7 128 4

128 256 7 512 5
256 512 7 1024 5

V. TUNING THE PAX ARCHITECTURE

In this section, we provide additional details concerning the
PAX architecture, such as the number of nodes to be used in the
cluster and the setup of the hinted handoff storage mechanism.

A. Cluster size

Upon instantiating the cluster, the administrator should
decide several parameters such as the maximum number of
nodes N , the RF, the maximum CL allowed for a query
(CLmax), and the data partitioning setup. These decisions affect
the flexibility of the autoscaling mechanism, in particular the
minimum number of machines M that need to remain online
at all times to ensure that the configuration remains valid.

1) Choosing the total number of nodes: The maximum
number of nodes N should be such that the cluster can achieve
the maximum target throughput when all nodes are online.
Benchmarking may be used to estimate the N parameter
experimentally against a reference workload. N can also be
changed at runtime where needed, but as observed in Figure 1
the synchronization time will be much longer than with the
hinted-handoff mechanism, which requires only a few minutes.

2) Choosing the replication factor: Normally, RF is chosen
in production environments to be between 2 and 4. RF of 1 is
usually not advised since, in case of failure, the system may
not be able to recover the data. Probabilistic methods have
been devised to analyze the influence on RF on the system
availability and resilience to malicious users and identify an
appropriate assignment [30], [31], [32].

3) Choosing the data partitioning: The RF and the number
of partitions per node Ti are static properties of the cluster
decided upon its creation and the initial loading of the dataset.
They determine the set of valid configurations for a cluster and
thus the flexibility of the autoscaling mechanism. Although Ti
does not significantly affect performance, as shown in Table
I for a 8-node cluster, it influences the placement of data on
the nodes, and thus how many nodes can be turned off by the
autoscaling controller while remaining in a valid configuration.



TABLE III: Testbed configuration used for the controller
evaluation.

Node YCSB client Controller
Number of VMs 8 4 1

VM type General purpose
O.S. Ubuntu 16.04.2 LTS

vCPUs 2 2 4
Memory 3.5GB 3.5GB 7GB

O.S. Disk 30GB Read/Write Host Caching
Data Disk 80GB (No Caching) none none

TABLE IV: YCSB Workload characteristic used for the system
evaluation

Workload Read Write Distribution
A 50% 50% Zipfian
B 95% 5% Zipfian
C 100% 0% Zipfian
G 100% 0% Latest

The dependence is illustrated in Table II. Here, we repeat a set
of 14 experiments, changing the Ti and RF values. For example,
the first row considers the case where each node contains Ti = 1
unique partitions. In this case, out of the N = 8 nodes, 4 nodes
should always remain online if RF = 2, but this reduces to
2 if RF = 4. However, larger RF values increase costs, since
more storage capacity and nodes will be needed to replicate
the data.

B. Hinted handoff storage

To ensure that each node can retrieve all hinted handoff
tables anytime, we recommend to setup a shared storage area
among the cluster nodes. By default, these tables are stored
locally on each Cassandra node disk. However, it may happen
that some tables are stored on nodes that become dormant,
causing the risk that a newly activated node does not find all
hinted handoff tables required for its synchronization.

A shared storage area avoids the above issue. Within this
area, each node can store its tables in a specific folder, so
that they are always available for retrieval during scale up
operations. When a dormant node is powered up, it receives
the data from all the active nodes and after it applies also the
tables found in the shared area.

Although we did not experience similar cases, it is conceiv-
able that if some nodes remain dormant long enough, the size
of the hinted handoff tables may grow large enough to become
an issue for both performance and cost. Several strategies are
possible to mitigate this risk. One possible solution could be to
adopt a hybrid architecture, where most hints are stored locally
to the nodes and only the ones of the dormant nodes are in
the storage area. A simpler alternative consists in periodically
activating the dormant nodes to allow them to synchronize the
pending hints. Platform such as Azure allows to pay only for
the minutes effectively used to perform the synchronization.

(a) (b)

Fig. 10: Controller benchmark using PAX algorithm. The
experiments represent the controller behavior when a peak
behavior with maximum 80 clients using workload B using
the approach: a) proactive; b) reactive.

(a) (b)

Fig. 11: PAX controller response to a) a step of 80 clients
starts issuing YCSB workload A; b) two overlapped peaks and
workload C.

VI. PERFORMANCE EVALUATION

A. Methodology

The evaluation of our elastic system is conducted on
Microsoft Azure cloud with a Cassandra cluster composed of
8 nodes. The hardware characteristics of the virtual machines
are presented in Table III. On each Cassandra node is installed
Sun Java 1.8 and Cassandra 3.0.9. In the default Cassandra
configuration file, we modify the num tokens to 2 to allow
us to have a larger elastic range (from 2 to 8 VMs) with a
CL of ONE and the hints folder is redirected to the shared
disk managed by Azure. We also install and enable Jolokia to
expose the JMX metrics over HTTP. The Cassandra database
is loaded with a total of 180 GBs of data using a replication
factor of 4.



Fig. 12: PAX response to changes in the hot partitions.

TABLE V: Evaluation results for PAX.

max N TU AU $/min $ saving
Fig. 10a 7 30s (0.41%) 0.07% 0.0059 33.56%
Fig. 10b 5 505s (3.54%) 0.20% 0.0038 56.36%
Fig. 11a 8 21s (0.3%) 0.12% 0.0074 11.53%
Fig. 11b 5 184s (1.28%) 0.007% 0.0037 61.42%

Compared to the state-of-the-art in Cassandra autoscaling
presented in Section II, our setup has a larger database with a
higher replication factor. Using the default architecture, these
factors significantly impact on the data synchronization time
necessary to the system to change the configuration since the
amount of data that each node needs to transfer is bigger.

The workload generation machines run the YCSB benchmark
[12]. The YCSB workload characteristics are summarized in
Table IV. We deploy in total 4 workload generator virtual
machines and one VM for the PAX controller.

B. Step response

Figure 11a presents the performance of the PAX controller
under a step increase of 80 clients, using the workload A. The
top figure shows the increase in arrival rate (in tps) and clients.
The bottom figure shows the response of the PAX controller in
terms of number of nodes, actual utilization U of the testbed
and predicted utilization values by the ARIMA forecasting. In
these and the following graphs, the predicted throughput and
CPU are represented by the dot marker. In-between any two
markers, no prediction is performed since the controller awaits
that the system stabilizes to retrain the ARIMA process and
resume the forecasting.

In the experiment, the system does not have any information
about the future, the controller is, as expected, not able to
anticipate the sudden step increase but, immediately after
it reacts correctly to it by starting new VMs that avoid the
utilization to step out of the target range, except for a negligible
period as reported in Table V.

C. Comparing proactive and reactive approaches

Figure 10a and Figure 10b compares the proactive and
reactive controller using a workload B, lasting two hours and
exhibiting a peak in the number of active clients.

It is possible to notice that the reactive controller consume
less resources, saving around 0.126$ per hour. However, the
reactive implementation has lower throughput than the proactive
one. In addition, by using less resources, the average CPU

utilization of the reactive method is higher than in the proactive
case. The proactive controller reduces significantly the under-
provisioning of the system and it supports better the time-
varying workload.

D. Response to overlapped peaks

Figure 11b presents an experiment with two successive peaks
in the number of clients and based on workload C. As the clients
grow, the CPU utilization sharply reaches the upper bound.
As this is a rather slow growth pace, the ARIMA predictor
suggests that this peak can be handled with the current testbed
and this is indeed the case. However, as the second larger and
growing faster peak arrives, the ARIMA controller is able to
anticipate it in the initial stages, shortly after 100 minutes,
activating other 3 VMs to handle the peak workload effectively.
Even if the system presents a higher Tu time compared to
the other proactive experiments (Table V), the Au is very low
meaning that the system is really closed to the U+ bound. In
addition, this experiments presents the higher cost saving of
61.42% respect a traditional Cassandra implementation where
all the nodes are always active.

E. Architecture change

As discussed in Section IV-B, the configuration can signifi-
cantly influence performance. Here we show the ability of the
WA query sampling to trigger actions in response to a change
of the query mix issued by the clients.

The results are presented in Figure 12. During the experiment
execution, the workload generated by YCSB changes from
workload C to G, modifying the primary key access rates.
Using the WA information, the PAX controller determines a
better configuration and starts and stops nodes to change the
set of active partitions.

When a new configuration is detected, the controller activates
it and during the stabilization period the two configurations
are active both at the same time. Then the VMs of the old
configuration become dormant. The configuration changes
significantly benefits throughput, which increases from 1190 to
2500 tps. This illustrates the benefits of data-aware autoscaling
in Cassandra.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed PAX, a new auto-scaling
system for Cassandra. PAX leverages the hinted-handoff
mechanism of Cassandra to reduce the data synchronization
period when a new node is added to the cluster. Based on
this, we have defined reactive and proactive controllers that
profile the current workload and use this information to activate
the Cassandra nodes that store hot data partitions. We have
found that both reactive and proactive implementations are
useful in practice, with the reactive method using less VMs
but incurring more frequently under-provisioning, while the
proactive allowing negligible violations of the target utilization.

In future work, we would like to extend our controller to
support also the response time metric in order to evaluate
response to burstiness in workloads.
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[20] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-
A. Jacobsen, and S. Mankovskii, “Solving big data challenges for
enterprise application performance management,” Proceedings of the
VLDB Endowment, vol. 5, no. 12, pp. 1724–1735, Aug. 2012.

[21] I. Konstantinou, E. Angelou, D. Tsoumakos, C. Boumpouka, N. Koziris,
and S. Sioutas, “Tiramola: elastic nosql provisioning through a cloud
management platform,” in Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data. ACM, 2012, pp.
725–728.

[22] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using arima model and its impact on cloud applications’s qos,”
IEEE Transactions on Cloud Computing, vol. 3, no. 4, pp. 449–458, Oct
2015.

[23] J. M. Tirado, D. Higuero, F. Isaila, and J. Carretero, “Predictive data
grouping and placement for cloud-based elastic server infrastructures,”
in Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE Computer Society, 2011,
pp. 285–294.
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