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SUMMARY

Most algorithms developed for scheduling applications on global Grids focus on a single Quality of Service
(QoS) parameter such as execution time, cost or total data transmission time. However, if we consider
more than one QoS parameter (e.g. execution cost and time, which may be in conflict) then the problem
becomes more challenging. To handle such scenarios, it is convenient to use heuristics rather than a
deterministic algorithm. In this paper, we have proposed a workflow execution planning approach using
Multiobjective Differential Evolution (MODE). Our goal was to generate a set of trade-off schedules
according to two user specified QoS requirements (time and cost), which will offer more flexibility to
users when estimating their QoS requirements. We have compared our results with a well-known baseline
algorithm ‘Pareto-archived Evolutionary Strategy (PAES)’. Simulation results show that the modified
MODE is able to find significantly better spread of compromise solutions compared with that of PAES.
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1. INTRODUCTION

Grid Computing aims to allow unified access to data, computing power, sensors and others resources
through a single virtual laboratory [1]. Technologies should provide services, protocols and software
needed for the flexible and controlled sharing of resources. However, such infrastructure has to be
competitive in terms of costs to the final users. Usually this corresponds to identifying the optimal
use of the resources.
There are two approaches typically used to solve this optimization problem. The first is based on

a distributed resources discovery and allocation system. The second is based on a central repository
of resources and resources requests. The first is suitable for small jobs that can easily be accepted by
the computing Grid. The second is suitable for large periodical jobs that are scheduled in advance. In
this case, the centralized scheduler is usually referred to as ‘metascheduler’, because of its position
on top of the local schedulers. It should optimize the allocation of a job allowing the execution on
the ‘fittest’ set of resources. In most cases, such as in scientific and enterprise domains, a typical
application is constructed as workflows. Here, the metascheduler will deploy the workflow on the
Grid considering the current availability of resources, time constraints and user specified quality of
service (QoS).
A number of Grid workflow management systems [2,3] have been developed to facilitate the

composition and execution of workflow applications over distributed resources. Many heuristics
[4–6] have also been proposed for workflow scheduling in order to optimize a single objective, such
as minimizing execution time. However, a large number of objectives need to be considered when
scheduling workflows on utility Grids based on users’ QoS requirements. In this paper, we introduce
a model that can optimize conflicting objectives. However, in many Differential Evolution (DE)-
based Job-Shop/Flow-Shop scheduling, the algorithm was implemented by mapping Job/Machine
sequence to real numbers. As this approach is not feasible in the case of Grid scheduling, we have to
deal with exact scheduling sequences and thus our approach does not need to map the resource/task
sequence to real values as described in [7,8].

2. MOTIVATION AND RELATED WORK

The application of nature’s heuristics for scheduling of applications has been explored by various
researches [9–12]. There are numerous studies reporting work done on scheduling Directed Acyclic
Graph (DAG)-based task graphs in multiprocessor systems [5]. Genetic algorithms and Heteroge-
neous Earliest Finish Time have been extended by the ASKALON project [13,14] to schedule
scientific applications in Grid environments. Recently, in [15], a different base-line algorithm for
Multiobjective Optimization was tested on different workflow models.
Evolutionary techniques are now a widely used approach for tackling complex multiobjective

optimization problems. We find numerous examples of them in the literature. For example, in [16]
the authors proposed a local-search-based enhancements for evolutionary computation. Similar
approaches can be found in [17–20]. Evolutionary and genetic-based optimization techniques
are also found in other Grid-oriented applications (especially in Data-Grid applications), for re-
view, readers are encouraged to refer to [21,22]. In a similar study [23], the proposed model was
compared with Max–Min andMin–Min heuristics described in [4]. Althoughmost of the techniques
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in this domain only considers single objective problems, however we have also found some mul-
tiobjective instances, such as in [24]. For more elaborate survey and literature review, readers are
referred to [25,26].
As the main objective of this research is to devise a novel approach for DE-based technique, we

have also reviewed some examples in [7,27]. However, DE-based techniques are specially suitable
for numerical optimization problems; hence, most of the models in the literature are implemented
in such a way that they can cope with the basic working principles of DE. For this purpose, those
models use the basic formulations as stated below:

• As in the case of scheduling problem, each gene in a chromosome should represent corre-
sponding job or machine/resource sequence.

• DE ismainly used for numerical optimization problems, hence, the combination of job/resource
sequence needs to be converted to a range of real numbers.

• Hence, in most cases, there is a mapping procedure (as well as a inverse mapping procedure)
from job/resource sequence to real numbers.

The fact is that this kind of forward and inverse mappingmay lead to creation of infeasible solutions.
Moreover, to avoid this discrepancy, we need to implement a good repairing algorithm that eventu-
ally leads to an extra computational cost to the overall algorithm. The work in this paper is distinct
from the related work because we do not adopt the same scheme (mapping of job/resource sequence
to real numbers). More specifically, we apply the relevant DE operations on exact schedule rather
than on sequence of real numbers. Hence our model can simultaneously optimize multiple objec-
tives of workflow execution according to users’ QoS without the unwanted creation of infeasible
solutions.

3. PROBLEM OVERVIEW

We formalized the workflow planning problem as a multiobjective optimization problem (MOP) in
which a group of conflicting objectives are simultaneously optimized. As given in Equations (1)
and (2), there are two conflicting objectives: minimize execution time and minimize execution cost.
In such problems, there is no single optimal solution but rather a set of potential solutions. We can
define a multiobjective problem as

minimize f (x) = f1(x), f2(x), . . . , fk(x) (1)

where x ∈ X and X is the solution space. A solution is said to dominate another solution if it is as
good as the other and better in at least one objective. That is, x∗ dominates x , if and only if

∀i ∈ [1, 2, . . . , k], fi(x
∗) ≤ fi (x) ∧ ∃ j ∈ [1, 2, . . . , k], f j (x

∗)< f j (x) (2)

The resource scheduling problem for the Grid consists of arranging the pairs of jobs and resources
given certain constraints. The objective is to minimize the multi-dimensional QoS metrics. We
regard completion time of jobs and total execution cost of jobs as multi-dimensional QoS metrics.
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Figure 1. A simple DAG.

To address the problem, we have to start with the following assumptions:

• There are dependent relationships between jobs, and relationships can be denoted by DAG as
in Figure 1.

• Jobs come in batch mode.
• Resources cannot be occupied by other jobs when a job is running on them.

We model a workflow application as a DAG, let � be the finite set of tasks Ti (1 ≤ i ≤ n). Let
� be the set of directed arcs of the form (Ti , Tj ) where Ti is called a parent task of Tj , and Tj
the child task of Ti . Associated with each directed arc is a data flow in which the output of the
parent is required as input data by the child. We assume that a child task cannot be executed until
all of its parent tasks have been completed. Then, the workflow application can be described as a
tuple �(�,�).
Given a set of jobs T = {Ti }, i = 1, 2, . . . , n and a set of services S = {Si}, j = 1, 2, . . . ,m,

under the constraint that there are dependent relationships among jobs. The execution optimization
problem is to generate a solution I = (Ti , f j (Ti ))where f j (Ti ) is a mapping function that assigns Ti
onto service S j . We also denote that time(Ti , f j (Ti )) is the completion time of I and cost(Ti , f j (Ti ))
is the input data transmission cost and service cost for processing I . The goal is described as follows:

minimize F = (F1, F2) (3)

F1 = max
Ti∈�, f j (Ti )∈�

time(Ti , f j (Ti )) (4)

F2 = ∑
Ti∈�, f j (Ti )∈�

cost(Ti , f j (Ti )) (5)

subject to F1<B and F2<D

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



MULTIOBJECTIVE DIFFERENTIAL EVOLUTION

where B is the cost constraint (budget) and D is the time constraint (deadline) required by users
for workflow execution.

4. MULTIOBJECTIVE DIFFERENTIAL EVOLUTION

The idea of multiobjective differential evolution (MODE) was first introduced in [28]. In DE [29],
new candidate solutions are created by combining the parent individual and several other individuals
of the same population. A candidate replaces the parent only if it has a better fitness value. This
is a rather greedy selection scheme that often outperforms traditional Evolutionary Algorithms.
Actually, there are many variants of candidate creation procedures in DE. We use the DE scheme
DE/rand/1/bin described in Algorithm 1 (more details on this and other DE schemes can be
found in [29]). Besides preserving a uniformly spread front of non-dominated solutions, which is
a challenging task for any Multiobjective Evolutionary Algorithm (MOEA), we have to deal with
another question, that is, when to replace the parent with the candidate solution. In single-objective
optimization, the decision is easy: the candidate replaces the parent only when the candidate is
better than the parent.

Algorithm 1 CreateCandidate(Parent Pi 〈mat, ss〉)
Pick three random individual Pi1, Pi2 and Pi3 where (i1 
= i2 
= i3)
Calculate Candidate C as, C = Pi1 + F · (Pi2 − Pi3)
Modify the Candidate by binary crossover with the Parent
return Candidate C

In MOPs, on the other hand, the decision is not so straightforward. We could use the concept
of dominance (the candidate replaces the parent only if it dominates it), but this would make the
greedy selection scheme of DE even greedier. Therefore, MODE applies the following principle
(see Algorithm 2):

1. The candidate replaces the parent if it dominates it.
2. If the parent dominates the candidate, the candidate is discarded.
3. Otherwise (when the candidate and parent are non-dominated with regard to each other).
4. The candidate is added to the population. This step is repeated until popSize number of

candidates are created.

After that, we get a population of the size between popSize and 2 ·popSize. If the population grows,
we have to truncate it to prepare it for the next step of the algorithm.

4.1. The model

In order to extend MOEAs to solve the workflow scheduling problem, we need to define an
appropriate problem representation, fitness assignment and genetic operators. We have extended
our ideas from [5,30]. The methods we have employed are described in the following subsections.
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Algorithm 2 MODE
Define population P with popSize number of individual.
P = {P1, P2, . . . , PpopSize}
Evaluate the initial population P of random individuals.
while stopping criterion not met do
for all i such that 0 ≤ i ≤ popSize do
C=CreateCandidate(Pi )
Evaluate Candidate
if Candidate C dominates Parent Pi then
Candidate replaces the Parent

else if Parent Pi dominates Candidate C then
Parent replaces the Candidate

else
Add Candidate C to the population
popSize ⇐ popSize + 1

end if
end for
If the population exceeds popSize, truncate it.
Randomly enumerate individuals in P

end while

4.1.1. Encoding

In this approach, each chromosome consists of two parts: the matching string and the scheduling
string. Let mat be the matching string, which is a vector of length |T |, such that

mat(i) = j where 0 ≤ i<|T | and 0 ≤ j<|S|
i.e. subtask Ti is assigned to service S j .
In terms of string representation it is Ti : S j The scheduling string is a topological sort of the

DAG, i.e. a total ordering of the nodes (subtasks) in the DAG that obeys the precedence constraints.
Define ss to be the scheduling string, which is a vector of length |T |, such that ss(k) = i , where
0 ≤ i, k<|T |, and each Ti appears only once in the vector, i.e. subtask Ti is the kth subtask in the
scheduling string.
Because it is a topological sort, if ss(k) is a consumer of a global data item produced by

ss( j), then j<k. The scheduling string gives an ordering of the subtasks that is used by the
evaluation step. Then in this approach, a chromosome is represented by a two-tuple < mat, ss >.
Thus, a chromosome represents the subtask-to-service assignments (matching) and the execution
ordering of the subtasks assigned to the same service. The scheduling of the global data item
transfers and the relative ordering of subtasks assigned to different services is determined by the
evaluation step. Figure 2 illustrates two different chromosomes for the DAG in Figure 1, for |T | = 6
and |S| = 3.
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Scheduling String Task-Resource Macthing String

Figure 2. Two sample chromosomes from the DAG in Figure 1.

4.1.2. Initial population

In the initial population, a predefined number of solutions (chromosomes) are generated. When
generating a chromosome, a new matching string mat is obtained by randomly assigning each
subtask to a machine. To form a scheduling string ss, the DAG is first topologically sorted to form
a basis scheduling string. For each chromosome in the initial population, this basic string is mutated
a random number of times (between one and the number of subtasks) using the mutation operator
(described in Section 5.5) to generate the ss vector (which is a valid topological sort of the given
DAG). Furthermore, it is common to incorporate solutions from some non-evolutionary heuristics
into the initial population, which may reduce the time needed for finding a satisfactory solution.
Since every time we consider a topological sort of the DAG, there is a non-zero probability that
a chromosome will represent an infeasible workflow. Thus, this representation conforms to any
possible (valid) solution, even after the crossover and the mutation operations are carried out. (The
crossover and the mutation will be discussed in the later sections).

4.1.3. Fitness measure

A fitness function is used to measure the quality of the solutions according to the given optimization
objectives. We separate fitness functions by objective functions and penalty functions. Objective
functions are designed to encourage the algorithms to choose solutions with minimum objective
values. The objective functions for solution I are defined as follows:
Cost objective function:

fcost(I) = cost(I)/B (6)

Time objective function:

ftime(I) = time(I)/D (7)

A penalty function P(I) is developed to handle constraints. It is defined as follows:

P(I) = Pbudget(I) + Pdeadline(I) (8)
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where Pbudget is the budget penalty function defined by

Pbudget =
{

fcost(I) if cost (I)>B

0 otherwise
(9)

and Pdeadline is the deadline penalty function defined by:

Pdeadline =
{

ftime(I) if time(I)>D

0 otherwise
(10)

As satisfying deadline and budget requirements is the primary goal of the scheduling scheme, the
overall penalty is added to the objective functions to form the fitness functions:
Cost fitness function:

Fcost(I) = fcost(I) + P(I) (11)

Time fitness function:
Ftime(I) = ftime(I) + P(I) (12)

4.1.4. Genetic operators

The crossover operator for the scheduling strings randomly chooses pairs of the scheduling strings.
For each pair, it randomly generates a cutoff point, which divides the scheduling strings of the
pair into top and bottom parts. Then, the subtasks in each bottom part are reordered. In this way,
in each crossover, we can create a valid schedule. Figure 3 demonstrates such a scheduling string
crossover process. On the other hand, for the crossover operator for the matching strings, (see right
side image of Figure 4) first we randomly choose pairs of sequence from the matching string. For
each pair, we randomly select a cutoff point to divide both matching strings into two parts. Then the
machine assignments of the bottom parts are exchanged. However, in our approach the crossover
operator will be applied to both matching string and scheduling string 〈mat, ss〉.
However, the mutation will only be applied to scheduling string 〈ss〉. This operator works by

randomly choosing scheduling strings and it randomly selects a victim subtask (we will consider

Corssover Point

BottomTop

Figure 3. Scheduling string crossover.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



MULTIOBJECTIVE DIFFERENTIAL EVOLUTION

Figure 4. Scheduling string mutation and matching string crossover.

it as a ‘victim’ subtask). The valid range of the victim subtask is the set of the positions in the
scheduling string at which this (victim subtask) can be placed without violating any data dependency
constraints. Figure 4 shows an example of this mutation process. However, in the case of matching
string mat , there will be no mutation, rather it will be subjected to the candidate creation of
MODE (which will be discussed in the following sections). Hence, though our model only takes
scheduling string for normal genetic operation, only the matching string will go through MODE
operations.

4.2. Creation of candidate solution

As described in Section 4, the creation of candidate solution is done within step 2 of Algorithm 1
where candidate C is created as follows:

C = Pi1 + F · (Pi2 − Pi3) (13)

The matching string is an array of numbers or characters (each of the characters defines a service
to be used by a specific task).
Rationally, it seems quite confusing to measure the quantity Pi2−Pi3 from twomatching strings of

Pi2 and Pi3. Let us suppose that the matching strings of Pi2 and Pi3 are Pi2〈mat〉 = {1, 2, 3, 4, 5, 6}
and Pi3〈mat〉 = {2, 5, 3, 1, 4, 6}, respectively. When we compare two ordinal vectors, we will
consider the first one as a ‘reference’ and the second one as the ‘target’. In [31], the ‘reference’-
vector is denoted as ‘pattern-vector’ and the ‘target’-vector is denoted as ‘disorder-vector’. Similarly,
we considered Pi2〈mat〉 = {1, 2, 3, 4, 5, 6} as pattern-vector and Pi3〈mat〉 = {2, 5, 3, 1, 4, 6}
as disorder-vector. Our goal is to measure the similarity between strings. In our experiment we
have used the Ulam distance [31] to measure the quantity (Pi2 − Pi3). Since it measures the
disorder of ordinal variables by counting the minimum number of ‘Delete–Shift–Insert’ operations.
Hence, in the above case, the Ulam distance will be 2, since in Pi3〈mat〉, 1 should be moved
to place between 2 and 5, and again 5 should be moved to a place between 4 and 6 (Total 2
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‘Delete–Shift–Insert’ operations). For simplicity, we have chosen F=1. However, in the case of
general DE, each of the variables is real numbers and the fitness is measured in terms of mathematical
operations on those real numbers. But in our case, each of these variables (characters/numbers)
refers to different services, hence, we cannot map these numbers/characters to real numbers and
apply mathematical operations as in [7,8]. Consequently, in place of adding the difference with
each value of Pi1, we mutate Pi1〈mat〉. I.e., we mutated D number of genes in Pi1 where D is
the Ulam distance measure described as above. The process is done in Algorithm 3, step 3. As
result of this approach, we have just replaced the operation in Equation (13) with Algorithm 1. We
can now devise the overall MODE from Algorithms 1 and 2. The modified MODE is illustrated in
Algorithm 4.

Algorithm 3 ModifiedCreate(Parent Pi 〈mat, ss〉)
Pick three random individual Pi1, Pi2 and Pi3 where (i1 
= i2 
= i3)
D = Ulam Distance(Pi2〈mat〉Pi3〈mat〉)
Candidate,C〈mat〉 ⇐ mutate(Pi1〈mat〉, D)

Candidate,C〈ss〉 ⇐ MutatateMatchingString(Pi1〈ss〉)
C〈ss〉 ⇐ CrossoverSchedulingString(C〈ss〉, Pi 〈ss〉)
C〈mat〉 ⇐ CrossoverMatchingString(C〈mat〉, Pi 〈mat〉)
return C〈mat, ss〉

Algorithm 4 ModifiedMODE
Define population P with popSize number of individual.
P = {P1〈mat, ss〉, P2〈mat, ss〉, . . . , PpopSize〈mat, ss〉}
Evaluate the initial population P of random individuals.
while stopping criterion not met do
for all i such that 0 ≤ i ≤ popSize do
C〈mat, ss〉 = ModifiedCreate(Pi 〈mat, ss〉)
Evaluate Candidate
if Candidate C〈mat, ss〉 dominates Parent Pi 〈mat, ss〉 then
Candidate replaces the Parent

else if Parent Pi 〈mat, ss〉 dominates Candidate C〈mat, ss〉 then
Parent replaces the Candidate

else
Add Candidate C〈mat, ss〉 to the population
popSize ⇐ popSize + 1

end if
end for
If the population exceeds popSize, truncate it.
Randomly enumerate individuals in P

end while
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5. EXPERIMENTS

In our experiment, we have implemented the balanced workflow described in [32,33]. The work-
flows were designed to implement some specific parallel numerical computation problems such
as Parallel Gauss–Jordan Algorithm to solve systems of Equations [32], Parallel LU decomposi-
tions [32] and Discrete Laplace Transformation [33]. The example workflow models are given in
Table I.
The resources were 10 computing entities connected with each other with randomly assigned

price levels. The parameter setting for the Pareto Archived Evolutionary Strategy (PAES) was
taken from the original work [34] and our model also has the same settings as PAES. We have
run each of the algorithms for 100 generations. The distance measure that we have used for our
modified MODE was Ulam distance since it depends on the minimum number of ‘Delete–Shift–
Insert’ operations (as described in Section 4.2) and these operations best reflect the difference
of resource arrangements in two schedules. In order to compare the performance of alternative
workflow multiobjective scheduling algorithms, we need to examine the extent of minimization
of the obtained non-dominated solutions produced by each algorithm for each objective and the
spread of their solutions. Figure 5(a), (b) and (c) (left side) shows the non-dominated solutions
obtained at the end of simulation trial (average over 30 runs) for the workflow structure discussed
in [32,33]. For all problems, the Pareto optimal front obtained by our model is better than those
found by PAES.

6. PERFORMANCE MEASURE

Generally, to find the comparative analysis between twoMOEA, the Hypervolume (IH ) and Epsilon
(I�+) indicators [35,36] are used. To find these values, we have run each algorithm for three different
workflow structures [32,33]. The experiment for each scenario was repeated 30 times (with different
random seeds). We have constructed a reference set, R, by merging all of the archival non-dominated
solutions found by each of the algorithms for a given workflow structure across 30 runs. We then use
the Hypervolume Difference indicator I−

H [35] to measure the differences between non-dominated
fronts generated by the algorithms and the reference set R. I−

H measures the portion of the objective
space that is dominated by R. The lower the value of I−

H , the better the algorithm performs. Box
plots in Figure 5(a), (b) and (c) (right side: I−

H indicators for three different workflow examples)
clearly prove that our approach outperforms PAES.
Although IH is widely used in this context, however, it sometimes gives different values for

two distributions of solutions even they are incomparable. To make more specific comparison, we

Table I. Selected workflow models.

Workflow # Nodes Reference Note

W1 15 [32] Gauss–Jordan Algorithm
W2 14 [32] LU decomposition
W3 16 [33] Laplace Transform
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Figure 5. Non-dominated solutions and hypervolume measure (box plots) for three workflow benchmarks: (a)
non-dominated solutions (left) and hypervolume measure (right) for workflow W1; (b) non-dominated solutions
(left) and hypervolume measure (right) for workflow W2; and (c) non-dominated solutions (left) and hypervolume

measure (right) for workflow W3.
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Figure 6. Epsilon measure (box plots) for three workflow benchmarks: (a) epsilon measure for workflow W1;
(b) epsilon measure for workflow W2; and (c) epsilon measure for workflow W3.

need to use the Epsilon indicator (I�+). This indicator gives us the idea about how two separate
distributions of Pareto-fronts differ from each other according to their degree of �+–non-domination
(for more details, please refer to [35]). We have also measured the I�+ values for the Pareto-front
generated by two algorithms on the same benchmark workflow examples as IH . For I�+, the lower
value will indicate a better front. The Figure 6(a), (b) and (c) indicates that MODE is better than
PEAS with respect to I�+ as well.

7. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a workflow execution planning approach, which optimizes multiple
objectives. The planner can generate a set of widespread alternative solutions if the optimiza-
tion objectives are conflicted. Providing these alternative solutions can offer more flexibility to
users to estimate their preferences and choose a desired workflow schedule based on their QoS
requirements. Our MODE approach differs from others in the sense that we are dealing with real

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



A. K. M. K. A. TALUKDER, M. KIRLEY AND R. BUYYA

scheduling sequences rather than job/machine sequence to real number transformation as imple-
mented in [7,8]. We have compared our results with PAES and the I−

H indicator shows that our
approach performs better than PAES. Moreover, our model is also free from extra computational
overhead due to crowding distance sorting. In the case of candidate creation, we have only con-
sidered the Ulam distance and there may be further opportunities to investigate the algorithms
performance with different string similarity metrics.
Multiobjective optimization in Grid scheduling is not a matured field. It still requires a number

of detailed benchmark problems to test every type of multiobjective scenario on Grid scheduling
or real-life data to test an algorithm’s performance. There are also a limited number of studies that
have considered the flow-shop/job-shop scheduling problem using DE, however, multiobjective
scheduling poses additional challenges. Many of the widely used existing workflow scheduling
algorithm only attempt to minimize either execution time or execution cost. However, additional
objectives must be considered when scheduling workflows on utility Grids.
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