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Abstract Cloud data centres have become the preferred hosting environment for
large-scale web-facing applications. They allow unprecedented scalability in response
to a dynamic and unpredictable workload. However, many applications need to scale
beyond the boundaries of a single data centre to multiple geographically dispersed
clouds sites (i.e. a Multi-Cloud) to provide regulatory compliance, better Quality of
Experience (QoE) and increased fault tolerance. In this work, we introduce a flexible
frameworkwhich allows interactive web applications to utilise aMulti-Cloud environ-
ment. It redirects users to suitable cloud sites considering the latency and regulatory
constraints. Regulatory requirements are specified via a flexible and simple domain-
specific model, which is then interpreted by a rule inference engine. We conducted an
experimental evaluation of the proposed system using services of ten cloud sites/data
centres located in five continents and offered by two cloud providers, namely Amazon
and NeCTAR. The results show that our approach minimises latency, is fault tolerant,
and meets all stated regulatory requirements with negligible performance overhead.

Keywords Cloud computing ·Multi-Cloud ·Web applications

1 Introduction

Cloud computing is a disruptive model of leasing and using IT resources. It allows
organisations to concentrate on their main line of business without investing in their
own private computing infrastructure. Using an Infrastructure as a Service (IaaS)
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cloud offering, enterprises can rent a dynamic pool of preconfigured computational
and storage resources in a pay-as-you-gomanner [14,31].Hence, they can dynamically
resize/scale their rented virtual infrastructure and avoid investing in a fixed resource
pool, which can often be either under or over-utilised depending on theworkload. Such
flexibility is of paramount importance for large-scale web-facing applications whose
user base can grow or shrink dynamically as a result of product releases, marketing
campaigns, holiday seasons, etc. Most such applications follow the standard 3-tier
architectural pattern and comprise three layers/tiers [1,21,44]:

– Presentation layer—the interface, used by the end user. Typically, executed in a
browser or a mobile device application.

– Business/domain layer—the core business logic. Hosted in one or several Appli-
cation Servers (AS).

– Data layer—manages the access to the persistent data. Deployed in one or several
Database (DB) servers.

The traditional model of using an IaaS cloud service is to allocate resources (i.e. AS
and DB servers) exclusively within a single cloud site. This poses several new barriers
to cloud adoption. A data centre outage can leave end users without access to an
essential service for long periods of time, as exemplified by several recent incidents [2,
3,23]. In fact, according to a Berkeley’s analysis service unavailability is the greatest
obstacle for cloud adoption [9]. Furthermore, the Quality of Experience (QoE) of
interactive web-facing applications is highly impacted by the network latency between
the end customers and the data centre. If users are distributed worldwide, a single
data centre will not be able to provide low latency and acceptable response time to
everyone. This has prompted companies likeEbay and IBM to usemultiple data centres
to respond to dynamic workloads and increase end user QoE [18,27].

Asmany businesses operate across national borders, they have to consider a plethora
of legislative and regulatory constraints with respect to privacy, data access control,
security, etc. Government and academic reports have outlined the complexities of
building regulatory compliant cloud services and emphasised the need for engineer-
ing approaches enabling such compliance [10,11,39,40]. As an example, the Data
Protection Directive of the European Union (EU) forbids the transfer of personal data
to non-member countries, unless an adequate level of protection is ensured [19]. Sim-
ilar laws exist in many other jurisdictions as well [11]. Businesses operating in many
legislative domains have to meet multiple and often conflicting regulatory require-
ments and thus no single cloud site will suffice.

To address these problems, the usage of multiple cloud sites (i.e. aMulti-Cloud) has
gained significant interest. A Multi-Cloud is a type of Inter-Cloud, where clients use
resources from multiple cloud sites without relying on their interoperability [20,25,
41]. AMulti-Cloud environment can provide increased availability. If a cloud site fails,
end users can be redirected to alternate locations. Multiple geographically distributed
cloud sites can serve users worldwide with low network latency and thus provide
adequate QoE. If an application has specific requirements as to where (e.g. in which
jurisdiction) a user is served, this user can be redirected accordingly to one of the
employed sites.
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In this work, we propose a system for load distribution of web-facing interac-
tive cloud applications. We detail its underlying design and algorithms, describe the
technical aspects of our prototype, and experiment with it in real-life cloud environ-
ments. More specifically, our key contributions are: (1) design and implementation
of architectural components for regulations and latency-aware user redirection in a
Multi-Cloud environment and (2) a domain-specific approach for defining regulatory
constrains.

The rest of the paper is organised as follows: in Sect. 2, we provide an overview of
the related works and compare them to ours. In Sect. 3, we outline the architectural
components and their interactionmodel. Section 4 presents a detailed description of all
system components’ implementation in terms of used technologies, algorithms, and
configurations. It also proposes a domain-specific approach for defining regulatory
constrains. Our experimental settings and results are discussed in Sect. 5. In the final
Sect. 6, we conclude the paper and define pathways for future work.

2 Related work

Our approach encompasses load distribution and resource selection in a Multi-Cloud
and considers the regulatory requirements. We discuss the related work in these fields
separately.

2.1 Multi-Cloud resource selection and provisioning

Resource utilisation from multiple clouds has already attracted notable interest, signi-
fied by at least 20 related projects from both academia and industry [25]. Projects like
OPTIMIS [20], Contrail [15], mOSAIC [42], MODAClouds [8], STRATOS [37], and
the work of Liu et al. [29] can dynamically select and provision resources in multiple
clouds. More recent work has focused on Quality of Service (QoS) prediction and
selection of web services, which could be hosted in a distributed environment (e.g. in
different clouds) [30,46]. However, they do not consider the geographical locations
of the cloud sites they select from. Hence, they cannot implement regulation-aware
application brokering. Moreover, these projects focus on resource allocation and do
not implement workload (i.e. end user) redirection among the cloud sites. In contrast,
our approach focuses on regulation-aware load distribution.

Significant work has been done in the area of scaling the persistent layer across
servers and ultimately across data centres. Cattel [16] surveys more than 20 projects
in the area of scalable distributed data bases that balance differently between the
consistency, availability and partition tolerance requirements as defined in the CAP
theorem [12,13]. Furthermore, Google has revealed their database architecture which
scales within and across geographically distributed data centres without violating
transaction consistency [17]. Given how well explored this area is, persistent data
distribution across data centres is outside the scope of this work. We focus on load
balancing the incoming users across data centres given that the data are already appro-
priately distributed across the cloud sites.
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Fig. 1 Current practice for deploying 3-tier applications in a Multi-Cloud

In our previouswork,we introducedmechanisms for efficient 3-tier application bro-
kering inmultiple clouds [26].We addressed load distribution and resource scheduling
both across andwithin cloud sites and carried performance evaluation through discrete
event simulations. In this work, we focus on load distribution across data centres only.
Instead of using discrete event simulations we develop a real-life prototype, which
we use for evaluation as well. We detail the technical aspects of our implementation
and optimisation techniques that allow our approach to scale adequately under heavy
load. Also, we explore in detail how regulatory requirements can be flexibly specified
with minimal efforts in a domain-specific model and efficiently interpreted at runtime.
Finally, we have extended our network latency estimation approach to achieve better
accuracy and scalability.

2.2 Load distribution in industry

Figure 1 shows how a 3-tier application can be deployed in a Multi-Cloud using the
industry best practices. Each user must be redirected among the cloud sites. This can
be achieved through services like AWS Route 53 [4] and AWS Elastic Load Balancer
(ELB) [5]. Typically, AWS ELB is used to load balance across AS Virtual Machines
(VMs) within a single cloud site. It can also distribute requests among a number of
AWS availability zones, but cannot use resources from other providers. Route 53 is
a Domain Name System (DNS) service and provides Latency-Based Routing (LBR),
which redirects each user to the cloud site providing the lowest latency to him/her.
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Once a user is redirected to a cloud site, he/she is served within that site and has
no further interaction with the Route 53 service. That is, they are served by the AS
and DB servers within the selected cloud site only. Similarly to Route 53, we also
attempt to minimise the latency between the end users and the destination cloud sites.
However, unlike ELB and Route 53 we also consider the regulatory requirements and
the end user’s identity.

Content Delivery Networks (CDN) have some resemblance with Route 53 and our
approach because they efficiently deliver web content hosted in multiple data centres
to users distributed worldwide. However, a CDN only delivers static web content,
while we direct users to cloud sites where they are interactively served with dynamic
web content.

2.3 Specifying and enforcing regulations

Mont et al. proposed an approach allowing end users to specify their own data protec-
tion rules [32]. They also introduced a method for service providers to enforce such
rules by using sticky policies. Their work was later prototyped byMowbray et al. [33].
This model is not applicable when a cloud provider does not collaborate to enforce the
stated requirements, while our approach is cloud agnostic. Furthermore, our approach
works in a Multi-Cloud environment, while theirs is applicable only within a single
cloud site.

Several formalisms for specifying access policies have been proposed. Two notable
examples are OASIS XACML [34] and EPAL [28]. Our approach uses a rule-based
inference engine to infer the suitability of a cloud site for a user. Therefore, we found
it convenient to express the access policies directly in the declarative language of the
rule engine. As a future work, we are planning to investigate how XACML and EPAL
specifications can be transformed to such engine rules.

In order to dispatch a user to an appropriate cloud site, we first need to authenticate
him/her, which can be done in several ways. The OpenID protocol [36] allows a ser-
vice provider to authenticate an end user through an external service. The OAuth [35]
protocol allows a service provider to gain authorised access to protected user resources
hosted on another service without explicitly providing credentials (e.g. user name/-
password).AlikeOpenID,OAuth can be used for authentication aswell, if the accessed
resources are only user metadata (e.g. user name). More and more web services are
adopting OpenID and OAuth. However, many others still rely on custom authentica-
tion (e.g. user name/password). Since we aim for generality, we decided not to couple
our approach with any of these specifications. Instead, our approach works with user
tokens, which are unique ids and can be extracted from OpenID, OAuth or via custom
authentication.

3 System architecture

Our approach to cloud site selection (depicted in Fig. 2) extends the aforementioned
industry standard approach by replacing the DNS service with an Entry Point compo-
nent. Similarly, it redirects users among a set of cloud locations. Furthermore, within
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Fig. 2 Overall architecture: Entry Point and Admission Controller components replace the DNS-based
cloud site selection

each target cloud site we deploy an additional Admission Controller component. Entry
Points communicate with the Admission Controllers to determine the suitability of the
respective cloud sites and then redirect the user accordingly. Apart from these two new
components, there are no other changes to the industry standard approach. Therefore,
in each cloud the system can be implemented in accordance with the reference 3-tier
approach. In other words, what we propose is a layer “on top” of the standard 3-tier
architecture, which performs the user redirection to the individual cloud sites.

An end user arrives at an Entry Point. There may be one or more Entry Points
whose purpose is to redirect each user to an appropriate cloud site. Before doing so,
the user must authenticate so the regulatory requirements can be considered. Authen-
tication is application specific and is provided by the application developers. It could
be OAuth or OpenID authentication with an external service, or a custom username/-
password implementation. Once the Authentication is complete, the Authentication
Server passes a unique user identifier (e.g. retrieved from an OAuth server or just a
user name) to the Entry Point.

The Entry Point can be called in two ways. Since it is developed in Java, it can
be put on the java classpath of the Authentication Server. It can also be accessed as
a RESTful web service in case the Authentication Server is not developed in Java.
An Entry Point is deployed in a separate VM. Depending on its implementation, the
authentication service could be deployed within the same VM or separately.

In each target cloud site there is an Admission Controller which exposes a RESTful
web service API and is deployed in a stand-alone web server. The Entry Point sends a
request to each cloud site’s Admission Controller to determine which sites are eligible
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Fig. 3 Entry Point–Admission Controller interaction

in terms of regulations to serve the incoming users. We have developed a domain-
specific rule-based model (detailed in Sect. 4.2) allowing for succinct regulations
requirements specification. Based on this information and estimations of the network
latency between the end user and each cloud site, the Entry Point decides where to
redirect the user to. Figure 3 depicts this flow.

Once the user is redirected to a cloud site, he/she is served there and has no fur-
ther interaction with the Entry Points and the Admission Controllers. In other words,
the delay resulting from the interactions between the Entry Point and the Admission
Controller is tangible to the user only during the initial redirection process and does
not impede the overall QoE. We argue that existing web-facing systems, which use
OAuth 2.0 authentication with external services (e.g. Google, Facebook or LinkedIn)
already serve users with one-off initial delays, and thus this is acceptable.

Although placing the Admission Controllers in all cloud sites contributes to the
one-off delay, it allows them to closely monitor the resource performance and utili-
sation within each cloud site. This information can be fed back to the Entry Points
to implement sophisticated redirection policies. We are planning to investigate this in
our future work and thus we aim for a flexible architecture.

4 Design and implementation

4.1 Entry points

The function of each Entry Point is to redirect each incoming user to an appropriate
cloud site. After a user is redirected, he/she has no further interaction with the Entry
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Point. Thus, it introduces a one-off delay upon user arrival and does not affect the
subsequent user interactions.

Each Entry Point is developed in Java and is deployed into a single Java archive
(i.e. jar) file. It can be used from another Java application by adding the jar file to its
classpath. To simplify the integrationwith theAuthentication Service, the jar exposes a
singleton façade class called EntryPoint, which for a given user determines the serving
cloud site.

The Entry Point can be executed separately as a stand-alone application as well.
In this case, an embedded jetty web server is started, which uses the Jersey RESTful
Web Services framework to expose a REST web service. This is useful when the
client code is not easily integrated with Java. Details on how this is achieved can be
found in our online documentation.1 Client code can call this service by providing
the user identification token and IP address and receive as output the address of the
Load Balancer in the selected cloud site. Behind the scenes, the RESTful web service
simply calls the aforementioned Entry Point façade.

Figure 3 illustrates the interactions between the Entry Point, the users, and the
Admission Controllers which is discussed hereafter. For brevity it omits the user
authentication.

To avoid excessive network communication, the Entry Point sends the incoming
user requests to the Admission Controllers in batch rather than one by one. The Entry
Point aggregates the user requests over a time period (typically a few seconds) and
sends them to the Admission Controllers at once. This is transparent from the caller’s
perspective, as the procedure call is blocked until the result for the respective user
request is complete. Furthermore, requests are broadcasted to the Admission Con-
trollers asynchronously. A separate thread from a cached thread pool is used for each
Admission Controller in order to reduce the overall response time.

Weemphasise that the delays during the initial enduser redirection are one-off.After
the user is redirected to a cloud site they only communicatewith its load balancer. There
are no additional delays in the user’s interaction with the application. Furthermore, in
Sect. 5 we demonstrate experimentally that these initial delays are negligible.

In the case of a cloud site failure, the respective Admission Controller will not
respond to the Entry Point requests. Hence, the Entry Points are preconfigured with
deadlines and if a cloud site does not respond within the deadline it is not considered.
If however, this Admission Controller “reappears” online—the Entry Point will start
considering it again. For this purpose, each Entry Point is configured with a time
period parameter, so that it can check if failed Admission Controllers have reappeared
online. Once the responses from the Admission Controllers have been received, the
Entry Point selects the eligible cloud site, which offers the lowest network latency.

We developed a utility which estimates the network latency between an end user
and a cloud site. Given two arbitrary IP address (e.g. of the user and the load balancer
in a cloud site) it estimates the expected network latency between them. We approach
this problem in two steps. Firstly, we use the MaxMind’s GeoLite [22] database to
determine the location (i.e. longitude and latitude) of each IP address. The latest

1 https://nikolaygrozev.wordpress.com/2014/10/16/rest-with-embedded-jetty-and-jersey-in-a-single-jar-
step-by-step/.
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GeoLite database is freely available and can be downloaded in a proprietary format.
MaxMind also provides an open source Java library to read and query the proprietary
database, which we use.

MaxMind’s GeoLite is updated once every few months and thus it may not resolve
some IP addresses’ respective locations correctly. This can often happen for IP
addresses of cloud VMs, as a cloud provider can dynamically reassign IPs from the
same range to machines in different data locations. Experimenting with GeoLite we
found that while end users’ IP addresses are mostly resolved accurately, the estimated
location of AWS EC2 VMs based on their public IP address can be very incorrect.
For example, a VM in the Tokyo AWS region can be resolved as located in the US.
Fortunately, cloud providers like Amazon AWS provide up-to-date information about
their IP ranges and the respective geographical locations [6]. In case an IP address falls
within any of these ranges, we can use it to override the respective value of GeoLite.

Secondly, once the coordinates are established, we use PingER which is an Internet
Performance Monitoring Service (IEPM) [43]. It records network characteristics (e.g.
round trip time) between hundreds of nodes distributed worldwide which periodically
ping each other. The reported performance metrics can be averaged per time inter-
val (e.g. year, month, day or hour) and can be downloaded in tab separated values
(TSV) files through a public web service. The coordinates (longitude and latitude)
of each node are provided as well. We use Vincenty’s formulae to compute the dis-
tance between any two geospatial positions. To estimate the latency between two IP
addresses, whose positions have already been resolved, we use the network latencies
between the three geometrically closest to them pairs of PingER nodes.

More formally, for each pair of PingER nodes (ni1, ni2), we define its distance to
the locations of the target pair of IP addresses (t1, t2) as:

distance(ni1, ni2, t1, t2)

= min{v(ni1, t1)+ v(ni2, t2), v(ni1, t2)+ v(ni2, t1)}, (1)

where v is the well-known Vincenty’s function for computing the distance between
two geographical locations specified by their coordinates. Then we choose the 3 pairs
of nodes (n11, n12), (n21, n22), (n31, n32), which minimise the distance function for
the targeted t1 and t2. Hence, we can approximate the Internet latency between t1 and
t2 as the following weighted sum:

latency(t1, t2) =
(∑ dmin.li

di

)
/

(∑ dmin

di

)
, (2)

where di is a shorthand for distance(ni1, ni2, t1, t2), dmin is the smallest distance
among d1, d2, d3 and li is the PingER latency between ni1 and ni2. Equation 2 essen-
tially defines a weighted sum of the network latencies between the three geometrically
closest pairs of nodes. The weights are defined proportionally to each pair’s nodes
combined distance to the target locations.

To improve the performance of the network latency estimation, we keep in-memory
least-recently-used (LRU) caches of (1) the mappings between IP addresses and coor-
dinates, (2) the distances between geospatial locations and (3) the already resolved
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latencies. To improve the cache-hit probability, we round all coordinates (latitude and
latency) to two digits after the decimal sign when comparing with or inserting into the
caches. This ensures the network latency estimation for users coming from the same
region (e.g. the same city) will not be recomputed every time. We use the Google
Guava [24] cache implementation as it is thread safe, and limit all cache sizes to
10,000 entries.

Finally, in the previous discussion we mentioned several configuration parameters
used by the Entry Point. These are provided in two configuration files. The first one is
a comma separated values (CSV) file which lists all cloud sites and the addresses of
theirAdmissionControllers andLoadBalancers, fromwhich the load balancer chooses
when a user arrives. The second file is a property file, and provides (1) the time between
the batch requests to the Admission Controllers and (2) the deadline length to wait
for response from the Admission Controllers. These files must be provided before
the Entry Point Service is used, but can also be updated and reloaded dynamically to
change its behaviour—e.g. to add a new cloud site.

4.2 Admission controllers

Each Admission Controller is deployed in a single jar file and is executed within an
embedded jetty server hosting a RESTful web service. The service takes as input a list
of user identifiers, and returns the responses as a list of JSON formatted objects. The
Entry Points communicate with the Admission Controllers through this web service,
even if they are deployed in the same VM.

The Admission Controller must determine the eligibility of the cloud site for each
of the users. To achieve this, first we must resolve the user’s metadata—e.g. data about
their citizenships and privacy requirements. Obviously this resolution is application
specific. For example, one application would use OAuth to retrieve such data, while
another would just execute a query within its data base. Since we aim for generality,
our Admission Controller component provides a “hook” for resolving user metadata.
We define a simple interface called IUserResolver, which has a single method for
resolving a user’s metadata. Application developers should implement this interface
and provide the name of their class as an input parameter to the Admission controller.

We also define two simple classes representing a user and a cloud site. The User
class has just 3 fields: (1) user id, (2) set of citizenships and (3) tags. The tags field can
aggregate miscellaneous additional meta-information for the user—e.g. if he/she is a
government employee. The Admission Controller uses the previously discussed user
resolver to instantiate this class based on a user id. TheCloudSite class representsmeta-
information about the present cloud site. It has fields representing: (1) the geographical
location (e.g. country or state code), (2) the cloud provider (e.g. AWS) and (3) a set of
tags. As before, we use tags to represent miscellaneous additional information—e.g.
if the cloud is certified to serve US government agencies. A JSON file containing the
respective marshalled CloudSite instance is given as a parameter to every Admission
Controller.

TheUser, IUserResolver and CloudSite types (depicted in Fig. 4) define the simple
interface, which we expose to application programmers.
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Fig. 4 Domain model classes
used for cloud site to user
matching

CloudSite
locationCode : String
providerCode : String
tags : String [0..*] 

User
userId : String
citizenships : String [0..*] 
tags : String [0..*]

«Interface»
IUserResolver

resolve(userId: String): User

Given a user and a cloud site, the Admission Controller must infer if the user could
be served there. An example might help picture what the reasoning logic should be.
Let us consider an application which needs to ensure that EU citizens are served
within the EU, and that government officials must be served in specifically certified
cloud sites. Given a user id, we can resolve the user’s meta-information with the
provided IUserResolver. Let us assume this returns a user with French citizenship,
who is also a government official (denoted by a tag in the User instances). Let us also
assume the corresponding cloud site (represented with aCloudSite instance) is located
in Germany and the provider is AWS. We may also know that all AWS cloud sites
comply with the government certification in question. In this case, we should be able
to infer that the cloud site is eligible to serve the client.

This type of automated reasoning based on predefined facts and rules is a hallmark
application of rule-based engines and this is exactly howwe approach this problem. In
our implementation of the Admission Controller we use the Drools rules management
system [45]. Drools uses the ReteOO algorithm, which implements well-known per-
formance enhancements of the famous Rete algorithm. Drools uses a domain-specific
language called Drools Rule Language (DRL) to define rules and facts. It integrates
well with existing Java code and facts in DRL are just Java objects. This allows the
declarative programming approach prescribed by DRL to also make use of the poly-
morphic features of Java. For example, if a rule is activated for any fact of a specific
Java type, it will also be activated for any instance of its subtypes. We will make use
of this feature to allow more flexible specification of regulatory rules.

Specifying compliance rules in a declarative DRL form rather than procedurally is
beneficial in terms of maintainability and flexibility. However, this still needs to be
done on a per-application basis. Many applications would share common rules and
facts—e.g. about which countries participate in the US-EU Safe Harbour agreement.
It would be beneficial if we specify such common rules so they can be reused by
applications. Hence, we divide the rules in 3 layers/modules depicted in Fig. 5. The
rules from each layer can only use the roles from the layers below.

In Layer 1 we model the concepts of reflexive, symmetric, and transitive binary
relations. We introduce three Java interfaces to represent these concepts. They all
extend from a common IRelation interface which has a left and a right hand side (lhs
and rhs) objects—see Fig. 6. Layer 1 includes DRL rules, which produce new IRela-
tion instances in the Drools working memory based on the reflexive, symmetric and
transitive algebraic rules. For example, if we have an instance of ISymmetricRelation,
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Fig. 5 Layers of DRL rules.
Each layer can use the rules
from the underneath layers

T: String

ContainsJurisdiction

T

«Interface»
IRelation

getLhs() : T
getRhs() : T

T

«Interface»
ITransitiveRelation

T

«Interface»
ISymmetricRelation

T

«Interface»
IReflexiveRelation

Fig. 6 Interfaces for the relations from Layer 1 and the Contains Jurisdiction relation from Layer 2

whose lhs = a and rhs = b, the respective rule in Layer 1 will be activated and will
insert in working memory a relation of the same type, whose lhs = b and rhs = a.

To illustrate how this is useful, let us consider how we can implement a relation
of jurisdictional containment. We can define a relation ContainsJurisdiction, which
implements IReflexiveRelation and ITransitiveRelation. Then we can use it to specify
the facts that Germany is within the Eurozone, which in turn is in the EU. The rules
in Layer 1 will automatically fire and populate the Drools working memory with
the appropriate ContainsJurisdiction instances denoting that Germany is in the EU
and itself. This simplifies significantly the development of rules using jurisdictions.
Figure 6 depicts the aforementioned interfaces and class.

In Layer 2, we specify common facts and rules about the regulatory domain and
cloud providers. In fact the aforementioned ContainsJurisdiction relation is defined
and extensively used in Layer 2, to specifywhich countries are in the Eurozone, EUand
The European Economic Area (EEA), which countries have signed the US-EU Safe
Harbour agreement and so on. In essence, this layer contains the expert knowledge
about the regulatory domain in the form of DRL rules.

Finally, using the domain rules fromLayer 2we can implement the actual admission
control policies in Layer 3, which are application specific. We define a class Admis-
sionDenied, which has a single property—the unique user id. When the Admission
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Controller starts the DRL rules, it inserts into the working memory the meta-
information of one or more users and the cloud site as instances of the aforementioned
types.Based on this, the rules fromLayer 3, should insert anAdmissionDenied instance
in working memory for every user who is not eligible for the specified cloud site.

1 rule "US government officials − in US only"
2 when
3 User($id: userId, tags contains "US−GOV")
4 CloudSite($lc : locationCode)
5 not(ContainsJurisdiction(lhs == "USA", rhs == $lc))
6 then
7 insert (new AdmissionDenied($id));
8 end

Listing 1 Sample Layer 3 admission control rule

As an example, Listing 1 demonstrates how we can restrict the redirection of US
government official to cloud sites outside of the US. Government officials are recog-
nised by a tag in the respective User instance.

In Drools one can specify the salience of each rule. This is an integer used by the
Drools engine when deciding the order or rule execution. We give the rules in Layer
1 highest salience (200) and we give lower salience (100) to the rules from Layer 2.
The rules in Layer 3 get the lowest salience of 0. This causes the rules from the lower
layers to execute with higher priority (i.e. earlier if possible). Thus when the higher
layer rules are run the underlying knowledge base is already populated.

The logical separation of rules into layers helps in the change management as well.
The base rules from Layer 1 should not change for any applications. The rules from
Layer 2 should rarely change—for example, when a new country joins the EU, or
when new regulation is enforced. The rules from Layer 3 may change frequently and
are application specific. Drools allows developers to specify rules in separate files. We
use this feature to separate the layers in 3 different files. Application developers need
to provide only the file for Layer 3.

5 Performance evaluation

To evaluate our approachwe perform two experiments in a heterogeneousMulti-Cloud
environment. We employ the following cloud sites:

– AWS Region in Oregon, US;
– AWS Region in Northern California, US;
– AWS Region in Northern Virginia, US;
– AWS Region in São Paulo, Brasil;
– AWS Region in Dublin, Ireland;
– AWS Region in Frankfurt, Germany;
– AWS Region in Tokyo, Japan;
– AWS Region in Singapore;
– NeCTAR data centre in Perth, Australia;
– NeCTAR data centre in Melbourne, Australia.
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In both experiments, we deploy Admission Controllers and Entry Points in multiple
cloud sites around the world. Then we use other geographically distributed cloud
sites to emulate incoming users. We record multiple performance characteristics to
demonstrate the viability of our approach under strenuous load.

5.1 Experiment 1: large-scale deployment

The goal of our first experiment is to show that our workload distribution system (1)
adds negligible delay when users access the system, (2) honours all regulatory require-
ments and (3) can handle significant workloads without requiring a lot of resources.

In each of four different cloud sites we deploy an Entry Point and an Admission
Controller in a shared VM.We usem3.medium instances in the N. Virginia, Frankfurt
and TokyoAWS regions and am2.medium instance in theMelbourne data centre of the
NeCTARResearch Cloud. To emulate users from across the globe, we usem3.medium
instances provisioned in the Oregon, N. California, São Paulo, Dublin and Singapore
AWS regions and a m2.medium instance in the Western Australian site of NeCTAR
near Perth. Figure 7 depicts the locations we use for Experiment 1. All VMs run
Ubuntu 14.04 and we have increased their maximal open files and socket connection
limits, so they can handle more connections.

The first experiment has been conducted for the duration of 24 h. To test how the
system behaves under significant load, we emulate 2 users per second from each of the
6 cloud sites we use to represent clients. This amounts to more than 1million emulated
users during the experiment altogether. Each emulated user connects randomly to one
of the 4 Entry Points and provides a random user id. In the Entry Points, we need to
resolve this id to a User instance. We do so by implementing a custom IUserResolver
instance. Given a user id it creates a User instance by randomly assigning his/her
citizenship to one of the following countries: Germany, USA, Australia and Canada.
To every third user with US citizenship we assign the tag “US-GOV” denoting that

Fig. 7 Experiment 1: 4 cloud sites host the Entry Points and Admission Controllers; 6 cloud sites are used
to emulate incoming users
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Fig. 8 Dispatch times of users
to serving data cites, grouped by
location of the emulated users.
Mean values are denoted with a
rhombus

they are government officials. To every second user we assign the “PCI-DSS” tag.
The Payment Card Industry Data Security Standard (PCI DSS) formalises procedures
for reducing credit card frauds [38]. Tagging a user with “PCI-DSS” means they are
allowed to work with credit card data within the system.

We configure each Admission Controller with the geographical location and the
provider name of the respective cloud site. All AWS cloud sites are marked with the
“PCI-DSS” tag, as AWS is PCI DSS compliant [7]. The NeCTAR cloud sites are not
tagged as “PCI-DSS”, as it is lacking official compliance.

We configure theAdmissionControllerswith the following regulatory requirements
expressed as Layer 3 DRL rules:

– Users having access to credit card data (i.e. tagged with “PCI-DSS”) should be
served in PCI DSS compliant cloud sites.

– EU citizens should be served within the EU.
– US government officials should be served within the US.

Figure 8 shows the distributions of dispatch times of the emulated end users grouped
by their location. By “dispatch time” we denote the time from the user emitting a
request to an Entry Point until he/she is redirected to an appropriate cloud site—i.e.
the duration of the procedure depicted in Fig. 3. This delay is experienced just once,
before the user is redirected to the destination cloud site. Regardless of the user location
the mean and median dispatch times are around 2 s and the majority of values are less
than 3 s. The mean and median for the users from São Paulo are slightly higher (with
approximately 0.18 s) because of the higher latencies to all other cloud sites.

Table 1 lists the actual network latencies between the emulated clients and the cloud
sites. The best latencies are highlighted. These values are obtained by performing 50
measurements between each pair and then taking the median. Ideally, for a given user
our approach should prefer the cloud site with the lowest latency unless there are
specific regulatory requirements for him/her.
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Table 1 Network latencies
between clients and cloud sites
in milliseconds

The lowest latencies are
highlighted in bold

N.Virginia Frankfurt Melbourne Tokyo

Perth 137.0 180.0 20.0 124.0

Singapore 121.0 131.0 69.0 44.0

São Paulo 61.0 106.0 224.0 140.0

Oregon 38.0 73.0 88.0 45.0

N.Cal. 41.0 84.0 84.0 52.0

Dublin 39.0 11.0 159.0 108.0

Fig. 9 Number of users redirected to each cloud site grouped by location

Figure 9 shows the proportion of clients from each location dispatched to the differ-
ent cloud sites. As per Table 1 the cloud site in North Virginia offers the best latency to
the clients in São Paulo, Oregon and California, and thus 75 % of the users from these
locations are redirected there. The other 25% are redirected to Frankfurt in accordance
with the regulatory requirements, as they are German citizens.Most users fromDublin
are redirected to the Frankfurt site, except to those (approx. 8.3 %) who are tagged
with “US-GOV” and must be served in the US. Likewise, most users from Singapore
were redirected to Tokyo, except for EU citizens and US government officials.

Similarly, 25 % of the users from Perth were directed to Frankfurt, and 8.3 % to N.
Virginia in order to meet the aforementioned requirements. However, only half of the
rest were directed to the Melbourne site, although it offers the lowest latency. This is
because the NeCTAR cloud is not PCI DSS compliant and thus users working with
credit cards have to be served elsewhere. Such users are directed to the Tokyo AWS
cloud site, as it offers the lowest latency from all PCI DSS compliant sites.
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Fig. 10 Experiment 2: number of users directed to each cloud site. In this experiment, the Admission
Controllers are one-by-one switched off for 10 min and then started again for 10 min. The first Admission
Controller to be shut down is the one in North Virginia

5.2 Experiment 2: fault tolerance

The goal of our second experiment is to showhow the systembehaveswhen a cloud site
fails. In this experiment we deploy a single Entry Point in a separate m3.medium VM
in the São Paulo AWS site. Also, we deploy two Admission Controllers inm3.medium
instances in the N. Virginia and Frankfurt sites. Alike the previous experiment we
emulate users from VMs in the Dublin and Oregon data centres. The frequencies with
which users are started is the same as in Experiment 1. However, in this experiment
we do not configure any regulatory rules—our goal is to test failure tolerance. The
length of Experiment 2 is 3 h.

To simulate failure every 20 min, we switch off one of the Admission Controllers
for 10 min, after which we start it again. We switch off the two Admission Controllers
in turns. Figure 10 shows the proportion of the overall clients directed to each cloud
site during the 10-min periods. As per Table 1 the Frankfurt site offers better latency
for users in Dublin and the N.Virginia site for those in Oregon. Hence, during the 10-
min periods when both Admission Controllerswere present the two cloud sites receive
about equal number of users, as we emulate equal number of users from Oregon and
Dublin. During the periods when one of the Admission Controllers is not present all
users are directed to the other one.

From Fig. 10 we can see that during the 10-min periods after an Admission Con-
troller is started again it can receive slightly less than the expected 50 % of users. In
our experiments we have configured the Entry Points to check if disconnected Admis-
sion Controllers have come back online every 1min—this is a configurable parameter.
Hence, the Entry Point can be oblivious that an Admission Controller is back online

123



N. Grozev, R. Buyya

Fig. 11 Experiment 2: dispatch times over time

for up to 1 min, causing all incoming users to be redirected to the alternative cloud
site.

Figure 11 depicts the dispatch time during each 30 min of Experiment 2. It shows
that throughout the experiment the mean and median dispatch times remain below
3 s. We have configured the Entry Point to connect to the Admission Controllers with
a timeout of 10 s. This parameter is configurable as well. If the connection fails the
respective cloud site is marked as failed, and is not used again until it reappears back
online, as explained previously. Hence, users arriving at the Entry Point immediately
after an Admission Controller has been shut down can experience a dispatch delay of
up to 14 s, which is nearly 10 s more than the third quartile. This is represented by the
outliers in Fig. 11.

6 Conclusions and future work

In thiswork,we have introduced an approach for distributing end users of an interactive
web application acrossmultiple cloud sites.Wedescribed a rule-based domain-specific
model, which allows regulatory requirements to be specified withminimal efforts. Our
system ensures that these requirements are honoured. We provide extension points or
“hooks” that allow developers to use their custom authentication and user details
resolution mechanisms. Furthermore, our approach estimates the potential network
latencies to each cloud sites and chooses accordingly. We deployed our prototype in
multiple cloud sites worldwide and carried extensive experiments showing that indeed
it is fault tolerant, has negligible performance overhead, minimises latency, and meets
the stated regulatory requirements.
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In the future, we will work on incorporating cost and performance knowledge into
our cloud selection method. Furthermore, we will investigate how to convert security
policies expressed in standards likeOASISXACMandEPAL toDRL regulatory rules.
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