
IEEE Communications Magazine • March 201580 0163-6804/15/$25.00 © 2015 IEEE

Huber Flores and Satish
Srirama are with the Uni-
versity of Tartu, Estonia.

Pan Hui is with the Hong
Kong University of Sci-
ence and Technology. He
is also affiliated with
Telekom Innovation Lab-
oratories and Aalto Uni-
versity.

Sasu Tarkoma is with the
University of Helsinki.

Yong Li is with Tsinghua
University.

Rajkumar Buyya is with
the University of Mel-
bourne.

INTRODUCTION

Mobile and cloud computing convergence is
shifting the way in which telecommunication
architectures are designed and implemented [1].
In the presence of network connectivity to bind
mobile and cloud resources, the potential of
code offloading lies in the ability to sustain
power-hungry applications by releasing the ener-
gy consuming resources of the smartphone from
intensive processing. Multiple research works
have proposed different code offloading strate-
gies to empower smartphone apps with cloud-
based resources [5–9]. However, the utilization
of code offloading is debatable in practice as the
approach has been demonstrated to be ineffec-
tive in increasing the remaining battery life of
mobile devices [2].

The effectiveness of an offloading system is
determined by its ability to infer where the exe-
cution of code (local or remote) represents less
computational effort for the mobile, such that by
deciding what, when, where, and how to offload
correctly, the device obtains a benefit. Code
offloading is productive when the device saves
energy without degrading the normal response
time of the apps, and counterproductive when
the device wastes more energy executing a com-
putational task remotely rather than locally. Cur-
rent works offer partial solutions that ignore the
majority of these considerations in the inference
process. Most of the proposals demonstrate the

utilization of code offloading in a controlled
environment by connecting to nearby low-latency
servers (e.g., lab setups) and inducing the code
to become resource intensive during runtime [3]
(e.g., passing an input that requires lot of pro-
cessing). As a result, in practice, in most cases,
computational offloading is counterproductive
for the device [2, 7]. Thus, at this point, the
main questions about the strategy are can code
offloading be utilized in practice? and what are the
issues that prevent code offloading from yielding a
positive result?

This article takes a systemic perspective to
answer these questions by analyzing in detail the
components that form an offloading architec-
ture. The work highlights the drawbacks of code
offloading architecture and proposes solutions
that exploit intrinsic cloud features (e.g., massive
data analysis) in order to overcome the issues.
Unlike other offloading architectures that focus
on specific issues in the offloading process, such
as what or when, the aim of our proposal is to
generalize an offloading service that can esti-
mate the most effective offloading outcome for
the device by focusing on multiple perspectives
at once (what, when, where, how, etc.) Based on
the solutions, we present and evaluate use cases,
which give insights about how the computational
offloading process can be managed to accelerate
the response time of mobile applications without
inducing extra overhead in the device, and to
reduce the offloading traffic of computational
requests. Moreover, the work also emphasizes
the importance of the cloud beyond the ordinary
provisioning of services.

The rest of the article is structured as follows.
We describe the essential elements and function-
ality of an offloading architecture. We describe
an overview of the obstacles that inhibit the
adoption of code offloading. We present the
solutions we envision to potentiate the applica-
bility of the approach, and finally, we evaluate
how much gain can be obtained by leveraging
the proposed solutions.

BACKGROUND
Code offloading has evolved considerably from
its initial notion of cyber-foraging [1]. Table 1
describes most relevant proposals in code
offloading. The table compares the key features
of the offloading architectures: the main goal,

ABSTRACT

The emerging mobile cloud has expanded the
horizon of application development and deploy-
ment with techniques such as code offloading.
While offloading has been widely considered for
saving energy and increasing responsiveness of
mobile devices, the technique still faces many
challenges pertaining to practical usage. In this
article, we adopt a systemic approach for analyz-
ing the components of a generic code offloading
architecture. Based on theoretical and experi-
mental analysis, we identify the key limitations
for code offloading in practice and then propose
solutions to mitigate these limitations. We devel-
op a generic architecture to evaluate the pro-
posed solutions. The results provide insights
regarding the evolution and deployment of code
offloading.

MOBILE CLOUD COMPUTING

Huber Flores, Pan Hui, Sasu Tarkoma, Yong Li, Satish Srirama, and Rajkumar Buyya

Mobile Code Offloading:
From Concept to Practice and Beyond

FLORES_LAYOUT.qxp_Author Layout 3/3/15 1:16 PM Page 80

IEEE Communications Magazine • March 2015 81

how code is profiled, the adaptation context, the
characterization of the offloading process, and
how code offloading is exploited from the mobile
and cloud perspectives. From the table, the main
goal defines the actual benefit of using the asso-
ciated framework. The mechanism used to pro-
file code provides information about the
flexibility and integrability of the system. The
adaptation context specifies the considerations
taken by the system to offload. The characteriza-
tion means whether the offloading system has a
priori knowledge or not about the effects of
code offloading for the components of the sys-
tem. Finally, the exploitation highlights the
mobile benefits obtained from going cloud-
aware, and the features of the cloud that are
leveraged to achieve those benefits. Moreover,
we can also observe that currently, most of the
effort has been focused on providing the device
with an offloading logic based on its local con-
text. To gain an understanding of the actual ben-
efits and functionality of code offloading, we
described the key properties of an offloading
architecture.

CODE OFFLOADING
Offloading is the opportunistic process that
relies on remote servers to execute code delegat-
ed by a mobile device. In this process, the mobile
is granted the local decision logic to detect
resource-intensive portions of code, such that in
the presence of network communication, the
mobile can estimate where the execution of code
will require less computational effort (remote or
local), which leads the device to save energy [9].
The evaluation of the code requires considera-
tion of different aspects, for instance, what code
to offload (e.g., method name); when to offload
(e.g., round-trip times thresholds); where to
offload (e.g., type of cloud server); how to offload
(e.g., split code into n processes); and so on.
Most of the proposals in the field do not cover
all these aspects; thus, we describe a basic

offloading architecture, which is shown in Fig. 1.
The architecture consists of two parts, a client
and a server. The client is composed of a code
profiler, system profilers, and a decision engine.
The server contains the surrogate platform to
invoke and execute code. Each component is
described below.

The code profiler is in charge of determining
what to offload. Thus, portions (C) of code —
Method, Thread, or Class — are identified as
offloading candidates (OCs). Code partitioning
requires the selection of the code to be offload-
ed. Code can be partitioned through a diversity
of strategies; for instance, a software developer
can explicitly select the code that should be
offloaded using special static annotations [5]
(e.g., @Offloadable, @Remote). Other strategies

Figure 1. A code offloading architecture: components and functionalities.

Synchronization
point

Synchronization
point

Local
processing

Server

OC
Remote

processing

Transfer
ratio

C

OC

public class Foo {

 void method1(){
 //...
 }

 void method2(){
 //Offloading candidate
 }

 void method3(){
 //...
 }

 main(){
 method1();
 method2();
 method3();
 }
}

C

Execution
flow

Transfer
ratio

Invocation

Table 1. Code offloading approaches from the mobile and cloud perspectives.

Code offloading strategies Mobile perspective Cloud perspective

Framework Main goal Code
profiler

Offloading
adaptation

context

Offloading
characterization Applications effect Features exploited

(Besides server)

MAUI [5] Energy saving Manual
annotations

Mobile
(what, when) None Low resource consumption,

Increased performance None

CloneCloud
[6]

Transparent
code migration

Automated
process

Mobile
(what, when) None Accelerate

responsiveness None

ThinkAir [8] Scalability Manual
annotations

Mobile + Cloud
(what, when,

how)
None Increased performance Dynamic allocation and

destruction of VMs

COMET [9]
Transparent

code migration
(DSM)

Automated
process

Mobile
(what, how) None Average speed gain

2.88× None

EMCO [10]
Energy saving,

Scalability
(Multi-tenancy)

Automated
process

Mobile + cloud
(what, when,
where, how)

Based on
historical

crowdsourcing
data

Based on context (Low
resource consumption,

increased responsiveness,
etc.)

Dynamic allocation and
destruction of VMs, Big

data processing,
Characterization-based

utility computing

FLORES_LAYOUT.qxp_Author Layout 3/3/15 1:16 PM Page 81

IEEE Communications Magazine • March 201582

analyze the code implicitly during runtime by an
automated mechanism [6]. Thus, once the appli-
cation is installed in the device, the mechanism
selects the code to be offloaded. In order to esti-
mate whether or not a portion of code is inten-
sive, the mechanism implements strategies such
as static analysis and history traces. Automated
mechanisms are preferable over static ones as
they can adapt the code to be executed in differ-
ent devices. Thus, automated mechanisms over-
come the problem of brute force development in
code offloading, which consists of adapting the
application every time it is installed in a differ-
ent device.

System profilers are responsible for monitor-
ing multiple parameters of the smartphone, such
as available bandwidth, data size to transmit, and
energy to execute the code. These parameters
influence when to offload to the cloud. Concep-
tually, the offloading process is optional, and
should take place when the effort required by
the mobile to execute the OC is lower in the
case of remote invocation than local execution.
Otherwise, offloading is not encouraged as
excessive amount of energy and time is con-
sumed in transmission of data to the cloud.

The decision engine is a reasoner that infers
when to offload to the cloud. The engine retrieves
the data obtained by the system and code profil-
ers, and applies certain logic over them (linear
programming, fuzzy logic, Markov chains, etc.)
such that the engine can measure whether or not
the handset obtains a concrete benefit from
offloading to the cloud. If the engine infers a
positive outcome, the mechanism to offload is
activated, and the code is invoked remotely; oth-
erwise, the code is executed locally. A mobile
offloads to the cloud in a transfer ratio that
depends on the size of the data and the available
bandwidth [4]. Usually, when code offloading is
counterproductive for the device, it is due to a
wrong inference process, which is inaccurate
based on the scope of observable parameters
that the system profilers can monitor [7].

The surrogate platform is the remote server
located in proximity of the device or in the
cloud, which contains the environment to exe-
cute the intermediate code sent by the mobile
(e.g., Android-x86). The remote invocation tends
to accelerate the execution of code as the pro-
cessing capabilities of the surrogate are higher
than those of most smartphones, which is trans-
lated into higher app responsiveness for the
mobile user.

CHALLENGES AND
TECHNICAL PROBLEMS

Computational offloading for smartphones has
not changed drastically from its core principles
[3]. However, the effectiveness of its implemen-
tation in practice shows it to be mostly unfavor-
able for the device outside controlled
environments. In fact, the utilization of code
offloading in real scenarios proves to be mostly
negative [7], which means that the device spends
more energy in the offloading process than the
actual energy that is saved. As a consequence,
the technique is far from being adopted in the

design of future mobile architectures. Our goal
is to highlight the challenges and obstacles in
deploying code offloading. The issues are
described below.

Inaccurate Code Profiling — Code profiling is
one of the most challenging problems in an
offloading system, as the code has non-determin-
istic behavior during runtime, which means that
it is difficult to estimate the running cost of a
piece of code considered for offloading. A por-
tion of code becomes intensive based on factors
[7] such as the user input that triggers the code,
type of device, execution environment, available
memory, and CPU. Moreover, once code is
selected as OC, it is also influenced by many
other parameters of the system that come from
multiple levels of granularity (e.g., communica-
tion latency, data size transferred). As a result,
code offloading suffers from a sensitive trade-off
that is difficult to evaluate; thus, code offloading
can be productive or counterproductive for the
device. Most of the proposals in the field are
unable to capture runtime properties of code,
which makes them ineffective in real scenarios.

Integration Complexity — The adaptation of
code offloading mechanisms within the mobile
development life cycle depends on how easily
the mechanisms are integrated and how effective
the approach is in releasing the device from
intensive processing. However, implementation
complexity does not necessarily correlate with
effective runtime usage. In fact, some of the
drawbacks that make code offloading fail are
introduced at development stages; for example,
in the case of code partitioning, which relies on
the expertise of the software developer, portions
of code are annotated statically, which may
cause unnecessary code offloading that drains
energy. Moreover, annotations can cause poor
flexibility to execute the app in different mobile
devices. Similarly, automated strategies are
shown to be ineffective and require major low-
level modifications in the core system of the
mobile platform, which may lead to privacy and
security issues.

Dynamic Configuration of the System —
Next generation mobile devices and the vast
computational choices in the cloud ecosystem
make the offloading process a complex task, as
depicted in Fig. 2a. Although savings in energy
can be achieved by releasing the device from
intensive processing, a computational offloading
request requires meeting the requirements of a
user’s satisfaction and experience, which is mea-
sured in terms of responsiveness of the app.
Consequently, in the offloading decision, a
smartphone has to consider not just potential
savings in energy, but also has to ensure that the
acceleration in the response time of the request
will not decrease. This is an evident issue as the
computational capabilities of the latest smart-
phones are comparable to some servers running
in the cloud. For instance, consider two devices,
Samsung Galaxy S (i9000) and Samsung Galaxy
S3 (i9300), and two Amazon instances, m1.xlarge
and c3.2xlarge. In terms of mobile application
performance, offloading intensive code from

Annotations can

cause poor flexibility

to execute the app

in different mobile

devices. Similarly,

automated strategies

are shown to be

ineffective and

require major low-

level modifications in

the core system of

the mobile platform,

which may lead to

privacy and security

issues.

FLORES_LAYOUT.qxp_Author Layout 3/3/15 1:16 PM Page 82

IEEE Communications Magazine • March 2015 83

i9000 to m1.xlarge increases the responsiveness
of a mobile application at comparable rates to
an i9300. However, offloading from i9300 to
m1.xlarge does not provide the same benefit.
Thus, to increase responsiveness it is necessary
to offload from i9300 to c3.2xlarge (refer to
results later). It is important to note, however,
that constantly increasing the capabilities of the
back-end does not always speed up the execution
of code exponentially, as in some cases, the exe-
cution of code depends on how the code is writ-
ten; for example, code is parallelizable for
execution into multiple CPU cores (parallel
offloading) or distribution into large-scale graph-
ics processing units (GPU offloading).

Offloading Scalability and Offloading as a
Service — Typically, in a code offloading sys-
tem, the code of a smartphone app must be
located in both the mobile and server as in a
remote invocation, a mobile sends to the server,
not the intermediate code, but the data to recon-
struct that intermediate representation such that
it can be executed. As a result, an offloading sys-
tem requires the surrogate to have a similar exe-
cution environment as the mobile. To counter
this problem, most of the offloading systems pro-
pose relying on the virtualization of the entire
mobile platform in a server (Android-x86, .Net
framework, etc.), which tends to constrain the
CPU resources and slows down performance.
The reason is that a mobile platform is not
developed for large-scale service provisioning.
As a result, offloading architectures are designed
to support one user at a time, in other words,
one server for each mobile [8, 11]. This restrains
the features of the cloud for multi-tenancy and
utility computing. Moreover, while a cloud ven-
dor provides the mechanisms to scale service-ori-
ented architectures (SOAs) [12] on demand,
such as Amazon autoscale, it does not provide
the means to adapt such strategies to a computa-
tional offloading system as the requirements to
support code offloading are different. The
requirements of a code offloading system are

based on the perception that the user has of the
response time of the app. The main insight is
that a request should increase or maintain a cer-
tain quality of responsiveness when the system
handles heavy loads of computational requests.
Thus, a code offloading request cannot be treat-
ed indifferently. The remote invocation of a
method has to be monitored under different sys-
tems’ throughput to determine the limits of the
system to not exceed the maximum number of
invocations that can be handled simultaneously
without losing quality of service. Furthermore,
from a cloud point of view, allocation of
resources cannot occur indiscriminately based on
the processing capabilities of the server as the
use of computational resources is associated with
a cost. Consequently, the need for policies for
code offloading systems are necessary consider-
ing both the mobile and the cloud.

MOBILE CROWDSOURCING FOR
COMPUTATIONAL OFFLOADING:

VISION

Despite the large amount of related works
[5–11], the instrumentalization of apps alone is
insufficient to adopt computational offloading in
the design of mobile systems that rely on the
cloud. Computational offloading in the wild can
impose more computational effort on the mobile
rather than reduce processing load [2]. In con-
trast to existing works, we overcome the limita-
tions of computational offloading in practice by
analyzing how a particular smartphone app
behaves in a community of devices [7]. Compu-
tational crowdsourcing strategies are viable solu-
tions to understand potential problems in
software applications with high accuracy (bugs,
leaks, etc.). The main advantage of relying on a
community is to capture the diversity of cases in
which an applications works. Our fine-grained
framework at code level is inspired by the coarse-
grained solution Carat [13], which attempts to

Figure 2. a) Characterization of the offloading process that considers smartphone diversity and the vast
cloud ecosystem; b) acceleration of a code offloading request via pre-cached results.

Surrogate

Speed up
responses

Pre-cached
responses

Surrogate
m1.large

Cloud ecosystem

Different devices

(a)

Common requests

(b)

Surrogate
m1.small

Surrogate
m1.micro

From a cloud point

of view, allocation of

resources cannot

occur indiscriminately

based on processing

capabilities of the

server as the use of

computational

resources is associat-

ed with a cost. Con-

sequently, the need

for policies for code

offloading systems

are necessary consid-

ering both the

mobile and the

cloud.

FLORES_LAYOUT.qxp_Author Layout 3/3/15 1:16 PM Page 83

IEEE Communications Magazine • March 201584

find energy bugs and hogs in mobile apps. Carat
analyzes big repositories of data that depict the
runtime behavior of a mobile app in order to
find anomalies that can turn into customized
recommendations for preferable configurations,
(e.g., apps to kill) the mobile user can apply to
make the battery life of his/her device longer

We believe that in the same way Carat detects
energy anomalies, it is possible to determine the
conditions or configurations for offloading
smartphone applications. For instance, by apply-
ing the Carat method [13] over a subset of data
(328,000 apps), we can get an idea about what
is a resource-intensive app. Based on this data,
which is collected in a real life deployment, we
develop several case studies to motivate the via-
bility and applicability of our approach. The sub-
set contains for each app the expected
percentage of energy drain. The Carat method
consists of determining the energy drain distri-
bution of a particular app, and then comparing it
with the average energy drain distribution of
other apps running in the device. The key insight
of the method is to determine the possible over-
lap between application energy distributions in
order to detect anomalies in application energy
usage.

By analyzing apps’ categories and specific
purposes, we develop four case studies, which

consist of face manipulation, games, puzzles, and
chess. Figure 3 shows the results of the case
studies. For each case, we extract a group from
the subset of apps, where each app in a group is
different from the rest. The four groups consist
of about 550 face manipulation apps, about 7805
game apps, about 717 puzzle apps, and about
166 chess apps. Each group is compared to the
average energy drain of the subset, which
excludes its energy drain. From the results, we
can observe that around 43.84 percent, 44.56
percent, 42.75 percent, and 33 percent of apps
implement computational operations that
require higher energy drain than normal, which
is a significant number of apps. As consequence,
computational offloading is required (e.g., cus-
tomized alarm) to overcome the extra overhead
introduced by the apps when showing resource-
intensive behavior.

Generally speaking, higher granularity data is
able to provide insights about the right condi-
tions of these apps to offload to the cloud. How-
ever, beyond equipping the apps with
computational offloading, this requires the
mechanisms to be instrumentalized with the abil-
ity to record their own local/remote execution,
such that we can capture more specific details
about what induces the code to become
resource-intensive and the runtime behavior of

Figure 3. Smartphone apps that depict higher energy drain.

Battery drain (%)

(a)

(0,0.001]

4.05

0

Pe
rc

en
ta

ge
 o

f f
ac

e
m

an
ip

ul
at

io
n

ap
ps

10

15

20

25

30
Normal energy drain
Higher energy drain

(0.001,0.002]

16.09

(0.002,0.003]

10.72

(0.003,0.004]

25.36

(0.004,0.005]

15.27

(0.005,0.006]

8.0

(0.006,0.007]

5.18

(0.007,0.008]

4.75

(0.008,0.009]

2.27

(0.009,0.01]

1.27

(0.01,+1]

7.09

Battery drain (%)

(b)

(0,0.001]

3.29

0

5

0

Pe
rc

en
ta

ge
 o

f g
am

e
ap

ps

10

15

20

25

30
Normal energy drain
Higher energy drain

(0.001,0.002]

6.14

(0.002,0.003]

19.60

(0.003,0.004]

26.36

(0.004,0.005]

16.09

(0.005,0.006]

8.52

(0.006,0.007]

4.39

(0.007,0.008]

3.68

(0.008,0.009]

2.19

(0.009,0.01]

1.78

(0.01,+1]

7.91

Battery drain (%)

(c)

(0,0.001]

5.99

0

5

0

Pe
rc

en
ta

ge
 o

f p
uz

zl
e

ap
ps

10

15

20

25

30
Normal energy drain
Higher energy drain

(0.001,0.002]

10.18

(0.002,0.003]

21.51

(0.003,0.004]

19.57

(0.004,0.005]

16.0

(0.005,0.006]

7.39

(0.006,0.007]

3.76

(0.007,0.008]

2.26

(0.008,0.009]

0.83

(0.009,0.01]

0.97

(0.01,+1]

11.54

Battery drain (%)

(d)

(0,0.001]

6.02

0

5

0

Pe
rc

en
ta

ge
 o

f c
he

ss
 a

pp
s

10

15

20

25

30
Normal energy drain
Higher energy drain

(0.001,0.002]

9.03

(0.002,0.003]

27.10

(0.003,0.004]

24.09

(0.004,0.005]

9.63

(0.005,0.006]

6.62

(0.006,0.007]

5.42

(0.007,0.008]

2.40

(0.008,0.009]

1.20

(0.009,0.01]

0.60
(0.01,+1]

7.83

FLORES_LAYOUT.qxp_Author Layout 3/3/15 1:16 PM Page 84

IEEE Communications Magazine • March 2015 85

the code in the device/surrogate. Thus, it is rea-
sonable that the characterization of the compu-
tational offloading process can be modeled
through a community of devices, such that by
taking advantage of the huge amount of devices
that connect to cloud, it can be possible to foster
a more effective offloading strategy for smart-
phones.

Implicit crowdsourcing that does not need
incentives, but rather is extrapolated from appli-
cation usage, can be used to collect history traces
of the computational offloading process across
the entire system. Traces can be analyzed using
cloud analysis features to extract the characteri-
zation. The purpose of the characterization is to
define the effect of remote code execution in
different conditions and configurations, where a
condition depicts the interaction aspects of the
user with the mobile (e.g., available memory and
CPU, input variability), and a configuration rep-
resents the state of the components of the sys-
tems (bandwidth size, capacity of the
cloud-surrogate, performance metrics of the
mobile/back-end, etc.). In this manner, we can
find out the most accurate configurations (what
to offload) for a specific application in a particu-
lar device based on multiple criteria, such as
type of surrogate (where to offload) and condi-
tions of the system (when to offload). Addition-
ally, it can be possible to determine offloading
plans (how to offload) that enable the device to
schedule code offloading operations (e.g., com-
putational parallelization of code).

Furthermore, the characterization can also be
utilized to identify reusable results. A reusable
result is a portion of code that is commonly
offloaded by multiple devices. These results can
be cached in the cloud to respond to duplicate
offloading requests from other devices. Logical-
ly, this accelerates the offloading process as the
surrogate avoids the invocation time of the
request. We envision that as part of the charac-
terization process, pre-cached functionality from
the entire mobile application can be requested
on demand, as depicted in Fig. 2b. In this man-
ner, our cloud assistance approach delivers a sys-
tem in which the cloud is the expert, and mobile
devices ask the cloud for its expertise.

EVALUATION AND RESULTS
The binding between computational cloud ser-
vices (Amazon EC2, Microsoft Azure, etc.) and
smartphones is proven to be feasible with the
latest technologies [5, 6, 9] (Android, Windows
Phone, etc.), mostly because virtualization tech-
nologies and their synchronization primitives
enable mobiles’ transparent migration and
remote invocation of code. In this section, we
evaluate our ideas about equipping the offload-
ing architectures with cloud assistance (analytics
and stratified features) and support on demand
(multi-tenancy). We conduct experiments using
our own code offloading framework [10]. Our
goal is to demonstrate the most significant
insights about how code offloading is enhanced
with data captured by a community of devices.
In the evaluation, as clients we used a Samsung
Galaxy S3 (i9300), Samsung Galaxy S2 (i9100),
and Samsung Nexus (i9250), and as a surrogate;

we used a nearby local computer (64-bit, 2.3
GHz Intel® Core™, 8 GB of memory), general-
purpose servers (instances m1.small, m1.medi-
um, m1.large, m1.xlarge), and a compute
optimize instance (c3.2xlarge) from Amazon
EC2.1 To measure the energy consumed by the
mobile in our offloading experiments we relied
on the Mobile Device Power Monitor.2

CODE OFFLOADING FRAMEWORK
Our framework enables the mobile applications
to offload code at the method level using Java
reflection. The framework follows a client-server
model, where the client is located at the mobile
and the server is located in the cloud. One
mobile subscribes to one server, and a server can
handle multiple devices. The framework is
equipped with the mechanisms to record the
offloading process at different levels of the
architecture, such that offloading traces can be
gathered from the devices that connect to the
cloud. The mobile implements an automated
mechanism that profiles code based on the infor-
mation defined in a JSON schema. The schema
is created at the cloud by analyzing the traces of
the offloading process and defines the code to
be offloaded from different points of view (e.g.,
what, when, where, and how). Each point
describes the attributes a smartphone app must
meet in order to offload; for instance, what
defines the name of the candidate methods,
when describes the informational thresholds the
device must detect (e.g., latency), where defines
the type of server in which the code has to be
offloaded (e.g., server of type m1.small), and
how introduces an execution plan for the code
(e.g., parallelize the code into n processes).
Additionally, other points of view can be intro-
duced (e.g., user’s location). However, this
requires exploitation of code execution patterns
from the community (e.g., pre-cache results
based on location).

The characterization is sent to the mobile
asynchronously using push notification technolo-
gies. Evidently, the use of crowdsourcing also
implies solving the scalability problem of the
cloud surrogate. Since its only purpose is to exe-
cute code, we think that the virtualization of the
entire mobile platform in a server is unnecessary
as it wastes CPU resources, and is counterpro-
ductive as it slows down performance. Thus, in
our system, we avoid such virtualization
approach, and instead rely on a low-level com-
piler, which was extracted from the mobile plat-
form (Android) and built straight in the host
operating system of the server. The compiler is
built by downloading and compiling the source
code of Android Open Source Project (AOSP)3

over the server to target an x86 server architec-
ture. In this manner, the framework takes advan-
tage of the server at full capacity, which means
that the surrogate is released from the limita-
tions imposed by the mobile operating system,
such as activating multiple instances from the
same , and executing multiple applications con-
currently, among others.

Furthermore, our framework implements an
auto scaling mechanism that allows the server to
scale horizontally in the cloud. Figure 4 depicts
how the scaling process occurs. The framework

1

http://aws.amazon.com/ec
2/instance-types/

2

http://www.msoon.com/L
abEquipment/Power-
Monitor/

3

http://source.android.com/

We envision that as

a part of the charac-

terization process,

pre-cached function-

ality from the entire

mobile application

can be requested on

demand. In this

manner, our cloud

assistance approach

delivers a system

where the cloud is

the expert and

mobile devices ask

the cloud for its

expertise.

FLORES_LAYOUT.qxp_Author Layout 3/3/15 1:16 PM Page 85

IEEE Communications Magazine • March 201586

implements a performance-based mechanism
that monitors the utilization of CPU of the serv-
er, such that when a server is handling multiple
offloading requests (1) and the CPU utilization
is too high for method invocation (2), another
server is created (3). In this process, the load of
the subscribers is split between the available
servers (4). The servers are in charge of updat-
ing the information of their subscribers via push
notification.

RESULTS
To demonstrate that the analytic properties of
the cloud beyond service provisioning enhance
the offloading process, we develop a use case
based on the results of puzzle apps presented in
a previous section and analyze the effects of
offloading an NQueens algorithm from the
smartphone to cloud. The aim of the algorithm
is to calculate how to place n queens on an n ×
n chessboard. It uses backtracking with pruning
to calculate all the solutions. The motivation of
using this algorithm lies in its inherent character-
istics to turn into a resource-intensive operation
based on a normal user’s interaction (play time).
Definitely, we could rely on other uses cases,
such as image or video processing (e.g., face
recognition), to strongly emphasize the need for
going cloud-aware. However, we believe that the
applicability of code offloading beyond obvious
use cases is possible, but it requires a priori
knowledge about the possible executions of a
mobile application. Of course, the knowledge
should cover the effect of local and remote exe-
cution to assess multiple trade-offs.

Figure 5a shows the execution of NQueens
with n = 13 in various cases, locally and remote-
ly. Under the assumption that the same code can
be offloaded multiple times by a smartphone
app running in a particular or different devices,

a code offloading request can be generic enough,
such that its result can be reused in future invo-
cations by other devices. In other words, the
cloud can allocate an extended cache to store
reusable results. We assumed that the NQueens
is offloaded multiple times by a crowd of i9300,
such that our framework identifies the request as
a common offloading operation. A computation-
al task offloaded to the cloud is serializable.
Thus, it is possible to calculate for each request
a MessageDigest key based on a standard check-
sum (e.g., a SHA-1 checksum) in order to
uniquely identify each request. By collecting and
clustering all the checksums of the requests
using DBSCAN, it is able to find all the generic
requests offloaded by a community of devices.
By this approach, the result of a previous remote
method invocation is pre-cached in the cloud.
The diagram also shows the total offloading time
of the pre-cached result. Based on the diagram,
we can observe that the offloading process
obtains further acceleration as the invocation
time in the server is avoided. Arguably, the
offloading result could be stored temporally in
the cache of the device. However, the limited
space of the cache in the device is unsuitable for
long-term reuse. Clearly, the cache can be
increased, but a cache that is too large can cause
out-of-memory exceptions and leave the mobile
application with little memory to work. In paral-
lel, Fig. 5b shows the energy consumed by the
mobile device in each of the previous cases.
Since the acceleration of the offloading process
influences the effort required by the mobile to
execute the code, the faster the time to execute
the code, the less computational effort is
required to maintain an active communication
channel to remote resources. Of course, this is
certain when the code invocation requires a long
execution time.

Finally, Fig. 5a also compares how the algo-
rithm is processed by different smartphones and
multiple servers of the cloud ecosystem in terms
of response time. The diagram includes the
communication latency, invocation, and syn-
chronization time of the code. From the dia-
gram, we can see that the latest mobile
technologies are computationally comparable
with some servers in Amazon’s cloud such as
m1.large and m1.xlarge. Moreover, we can visu-
alize that the utility computing features of the
cloud are critical in the decision of where to
offload. While the latency in communication
cannot be controlled, the total time of the invo-
cation can decrease by adjusting the trade-off
between utilization price and computational
capabilities of the server. As a consequence, the
characterization of an offloading operation is
associated with multiple levels of enhancement.
In this case, i9300 should offload smartly to
m1.xlarge or c3.2xlarge to obtain maximum ben-
efits. Clearly, the characterization is not obvious
for the devices or the architecture in general.
The characterization is a process computational-
ly exhaustive and long-term for a single device,
and to an even greater extent if we consider
specific mobile applications. Thus, crowdsourc-
ing can be utilized to capture information that
can be transformed into knowledge to assist in
the offloading process.

Figure 4. Representation of a cloud-based surrogate supporting multi-ten-
ancy for code offloading.

Push
notification

Code
offloading

(1) (2) (4) (3)

Surrogate Surrogate
(clone)

FLORES_LAYOUT.qxp_Author Layout 3/3/15 1:16 PM Page 86

IEEE Communications Magazine • March 2015 87

DISCUSSION

As with any other crowdsourcing solution, our
strategy becomes gradually more effective as
data is being collected to understand the offload-
ing process for a particular mobile application.
However, initially, the advantages of our frame-
work lie in the ability to consider many parame-
ters from different perspectives in the inference
process that determines when to offload. Once
cloud assistance is available, the advantages of
our framework take place, such that a computa-
tional request can speed up the performance of
a smartphone app up to 10×, and up to 30×
using pre-cached functionality. This acceleration
is variable as it is proportional to the actual time
required to execute the computational task. We
believe that the assistance in the offloading pro-
cess can be improved further by analyzing differ-
ent aspects of the architecture at multiple levels
of granularity [13]. The benchmarking (support
for multi-tenancy) of the framework is left as
future work since it cannot be shown with simple
insights, but instead requires large-scale detailed
analysis.

CONCLUSIONS AND
FUTURE DIRECTIONS

The bridging of the mobile and the cloud has led
to rethinking the binding mechanisms that
enable the cloud to be exploited for the benefit
of the handset. Code offloading is a key tech-
nique in augmenting the computational capabili-
ties available for mobile applications with elastic
cloud resources. However, the sustainability of
the technique in practice is an open issue. In this
article, we explore the challenges for code
offloading from a systemic point of view and
identify the key limitations that prevent the
adoption of code offloading. We evaluate a
number of proposed design strategies to over-
come these limitations by using our own code
offloading framework. The source code used in
the experiments is available as open source in

GitHub.4 Our study highlights new directions for
the design of future mobile architectures sup-
ported by cloud computing. Essentially, our work
proposes the use of data analytics over offload-
ing history captured by a community of devices
in order to enrich the context of the device to
offload to the cloud without inducing a counter-
productive outcome for the mobile. Moreover,
data analytics can also empower the offloading
architectures with adaptive features that respond
to the behavior of code during runtime, such as
quality of experience based on code acceleration
in different cloud servers, pre-cache functionality
of the apps, auto scaling according to code exe-
cution, and so on.

ACKNOWLEDGMENT

We want to thank to Eemil Lagerspetz for his
valuable assistance and suggestions. The authors
also thank the anonymous reviewers for their
insightful comments. This research was support-
ed by European Social Fund's Doctoral Studies
and Internationalization Programme DoRa,
which is carried out by Foundation Archimedes.

REFERENCES
[1] M. Satyanarayanan et al., “The Case for Vm-Based

Cloudlets in Mobile Computing,” IEEE Pervasive Com-
puting, vol. 8, no. 4, 2009, , pp. 14–23.

[2] M. V. Barbera et al., “Mobile Offloading in the Wild: Find-
ings and Lessons Learned through a Real-Life Experiment
with a New Cloud-Aware System,” Proc. IEEE INFOCOM
2014, Toronto, Canada, Apr. 27–May 2, 2014.

[3] P. Bahl et al., “Advancing the State of Mobile Cloud
Computing,” Proc. ACM MobiSys Workshop 2012, Low
Wood Bay, Lake District, U.K., June 25–29, 2012.

[4] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile
Users: Can Offloading Computation Save Energy?,”
Comp. Mag. vol. 43, no. 4, 2010, pp. 51–56.

[5] E. Cuervo et al., “Maui: Making Smartphones Last
Longer with Code Offload,” Proc. ACM MobiSys 2010,
San Francisco, CA, June 15–18, 2010.

[6] B.-G. Chun et al., “Clonecloud: Elastic Execution
between Mobile Device and Cloud,” Proc. ACM EuroSys
2011, Salzburg, Austria, Apr. 10–13, 2011.

[7] H. Flores and S. Srirama, “Mobile Code Offloading: Should
It Be a Local Decision or Global Inference?,” Proc. ACM
MobiSys 2013, Taipei, Taiwan, June 25–28, 2013.

Figure 5. a) Acceleration gains that can be achieved by caching offloading results in terms of response time; b) energy consumed
in each offloading case (local, remote, and pre-cached).

(a)

Local(i9300)

5

To
ta

l e
xe

cu
tio

n
tim

e
(s

) 10
15

25

45

Local(i9100)

Local(i9250)

m1.small

m1.medium

m1.large

m1.xlarge

c3.2xlarge

Pre-cached

Nearby server

(b)

Local(i9300)

10

0.1

En
er

gy
 (J

)

1

100

1000

10,000

Local(i9100)

Local(i9250)

m1.small

m1.medium

m1.large

m1.xlarge

c3.2xlarge

Pre-cached

Nearby server

Communication latency
Invocation+sync

4 https://github.com/
huberflores/NQueen-
sCodeOffloading

FLORES_LAYOUT.qxp_Author Layout 3/3/15 1:16 PM Page 87

IEEE Communications Magazine • March 201588

[8] S. Kosta et al., “Thinkair: Dynamic Resource Allocation
and Parallel Execution in the Cloud for Mobile Code
Offloading,” Proc. IEEE INFOCOM, Orlando, FL, Mar.
25–30, 2012.

[9] M. S. Gordon et al., “Comet: Code Offload by Migrat-
ing Execution Transparently,” Proc. USENIX 2012,
Boston, MA, June 13–15, 2012.

[10] H. Flores and S. Srirama, “Adaptive Code Offloading
for Mobile Cloud Applications: Exploiting Fuzzy Sets
and Evidence-Based Learning,” Proc. ACM MobiSys
Wksp. 2013, Taipei, Taiwan, June 25–28, 2013.

[11] C. Shi et al., “Cosmos: Computation Offloading as a
Service for Mobile Devices,” Proc. ACM MobiHoc 2014,
Philadelphia, PA, Aug. 11–14, 2014.

[12] H. Flores and S. N. Srirama, “Mobile cloud Middleware,” J.
Systems and Software, vol. 92, 2014, pp. 82–94.

[13] A. J. Oliner et al., “Carat: Collaborative Energy Diagno-
sis for Mobile Devices,” Proc. ACM Sensys 2013, Rome,
Italy, Nov. 11–14, 2013.

BIOGRAPHIES
HUBER FLORES [S] (huber@ut.ee) is currently a Ph.D student
at the Faculty of Mathematics and Computer Science, Uni-
versity of Tartu. He received his B.Eng. in computer science
from the University of San Carlos of Guatemala and his
M.Sc. in software engineering from a combined program
between the University of Tartu and Tallinn University of
Technology, Estonia. He is also a Student Member of ACM
(SIGMOBILE). His major research interests include mobile
offloading, mobile middleware architectures, and mobile
cloud computing.

PAN HUI (panhui@cse.ust.hk) received his Ph.D. degree
from the Computer Laboratory, University of Cambridge,
and earned both his M.Phil. and B.Eng. from the Depart-
ment of Electrical and Electronic Engineering, University of
Hong Kong. He is currently a faculty member of the
Department of Computer Science and Engineering at the
Hong Kong University of Science and Technology, where he
directs the HKUST-DT System and Media Lab. He also
serves as a Distinguished Scientist of Telekom Innovation
Laboratories (T-labs) Germany and an adjunct professor of
social computing and networking at Aalto University, Fin-
land. Before returning to Hong Kong, he spent several
years in T-labs and Intel Research Cambridge. He has pub-
lished around 150 research papers, and has some granted
and pending European patents. He has founded and
chaired several IEEE/ACM conferences/workshops, and has
served on the Organizing and Technical Program Commit-
tees of numerous international conferences and workshops
including ACM SIGCOMM, IEEE INFOCOM, ICNP, SECON,
MASS, GLOBECOM, WCNC, ITC, ICWSM, and WWW. He is
an Associate Editor for IEEE Transactions on Mobile Com-
puting and IEEE Transactions on Cloud Computing.

SASU TARKOMA [M’06, SM’12] (sasu.tarkoma@helsinki.fi)
received an M.Sc. degree in 2001 and a Ph.D. degree in
2006 in computer science from the University of Helsinki.
Since 2009 he has been a full professor of computer sci-
ence at the University of Helsinki. He has led and partici-
pated in national and international research projects at the
University of Helsinki, Aalto University, and Helsinki Insti-
tute for Information Technology (HIIT). He has worked in

the IT industry as a consultant and chief system architect
as well as principal researcher and laboratory expert at
Nokia Research Center. He has over 140 scientific publica-
tions, four books, and four U.S. patents.

YONG LI [M’09] (liyong07@tsinghua.edu.cn) received his
B.S. degree in electronics and information engineering
from Huazhong University of Science and Technology,
Wuhan, China, in 2007 and his Ph.D. degree in electronic
engineering from Tsinghua University, Beijing, China, in
2012. During July to August 2012 and 2013, he was a vis-
iting research associate with Telekom Innovation Laborato-
ries and the Hong Kong University of Science and
Technology, respectively. During December 2013 to March
2014, he was a visiting scientist with the University of
Miami, Coral Gables, Florida. He is currently a faculty mem-
ber in the Department of Electronic Engineering, Tsinghua
University. His research interests are in the areas of net-
working and communications, including mobile oppor-
tunistic networks, device-to-device communication,
software-defined networks, network virtualization, and
future Internet. He is currently an Associate Editor of the
EURASIP Journal on Wireless Communications and Net-
working.

SATISH SRIRAMA (srirama@ut.ee) is an associate professor
and head of the Mobile & Cloud Lab at the Institute of
Computer Science, University of Tartu. He received his Ph.D
in computer science and Master’s in software systems engi-
neering from RWTH Aachen University, Germany, and his
Bachelor’s degree (BTech) in computer science and systems
engineering from Andhra University, India. His current
research focuses on cloud computing, mobile web services,
mobile cloud, Internet of Things, and migrating scientific
computing and enterprise applications to the cloud.

RAJKUMAR BUYYA (rbuyya@unimelb.edu.au) is a professor of
computer science and software engineering and director of
the Cloud Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Australia. He is
the founding CEO of Manjrasoft, a spin-off company of the
university, commercializing its innovations in cloud com-
puting. He has authored over 430 publications and four
textbooks. He has also edited several books, including
Cloud Computing: Principles and Paradigms (Wiley, 2011).
He is one of the most highly cited authors in computer sci-
ence and software engineering worldwide (h-index = 66
and 21,300+ citations). Software technologies for grid and
cloud computing developed under his leadership have
gained rapid acceptance and are in use at several academic
institutions and commercial enterprises in 40 countries
around the world. He has led the establishment and devel-
opment of key community activities, including serving as
founding Chair of the IEEE Technical Committee on Scal-
able Computing and five IEEE/ACM conferences. These con-
tributions and his international research leadership have
been recognized through the 2009 IEEE Medal for Excel-
lence in Scalable Computing award. Manjrasoft’s Aneka
Cloud technology developed under his leadership has
received the 2010 Asia Pacific Frost & Sullivan New Product
Innovation Award and the 2011 Telstra Innovation Chal-
lenge, People’s Choice Award. He is currently serving as the
first Editor-in-Chief of IEEE Transactions on Cloud Comput-
ing.

FLORES_LAYOUT.qxp_Author Layout 3/3/15 1:16 PM Page 88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

