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Abstract—Cloud platforms make available a virtually infinite
amount of computing resources, which are managed by third
parties and are accessed by users on demand in a pay-per-
use manner, with Quality of Service guarantees. This enables
computing infrastructures to be scaled up and down accordingly
to the amount of data to be processed. MapReduce is among the
most popular models for development of Cloud applications. As
the utilization of such programming model spreads across mul-
tiple application domains, the need for timely execution of these
applications arises. While existing approaches focus in meeting
deadlines via admission control or preemption of lower priority
applications, we propose a policy for dynamic provisioning of
Cloud resources to speed up execution of deadline-constrained
MapReduce applications, by enabling concurrent execution of
tasks, in order to meet a deadline for completion of the Map
phase of the application. We describe the proposed algorithm
and an actual implementation of it in the Aneka Cloud Platform.
Experiments on such prototype implementation show that our
proposed approach can effectively meet the soft deadlines while
minimizing the budget for application execution.

I. INTRODUCTION

In recent years, we have been observing an increased im-
portance in the capacity of collecting, storing, and processing
large amounts of data. This trend is noticed both in academia
and industry. Technological advances such as high-capacity
and high-speed storage devices make quicker and cheaper
the storage and the access of such information. Information
collected from a range of sources has to be combined and
analyzed so relationships between different elements can be
inferred from the data. As the typical goal of such processing is
the discovery of relationships that can give competitive advan-
tage to companies, or scientific breakthroughs to researchers,
there is an increasing importance in the capacity of timely
analysis of large amounts of data.

Until recently, the preferred method for increasing pro-
cessing capacity was the deployment of large scale Clusters.
However, expansion of the Cluster capacity demands huge
investment in procurement, maintenance, and management of
the infrastructure, besides extra costs related to powering and
cooling such infrastructures.

An alternative to Clusters is Cloud computing [1]. Cloud
platforms make available a virtually infinite amount of com-
puting resources, which are managed by third parties and
are accessed by users on demand in a pay-per-use manner,
with Quality of Service guarantees given by Cloud service

providers. This enables the computing infrastructure to be
scaled up and down accordingly to the amount of data
to be processed. Nevertheless, even though the hardware
infrastructure is available that supports such requirements,
applications performing data analytics still need better tuning
in order to fully utilize the processing power supplied by Cloud
infrastructures.

Among various available programming models, MapReduce
[2] is one of the most suitable for development of applications
deployed on Clouds. MapReduce is a parallel computing
model designed for processing of large amounts of data in
large computational infrastructures. A MapReduce application
consists of two types of tasks, namely Map and Reduce.
When a MapReduce application starts, Map tasks process input
data and generate intermediate data, which is structured as
key-value pairs. Reduce tasks then combine all the values
associated with a key and emit the application’s output data.

As the utilization of the MapReduce model spreads across
multiple application domains, the need for timely execution of
MapReduce applications arises. Existing approaches for exe-
cution of such deadline-constrained MapReduce applications
focus in meeting deadlines via admission control or preemp-
tion of lower priority applications. However, they cannot solve
conflicts when applications with the same priority have to be
concurrently executed.

To tackle this limitation of current approaches for the
problem, we propose a novel policy for dynamic provisioning
of public Cloud resources to speed up execution of MapReduce
applications. We target the Map phase as the target of the soft
deadline because this phase contains tasks that generally have
uniform execution time.

In this paper, we describe the proposed algorithm and
detail an actual implementation of it in the Aneka Cloud
Platform [3]. Experiments show that our proposed approach
can effectively meet the soft deadlines while minimizing the
budget for application execution.

II. RELATED WORK

The MapReduce programming model [2] and implementa-
tions have been extensively used by companies and academia.
An Open Source implementation of the programming model is
Hadoop1, which has been used as a baseline for improvements

1http://hadoop.apache.org/



in the implementations. Most existing MapReduce research
target large scale, single site environments [4]–[6], whereas
we target a hybrid Cloud infrastructure where in-house re-
sources are used together with public Cloud resources to meet
application soft deadlines.

Matsunaga et al. [7], Polo et al. [8], Luo et al. [9],
and Fadika et al. [10] proposed models for execution of
MapReduce applications across multiple Clusters. However,
resources from Clusters are accessed on a best-effort basis,
with the intention of speeding up application execution. This
makes the proposed infrastructure similar to Grid computing
infrastructures. Our approach, on the other hand, scales the
computation across a public Cloud, where resources can be
virtually scaled unlimitedly, with the goal of meeting a user-
defined soft deadline.

About execution of MapReduce applications in Clouds, Tsai
et al. [11] proposed a model for replication of executors
for MapReduce tasks. However, it does not present specific
strategies for provisioning resources for computational tasks,
while our proposal manages both provisioning of resources
and actual scheduling of tasks for MapReduce computation.

Tian and Chen [12] and Verma et al. [13] independently
proposed models for optimal resource provisioning for running
MapReduce applications in public Clouds, whereas Rizvandi
et al. [14] proposed a method for automatic configuration
of MapReduce configuration parameters in order to optimize
execution of applications in a Cloud. The models, however,
were not develop to address hybrid Clouds elements, such as
the existence of private Cloud nodes available for computation,
which is the target environment of our proposed approach.

Sehgal et al. [15] developed an interoperable implementa-
tion of MapReduce able to execute applications on Clusters,
Grids, and Clouds. The main motivation of such a system is to
enable interoperation of applications that are strongly tied to
a given infrastructure, while we deploy hybrid infrastructures
with the intention of meeting deadlines of applications.

Dong et al. [16] proposed a two-level scheduling approach
for meeting deadlines of real-time MapReduce applications
running concurrently to non-real-time applications. Their ap-
proach prioritizes real-time applications over non real-time
ones, but does not dynamically provision extra resources for
meeting application deadline as does our approach.

Kc and Anyanwu [17] proposed an approach were an
admission control mechanism rejects requests for executing
MapReduce applications when deadlines cannot be met. In-
stead of rejecting requests, our approach utilizes dynamic
provisioning for allocating extra resources.

To the best of our knowledge, no current approach for
execution of MapReduce applications is able to scale applica-
tions across hybrid Clouds in order to meet application soft
deadlines as does the policy we propose in this paper.

III. MOTIVATION AND APPLICATION SCENARIO

MapReduce [2] is a programming model that consists of two
types of tasks, namely Map and Reduce. When a MapReduce
application starts, Map tasks process input data and generate
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Fig. 1. The proposed application scenario for the deadline-aware execution
of MapReduce applications on hybrid Clouds.

intermediate data, which is structured as key-value pairs.
Reduce tasks then combine all the values associated with a
key and emit the application’s output data. Reduce tasks cannot
start to execute until all Map tasks have completed.

This class of applications became popular with the in-
creasing amount of storage available in public and private
Clouds, and has been widely applied for processing large
amounts of data using an equally large amount of work units.
While existing approaches focused in meeting deadlines of
MapReduce applications via admission control or preemption
of lower priority applications (as detailed in the previous
section), we propose a novel approach for addressing this chal-
lenge by dynamically provisioning public Cloud resources to
speed up execution of MapReduce applications via a resource
provisioning policy.

Figure 1 depicts the envisioned scenario for the proposed
policy. A user submits a MapReduce application to a local
master node able to manage provisioning of resources and
scheduling of MapReduce tasks. These tasks are executed by
worker nodes that compose the local Cluster (private Cloud).
The local Cluster is complemented with dynamically provi-
sioned resources from a public Cloud to speed up execution
of tasks. Provisioning of such public Cloud resources is subject
to a Provisioning policy that is proposed in this paper.

In our envisioned scenario for deadline-constrained execu-
tion of MapReduce tasks, users are able to set a soft deadline
for the completion of the Map phase. We apply this model
of guaranteeing deadlines only for the Map phase because all
Map tasks use the same code and operate on similar amounts
of data; hence they require similar amounts of time to execute.
This means that after a few Map tasks complete, it is possible
to predict the total amount of time that will be needed for the
remaining Map tasks. For the case of Reduce tasks, on the
other hand, execution time of tasks cannot be predicted until
the Map phase has completed, as assignment of key-values
to Reduce tasks, and the amount of computation associated
to such value, tend to exhibit higher variance in execution
time. A deadline for the completion of the entire application,
on the other hand, would require a technique for splitting the
deadlines of each stage. A method for best performing this
split is subject of future work and in this paper the focus is on



dynamic provisioning of public Cloud resources to meet the
Map phase deadline.

Once the deadline-constrained application is submitted for
execution, Map tasks are deployed in the local available re-
sources and in resources dynamically provisioned to speed up
the task. The Map phase and Reduce phase are considered as
two distinct phases and are investigated separately. During the
Map phase, provisioning of additional resources is examined
and the supplied deadline is used as a guideline for the
completion of the Map phase. In the case of the Reduce phase,
the examination focuses on how to schedule the tasks in order
to utilize the additional resources that may have been requested
during the Map phase.

We assume that virtual machine images supporting the
execution of Map and Reduce tasks, as well as the dataset
to be processed by the MapReduce application, are present
on the storage platform of the public Cloud provider. This as-
sumption is reasonable considering that public Clouds provide
reliable storage services that can be used for guaranteeing data
redundancy and backup. This extra reliability also justifies the
incurring storage cost to keep such data in the public Cloud.

As the proposed dynamic provisioning techniques are ap-
plied on individual MapReduce applications, the sequence of
events from application submission to the application execu-
tion is summarized in the following steps:

1) The initial state of the system consists of local worker
nodes registered with the master node and ready to
execute MapReduce tasks. Datasets are available for
local workers and are also stored in the Cloud provider’s
storage service as backup replicas and also for being able
to be used by dynamically provisioned workers;

2) A MapReduce application is submitted to the master
node and the scheduler begins assigning Map tasks to
worker nodes;

3) As Map tasks complete, the scheduler assigns new Map
tasks to idle workers;

4) When a predefined number or fraction of the Map tasks
completes, the master uses the provisioning policy and,
based on the application deadline, requests additional
resources from a Cloud provider as defined by the
policy;

5) Requested resources register with the master node as
they become available and the scheduler assigns Map
tasks to them;

6) When the Map phase completes, the scheduler begins
assigning Reduce tasks to workers;

7) Each Reduce task obtains the intermediate data to be
reduced from other nodes;

8) The output of the Reduce tasks may remain on the nodes
in anticipation of another MapReduce application, which
will further process the data. Alternatively, the output
can be collected by the master node and sent back to
the user that submitted the application.

Finally, it is important noting that, because utilization of
public Cloud resources incurs a financial cost to the re-
quester, the proposed provisioning policy aims at allocating

the minimum number of resources able to meet the application
deadline. In the next section the proposed policy that enables
such envisioned scenario is detailed.

IV. DEADLINE-AWARE DYNAMIC PROVISIONING FOR
MAPREDUCE APPLICATIONS

The proposed provisioning policy aims at meeting MapRe-
duce application deadlines at the minimum possible cost for
utilization of public Cloud resources. Because the deadline is
defined as the time for the Map phase of the application to
complete, the policy requests just enough resources so that
the Map phase will be completed before its deadline. Since
all Map tasks execute the same code and operate on (almost)
the same amount of data, it is reasonable to expect that the
remaining Map tasks will require a similar amount of time.
Hence, the provisioning policy makes use of the turnaround
time of the first batch of Map tasks that were assigned to local
resources to estimate the execution time of remaining tasks.
The other parameter to the provisioning policy is the amount
of time remaining until the deadline.

The provisioning policy can be further customized via
tunable parameters:

• MARGIN is a ‘safety margin’ that is removed from the
remaining time to account for errors in the prediction of
tasks execution time.

• LOCAL FACTOR is a multiplier applied to the average
run time of the first batch of Map tasks to generate an
estimation of the expected Map task execution time on the
Cluster considering variation in the worker performance.

• REMOTE FACTOR is similar to the LOCAL FACTOR,
but is set to predict the expected Map task execution time
on public Cloud resources. This allows accounting for
the expected variation in the performance of local and
public Cloud resources: as the underlying infrastructure
is not under control of our system, and because such
resources are typically shared among public Cloud cus-
tomers (multitenancy), it is expected that public Cloud
resources experience a higher variation in performance
than local resources.

• BOOT TIME is the expected amount of time between
requesting a new resource from the public Cloud and that
resource becoming ready to execute tasks.

The decision of number of public Cloud resources to be
allocated to a MapReduce application is detailed in Algorithm
1. It operates by deducting the MARGIN from the remaining
time for execution of the application. The estimated execution
time of Map tasks is then updated for both tasks running in
the local Cluster and in remote Clouds, via application of
correspondent factors. Next, the algorithm conservatively com-
putes the number of tasks that can be executed locally before
the deadline. The reverse calculation is then applied for the
exceeding tasks to determine the number of Cloud resources
to be provisioned for the rest of tasks. In this calculation, the
boot time of Cloud resources is also considered.

For the Reduce phase, three basic approaches for using the
available resources were examined. These policies determined



Algorithm 1: Provisioning Policy
Data: secRemaining: Available time until the deadline.
Data: avgRunTime: Measured execution time of Map

tasks.
secRemaining = secRemaining −MARGIN ;1

localRT = avgRunTime× LOCAL FACTOR;2

remoteRT = avgRunTime×REMOTE FACTOR;3

LocalRemainingT ime = secRemaining − localRT ;4

LocalTasksPerBox = bLocalRemainingTime
localRT c;5

intLocalTaskCount =6

LocalTasksPerBox× resourceCount;
RemoteTasks =7

mapTasksRemaining − LocalTaskCount;
RemoteTotalRunTime = RemoteTasks× remoteRT ;8

RemResCount = RemoteTotalRunTime
secRemaining−(BOOT TIME) ;9

extraRes = dRemResCounte;10

if RemoteTasks > 0 then11

RequestResources(extraRes);12

end13

which resources were used to execute the Reduce tasks:
• The Local Only policy forces all the Reduce tasks to be

executed on local resources;
• The Remote Only policy forces all Reduce tasks to be

executed on public Cloud resources; and
• The Hybrid policy makes use of all the available re-

sources to execute Reduce tasks.
In Section VI we examine the impact of the different

policies in the overall performance of the dynamic provision
policy.

V. IMPLEMENTATION

The approach described in the previous section was im-
plemented in the Aneka Cloud Platform [3], which has an
experimental MapReduce implementation [18]. Aneka is a
software platform and a framework for the development and
deployment of distributed applications in public and private
Clouds. Aneka is designed as a container in which a number
of services can be configured to execute. For example, a
worker node might have been configured to execute both the
MapReduce service and a Bag-of-Tasks application execution
service. The master node on the other hand might only run
the corresponding scheduling services.

Because the initial MapReduce implementation of Aneka
supported only execution of applications in a single domain,
and without dynamic provisioning, it was extended to make
use of the new provisioning service. In addition, a number of
changes were applied to such MapReduce implementation to
enable it to run across different domains. Next, we detail each
major change.

Dynamic Provisioning

One of the built in services of the Aneka platform is
the Cloud provisioning service [19]. This service provides a

consistent interface to other parts of the Aneka system, while
also permitting different Cloud providers to be used. It has
two main components, the individual Resource Pools and the
Resource Pool Manager. Resource Pools are responsible for in-
teracting with Cloud providers and managing virtual machines
from a given provider. Hence, there is one implementation
of the Resource Pool for each supported Cloud provider. A
number of Resource Pools can be used concurrently, and they
are all controlled by the Resource Pool Manager. When extra
resources are required, the Resource Pool Manager decides
which resource pool to be used. We extended the existing
MapReduce Service of Aneka to enable its interaction with
the Provisioning Service, enabling the MapReduce scheduler
to take advantage of public Cloud resources.

Data Exchange

To enable Aneka MapReduce to work across local and
remote resources, a number of changes in the original MapRe-
duce service were required. For example, we replaced the
technology used for data exchange between nodes from Win-
dows File Shares by HTTP. We made this decision because
we observed that traffic generated by Windows File Shares
is generally blocked by firewalls from companies and Uni-
versities. There were two options we could have adopted to
overcome this problem: creating a VPN tunnel through the
firewall, hiding the protocol form the firewall, or using a
different protocol that is not generally blocked. The latter
option was chosen not only because it did not add to the
complexity of the network but also because it removes the
tight coupling of the Aneka system with the Win32 API. Since
Aneka is typically deployed in Windows-based Clusters, our
current implementation adopts Internet Information Services
(IIS) to serve the intermediary data files.

Remote Storage

Another change we developed concerns the storage layer
of the MapReduce worker nodes. Every time a MapReduce
worker starts up and registers with the master node, it reports
which input data files it has available on its local storage. In the
context of a Cloud provider such as Amazon Elastic Compute
Cloud (EC2), this would translate to data files being stored as
part of the disk image from which instances are created. This is
undesirable for a number of reasons, for example a new image
must be created each time the data files are changed. It also
imposes a limit on the amount of data that is directly available
to the worker nodes on EC2. Instead, Aneka’s MapReduce
Service was changed to use Amazon Simple Storage Service
(S3) as the source of local input data files when running on
EC2. Hence, when a MapReduce worker starts up on EC2,
it reads a text file form S3 that lists the data files that are
available on S3. When the worker registers with the master
node, it reports as having those files locally available. As a
Map task is assigned to a worker on EC2, the worker copies
the input data file from S3 to its local disk before starting the
actual processing of the task.



Intermediate Data Buckets and Reduce Tasks

Other MapReduce systems, such as Hadoop, define the
number of Reduce tasks at the beginning of the application ex-
ecution. As Map tasks produce key-value data, Hadoop hashes
these key-values into buckets, where each bucket corresponds
to a Reduce task. The Hadoop documentation2 recommends
that the number of Reduce tasks should be 0.95 or 1.95 times
the number of nodes. However, as in our implementation
additional resources can be provisioned during the Map phase,
the final number of nodes present for the Reduce phase is
not known at application submission time, and thus such
limitations on number of Reduce tasks are not present.

Given the dynamic number of resources the Aneka MapRe-
duce implementation generates, the initial service was also
modified in order to separate the number of buckets used for
hashing intermediate data from the number of Reduce tasks.
With this change, the number of Reduce tasks is decided by
the scheduler after the Map phase completes. The scheduler is
also able to designate the hash buckets that a particular Reduce
task will process.

VI. PERFORMANCE EVALUATION

In this section, we present experiments aiming at evalu-
ating our policy for dynamic provisioning of resources for
MapReduce applications with soft deadlines. We detail the en-
vironment where the prototype system was deployed, describe
the deployed application, and present the results for different
performance metrics.

A. Experimental Testbed and Sample Application

The experimental testbed used in the experiments presented
in this paper is depicted in Figure 2. The environment is a
hybrid Cloud composed of a local Cluster and a public Cloud.
The local Cluster is composed of four IBM System X3200
M3 servers running Citrix XenServer. Each of these servers
hosted two Windows 2008 virtual machines. Therefore, the
local Cluster comprises eight worker nodes. The disk image
for each of the VMs was stored on the local disk of the server
hosting the virtual machine. Each virtual machine had access
to two physical CPU cores, each one a Xeon 2.8 MHz, and
1.5 GB of RAM memory. The master node is a Dell Optiplex
745, with an Intel Core 2 Duo 1.6 MHz and 2 GB of RAM.
All the machines were interconnected via a Gigabit Ethernet
network.

Public Cloud resources were provisioned from Amazon
EC2, USA East Coast data center, using m1.small instances,
which have a single core equivalent to a 1.0-1.2 GHz CPU
2007 Xeon Processor3, and 1.7 GB of memory, at the cost of
US$0.085 per instance per hour.

The MapReduce application executed for the purpose of
this evaluation is a word count application. This application
contains a number of configurable parameters that affect the
characteristics of the application, which allowed us to observe

2http://hadoop.apache.org/common/docs/r0.15.2/mapred tutorial.html
3As at the time that this experiment was executed, according to http://aws.

amazon.com/ec2/instance-types/.
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Fig. 2. The hybrid Cloud environment used in the performance evaluation.

the system under different conditions. The application can
be configured to slow down each Map tasks by inserting a
sleep statement. When such configuration option is utilized,
the task performs the word count over one of the input files
and then sleeps for the defined amount of time. In this case,
the execution time of each Map task is the sum of the sleep
time and the actual processing time.

Map tasks can aggregate their own word counts and only
emit one count value for each unique word. This behavior
can be changed with another configuration parameter, which
dictates the maximum number for the count, meaning that
words that occurred often would emit multiple key-value pairs.
At the extreme, Map tasks will emit every individual word they
encountered with a count value of one. Varying such maximum
count per word allowed us to vary the volume of intermediary
data. Reduce tasks aggregate counts for each word generated
by difference Map tasks (keys) and sum the corresponding
values to generate the final count for the word.

The dataset used for this application came from the Guten-
berg project4, which provides over 39,000 free books for
download. A number of books were downloaded as text files
and the metadata for each one was removed. These text files
were then converted into 150 chunk files, where each file was
just over 30 MB. Each Map task processes one of these chunk
files. This resulted in a total dataset size of approximately
4.5 GB, which was copied to the local Cluster as well as to
Amazon’s S3 storage service.

The configuration parameters of our proposed provision-
ing policy were set as follows: MARGIN is 1 minute; LO-
CAL FACTOR is 1.05; REMOTE FACTOR is 1.15, to reflect
the bigger variance in performance expected from public
Cloud resources; and BOOT TIME: is 6 minutes.

B. Performance Analysis

The two phases of a MapReduce application are investigated
in separate experiments so that the conditions for each phase
could be controlled independently, as different parameters
are relevant on each of them. During the Map phase, the
key parameters are the deadline for the Map phase and the

4http://www.gutenberg.org/



execution time of each task, whereas for the Reduce phase the
key parameters are the size of the intermediate data generated
by the Map tasks, what resources are used for Reduce tasks,
and the sleep time inserted in each task.

Map Phase: The experiments executed for evaluation of the
Map phase aimed at establishing if the provisioning policy can
react accordingly to observed execution time and deadline and
dynamically provision resources in an appropriate number in
order to meet the deadline. Each set of experiments evaluating
the Map phase was composed of 150 Map tasks.

In the first set of experiments, we sequentially executed
several requests for the word count application. On each
request, we modified the sleep time in each Map task, and
kept the deadline for completing the Map phase constant and
equal to 30 minutes for each application.

Figure 3(a) shows the average execution time of Map tasks
versus the number of resources that were provisioned on the
public Cloud. As expected, we observed a linear relationship
between task execution time and number of provisioned re-
sources. This is because, as the Map tasks become longer
and the deadline is not modified, more resources had to be
provisioned in order to meet the deadline. In the first point in
the graphs, the Map tasks were not delayed (sleep time set to 0)
and no additional resources were required. Figure 3(b) shows
the remaining time between the completion of the Map phase
and the application deadline. Except for the first point, which
did not need additional resources, our provisioning policy was
able to successfully complete execution of the Map before the
deadline. In all the cases, completion happens within five min-
utes of the deadline. The sparing time for deadline reflects the
conservative policy we adopted in the experiments regarding
boot time of Cloud resources (6 minutes, well above typical
boot time of such resources) and performance variability of
public Cloud resources (which we assumed 15%).

This indicates that our policy also accomplishes the re-
quirements of minimizing the cost of dynamic provisioning
by deploying as few machines in public Clouds as possible to
meet the deadline.

The second set of experiments aimed at examining how the
provisioning policy reacts to variation in deadlines while the
execution time of Map tasks is kept constant. A two minute
sleep time for each Map task was chosen as this permitted
deadlines from 19 minutes up to an hour to be explored. All
other settings were the same as on the previous experiments.

It was expected that the number of resources being provi-
sioned to be inversely proportional to the deadline. Because a
constant amount of work is being divided by the available time,
a tighter deadline results in more resources to be required. The
results showed in Figure 4(a) confirm such expectations. Fig-
ure 4(b) shows the remaining time between the completion of
the Map phase and the application deadline. As in the previous
experiment, all the completion times are within five minutes
of the deadline, except where no dynamic provisioning was
needed. This once again confirms that our policy minimizes the
cost of dynamic provisioning by deploying as few machines
in public Clouds as possible to meet the deadline.
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Fig. 3. Dynamic provisioning results with variable Map task execution times
and fixed deadline (30 min). (a) Number of public Cloud resources provisioned
(b) Remaining time before Map phase deadline.

Reduce Phase: During the Reduce phase, the intermediate
data generated by Map tasks is processed to generate the final
output. Therefore, each Reduce task needs to collect all the
intermediate data it has to process from the nodes where this
data was generated by Map tasks. Afterwards, the data is
sorted based on the keys, in order to enable Reduce tasks
to process all the values for a given key.

For the experiments aiming at evaluating the performance
of the Reduce phase, 20 EC2 m1.small instances were provi-
sioned in the same location of previous experiments. These
instances were already instantiated when the MapReduce
application was submitted, because the focus of experiments
for the Reduce tasks is not the provisioning of resources. By
having the public Cloud resources available from the begin-
ning of the application execution, we avoided interference in
the results caused by resources unavailable at the beginning
of the Reduce phase.

The Reduce experiments used two different settings for the
Map tasks, which created different intermediate dataset sizes.
The first setting had each Map task aggregating its own word
counts, in such a way that only a single count value was
emitted for each unique word. This resulted in the dataset of
352 MB referred as Small in this section. The second setting
had a maximum count value of five. Therefore, count values
for words were emitted at every 5th occurrence of the word
plus one emission for the remainder. Thus, for example, a word
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Fig. 4. Dynamic provisioning results with fixed Map execution time for
each Map task and variable deadlines. (a) Number of public Cloud resources
provisioned (b) Remaining time before Map phase deadline.

observed eight times by a Map task results in two key-value
pairs being emitted, one with the count 5 and the second with
the count 3. This setting produced the dataset we refer as Big
in this section, of 3422 MB of intermediate data to be reduced.

Similarly to the case of the Map phase, a sleep was inserted
in the Reduce tasks in order to increase their execution
time and observe how different sizes of Reduce tasks affect
execution time of applications. Two different values for sleep,
5 seconds and 60 seconds, were used in the experiments. The
three different Reduce policies were evaluated accordingly to
the above methodology. For each policy, we measured the
execution time of tasks with each considered sleep time, once
for each dataset. Finally, we analyze only the time for actual
execution of the Reduce phase, from the time the Map phase
finishes to the time the last Reduce task completes. Therefore,
time for download of results is disregarded in the experiments
with public and hybrid Clouds.

Figure 5 shows that the results for Small and Big data are
much closer for the All Local policy than for the other two
policies, indicating that the time needed to process each task
is more significant than the time required to transmit the data
between the nodes. Compared to the other policies with the
Small dataset, All Local has the worst performance, what helps
in highlighting the benefits of using additional Cloud resources
even during the Reduce phase. Results also show that Hybrid
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Fig. 5. Execution times of Reduce tasks with two different delays added to
each Reduce tasks. (a) 1 min delay (b) 5 s delay.

is the fastest policy with the Small dataset.
The analysis of the results for the Big dataset shows that

the benefit of more resources is not as straightforward for
large amounts of data. In particular, the All Remote policy,
which uses 20 public Cloud resources, is significantly slower
than the All Local policy, which uses eight local virtual
machines. This can be attributed to an asymmetrical network
performance, where sending data from the local Cluster to the
EC2 instances was significantly slower than in the opposite
direction. Hence, even though there were over twice as many
resources available in the public Cloud, the time to transmit
the data was detrimental to the policy. However, when the local
and remote resources were used together by Hybrid, there was
an improvement, because the remote resources were able to
process part of the tasks while the local machines were in use.

Notice also that in Figure 5(b) Reduce tasks were slowed
down by five seconds, whereas they were slowed down by
60 seconds in Figure 5(a). Even though it represents a twelve
times slow down, the difference in the execution time of the
whole Reduce phase delays varied from around 0.3 times (Big
dataset, All Remote) to 8 times (Small dataset, All Local). This
shows that the data transfer time dominates processing times
for this type of application. Hence, with the Big dataset, All
Local is the preferred policy as no data needs to be sent over
the network. In the case of the Small dataset, however, the
increased parallelism is still of benefit and Hybrid is the fastest



approach for the scenario.
A comparison between Figure 5(a) and Figure 5(b) makes

clear that the reduction of the execution times of each Reduce
task had a bigger impact when the Small dataset was generated
or when the All Local policy was used. This highlights that
the Big dataset and the All Remote and Hybrid policies
are strongly impacted by latency of long distance network
connections between the local Cluster and the public Cloud.

Nevertheless, the experiments suggest that our approach for
dynamic provisioning of Cloud resources in order to meet
soft deadlines based on the execution time of the Map phase
of MapReduce applications is effective in meeting deadlines
while keeping the budget for execution as small as possible.

VII. CONCLUSIONS AND FUTURE WORK

As MapReduce is becoming the prevalent programming
model for building data processing applications in Clouds,
the need for timely execution of such applications becomes
a necessity. Because current approaches for deadline-aware
execution of MapReduce applications in Clouds operate via
admission control or prioritization of tasks, we proposed a dif-
ferent approach, where deadline of MapReduce applications is
achieved with dynamic provisioning of public Cloud resources
to complement local resources.

We presented a dynamic provisioning policy for MapRe-
duce applications and a prototype implementation of the
correspondent system in the Aneka Cloud Platform. Results
showed that our approach, even though its lower complexity,
delivers good results. Our policy was able to meet deadlines
of applications, which are defined in terms of completion time
of the Map phase, for increasing execution times of Map tasks
and decreasing deadlines. Results showed that the connectivity
between local and remote resources can be the solely dominant
factor affecting the completion time of the whole application
if the Reduce tasks are not computationally intensive.

We plan to extend our policy to optimize the provisioning
for more complex scenarios, such as multiple independent ap-
plications (in order to minimize the total number of resources
deployed for all applications) and composite MapReduce
applications, where one application consumes the output of
a previous application. We will also develop techniques for
compensating for performance fluctuation of public Cloud
instances and for straggle tasks, if such variation in perfor-
mance is detected during application execution. We will also
investigate techniques for unbalanced hashing and dynamic
rebalancing when more buckets than Reduce tasks are present
at the end of the Map phase. In the same direction, we will
investigate partition merging and the optimal number of nodes
for MapReduce implementations that overlaps the shuffle and
data transfer with the Map phase.
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