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A B S T R A C T

Cloud computing has rapidly emerged as a model for delivering Internet-based utility computing services.
Infrastructure as a Service (IaaS) is one of the most important and rapidly growing models in cloud computing.
Scalability, quality of service, optimum utility, decreased overheads, higher throughput, reduced latency,
specialised environment, cost-effectiveness, and a streamlined interface are some of the essential elements
of cloud computing for IaaS. Traditionally, resource management has been done through static policies,
which impose certain limitations in various dynamic scenarios, prompting cloud service providers to adopt
data-driven, machine-learning-based approaches. Machine learning is being used to handle various resource
management tasks, including workload estimation, task scheduling, VM consolidation, resource optimisation,
and energy optimisation, among others. This paper provides a detailed review of machine learning-based
resource management solutions. We begin by introducing background concepts of cloud computing like
service models, deployment models, and machine learning use in cloud computing. Then we look at resource
management challenges in cloud computing, categorise them based on various aspects of resource management
types such as workload prediction, VM consolidation, resource provisioning, VM placement and thermal
management, review current techniques for addressing these challenges, and evaluate their key benefits and
drawbacks. Finally, we propose prospective future research directions based on observed resource management
challenges and shortcomings in current approaches for solving these challenges.
1. Introduction

Cloud computing has created an environment in which consumers
use software and IT infrastructure, paving the way toward the emer-
gence of computing as a fifth utility (Buyya et al., 2018). Resource man-
agement in data centres remains a nontrivial issue in cloud computing,
and it is directly dependent on the application workload. Applications
were connected to specific physical servers in conventional cloud com-
puting environments such as data centres, so these servers were often
overprovisioned to handle issues related to maximum workload (Xu
et al., 2017). As a result of the wasted resources and floor space, the
data centre is expensive to operate in terms of resource management.
On the other hand, virtualisation technology has proven that it can
make data centres easier to handle. This technology offers a variety of
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benefits, including server consolidation and higher server utilisation.
Large IT giants like Google, Microsoft, and Amazon have massive data
centres with complicated resource management. Servers, virtual ma-
chines (VMs), and various management roles are all part of the resource
management of these huge data centres (Bianchini et al., 2020). A
server or a host is allocated multiple VMs with varying workload types
in these data centres. This variable and unpredictable workload may
result in a server being over-utilised and underutilised, resulting in
an imbalance in resource utilisation assigned to VMs on a specific
hosting server. This could lead to issues including inconsistent quality
of service (QoS), unbalanced energy use, and service level agreements
(SLA) violations (Singh and Kumar, 2019). According to a survey on
unbalanced workload, the average CPU and memory utilisation was
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17.76% and 77.93%, respectively. A similar study in the Google data
centre found that a Google cluster’s CPU and memory utilisation could
not exceed 60% and 50%, respectively (Kumar et al., 2020b). Due to
the imbalanced workload, a data centre’s productivity suffers, resulting
in increased energy consumption. It is proportional to the data centre’s
operational costs and financial loss. This excessive energy consumption
directly impacts carbon footprints, which should be reduced because
an ideal machine absorbs more than half of the maximum energy
consumption (Barroso et al., 2013). According to an EIA (Energy In-
formation Administration) survey, data centres consumed around 35
TWh (Tera Watt-hour) of energy in 2015, and this figure is expected to
rise to 95 TWh by 2040 (Kumar et al., 2021).

The resource use can be balanced by reducing the number of active
servers; thus, the optimal mapping between VMs and servers must be
discovered (Li et al., 2013). This is a challenging and NP-complete
problem class. As a result, an intelligent resource management strategy
is needed to meet QoS requirements and increase the data centre
efficiency (Kumar and Singh, 2020). The intelligent mechanisms will
generate future insights, which can aid applications in mapping to
machines with better resource utilisation (Kumar et al., 2020a). How-
ever, the nonlinear and variable behaviour of VM workloads poses a
significant challenge for future predictions. This insight can be obtained
using two different approaches: historical workload-based prediction
methods, which generate insight by learning trends from historical
workload data, and homeostatic based prediction methods, which pro-
vide an upcoming future workload insight by subtracting the previous
workload from the current workload (Kumar and Singh, 2018). Further-
more, the previous workload’s mean may be static or dynamic. Both
methods have advantages and disadvantages, but historical load-based
forecasts are considered simpler and are well-known in this field.

The allocation of physical resources based on an estimate to in-
crease resource utilisation and energy efficiency is known as resource
provisioning. This estimation based on future resource behaviour pre-
diction can help with more effective resource provisioning (Khan et al.,
2021). Thus, intelligent resource management will play a critical role
in optimising the data centre’s SLA, energy usage, and operating costs
by conducting effective and intelligent resource provisioning. Resource
management in data centres encompasses a variety of activities, in-
cluding resource provisioning, reporting, workload scheduling, and a
variety of other functions, like thermal management (Ilager et al.,
2020). Many of these activities revolve around resource provisioning.
Resource provisioning aims to assign cloud resources to VMs based
on end-user requests while maintaining a minimum of SLA viola-
tions, such as availability, reliability, response time limit, and cost
limit (Shahidinejad et al., 2020). It should assign resources following
end-user demands and prevent over or under-provisioning, such as
allocating more or fewer resources to VMs. This resource allocation
technique can be carried out in two ways: proactive and reactive.
In proactive approaches, resource provisioning is focused on prior
workload prediction, estimated by learning trends from historical work-
load, while reactive approaches are carried out after resource demand
arrives. As a result, it is inferred that historical-based prediction meth-
ods’ expertise can be effectively incorporated in proactive approaches
to provide intelligent dynamic resource scaling, which contributes to
intelligent dynamic resource management. In addition, other functions,
such as VM consolidation and task scheduling, can be performed based
on forecasts to optimise resource utilisation, energy consumption and
increase QoS.

Machine learning (ML) techniques are widely used in a variety
of fields, including computer vision, pattern recognition, and bioin-
formatics (Injadat et al., 2021). Large-scale computing systems have
benefited from the advancement of machine learning algorithms (Mao
et al., 2019). Google recently released a report detailing its efforts to
optimise electricity, reduce costs, and improve efficiency (Jeff, 2018).
ML has drawn attention to dynamic resource scaling by providing data-
driven methods for future insights, regarded as a promising approach
for predicting workload quickly and accurately. The use of ML on cloud
2

computing platforms can be classified in five classes (Pop, 2016).
• Machine Learning environments from the cloud: Providers in this
category provide computer clusters pre-installed with statistics
software, such as R system, Octave, or Mapple, utilising pub-
lic cloud providers like Amazon EC2, Rackspace, and others.
Customers are relieved of the stress of installing and administer-
ing their clusters using these solutions, which provide scalable,
high-performance resources in the cloud.

• Plugins for Machine Learning tools: In this class, participants
may construct a Hadoop cluster in the cloud and conduct time-
consuming operations over massive datasets using plugins for
statistics programmes (e.g. R system, Python). The majority of
the focus was directed toward R, which has several extensions,
instead of Python, which has had less work to enable distributed
processing until lately.

• Distributed Machine Learning libraries: This category contains
complicated libraries that operate in various distributed con-
figurations (Hadoop, Dryad, MPI). They enable users to utilise
pre-built algorithms or create their own, then executed in parallel
over a cluster of computers.

• Complex Machine Learning systems: Several business intelligence
and data analytics solutions are presented in this class, all of
which have a set of common features: All of them are deploy-
able on-premises or in the cloud, offering a comprehensive set
of graphical tools for analysing, exploring, visualising massive
volumes of data, and using Apache Hadoop as a processing engine
and/or storage environment. There are differences in how data
is integrated, processed, and supported data sources and system
complexity.

• Software as a Service provider for Machine Learning: This class
focuses on providers of machine learning platform-as-a-service (or
software-as-a-service). They primarily provide services through
RESTful APIs, with the option of installing the solution on-
premise (Myrrix) in some (rare) circumstances, as opposed to the
solutions in the previous section, which are primarily deployable
systems on private data centres. Predictive modelling (BigML,
Google Prediction API, Eigendog) is the most popular class of ML
issues among these systems.

The deployment of machine learning algorithms on clouds also
offers various opportunities to use ML for more efficient resource
management. As a result, this article focuses on the review based on
challenges discovered in state-of-the-art research in resource manage-
ment by using ML algorithms, including various resource management
tasks such as provisioning, VM consolidation and other management
approaches. Then we will discuss the advantages and limitations of
various state-of-the-art research studies that use machine learning algo-
rithms in resource management. We will also discuss the experimental
settings, used data sets, and performance improvements. Finally, we
propose future research directions based on identified challenges and
limitations in current research. Fig. 1shows the cloud computing com-
ponents while using machine learning. A resource management system
(RMS) works with both users and ML prediction components to effi-
ciently manage the cloud infrastructure’s underlying resources. Data
collection, ML models, training and validation of ML models, and
eventually deployment of models for run time use are all components
of the ML prediction module.

1.1. Aim and motivation of research

Resource management is a difficult task in cloud operations because
multi-tenant end-users demand nonlinear workloads, leading to many
over- and under-utilised servers. It directly affects whether electricity
is over-or under-utilised, resulting in a high operating cost. As a result,
intelligent resource management can benefit from a prior estimate
of workload based on historical data. Static policies are often used

in cloud computing systems to manage resources. They have two
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Fig. 1. A high-level view and components of resource management in cloud computing
using machine learning.

flows: they are based on a static threshold value adjusted in offline
mode. They appear to require reactive behaviour, resulting in excessive
overheads and delayed customer responses. These strategies fail in a
dynamic context, for example, when the load reaches the static thresh-
old and rapidly drops, indicating that VM migration is unnecessary
in the case of VM consolidation. Furthermore, they are unable to
capture the dynamics of technology and workload in complex dynamic
environments (such as Cloud and Edge) and therefore fail to move
through (Ilager et al., 2020). Machine learning has supplanted static
heuristics with dynamic heuristics that adapt to the actual production
workload to address these disadvantages (Yadwadkar, 2018; Mao et al.,
2016). Predictive management is made possible by machine learning
techniques, which provide future insight based on historical data. As
a result, A data-driven Machine Learning (ML) model in an ML-centric
RMS can forecast future workload demand and control the auto-scaling
of resources accordingly. Such strategies are highly beneficial for both
consumers and service providers who want to improve their QoS and
keep their competitive edge in the market. For cloud resource manage-
ment, modern ML methods, such as a random forest (Cao et al., 2018)
and neural networks (Chen et al., 2018), has been shown to make more
reliable predictions than traditional time-series analysis methods, such
as the Autoregressive Integrated Moving Average (ARIMA) model. Sev-
eral ML algorithms have been developed to predict prior workload for
intelligent resource management. Furthermore, several IT behemoths
have begun to investigate machine learning-based resource manage-
ment in production (Cortez et al., 2017; Gao, 2014). Google optimises
fan speeds and other energy knobs using a neural network (Gao, 2014).
Microsoft Azure makes use of a framework resource central to provide
online forecasts of different workloads using various ML Gradient
Boosting Trees (Bianchini et al., 2020). Despite these previous attempts
and opportunities, the best way to incorporate machine learning into
cloud resource management is currently uncertain. As a result, it has
become critical to present research that addresses current challenges
and suggests potential future research directions while also highlighting
the benefits and limitations of current research. An abbreviation table
has been shown in Table 1.
3

Table 1
List of abbreviations used in this paper.

Abbreviations Full description

ML Machine Learning
RMS Resource Management System
IaaS Infrastructure as a Service
QoS Quality of Services
VMs Virtual Machines
IT Information Technology
SLA Service Level Agreements
EIA Energy Information Administration
TWh Tera Watt-hour
NIST National Institute of Standards and Technology
AWS Amazon Web Services
SaaS Software as a Service
PaaS Platform as a Service
AI Artificial Intelligence
SSL Semi-Supervised Learning
RL Reinforcement Learning
MAE Mean Absolute Error
LLC Last-Level-Cache
RC Resource Central
DL Deep Learning
CNN Convolutional Neural Network
RNN Recurrent Neural Network

1.2. Research questions

• How to reduce the time complexity of ML algorithms in ML-based
resource management in data centres?

• How can the accuracy of workload prediction using ML algo-
rithms be improved?

• How can training time be reduced while developing an ML
model?

• How can VMs collaborate in similar groups to estimate the state
of energy consumption?

• How to reduce energy consumption significantly?

1.3. Our contributions

The following are the main contributions of our work:

• We present a review of ML-based resource management ap-
proaches in cloud computing based on identified challenges in
the state-of-the-art research.

• We identify the advantages and drawbacks of these methods,
as well as their experimental configuration, data sets used, and
performance improvements.

• We propose potential future research directions based on identi-
fied challenges and limitations in the state-of-the-art research to
strengthen resource management

1.4. Related surveys

A few studies have investigated machine learning-based resource
management in cloud computing. Sun et al. (2016) provided a de-
tailed survey of the most important data centre resource management
research activities to improve resource usage. After that, the article
summarises two major components of the resource management plat-
form and addresses the benefits of predicting workload accurately in
resource management. Manvi and Shyam (2014) focused on resource
provisioning, resource allocation, mapping, and resource adaptation,
among other essential resource management techniques. Zhang et al.
(2016) surveyed the state of the algorithms, organised them into cat-
egories, and addressed closely related topics such as virtual machine
migration, forecast methods, stability, and their availability. Braiki and
Youssef (2019) considerable improvements to previous work based on
approach optimisation, techniques, and objective models. Jennings and
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Table 2
A comparison with relevant existing surveys.

Study Year Domain Key contributions Challenge Shortcom-
ings of
existing
solutions

ML-
centric

ML-based
Future
directions

Manvi and Shyam (2014) 2014 Resource Management Examines some of the essential
resource management approaches,
including resource provisioning,
resource allocation, resource
mapping, and resource
adaptability

� × × ×

Jennings and Stadler (2015) 2015 Resource Management Evaluates the recent literature,
encompassing over 250 papers
and emphasising major findings

� × × ×

Sun et al. (2016) 2016 Resource Management Provides a detailed assessment of
the most significant research
activity on data centre resource
management that attempts to
maximise resource use

× × � ×

Usmani and Singh (2016) 2016 VM placement Provides an in-depth examination
of cutting-edge VM placement
and consolidation approaches

× × × ×

Zhang et al. (2016) 2016 Resource Provisioning Surveys more than 150 articles × � × ×

Braiki and Youssef (2019) 2019 Resource Management Presents substantial solutions to
previous work proposed for cloud
infrastructure

× × × ×

Helali and Omri (2021) 2021 Consolidation Investigates the issue of
consolidating data centres inside
distributed cloud platforms

× × × ×

Nayak et al. (2021) 2021 Resource Management Represents a short review on
renewable energy-based resource
management

× × × ×

Dewangan et al. (2021) 2021 Resource Management Provides a thorough examination
of several resource providing
systems using concerted
parameters

� � × ×

Mijuskovic et al. (2021) 2021 Resource Management Addresses challenges in resource
management and classifies current
contributions

� × × ×

Our study 2021 Resource Management Provides a detailed review of
machine learning-based resource
management solutions

� � � �
Stadler (2015) lays forth a conceptual framework for cloud resource
management and uses it to organise the state-of-the-art review. Usmani
and Singh (2016) presented a detailed assessment of the most up-to-
date VM placement and consolidation techniques utilised in the green
cloud, focusing on increasing energy efficiency. Helali and Omri (2021)
presented a broad overview of IT consolidation at various levels of
cloud services and a virtualised data centre and consolidation overview.

A summary of related works is given in Table 2 from which we
observe that related works do not go into great detail about machine
learning-based resource management, nor do they go into great detail
about the challenges and issues that exist in the existing state-of-the-
art and future research directions. As a result, it is now important
to present a thorough survey that addresses various machine learning
algorithms used in the resource management scenario for a data centre
and their shortcomings, challenges, and potential directions, as per our
vision. Hence, this article can help researchers evaluate the current
machine learning scenarios in cloud resource management and their
shortcomings before moving forward with their new ideas in this
direction.

1.5. Article structure

The rest of the paper is organised as follows: The background details
and definitions for cloud computing components and machine learning
are given in Section 2. Section 3 discusses the challenges of machine
4

learning-based resource management in cloud computing systems and
the benefits and drawbacks of current research. Section 4 proposes
future research directions based on the challenges and limitations
pointed out in state-of-the-art research, and Section 5 concludes the
paper.

2. Background and terminologies

2.1. Cloud computing

Cloud computing provides resources over the Internet, such as
memory, CPU, bandwidth, disc, and applications/services. The National
Institute of Standards and Technology (NIST) (Mell, 2011) states that
‘‘Cloud computing is a model for providing on-demand network access
to a common pool of configurable computing resources (e.g., networks,
servers, storage, software, and services) that can be quickly provisioned
and released with minimal management effort or service provider
involvement. There are five core features, three service models, and
four deployment options in this cloud model’’. Based on the literature,
two more characteristics have been included.

This computing model uses a client–server architecture to centralise
application deployment and computation offloading. Cloud comput-
ing is cost-effective in application delivery and maintenance on both
the client and server sides and flexible in resource provisioning and

detaching services from related technologies. Cloud computing and
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its supporting technology have been investigated for years. Many ad-
vanced computing systems have been released to the market, including
Alibaba Cloud, Microsoft Azure, Adobe Creative Cloud, ServerSpace,
Amazon Web Services (AWS), and Oracle Cloud.

2.2. Core features of cloud computing

• On-demand self-service: A client can query one or more ser-
vices as needed and pay using a ‘‘pay-and-go’’ system without
interacting with living beings via an online control centre.

• Broad network access: Resources and services in different cloud
provider areas can be accessed from several locations and pro-
visioned by incompatible thin and thick clients using standard
mechanisms. This trait is often referred to as ‘‘easy-to-access stan-
dardised mechanisms’’ and ‘‘global reach capability’’ (Hamdaqa
and Tahvildari, 2012; Yakimenko et al., 2009).

• Resource pooling: It offers a set of resources that act as if they
were one blended resource (Wischik et al., 2008). In other words,
the client is not aware of the location of the provided services and
is not expected to be. This strategy enables vendors to dynami-
cally include various real or virtual services in the cloud.

• Rapid elasticity: Elasticity is just another word for scalability;
it refers to the ability to scale resources up or down as re-
quired. Clients can demand as many services and resources as
they want at any time. Because of this consistency, Amazon, a
well-known cloud service provider, named one of its most popular
and commonly used services the Elastic Compute Cloud (Amazon,
2010).

• Measured service: Various facets of the cloud should be automat-
ically controlled, monitored, optimised, and documented at sev-
eral abstract levels for both vendors and customers (Krishnaveni
et al., 2021).

• Multi-Tenacity: The Cloud Security Alliance proposes this idea as
the fifth cloud characteristic. Multi-tenacity implies that models
for policy-driven compliance, segmentation, separation, gover-
nance, service levels and chargeback/billing for various customer
categories are needed (Espadas et al., 2013).

• Auditability and certifiability: Services must plan logs and trails to
assess the degree to which laws and policies are followed (Ham-
daqa and Tahvildari, 2012).

.3. Cloud computing service models

• Software as a Service (SaaS) (Piraghaj et al., 2017): Using this
service model, a client can access the service provider Cloud-
hosted applications. Web portals are used to access applications.
Since providers have access to the applications, this model has
made production and testing easier for them.

• Platform as a Service (PaaS) (Jula et al., 2014): In this service
model, the service provider provides basic requirements includ-
ing network, servers, and operating system to enable the client
to build acquired applications and manage their configuration
settings.

• Infrastructure as a Service (IaaS) (Whaiduzzaman et al., 2014):
The user has created all necessary applications and only requires a
simple infrastructure. Vendors may include processors, networks,
and storage as facilities with customer provisions in such cases.

.4. Deployment models for cloud computing

• Public cloud (Toosi et al., 2014): This is the most popular cloud
computing model, in which the cloud owner, in the majority
of cases, provides public services over the Internet based on
predetermined rules, regulations, and a business model. With a
significant number of commonly used resource base, providers
can provide consumers with a range of choices for choosing
5

appropriate resources while maintaining QoS.
• Private cloud (Jadeja and Modi, 2012): A private cloud is created
and configured to provide a company or institute with most of
the advantages of a public cloud. Setting up such a system would
result in fewer security problems due to corporate firewalls. The
high costs of establishing a private cloud are fatal because of
the business that manages it is accountable for all facets of the
scheme.

• Community cloud (Dillon et al., 2010): A variety of organisations
form a group and share cloud computing with their community
members’ customers based on common criteria, concerns, and
policies. The required cloud computing infrastructure can be pro-
vided by a third-party service provider or a group of community
members. The most important benefits of a community cloud are
cost savings and cost-sharing among community members, and
high protection.

• Hybrid cloud (Tuli et al., 2020): Combining two or more indepen-
dent public, private, or community clouds resulted in the creation
of a new cloud model known as hybrid cloud, in which con-
stituent services and infrastructure maintain their special features
while also requiring standardised or agreed-upon functionalities
to enable them to communicate in terms of application and data
interoperability and portability.

2.5. Machine learning

Machine learning covers the subject of how to design machines that
improve the performance of themselves automatically via experience. It
is one of today’s most rapidly expanding technological topics, located at
the crossroads of computer science and statistics, as well as at the heart
of artificial intelligence and data science (Jordan and Mitchell, 2015).
One of its basic assumptions is that it is possible to construct algorithms
that can predict potential, previously unseen values using training data
and statistical techniques. Machine learning has come a long way in the
last two decades, from a research project to a widely used commercial
technology. In particular, recent advances in machine learning stem
from deep learning (DL), which is part of a broader family of machine
learning approaches based on artificial neural networks. Compared to
shallow learning, deep learning approaches are able to automatically
learn high-level abstract representations from raw data, which reduces
the efforts in feature engineering and improves the prediction per-
formance significantly. Machine learning/deep learning has emerged
as the preferred tool for designing functional apps for computer vi-
sion (Janai et al., 2020), speech recognition (Deng and Li, 2013),
natural language processing (Olsson, 2009), robot control (Chin et al.,
2020), self-driving cars (Stilgoe, 2018), effective web search (Bhatia
and Kumar, 2008), purchase recommendations (Hastie et al., 2009)
and other applications in the field of artificial intelligence (AI). Many
AI system developers now understand that, for many applications,
training a system by showing it examples of desired input–output
actions is much simpler than programming it manually by predicting
the desired answer for all possible inputs. This success is primar-
ily owing to sophisticated model architectures, efficient optimisation
techniques, accessibility of massive data, and increased efficiency in
the processing power of servers and GPUs (Goodfellow et al., 2016).
According to the supervision information provided in the learning
process, machine learning can be roughly categorised as supervised
learning, semi-supervised learning, unsupervised learning, and rein-
forcement learning. Supervised learning algorithms take labelled data
(feature–label pairs) as input and outputs a model that could predict
the labels of future features. Typical supervised learning approaches
include regression, classification, and ordinal regression, categorised
by the type of labels. Unsupervised learning aims to learn the data
distribution of unlabelled data via discrete mixture models (cluster-
ing (Hartigan and Wong, 1979; Guha et al., 2000)) or continuous latent
factor models (dimension reduction (Ding et al., 2002; Kingma and
Welling, 2013)). Semi-supervised learning aims to learn models from
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both labelled and unlabelled data. Reinforcement learning is concerned
with how intelligent agents ought to make decisions in an environment
to maximise the notion of cumulative reward. A detailed explanation
of these learning problems is as follows.

• Supervised Learning (Sen et al., 2020): Every data sample in
supervised learning is made up of several input features and a
label. The learning process is designed to get close to a mapping
function that links the features to the label. Following that, the
mapping function can be used to make predictions of the label for
the data given new input features. This is the most widely used
machine learning scheme, and it has been used for a lot of things.
The classification task, which involves classifying an object based
on its characteristics. This is a regression task if the supervised
learning task is to forecast a continuous variable.

• Unsupervised Learning (Celebi and Aydin, 2016): Unsupervised
learning in comparison to supervised learning is when we only
have input features but no labels to go with them. As a result, the
purpose of unsupervised learning is to learn the data distribution
and demonstrate how the data points vary from one another. The
clustering problem, which is to discover data groupings, such as
grouping VMs based on their resource use patterns (Khan et al.,
2022), is a good example of unsupervised learning.

• Semi-supervised learning (Van Engelen and Hoos, 2020): A
branch of machine learning attempts to integrate these two ac-
tivities. SSL algorithms usually try to increase efficiency in one of
these two tasks by incorporating knowledge from the other. For
example, when dealing with a classification problem, additional
data points with unknown labels may help in the classification
process. On the other hand, knowing that some data points belong
to the same class will help with the learning process for clustering
methods.

• Reinforcement Learning (Kober et al., 2013): RL varies from
supervised and unsupervised learning in several ways. When
using reinforcement learning to train an agent, it is unneces-
sary to use labelled input/output pairs or explicit correction on
sub-optimal options. Instead, the agent attempts to find an equi-
librium between exploration and exploitation by interacting with
the environment. The translator rewards the agent for successful
decisions or behaviour. Otherwise, it would be sanctioned.

. ML-centric resource management: State-of-the art and chal-
enges

In this section, we discuss challenges identified in ML-based re-
ource management in state-of-the-art research. In addition, we explore
urrent approaches to addressing these challenges and their advantages
nd limitations. We categorise these challenges based on their types,
uch as resource provisioning, VM consolidation, thermal management,
nd workload prediction.

.1. Workload prediction

.1.1. ML in energy consumption prediction
Most cloud service providers’ tools calculate and estimate the energy

sage of a host or a group of hosts in offline mode, but performing this
ole in real-time running applications is a challenge. Furthermore, be-
ause of the nonlinear workload in various hosts, a single ML algorithm
annot be considered to perform this task well. According to Reiss et al.
2012), a Google cluster or node does not use more than 60% and 50%
f its CPU and memory, respectively. As a result, ensemble learning
an be a key component of providing accurate predictions in a cloud
rchitecture.

Subirats and Guitart (2015) introduced an ensemble learning
ethod for forecasting future energy efficiency in virtual machine

esources, such as CPU utilisation, infrastructure, and service levels in
6

a cloud computing environment. Ensemble learning, which uses four
different prediction approaches such as moving average, exponential
smoothing, linear regression, and double exponential smoothing, is the
key benefit of their work. They predict the next use of VM resources,
such as CPU consumption, in each time iteration and calculate the
mean absolute error (MAE) of all iterations to pick the best performing
model predictions for measuring and forecasting energy efficiency and
ecological efficiency in an IaaS setting in real-time. However they do
not consider metrics like Last-level-cache (LLC) and disc throughput for
prediction, which have an effect on a host’s energy consumption at the
VM level as mentioned in Sayadnavard et al. (2021). Furthermore, the
accuracy of the chosen model is workload-specific, i.e., interactive and
batch workloads, rather than being generalised for all data.

3.1.2. Performance and online profiling of workload
The main components of large commercial providers’ workloads are

not well addressed in cloud resource management research. For exam-
ple, they do not look into VMs’ lifetime virtual resource consumption.
The majority of research focuses on offline workload profiling, which
is infeasible because the input workload may not be available until the
VMs are not running in production. On the other hand, online profiling
is challenging because it is difficult to determine when a random VM
has exhibited representative behaviour as mentioned by Bianchini et al.
(2020). Resource management can be more effective if the different
workload characteristics are accurately predicted with minimal time
complexity. As a result, prediction algorithms face another challenge
in terms of accuracy and time complexity.

On Microsoft Azure compute fabric, Bianchini et al. (2020) pre-
sented a machine learning-based prediction system. Through a rest
API, this system can learn behaviour from historical data and provide
predictions online to various resource managers, such as Server health
managers, migration managers, Container schedulers, and energy cap-
ping managers. They also released detailed Microsoft Azure real-world
workload traces from this system, which show that several VMs con-
sistently have peak CPU utilisation in various ranges. In the event of
oversubscribed servers, they changed Azure’s VM scheduler to use RC
benefit predictions.

This forecast-based schedule helps to avoid overuse and exhaustion
of physical resources. However, (1) they did not consider memory
utilisation in released traces or the predictive system RC, even though
memory utilisation plays a significant role in physical resource ex-
haustion. (2) They analysed CPU utilisation time series to determine
whether a VM is interactive or delay-insensitive, categorised the work-
load into these two categories, and used Extreme Gradient Boosting
Tree (EGBT) to perform supervised classification of these VM work-
loads. However, they did not consider the case of a distributed data
centre, where data is dispersed and may have partial labels for these
two classes; in this case, there will be insufficient labels to train this
algorithm.

3.1.3. Prediction accuracy in auto-scaling of web applications
Auto-scaling determines when and how resources are allocated for

cloud-based applications (Persico et al., 2017). Auto-scaling is done
in two ways: reactive and proactive. The reactive approach allocates
resources when system events such as CPU utilisation, number of
requests, and queue length exceed a fixed threshold. The proactive
approach is in charge of anticipating the number of resources re-
quired ahead of time to avoid unneeded events. Furthermore, proactive
strategies include predictions based on traditional statistical time-series
analysis models, which do not fit all cases in terms of prediction
accuracy, making it a challenging task. Furthermore, traditional sta-
tistical methods have the following drawbacks: (1) It is based on
rule-based programming, which is formalised as a relationship between
variables; (2) It is often based on a dataset consisting of a few at-
tributes, as the methods are not scalable to high-dimensional data; (3)
It relies on assumptions like linearity, normality, no multicollinearity,
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homoscedasticity, and so on; (4) The majority of the ideas in traditional
statistics are generated from the sample, population, and hypothesis;
(5) It is a math-intensive subject that relies on the coefficient estimator
and necessitates a thorough knowledge of a dataset.

Messias et al. (2016) used a genetic algorithm to combine the advan-
tages of individual ML models to obtain the best performing prediction
results for web application auto-scaling. Each time-series prediction
model used in the system is fitted with a suitable weight using a genetic
algorithm. The primary benefits of their work are that (1) Auto-scaling
can adapt to any new workload as its characteristics change over
time. (2) This approach is unaffected by the type of prediction models
used. (3) It is simple to adapt to various more advanced prediction
models. However, this approach has a high time complexity, affecting
the response time of any web application hosted in cloud infrastructure,
violating SLAs.

3.1.4. Time-series prediction data
The workload in modern data centres follows a time-series pattern.

As a result, models for time series prediction should be trained on
historical data, as it is presumed that future trends would be identical to
those seen previously. However, data centres experience very nonlinear
workload variations, which is why new trends often emerge, making it
difficult for the model to learn precisely. Due to the lack of a single
model suitable for all types of time series prediction data, an ensemble
approach is being used to address this issue (Wolski, 1998). Further-
more, most ensemble models for time series prediction are based on
a collection of fixed predictors, either homogeneous or heterogeneous,
which makes it difficult for the models to learn pattern change in time
series prediction.

Cao et al. (2014) suggested a new ensemble method that can dy-
namically update the predictors in the ensemble approach to respond to
trend changes in time-series prediction quickly. The ensemble method
dynamically adjusts the models, which is the key benefit of this work.
It is adaptable, as new models can be quickly added and removed
depending on how well it performs with a nonlinear workload. They
set a threshold value of 5 and a floor limit of 0 to determine which
predictor is performing well and which is not. Every predictor is given
a score, which rises and falls in response to the predictor’s results. This
predictor is selected as a representative predictor if its score exceeds
the threshold value and is discarded if it meets the floor limit. On the
other hand, these fixed parameters yield satisfactory results for their
chosen dataset, resulting in a non-generalised approach.

3.1.5. Training data
In modern cloud environments, virtual resources such as virtual

CPUs (vCPUs) and memory (vRAMs) have a nonlinear resource de-
mand, resulting in complex resource utilisation behaviour. As a result,
optimisation of virtual resource performance is required with this high
amount of daily workload. Large corporations such as Amazon, Alibaba,
and others have occasionally failed due to a lack of resource manage-
ment planning. As a result, predicting virtual resources (such as vCPU
and vRAM) is a challenging task. Furthermore, resource forecasting
presents some challenges: (1) The prediction of these resources should
be dynamic to respond to changing workload patterns over time; (2)
The data for training should be chosen in such a way that it has the
most significant impact on the target variable so that the model can
learn to predict it effectively.

(Shyam and Manvi, 2016) It proposed a model that took into
account a variety of parameters in a virtualised platform to reliably
predict virtual resources with the least amount of SLA violations. This
method was based on a Bayesian approach that identified various
variables and considered the best training data. The key benefit of their
work is that it systematically detects dependencies in a variable based
on the study of nonlinear workloads from various data centres such as
Amazon, EC2, and Google. However, (1) they do not take into account
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the combination of several application types, (2) Since it relies on the
dependencies of a specific problem, this approach lacks generalisation,
(3) For prediction, this method ignores high-level metrics, including
transaction throughput and latency of underlying resources, such as
vCPU cores (see Tables 3–5).

3.2. Runtime VM management

3.2.1. Multiple resource usage in VM consolidation
VM consolidation approaches attempt to consolidate more VMs on

fewer hosts to turn off the remaining hosts and save energy. Most
researchers used current CPU utilisation to determine whether a host
was overloaded or not in this process. This may result in unnecessary
VM migration and host power mode transition, lowering the consol-
idation process’ efficiency. The destination host for migrating VMs
is the host with the highest CPU utilisation, but due to the lack of
future estimation, this may result in overutilisation. As a result, future
resource utilisation estimation can address this issue. Aside from CPU
utilisation, other resource consumption, such as memory and disc, can
cause the host to become overloaded, making the consolidation process
challenging.

Haghshenas and Mohammadi (2020) proposed an intelligent VM
consolidation technique to reduce energy consumption. Based on his-
torical data, this technique predicted resource utilisation in the past and
used that prediction to choose a host with higher utilisation in advance
for VM migration. A dynamic consolidation procedure was used to
address this issue. To predict the future usage of all VMs, a machine
learning method called Linear Regression (LR) was used. This task
was carried out using real workload traces from PlanetLab VMs (Chun
et al., 2003). They used the CloudSim toolkit (Calheiros et al., 2011) to
model a data centre and implement their VM migration strategy to save
energy. Their work had the main benefit of taking into account time
overheads while lowering energy consumption on a larger simulated
benchmark with 7600 hosts. However, if this approach is used in real-
world workload production, the time overhead is a significant factor
that is also affected by the ML algorithm’s data training time. However,
they considered the LR method, which relies on various features to
predict the target variable, may make it time-consuming and potentially
affect the data centre’s response time.

3.2.2. Multi-dimensional resource requirement
Flexible resource provisioning frameworks are needed in cloud data

centres to manage host load based on various requirements. As a result,
data centres conduct dynamic resource provisioning, which uses pre-
diction models to estimate the number of resources needed in advance
for varying workloads over time. It aims to predict future VM request
workloads by looking at previous usage trends. However, since VM
requests include a variety of virtual resources such as CPU, memory,
disc, and network throughput, it is extremely challenging and complex
to forecast demand for each form of resource separately. In the case
of choosing an ML prediction model, the multi-resource existence of
a VM presents a specific challenge. Furthermore, different cloud users
can make different requests for cloud resources. As a result, forecasting
the demand for each form of resource is difficult and impractical.

(Ismaeel and Miri, 2015) They have proposed a model for dividing
VM clusters into different categories and then developing prediction
models for each cluster. The key benefit of their work is that (1) they
use Extreme Learning Machines (ELMs) (Darges et al., 2022), which can
find the best weight for the predictor in a single step. (2) They avoid
issues like stopping conditions, learning rate selection, learning epoch
scale, and local minimums of gradient-based learning methods like NN
and ANFIS using ELMs. (3) As it deals with nonlinear processes, this
work can handle the linear behaviour of the LR method. (4) It predicts
VM requests in each cluster using a single network. (5) Every cluster
can have its prediction network. However, in K-means clustering, they
set the number of clusters to 3, resulting in a model with a fixed number

of VM clusters.
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Table 3
State-of-art research: A summary of experimental configurations, data sets and their targeted performance improvement.

Study Experiments configuration Dataset Performance improvement

Garg et al. (2014) Simulation using CloudSim with
1500 physical nodes

Grid Workload Archive (GWA) (Iosup
et al., 2008) and PlanetLab (Chun
et al., 2003)

Reduces the number of servers
utilised by 60% compared to other
strategies

Yang et al. (2014) Simulation using real VM workload NASA NPB, IOzone and Cachebench Predicts VM power usage with an
average error of 5% and 4.7%
compared to actual power
measurement models

Calheiros et al. (2014) Simulation using CloudSim with
1000 hosts

Wikimedia Foundation Achieves efficiency in resource
utilisation up to 91% guaranteeing
QoS

Cao et al. (2014) Colected CPU load from 12 different
hosts

Private cloud environment Improvement in prediction by 4.81%,
5.92% and 7.37% for BEST MRE,
50% MREs and 80% MREs

Ismaeel and Miri (2015) Experimentation using real workload
VM traces

Google Cluster data (Reiss et al.,
2011)

Produces lower RMSE value than
other approaches

Subirats and Guitart (2015) Experimentation for predictions for a
different types of workloads

Workloads generated using
SPECweb2005

It improves the precision of the
forecasts of the energy efficiency
while running different workload
types benchmark

Verma et al. (2016) Simulation using two data centres
and three hosts per data centre

8 VMs in modelled data centres in
CloudSim

Significant allocations of VMs to the
host with full capacity

Messias et al. (2016) Experimentation using real web logs FIFA world cup 98 Web servers
(Arlitt and Jin, 2000), NASA Web
servers and ClarkNet Web server
(Arlitt and Williamson, 1997)

Significant prediction results

Shyam and Manvi (2016) Simulation using SamIam Bayesian
network

Amazon EC2 and Google CE data
centres

Workload predicted with accuracies
greater than 80%

Nguyen et al. (2017) Google Cluster Data
PlanetLab

Simulation using CloudSim with 800
hosts

Significantly reduces energy
consumption and VM migrations

Shaw et al. (2019) Simulation using CloudSim with 800
hosts

PlanetLab (Chun et al., 2003) Reduces energy up to 18% and
service violation up to 34%
compared to its baseline

Bianchini et al. (2020) Online experimentation using real
VM traces

Microsoft Azure Trace (Cortez et al.,
2017)

Significant prediction accuracies for
different workload

Haghshenas and Mohammadi
(2020)

Simulation using CloudSim with
7600 hosts

PlanetLab (Chun et al., 2003) It reduces the energy consumption
up to 38% compared to other work.
It takes 5% less time overhead to
execute for a modelled data centre

Ilager et al. (2021) Simulation using CloudSim with 75
hosts

Private cloud data from University of
Melbourne

Reduces peak temperature by 6.5 ◦C
and consumes 34.5% less energy
compared to its baseline
3.2.3. Energy metering at software-level
Modern servers have multiple energy metres to monitor energy

usage. Still, they are unable to monitor the energy of a single virtual
machine, which is difficult to do since measuring power at the software
level is difficult. And, according to the energy budget in data centres,
energy consumption has become a difficult factor to consider for a
successful VM consolidation phase. The previous study only looked at
server resource utilisation for VM consolidation, which contradicted the
energy capping mechanism by increasing across the levels of specific
servers during the process, which violated energy constraints. The term
‘‘energy capping’’ refers to a process introduced at the hardware level.
As a result, lowering the CPU frequency reduces the energy consump-
tion of the combined server, which violates the energy constraints.
Hence, lowering the server’s CPU frequency due to the load of one
VM affects all other operating VMs at the same time. Therefore, the
efficiency in workloads running in VMs degrades, breaching SLAs and
the isolation property of virtualisation. VM consolidation and energy
capping are the two most common methods in data centres, but neither
allows for accurate energy usage monitoring for individual VMs.

Yang et al. (2014) proposed the iMeter energy consumption predic-
tion model, which is based on the Support Vector Regressor (Smola and
Schölkopf, 2004) machine learning method (SVR). They used principal
component analysis (PCA) to identify the most associated components
8

that influenced VM energy consumption and projected individual VM
and multiple consolidated VM energy consumption for various work-
loads. However, predicting the energy consumption of a single VM is
difficult due to the various types of cloud resources residing in the
VM, such as CPU, memory, and IO, and the fact that different cloud
end users can demand other volumes of the same resources at the
same time. Furthermore, the resource manager must make individual
decisions for VMs, which slows down end-user response time and
violates QoS.

3.2.4. Usage level management
The current resource utilisation prediction causes unreliable over-

loaded host detection, especially when a current resource utilisation
exceeds a threshold value. The challenge arises in deciding whether
VMs allocated to this host should be migrated because the load de-
creases rapidly after a very short period, leading to a false hot detection
point, i.e., false overloaded host detection. However, when the duration
of load degradation is large enough, VMs need to be migrated to
avoid over utilisation. Such kind of VM consolidation mechanism poses
a unique challenge to the resource management system to prevent
unnecessary VM migration overhead.

Nguyen et al. (2017) proposed a VM consolidation strategy based
on multiple usage prediction and multi-step prediction to limit unneces-
sary VM migrations to avoid overheads and wasted energy consumption
in data centres. Thus, this mechanism was computed to estimate the



Journal of Network and Computer Applications 204 (2022) 103405T. Khan et al.
Table 4
State-of-art research: Objectives, Advantages and Limitations.

Study Objectives Advantages Limitations

Bianchini et al. (2020) Online profiling of workload Predictions are provided online Memory use is not taken into account,
nor is the case of distributed data
centres

Haghshenas and Mohammadi
(2020)

VM consolidation Time overhead is considered Prediction relies on multiple features

Shaw et al. (2019) VM placement Dynamic VM placement based on CPU
utilisation and network bandwidth

Disc throughput is not considered

Ilager et al. (2021) Thermal management Peak temperature is reduced significantly Algorithm overhead

Nguyen et al. (2017) VM consolidation based on multiple
resource usage

Combination of current and future
resource utilisation is considered

Overloaded host in the current period is
not taken into account

Yang et al. (2014) Energy consumption prediction Energy metering at software-level, i.e.,
VM-level

Decision could be taken for an
individual VM only based on predicted
energy consumption in RMS

Garg et al. (2014) Resource management strategy based on
SLAs

Historical CPU utilisation data with SLA
penalties is used

Deviation of prediction from actual
value, Highly nonlinear workload is not
considered

Calheiros et al. (2014) QoS aware workload prediction Predicted requests are considered to
provision VM dynamically

Future estimation is provided for a static
time-interval

Verma et al. (2016) Resource demand prediction and
provision strategy

Classification of service tenants based on
a binary problem

Information of how binaries are assigned
to service tenants are not available;
assigning binaries could be
time-consuming, Supervised classification
could have some limitations in case of
partially labelled data

Subirats and Guitart (2015) Energy consumption prediction based on
ensemble learning

Ensemble learning is considered Last-level-cache (LLC), disc throughput
are not considered, Accuracy is
workload specific

Messias et al. (2016) Auto-Scaling of web applications Auto-scaling can adapt to any new
workload, Independent of type of
prediction models, and It can adapt
more advanced prediction models

High time complexity

Cao et al. (2014) Time-series prediction Ensemble approach can dynamically
adjust the models

Non-generalised approach

Shyam and Manvi (2016) Prediction of virtual resources Detection of dependencies
comprehensively in a variable based on
the analysis of nonlinear workloads

Combination of several application types
is not considered, Non-generalised
approach, Transaction throughput and
latency are not taken into account

Ismaeel and Miri (2015) VM categorisation Use of Extreme learning machines
(ELMs) can deal with nonlinear
processes, Use a single network for
prediction. Every cluster can have its
network for prediction

Static number of VM clusters.
long-term utilisation of several resources such as CPU memory based
on the historical data for a particular PM. In VM consolidation, the
main task is to detect overloaded and underloaded hosts. Thus, they
considered current and predicted resource utilisation to identify the
overloaded and underloaded hosts. An efficient multiple usage predic-
tion algorithms was presented to compute the long-term utilisation of
different resource types based on local historical data. Furthermore, a
VM consolidation based on multiple usage prediction was proposed to
reduce energy consumption by limiting the unnecessary VM migrations
from overloaded hosts. Hence, the current and predicted resource
utilisation combination plays an important role in reliable overloaded
and underloaded host detection. According to this, a host is considered
overloaded if it follows two constraints: (1) if the host is overloaded in
both current and predicted resource utilisation, and (2) if the host is in
normal condition and will be overloaded in a future period. And VM
consolidation was performed based on the detected overloaded hosts
by following these two constraints. However, they did not consider
the case. If a host is overloaded in a current period but will not be
overloaded in the future period, then what about the overloaded host
in the current period. This point should be considered in the VM
consolidation scheme.
9

3.3. VM placement

3.3.1. Cloud network traffic
The current research in VM allocation involves many solutions to

allocate a single VM to a host and allocate various VM resources by
ensuring that every host has sufficient capacity to run the workload.
This approach leads to inefficient resource utilisation as the applica-
tion workload varies from time to time with a mix of high and low
resource utilisation. The challenges arise when different applications
exhibit different resource demands and are allocated to suitable VMs
in data centres that cause varying resource demand patterns. Moreover,
many VM placement solutions consider only current resource utilisation
like CPU demands. However, varying workload continuously poses a
challenge to such solutions. Future resources like CPU demand can be
more effective for VM placement strategies. In addition to CPU resource
demand, cloud network bandwidth is also another challenging factor
inefficient resource management in data centres (Genez et al., 2015;
Duggan et al., 2017). As Networking (2016) reported that there will be
51,774 GB/s amount of internet traffic would be produced because of
computing as a service via cloud computing and this would affect cloud
networks as well. And this key factor affects the VM migration time in
case of dynamic VM placement and violates SLAs (Verma et al., 2008).
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Table 5
Machine learning-centric resource management challenges and future research directions.

X Challenges (Section 3.X) Future Research Directions (Section 4.X)

1 Online profiling of nonlinear workload, Prediction accuracy, Time
complexity

More precise estimate of prior workload using advanced ML
models, Prediction of memory utilisation in physical resource
exhaustion along with CPU utilisation, Semi-supervised classification
in categorising VMs

2 Excessive VM migrations, Host overutilisation, Memory and disc
utilisation in VM consolidation

Overloaded host detection based on the combination of CPU,
memory, and bandwidth utilisation, Workload prediction using DL
methods like LSTM, GRU, etc.

3 Non-linear resource utilisation, Various resource demands patterns,
Cloud network bandwidth

Consideration of disc throughput along with CPU and bandwidth
utilisation in VM placement heuristics

4 To cool down the host, Cost of the cooling system, Thermal
management

Prior CPU estimation-based resource provisioning, Use of GRU for
inlet temperature prediction only

5 Rapid degradation of load, Unnecessary VM migration overhead Development of ML algorithm with dynamic resource utilisation
threshold

6 Prediction of energy consumption at VM level, Performance
degradation due to lower the CPU frequency of server

Prediction of energy consumption state at VM level using clustering
analysis

7 Resource wastage, Resource prediction in the presence of
computationally intensive applications

To involve current and future requirements of resources like CPU,
memory and bandwidth and SLAs such as compute-intensive
non-interactive jobs and transactional applications in VM dynamic
consolidation, To consider a combination of provisioned and utilised
resources like CPU and memory in dynamic resource provisioning

8 High utilisation, The exact number of resources in the presence of
varying load

To deal with reactive approaches in resource provisioning, Adhoc
decisions in dynamic resource provisioning, To predict the peak
utilisation of resources using different ML models, Ensemble
learning, Estimating future web requests with a dynamic time
interval

9 To obtain historical data, Amount of resources, Varying resource
requirements

To classify service tenants using clustering or semi-supervised
clustering

10 Prediction of energy consumption in real-time production To consider memory, disc, and network components system in
energy consumption prediction, To inspect nonlinear relationships
such as polynomial or exponential between virtual resource and
energy consumption, Combine information provided by an
individual model, To keep track of the value of the parameter of
each model from the record, To feed the ML model with average
workload performance for training

11 Prediction accuracy in proactive approaches, Limitations of
statistical learning over machine learning

To use ML methods to forecast workload instead of statistical
methods, To use feature selection methods such as wrappers, filters,
the embedded method in ML models

12 Arrival of new patterns in workload, No single ML model for
all-time series, Fixed prediction models in ensemble learning
approaches

Generalised ensemble framework, Novel models incorporating both
global and local parameters, Ensemble learning, Prediction using
advanced neural networks like Temporal Convolution Networks
(TCN)

13 Dynamic resource prediction, optimal data training in ML model Optimisation of hyperparameters of ML models using heuristics like
Grid Search, Random Search, Bayesian Optimisation, Gradient-based
Optimisation, and Evolutionary Optimisation

14 Multiple virtual resources, Demand prediction of each type of
virtual resource

To categorise the VMs using advanced clustering approaches like
cluster ensemble involving clustering accuracy, time complexity and
resource usage (CPU and memory utilisation) as model evaluation
criteria
(Shaw et al., 2019) They proposed a network-aware predictive VM
lacement heuristic to reduce energy consumption and SLA violations
y considering CPU demand and network bandwidth. The main advan-
age of their work was to design a dynamic VM placement strategy
ased on the prediction of both CPU utilisation and network bandwidth
ecause estimating network bandwidth in case of large VM migra-
ion contributes to making decisions with improved scheduling and
akes VM placement efficient reliable. Thus, VM placement strategies

hould consider future insights of resources to balance limited resource
vailability and energy-efficient management. However, they did not
onsider another aspect, disc throughput, that may also affect VM
igration time (Brewer et al., 2016).

.4. Thermal management

.4.1. Host temperature
In modern cloud data centres, minimising host temperature is a

hallenging issue. This is caused by the released heat in the process
10
of energy consumption by the host. The cooling systems are deployed
to rid this dissipated heat to keep the host’s temperature below the
threshold. This increased temperature directly affects the cost of the
cooling system and has become a challenging issue to resolve in re-
source management systems. It also creates hot spots in the system and
is responsible for several system failures. Thus, thermal management is
necessary and challenging due to this dynamic behaviour of the host’s
temperature.

Ilager et al. (2021) proposed a thermal aware predictive scheduling
approach to reduce the peak temperature of a host and energy con-
sumption. Since most data centres have monitoring sensors to record
several parameters such as resource usage, energy consumption, ther-
mal reading, and fan speed readings, this kind of data was collected
from the University of Melbourne’s private cloud data centre. They
predicted host temperature using several machine learning algorithms.
They proposed a thermal aware scheduling algorithm to minimise the
peak temperature of hosts while migrating VMs to the fewest hosts

to reduce energy consumption. In this approach, the prediction model
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is invoked to predict the host temperature, and further scheduling is
guided. The main advantage of their work is that they reduce the peak
temperature up to 6.5◦ and 34% energy consumption in comparison
to existing algorithms, and it was reported (Gao, 2014) that reducing
even one degree in temperature can save up to millions of dollars in a
large-scale data centre. They consider the host’s ambient temperature
for prediction instead of CPU temperature that combines inlet temper-
ature and CPU temperature; however, it may increase the algorithm
overhead.

3.5. Resource provisioning

3.5.1. SLA-based VM management
Over-provisioning has long been used in data centres to prevent

the worst-case scenario of peak load utilisation while still meeting SLA
obligations ?. However, during regular hours, the hosts use very little
energy, resulting in resource waste. Reiss et al. (2012) studied actual
workload traces of VMs’ resource utilisation from the Google data
center and found that the average CPU and memory utilisation were
less than 60% and 50%, respectively. Overprovisioning of services,
as a result, results in additional maintenance costs in host cooling
and administrative activities (Sun et al., 2016). Research has aimed to
solve this difficult problem by using dynamic resource provisioning of
resources in virtualisation technology. Still, it primarily focuses on a
particular form of SLA or application, such as transactional workload.
However, computationally intensive applications are increasingly be-
coming a part of enterprise data centres, which run multiple types of
applications on multiple VMs without considering SLA criteria, such
as the deadline that results in an under-utilised host. In the case of
resource estimation, this factor presents a unique challenge.

Garg et al. (2014) suggested a novel resource management approach
that took into account various types of SLA specifications for various
applications operating on various VMs. This approach addresses two
types of applications: non-interactive compute-intensive jobs and trans-
actional applications. Both types of applications had a wide range of
SLA criteria and specifications. The key benefit of their work was that
they used historical CPU utilisation data combined with SLA penalties
to forecast potential insight, allowing them to make complex placement
decisions in response to shifts in transactional workload and scheduled
jobs, taking into account CPU cycles in case of under-utilisation during
usual or off-peak periods. The sample of VM CPU usage was used to
train an artificial neural network (ANN) to predict VM CPU usage for
the next two hours, with the result plotted against actual usage. The
𝑋-axis was distributed at a regular interval of 5 min. We saw some
shortcomings in their work at this point: (1) When there is a wide
variance in preparation, the ANN forecast deviates from the actual
value in some situations, (2) In a few instances, it also predicts low CPU
utilisation from the actual value, (3) They did not take into account
highly nonlinear data. The testing data had no nonlinear variation, and
non-linearity in workload is a major issue nowadays, as data centres
have very high non-linearity in workload, which leads to a variety
of issues such as high energy consumption, inconsistent QoS and SLA
violations (Kumar et al., 2020b).

3.5.2. QoS-aware resource provisioning
The pattern of evaluating applications deployed on running VMs

in modern data centres varies from time to time, i.e., many users
attempt to access the application simultaneously. As a result, in the
cloud, static resource allocation to SaaS applications is inefficient be-
cause it results in nonlinear resource use during low demand and
high utilisation periods. When demand is low, available resources are
wasted, resulting in excessive overheads and costs for the cloud service
provider; when demand is high, available resources can be inadequate,
resulting in weak QoS. This problem can be solved with dynamic
resource provisioning. Still, in this case, the difficulty is determining
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the correct number of resources to deploy in a given period to satisfy
QoS requirements when varying workload is available. This challenge
is being addressed in two ways: reactively and proactively. The latter
has been significantly modified because it is dependent on future load
variations before their occurrence, i.e., estimating the QoS parameters
in advance.

Calheiros et al. (2014) proposed an ARIMA-based workload pre-
diction model. The main benefit of their work was that the expected
requests were used to dynamically provision VMs in an elastic cloud en-
vironment while taking into account QoS parameters such as response
time and rejection rate. The accuracy of forecast user requests was
also assessed to see how it affected resource use and QoS parameters.
However, we would like to draw your attention to the following
limitation in this work. They gathered historical web request data
from the Wikimedia Foundation (Amekraz and Hadi, 2018) and fed it
into a component of their proposed model called Workload Analyser.
The ARIMA model was used in this component to provide a future
estimation for a specific time interval that can be adjusted for a specific
application. The time interval should be long enough to allow for the
placement of a new VM for optimal system utilisation. This static time
interval may cause issues if a VM deployment time is less than this static
time interval, as the extra remaining time may affect QoS parameters
such as response time.

3.5.3. Varying patterns of service tenant in resource allocation
Resource demand prediction in a multi-tenant service cloud envi-

ronment requires historical data to learn the past profiles of service
tenants, which is challenging due to the need to update the predic-
tion model regularly because the profiles or trends of service tenants
change. Another challenge is maintaining the number of resources re-
quired by a service tenant to conduct its operations, which is dependent
on many factors, including (1) the operation type, (2) the specific
period when the operation is conducted, and (3) the load faced by the
service tenant at a specific time. As a result, it presents a challenge
because a service tenant’s resource requirements can shift. This is a
critical topic to address when dealing with resource provisioning using
proactive methods for a single service tenant and multiple service
tenants.

In multi-tenant service clouds, (Verma et al., 2016) a dynamic
resource demand prediction and provisioning approach was proposed
to assign resources in advance. They divided the service tenants into
groups based on whether or not their resource use would rise in the
future. As a result, the proposed system forecasts resource demand
with priority for only those service tenants whose resource demand
was expected to increase, reducing the time required for prediction,
which may affect the total time of all operations, thereby affecting
QoS. Furthermore, the proposed mechanism used the Best-fit decreas-
ing heuristic method to determine the efficiency of maximum PMs
utilisation by combining the service tenants with the matched VMs and
allocating them to physical machines (PMs). The most significant aspect
of this research is that it classifies service tenants based on a binary
issue of whether resource demand will increase or not and then predicts
resource demand for tenants whose resource demand will increase,
resulting in a decrease in computational time and cost of prediction.
However, (1) we cannot determine on what basis they mark binaries (0,
1) with the service tenants’ characteristics, even though labelling data
is needed to classify it using supervised learning techniques. (2) If we
presume that the service tenants’ features were labelled with binaries
based on some condition, then labelling the data in a large-scale multi-
tenant cloud would be time-consuming and increase the prediction
cost. (3) Some data may be accessible without labels in a large-scale
distributed multi-tenant cloud, in which case supervised classification
would not work.

In summary, ML techniques, although presents significant chal-
lenges in adopting to resource management of Cloud, with the ad-
vancements of fundamental ML algorithms and tools, we envision
Ml-centric resource management will become pervasive. In the next
section, we discuss potential research directions in regard to utilising

ML techniques in various cloud resource management tasks.
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4. Future research directions

4.1. Workload prediction

4.1.1. ML in energy consumption prediction
Apart from the CPU, a system power model includes memory, disc,

and network components so that these components could be considered
as well. The current study looks at the linear relationship between these
metrics and energy consumption; however, nonlinear relationships,
such as polynomial or exponential, could be explored in the future. In
addition, the best individual model is chosen in an ensemble learning
approach, which may or may not be the best solution. Another option
is to combine the information provided by each model and analyse
the results. This can be accomplished by estimating the average using
weights based on each predictor’s mean average error. Furthermore,
each workload type requires its own set of configuration parameters.
The future research direction is to keep track of the value of the pa-
rameter of each model from the record that has increased the maximum
utilisation of resources and to use them in real-time scenarios to adapt
the models to the workload type of each VM. In addition, the forecast
accuracy is also affected by a sudden change in the use of resources.
Therefore, a further future research direction is to feed the ML model
with average workload performance, such as CPU utilisation.

4.1.2. Performance and online profiling of workload
The efficiency of the intelligent resource management system is de-

termined by many factors, including the accuracy and time complexity
of the prediction model. Huge corporations such as Google, Microsoft,
Amazon, and others are in charge of extremely complex data centres
with a wide range of workloads. As a result, in the presence of such a
highly variable or nonlinear workload for VMs, a more accurate estima-
tion of prior workload is a future research direction by employing more
sophisticated ML and DL modes. Furthermore, the time complexity
of an algorithm is a measurement of its performance in terms of the
time it takes to run the input code. As a result, the algorithm should
be designed to be as simple as possible in terms of time complexity.
Furthermore, online profiling is necessary to prevent VM blackouts
until they are running in development, as well as various resource
utilisation such as CPU and memory, which are major contributors
to physical resource exhaustion and should be considered for predic-
tion. Cortez et al. (2017), Bianchini et al. (2020) conducted online
workload profiling and provided an analysis to determine if a virtual
machine is interactive or delay-insensitive. To categorise VMs into these
two groups, they used supervised classification. In this situation, semi-
supervised learning (Zhu and Goldberg, 2009) may play a vital role and
maybe a potential research direction to train the data with these partial
labels and perform classification with promising accuracy in large-scale
distributed data centres.

4.1.3. Prediction accuracy in auto-scaling of web applications
Machine learning models may be used to predict workload in the

future, which has many advantages: (1) Machine Learning learns from
data without the need for explicit programming. (2) Machine Learning
can learn from billions of observations and features, (3) Machine
Learning relies less on assumptions and, in most cases, disregards
them. (4) Machine Learning emphasises predictions, supervised learn-
ing, unsupervised learning, and semi-supervised learning (5) Machine
Learning uses iterations to identify patterns in a dataset, requiring
far less human effort. The training of multiple features is needed to
predict the target variable, which increases the time complexity of
machine learning methods like regression. As a result of the existence
of redundant features, ML methods suffer from latency and compu-
tational complexity problems when processing multiple features. In
such datasets, the number of functions, feature dependency, number
of records, feature types, and nested feature categories substantially
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increase ML methods’ processing time. As a result, future research
should concentrate on using suitable feature selection methods, such as
wrappers, filters, embedded methods, and enhanced versions (Majeed,
2019), to effectively overcome the computation speed versus accuracy
trade-off when processing large and complex datasets.

4.1.4. Time-series prediction data
Developing a generalised ensemble framework for any type of

dataset in cloud time-series workload data is a future research direc-
tion. Deep learning (DL), in general, is a rapidly expanding and broad
research field that involves novel architectures. However, researchers
are never sure when to adapt which methods to which situations. Hewa-
malage et al. (2021) used global NN models, which are prone to outlier
errors in some time series. As a result, novel models incorporating
both global and local parameters for individual time series must be
developed in the form of hierarchical models. These models can be
combined with ensembling, which involves training multiple models
with the same dataset in different ways. Furthermore, CNNs have
long been used for image processing, but they are now being used to
forecast time series data. According to Lai et al. (2018), Shih et al.
(2019), traditional RNN models are ineffective at modelling seasonality
in time series forecasting. As a result, they combine CNN filters for
local dependencies and a custom attention score function for long-
term dependencies. To capture seasonality patterns, Lai et al. (2018)
has also tried recurrent skip connections. Oord et al. (2016) devel-
oped Dilated Causal Convolutions to effectively capture long-range
dependencies along the temporal dimension. They have recently been
used in conjunction with CNNs to solve problems involving time series
forecasting. Temporal Convolution Networks (TCN), which combine
dilated convolutions and residual skip connections, have also been
introduced as more advanced CNNs (Borovykh et al., 2017). According
to Bai et al. (2018) TCNs are promising NN architectures for sequence
modelling tasks, in addition to being efficient in training. As a result,
using CNNs instead of RNNs could provide a competitive advantage for
forecasting practitioners. As a consequence, these potentially advanced
neural networks could be used in the future to forecast workload time
series in cloud infrastructure.

4.1.5. Data training
Optimising machine learning hyperparameters aims to find the

hyperparameters for a particular machine learning algorithm that
achieves the best performances on validation data. The hyperparame-
ters are set by the experts before the training, contrary to the model
parameters. The number of trees in a random forest, for example,
is a hyperparameter, whereas the weights in a neural network are
model parameters learned during training. Size and decay are support
vector machine hyperparameters (SVM) and k in k-nearest neighbours
(KNN), respectively. Furthermore, hyperparameter optimisation returns
an optimal model that reduces a predefined loss function and, as a
result, improves the accuracy on given independent data by finding
a combination of hyperparameters. Hyperparameters can thus have
a direct effect on machine learning algorithm training. Therefore, it
is critical to understand how to optimise them to achieve maximum
performance. This points to a future research direction of optimising
the hyperparameters of ML algorithms for achieving optimal dataset
training. This can be accomplished by employing common heuristics
such as Grid Search, Random Search, Bayesian Optimisation, Gradient-
based Optimisation, and Evolutionary Optimisation (Feurer and Hutter,
2019).

4.2. Runtime VM management

4.2.1. Multiple resource usage in VM consolidation
A host is considered overloaded during the VM consolidation phase

if CPU utilisation reaches a throughput threshold, such as 80% (Nguyen
et al., 2017). However, other resource utilisation, such as memory and

bandwidth use (Abdelsamea et al., 2017), leads to host overloading.
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As a result, detecting overloaded hosts using a combination of CPU,
memory, and bandwidth use is a potential research direction in the
VM consolidation phase. For an efficient VM consolidation operation,
the estimation of current and future CPU, memory, and bandwidth
use should be addressed. The current study (Abdelsamea et al., 2017;
Haghshenas and Mohammadi, 2020) involves a variety of machine
learning algorithms, such as linear regression and multiple regression,
in which the model’s training is based on multiple features to simulate
a target variable, such as CPU utilisation. The training time of multiple
features will affect the VM migration time in the VM consolidation
process, which affects QoS and SLAs in large-scale distributed data
centres where millions of VMs are running in production. As a result,
dealing with the training time of ML models is a potential future re-
search direction. Different deep learning (DL) approaches, such as Long
Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014), can deal
with training time by avoiding the overheads of multiple features by
using a single feature, such as a vector of CPU utilisation, as an input
for training to predict its next state in the future.

4.2.2. Multi-dimensional resource requirement
As stated in Section 3.2.2, there is a future research direction to

categorise the VMs and develop a prediction model for each cluster
to address the multi-resource demand challenges. However, using a
clustering algorithm such as K-means can limit the number of clusters
available, causing a VM to be placed in the incorrect cluster. A cluster-
ing ensemble can be a better approach than clustering because it aims
to combine multiple clustering algorithms to produce a final consensus
solution that is more robust and accurate than a single clustering
algorithm (Alqurashi and Wang, 2019). In this literature (Boongoen and
Iam-On, 2018) mentions several clustering ensemble methods. Further-
more, in a recent work (Kadhim et al., 2019), two additional evaluation
criteria, such as time complexity and resource usage (CPU and memory
usage), were considered to evaluate the novel clustering ensemble, in
addition to clustering accuracy. Thus, advanced clustering methods
such as clustering ensembles can be used in the future to achieve the
best clusters with the highest precision, least time complexity, and least
resource consumption.

4.2.3. Energy metering at software-level
Many power management decisions, such as power capping, will

benefit from the visibility of energy usage at the host and VM levels.
At the host level, energy consumption is simple to predict or calculate
since modern data centres have several built-in sensors that track it.
Still, it is difficult to measure at the VM level because to measure
the energy consumption induced by memory, and we must collect LLC
(last-level-cache) events raised by each VM on each core, which is
difficult to do (Kansal et al., 2010; Zhao-Hui and Qin-Ming, 2012).
Rather than calculating or predicting energy consumption at the VM
level, clustering analysis may be used to determine the status of VMs in
terms of energy consumption, such as low, moderate, or critical. Thus,
dividing VMs by conducting clustering analysis based on highly co-
related features with energy consumption at the VM-level is a potential
research direction, and there would be no need to obtain host-level
features. ML techniques such as ChiSquare Score, Fisher Score, Gini
Index, and Correlation-based Feature Selection (CFS) can be used to
find the correlation with energy consumption (Vora and Yang, 2017).
Then, using a clustering algorithm or a clustering ensemble (Kadhim
et al., 2019), a clustering analysis can be performed to determine which
VMs are in low and critical energy-consuming states. By doing so, a
group of VMs can be managed together in a data centre’s resource
management system, potentially reducing response time and improving
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QoS.
4.2.4. Usage level management
The overloaded host detection’s static threshold can result in unre-

liable VM migration. If the utilisation of a VM’s resources degrades in
a short period, there is no need to migrate the VM. In this case, the
algorithm should have a dynamic resource utilisation threshold that
automatically prevents VM migration when it reaches the fixed thresh-
old, taking into account near-future data. This is the future research
direction for efficient VM migration in VM consolidation. Furthermore,
VMs should be migrated if the near future information has a long period
of load degradation.

4.3. VM placement

4.3.1. Cloud network traffic
The problem of varying patterns of various types of workloads

when considering current resource utilisation in VM allocation on a
host is a challenge. As a result, predicting potential resource demand,
such as CPU and network bandwidth, has proven to be an alternative
approach (Shaw et al., 2019). However, disc throughput is a significant
factor to consider in addition to these resources. In VM placement
heuristics, taking disc throughput into account is a new research di-
rection. It calculates the amount of data that can be stored, read, and
written per second. Brewer et al. (2016) published a report stating
that disc tail latency, especially reads, is a key factor when delivering
online services where a user is waiting for a response. As a result,
disc throughput can play a role in VM migration time, affecting tail
latency time and violating SLAs. Therefore, according to our vision, a
prior maximum estimate of disc throughput will play a critical role in
avoiding delay.

4.4. Thermal management

4.4.1. Host temperature
Ilager et al. (2021) proposed a scheduling algorithm to minimise the

host temperature driven by the host temperature prediction computed
using several ML algorithms. Consequently, estimating host tempera-
ture ahead of time can help with thermal management decisions like
VM migration to reduce host temperature, i.e., CPU temperature. Ilager
et al. (2021), on the other hand, it took into account the ambient
temperature for prediction, which is a combination of CPU and inlet
temperature. This could increase algorithm overhead. Furthermore,
they discovered that the host’s CPU temperature is primarily affected by
CPU load and power consumption. As a result, it is being waited for the
CPU to become overloaded, causing the temperature to rise, resulting
in additional cooling costs for the host. As a potential research topic,
Prior CPU estimation-based resource provisioning can prevent the CPU
from overloading and save energy. Then we will only have to deal
with the inlet temperature, which may reduce the thermal management
algorithm’s overhead. Furthermore, several ML algorithms necessitate
a significant amount of training time due to the training of multiple
features, which can slow down VM migration. It will cause VM migra-
tion to be delayed, which will slow down host temperature degradation
and add to the cost. Thus, using an ML or DL method like GRU, where
the inlet temperature can be used as an input to train a model that
can predict its future state using single feature training, could be an
alternative. Doing so can avoid an overhead algorithm, a delay in VM
migration, a delay in minimising the host temperature.

4.5. Resource provisioning

4.5.1. SLA-based VM management
Future research directions for avoiding nonlinear resource utilisa-

tion in modern data centres include dynamic resource provisioning and
dynamic VM consolidation, which take into account various types of
VM resources such as CPU, memory, and bandwidth, current and future

resource needs, and SLAs such as compute-intensive non-interactive



Journal of Network and Computer Applications 204 (2022) 103405T. Khan et al.
jobs and transactional applications. Both of these methods rely heavily
on accurate resource prediction. Garg et al. (2014), for example, they
provided long-term CPU utilisation forecasts that differed significantly
from actual test phase data due to a substantial shift in CPU utilisation
during the training phase, which is critical for dealing with nonlin-
ear utilisation in modern data centres. Future research will focus on
optimising hyperparameters used in Artificial Neural Network (ANN)
learning, such as mini-batch size, epochs, and several neurons. The
model is said to work better if trained on the data in an optimised
manner. The observation of the validation and loss graphs estimated
with these optimised hyperparameters may indicate that the model has
learned a lot when both plots begin moving closely and consistently,
and learning should be stopped at these optimised parameters.

4.5.2. QoS-aware resource provisioning
This study uses constructive dynamic resource provisioning based

on workload estimation using historical data to improve QoS parame-
ters like response time and rejection rate. Future research could deal
with it reactively, with resource provisioning occurring after resource
demand, such as the number of requests, has arrived. Furthermore,
according to the current study (Calheiros et al., 2014), the error in
request prediction can be mitigated by Adhoc decisions in dynamic
resource provisioning, which can help to boost poor QoS efficiency.
Furthermore, there is a potential research direction to forecast peak
CPU use using more sophisticated ML models such as XGBoost (Chen
and Guestrin, 2016), LSTM (Hochreiter and Schmidhuber, 1997), and
GRU (Cho et al., 2014) in a correct manner that cannot be equipped
with the ARIMA model. Furthermore, no single machine learning al-
gorithm can suit any non-linear workload with time-series data, ne-
cessitating an ensemble learning approach in which various ML and
DL methods can be used in the future. After that, the best-performing
model can be selected for potential use. Calheiros et al. (2014), as
discussed in Section 3.5.2, estimates web requests based on a static time
interval that can affect response time. Therefore, pAs a result, it can
be addressed by estimating future web requests with a dynamic time
interval that adjusts automatically based on the VM deployment time.
In such a way that the time interval of estimation can be equivalent to
the VM deployment time, and the remaining time can be avoided if the
VM deployment time is much shorter than this static time interval that
affects the QoS parameter as the response time. Prior estimation of VM
deployment time based on historical data should be computed and used
in the above-mentioned case to satisfy the condition of equivalence
with the estimated time of the request prediction.

In summary, ML techniques provide numerous opportunities to
apply them for various resource management tasks as described in this
section. However, ensuring availability of quality data, careful selection
of suitable ML models, and performance guarantee is necessary to
successfully deploy them on real Cloud environments.

4.5.3. Varying patterns of service tenant in resource allocation
Clustering analysis, which does not require any data labelling,

could classify service tenants as a future research direction. Based on
historical resource demands, similar patterns of service tenants can be
automatically obtained. By observing the similarity between data using
clustering, service tenants with high and low resource demand can be
distinguished, and predictions for those with high resource demand
can be provided using ML and DL regression techniques. In the case
of a distributed data centre where data is dispersed and partial labels
are available, a concept is known as semi-supervised clustering (Śmieja
et al., 2020) can be used, in which unsupervised data is given a
little supervision using partial labels and techniques such as instance-
level constraints (Wagstaff and Cardie, 2000) and relative distance
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constraints (Cho et al., 2014).
4.6. Answering of research questions

In this subsection, we answer the research questions raised in
Section 1.2 based on the detailed study done in this article.

• The temporal complexity of an ML algorithm is the number of
operations it must perform to achieve its goal in relation to the
size of the input. To put it another way, it takes time to finish
the task. The desire to minimise the complexity of a model can
occur for a variety of reasons, the most common of which is
to reduce computational needs. However, complexity cannot be
reduced arbitrarily because that is the only model that produced
good results after several iterations of training and testing. It is
important to optimise the ML models to reduce the number of
training rounds and achieve the required accuracy by carefully
selecting the training parameters. This matter is currently being
researched and Koning et al. (2019) proposes a solution to this
difficulty for CNNs used for exoplanet identification.

• To improve the accuracy of prediction models, several techniques
are employed, such as using LSTM encoders with an attention
mechanism can improve workload prediction accuracy. An auto-
matic decision mechanism for input weights and hidden biases is
used in an extreme learning machine that requires many hidden
neurons to obtain decent results. Using a neural network and a
self-adaptive differential evolution method is another option. An-
other alternative is to use a clustering-based workload prediction
method, which divides all tasks into groups and then trains a
prediction model for each one.

• The training time of an ML algorithm can be reduced using several
techniques including reducing the input size to the necessary
dimensions, ensuring that critical features are not lost. Prepossess-
ing the data to make it zero mean and normalise it by dividing it
by the standard deviation or the difference between the maximum
and minimum values. In addition, maintaining a network depth
and width that is neither too large nor too little. Alternatively,
always utilise the theoretically proven standard architecture and
initialise weights using tried-and-true methods like Xavier Initial-
isation. An appropriate learning rate should be determined by
trying several and selecting the one that reduces error the most in
relation to the number of epochs. Also, while executing gradient
descent, employ the learning rate decay approach to ensure you
do not skip a solution. Always double-check the epochs. There
is no point in taking more epochs if you cannot enhance your
mistake or accuracy beyond a certain point. The batch size should
be determined by the amount of RAM available and the number
of CPUs/GPUs. If the batch cannot be fully loaded in memory,
operations will be slowed owing to paging between memory and
the filesystem. Use batch normalisation to treat and process data
through the pipeline (feedforward). This data transformation aids
in the faster learning of weights, resulting in faster optimisation.

• To reduce the operational complexity in VM management, VMs
can be categorised in similar groups by using clustering algo-
rithms (Jain et al., 1999) and cluster ensembles (Ghosh and
Acharya, 2011) and resource management actions can be en-
forced on the group of VMs instead of building individual models
for each VM.

• The energy efficient Clouds can be achieved by variety of re-
source management measures. By limiting the number of active
servers, the energy consumption of servers can be reduced. This
is commonly accomplished by scheduling optimisation, which
is a common strategy for green clouds and is considered (Xian
et al., 2007) more efficient in terms of cost, utilised resources, and
scalability than hardware optimisation. To reduce the amount of
power utilised, it is necessary to find a proper mapping between

demands for VMs and actual servers.
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5. Summary and conclusions

Cloud computing systems are immensely complex, huge in scale,
and diverse, allowing for the development of highly networked
resource-intensive corporate, scientific, and personal applications. In
such a complex infrastructure, holistic resource management has be-
come a difficult undertaking. In today’s cloud computing context,
state-of-the-art rule-based or heuristic resource management systems
are insufficient. RMS rules must deal with vast size, heterogeneity, and
shifting workload demands. Therefore, we need data-driven AI tech-
niques that draw critical insights from data, learn from surroundings,
and make resource management decisions based on that learning. In
this paper, we discuss the challenges in resource management in a cloud
computing environment, the various ML approaches that have been
used to solve these challenges in recent years, and their benefits and
drawbacks. In recent years, there has been a significant increase in the
number of studies looking at how to use machine learning techniques
to conduct workload prediction, energy consumption prediction, and
other tasks. Different ML methods are used to deal with various types
of problems. Finally, based on the challenges and drawbacks identified
in the state-of-the-artwork, new potential future research directions
are proposed to strengthen the current ML methods for resource man-
agement in cloud-based systems. The overall knowledge provided in
this paper aids clouds researchers in comprehending cloud resource
management and the significance of machine learning techniques.

Our investigation shows that machine learning models can be used
in cloud computing systems to achieve various optimisation goals and
deal with complex tasks. ML approaches also open up a new avenue for
intelligent resource and application management. This article illustrates
the progress of machine learning approaches in current research and
helps readers understand the research gap in this field. To improve
system efficiency, one promising way is to use advanced machine
learning techniques such as reinforcement learning and deep learning
to perform intelligent resource management.
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