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Abstract
This paper proposes a mobile healthcare framework based on edge-fog-cloud collaborative network. It uses edge and fog 
devices for parameterized health monitoring, and cloud for further health data analysis in case of abnormal health status. 
The continuous location change of users is a critical issue, and the connection interruption and delay in delivering health 
related data may be fatal in case of emergency. In this direction, in the proposed framework, mobility information of the 
users is considered and the users’ mobility pattern detection is performed inside the cloud for advising the user regarding 
nearby health centre. From the theoretical analysis, it is observed that the proposed framework reduces the delay and energy 
consumption of user device by ∼ 28% and ∼ 27% respectively than the cloud only health care model. The proposed healthcare 
framework has been implemented in the laboratory and health data of few student volunteers are analyzed to predict their 
health status. The experimental analysis also shows that the proposed mobility prediction model has better precision, recall 
value and time-efficiency than the existing models.

Keywords Health monitoring · Edge-fog-cloud network · Mobility prediction · Internet of Health Things (IoHT)

1 Introduction

The rapid advances in sensor-based systems and Internet 
technologies have enabled a new dimension of health care 
technology namely Internet of Health Things (IoHT). IoHT 

is the exchange and processing of the data for health sta-
tus monitoring of individuals by integrating sensor or IoT 
devices with advanced mobile technologies (da Costa et al. 
2018). IoHT can become a demanding application for per-
sonalized health care leveraging on fog, edge and cloud 
computing. In a cloud based health care system, the health 
data are collected using body area network (BAN) or body 
sensor network (BSN) and then stored and processed inside 
the cloud servers. In BAN, there are several sensors attached 
with human body and varied health data e.g. body tempera-
ture, blood pressure etc are collected by these sensors.

With availability of several body sensors, it is pos-
sible to design and develop a low-cost wearable system 
to capture values of various health parameters of human 
body (e.g. blood pressure, heart/pulse rate, oxygen level, 
body temperature etc.) and to predict the health status of 
individuals based on the collected data and contextual 
information (e.g. atmospheric condition, user’s location, 
activity etc.). These sensor nodes collect health param-
eter values and transmit to the connected smart phone. 
Next, the data is processed and health status is predited by 
the smartphones. But smart phones are resource hungry. 
Therefore, the computationally complex applications are 
difficult to execute in the resource-limited smart phones. 
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Therefore, in the existing mobile health (m-health) appli-
cations the data are stored and analysed at the server side 
(Solanas et al. 2014; Hassanalieragh et al. 2015; Doukas 
and Maglogiannis 2012; Kaur and Chana 2014; De et al. 
2017). Nevertheless, to minimize the energy and power 
consumption, the data can be processed at various lev-
els and can be harvested in cloud through edge-fog-cloud 
infrastructure. The users can access the health data as well 
as get alerts through mobile apps (applications) if abnor-
mal health status is detected. In this work, we propose a 
hierarchical structure of IoHT framework, which facili-
tates efficient personalized health care.

While cloud servers provide large storage and computing 
capability, access to long distant cloud servers may enhance 
the delay. Moreover, if the user is in mobility, connection 
interruption may frequently occur. As a result health data 
transmission to the cloud and receiving the result after 
analysis also gets affected. Hence, along with health status 
prediction, user’s mobility data analysis is also very impor-
tant to predict the current location and deliver the result 
accordingly. For predicting location sequences appropriate 
movement pattern modelling (Ghosh and Ghosh 2018b) is 
required. The mobility data of the users is analysed inside 
the cloud servers, and based on the analysis the current loca-
tion of the user is found. The preliminary health data analy-
sis takes place inside the edge/fog devices, and the health 
status is detected. If the detected health status denotes abnor-
mality, then the data is sent to the cloud for further analysis. 
The cloud suggests the nearby health centre based on the 
detected health problem and the current location of the user. 
In the current work, we have integrated spatial data with 
health data for not only advising regarding the health status 
but also providing information regarding nearby health cen-
tre after predicting patient’s mobility pattern.

1.1  Motivations and contributions

For real time health monitoring system, delay is a crucial 
parameter with respect to Quality of Service (QoS). The 
objective is to propose a health monitoring system which 
will improve the QoS in terms of delay and energy consump-
tion. Usually for indoor region, IoHT framework has been 
applied. However, the user while present outside the home, 
then also can suffer from health problem such as certain 
increase in blood pressure. In such circumstances to provide 
prompt healthcare, the mobility data has to be integrated 
and analysed along with the health data. Our objective is to 
integrate the geolocation data of the user along with health 
data, so that the user’s mobility pattern, present traffic states 
can be analysed and nearby health centre can be suggested 
based on the current health condition.

The key contributions of this work are: 

1. An IoHT framework has been proposed based on edge-
fog-cloud collaborative network for personalized health 
care and providing assistance in case of emergency. 
The mobility or continuous location change of users are 
taken into consideration in the proposed framework.

2. The patient’s mobility prediction model is proposed to 
advice the user regarding nearby health centre while 
abnormal health condition is detected. The mobility 
prediction model shows better precision than the exist-
ing models.

3. The proposed framework has been implemented and 
tested with health data of 40 student volunteers. Their 
individual health status is predicted based on the health 
data and contextual information.

4. The delay and energy consumption while using the pro-
posed framework are determined and theoretical analysis 
presents that the proposed framework is delay-aware and 
energy-efficient than the cloud only health care frame-
work.

The rest of the paper is organized as follows. Section 2 pre-
sents the related works. The proposed IoHT framework is 
described in Sect.  3. Section 4 analyses the performance of 
the proposed framework. Finally, the conclusion is drawn 
in Sect.  5.

2  Related work

Electronic health (e-health) care is a demanding research 
area with a focus on smart health monitoring (Solanas et al. 
2014). Mobile health (m-health) care system has become 
very popular nowadays. Most of the smart phones contain 
various applications through which user activity can be pre-
dicted based on BMI (Body Mass Index), pulse rate etc. 
Apple Healthkit, Samsung S Health, Microsoft Health and 
Google Fit are well-known applications. To detect blood 
pressure level, blood sugar level, ECG etc. health sensor 
devices also exist.

In case of m-health care, for health data processing cloud 
servers are used (Solanas et al. 2014; Hassanalieragh et al. 
2015; Doukas and Maglogiannis 2012; Kaur and Chana 
2014; De et al. 2017). The IoT and cloud has been integrated 
to provide pervasive health care in Doukas and Maglogian-
nis (2012). To monitor the health status of the newborns 
in the neonatal health care unit of a hospital and for tak-
ing initiative if health condition becomes abnormal, a cloud 
based health care system along with a mobile app has been 
discussed in De et al. (2017). However, health data trans-
mission to the cloud and receiving result after data analysis 
becomes a challenge due to communication and propaga-
tion delays as well as mobility of the user. The use of small 
cell base station in indoor health monitoring has reduced 
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the power consumption (Mukherjee and De 2014). These 
small cells perform preliminary health status prediction by 
comparing the collected health data with their respective 
normal range (De and Mukherjee 2014; Mukherjee and De 
2014; De and Mukherjee 2015). Nevertheless, the contextual 
information is also very important while detecting the health 
status, for example, if a user has done swimming for half an 
hour and then his/her health status is checked, then the result 
will differ if the health status checking is performed when 
the same user is in relax mode. The user’s location and the 
corresponding atmospheric condition is also important in 
predicting health status. For the people living in smart cit-
ies, context-aware health care system has been proposed in 
Solanas et al. (2014).

For delay and energy optimization fog computing has 
emerged (Ahmad et al. 2016; Verma and Sood 2018; Ghosh 
et al. 2019b; Tuli et al. 2019; Mukherjee et al. 2020). In a 
fog computing framework, the intermediate devices between 
the end nodes and cloud servers, such as switch, router etc., 
participate in data processing. These intermediate devices 
are called fog devices. To provide the IoT applications a 
platform independent interface for execution and interaction 
of computing instances, FogBus has been proposed in Tuli 
et al. (2019). Integration of health care with fog computing 
has introduced Health Fog (Ahmad et al. 2016). In health fog 
the health data are processed inside the fog devices. Another 
fog-cloud based IoHT framework has been proposed in 
Mukherjee et al. (2020), where game theory has been used 
for selecting fog device. But existing mobile health care sys-
tems have not highlighted the mobility aware health moni-
toring. The motivation of this work is to introduce a mobility 
aware IoHT which will deal with the challenges of delay, 
energy consumption etc.

Geographic information system (GIS) is used to collect, 
store, process and analyse geospatial data. A geospatial 
object refers to single geographical property which is char-
acterized by a geospatial concept. The IoT-edge-fog-cloud 
network has been integrated with geospatial services for 
enhancing the service quality for time critical applications 
in Ghosh et al. (2019b). Owing to the pervasiveness of sen-
sor technologies and advancements in location acquisition 
methods, a vast amount of GPS traces are accumulated in 
our daily lives. It provides huge opportunity to the research 
community to leverage the movement pattern information 
and facilitating varied location aware services (Krakiwsky 
et al. 1988; Gong et al. 2017; Ghosh and Ghosh 2019; Ghosh 
et al. 2019a; Zheng 2015). There are several existing works 
to model and store human movement patterns based on tra-
jectory analysis (Lv et al. 2012; Vlachos et al. 2002; Cheng 
et al. 2013; Karatzoglou et al. 2018; Liu et al. 2016; Zhang 
et al. 2017). Liu et al. has presented deep learning architec-
ture named ST-RNN to model frequent movement patterns 
considering spatial and temporal contexts and predicting 

next location sequences effectively (Liu et al. 2016). The 
spatio-temporal information analysis for traffic forecasting 
has been discussed in Zhang et al. (2017, 2019). Geolo-
cation information analysis and movement prediction has 
been illustrated in Zhang et al. (2015); Ye et al. (2009); 
Ghosh and Ghosh (2017a, 2018a, 2016). A context-aware 
trajectory graph has been proposed to model the changes 
of movement patterns in different contexts of an academic 
premises in Ghosh and Ghosh (2016). Similarly, researchers 
are also devoted to extract association rules from frequent 
movement paths of users to summarize their mobility traces 
and predict travel demand efficiently. Yang et al. have pre-
sented a framework to extract patterns (rules) from indi-
vidual mobility traces (Yang et al. 2019). For instance, they 
extract rules like “In 70% of the days, person X visits POI 
Y; or visits shopping mall once in a week”. Others works 
also have aimed to extract such frequent patterns deploying 
several novel rule mining techniques (Ye et al. 2009; Ghosh 
and Ghosh 2017a). The authors in Amirat et al. (2019) have 
proposed a mobility prediction framework named NextRoute 
by providing efficient noise tolerance strategy. The authors 
have claimed that probabilistic or data mining models are 
noisy and large amount of information are lost in the training 
process. To detect and forecast abnormal events from traffic 
data, the authors have presented a framework using Discrete 
Fourier Transform to detect unforeseen events apriori in Gao 
et al. (2019).

There are several works on effective forecasting of traffic 
flows (Zhang et al. 2017, 2019). The authors have proposed 
a deep learning approach to forecast crowd flows in differ-
ent regions of a city using several factors such as weather 
and intra-region traffic in Zhang et al. (2017). A multi-task 
deep learning framework has been proposed in Zhang et al. 
(2019), where both the node flow and edge flow are pre-
dicted. The authors (Zhang et al. 2015) explore different 
sensor-records such as air-quality, bike/vehicle data, and 
finds out co-evolving patterns by assembling the individual 
sensors’ patterns into a single pattern. Another interesting 
study (Kim et al. 2018) has revealed that human personal-
ity and their visited locations are somewhat related. In this 
regards, another study (Ghosh and Ghosh 2017b) has cat-
egorized users (student/ faculty/ staff) based on their move-
ment patterns. The academic performances of students are 
predicted from their daily mobility patterns as well (Ghosh 
and Ghosh 2018a). On the other side, an enhanced localiza-
tion solution has been proposed in (Papandrea and Giordano 
(2014)). The authors have deployed advanced machine learn-
ing techniques to model human mobility for reducing mobile 
device resources when continuous localization information 
is required. A classification model for mobility pattern has 
been discussed in Yang et al. (2019), where a correlation 
model between mobility pattern and regional function char-
acteristics has been developed. A delay and mobility aware 
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cloud-fog-edge-IoT framework, named, Mobi-IoST has 
been proposed to provide efficient assistance in the time of 
emergency in Ghosh et al. (2019b). The authors have also 
proposed novel and generic mobility modelling and loca-
tion prediction techniques for reducing delay and power 
consumption in time-critical application. The most relevant 
places visited by the individuals have been discovered using 
probabilistic finite automaton in Salomón et al. (2018).

All of these are a broad range of applications of trajectory 
data to find out interesting and meaningful patterns to pro-
vide several location-aware services. However, the analysis 
of trajectory data in case of health monitoring is an emerging 
area which has been focused in the present work by integrat-
ing trajectory analysis with health monitoring. In our pre-
sent work, a novel edge-fog-cloud framework is proposed for 
assisting users in the time of medical-emergency considering 
the mobility of the user. In the framework, a multi-layer 
trajectory graph is deployed to model the mobility patterns. 
The generative adversarial network is used to predict the 
location sequences, where the framework is capable to assist 
users in time of emergency. To the best of our knowledge, 
although there are several works on IoHT, this work is the 
first attempt to utilize the mobility knowledge along with the 
parameterized health monitoring in edge-fog-cloud collabo-
rative network to facilitate delay and energy efficient health 
monitoring and assisting users regarding their health status.

3  IoHT driven personalized healthcare 
framework

In this section we have proposed an edge-fog-cloud frame-
work for health monitoring. A mobility pattern detection 
model is also proposed for predicting user mobility to 
advice the user regarding nearby health centres in case of 
emergency. Before going to the discussion on the proposed 
framework, the acronyms used in this paper along with their 
full forms are provided in Table 1.

3.1  Edge‑fog‑cloud based IoHT

The proposed IoHT framework is designed based on edge-
fog-cloud based collaborative network. The sensors of BAN 
are attached with human body and health data e.g. pulse 
rate, blood pressure, body temperature etc. are collected. 
The contextual information such as ambience information 
e.g. room temperature, humidity, pressure, user’s current 
and previous activities e.g. walking, sleeping etc., user’s 
profession, age, health profile etc. are also sent to the fog 
device. In the proposed system, the location information 
of the user is also sent to the fog device along with health 
data and contextual information. In the proposed health care 
system, edge/fog devices process the collected health data. 

The fog device is connected with the cloud servers. The 
user’s mobility information is stored and processed inside 
the cloud servers.

Working model Fig.1 shows that the IoHT framework 
based on edge-fog-cloud based network. As observed from 
the figure the IoHT framework has the following major 
components:

– BAN (or BSN) composed of sensor nodes for collecting 
health parameter data,

– User’s mobile device as edge device, that collects the 
contextual information and user’s location,

– Fog devices,
– Cloud servers.

The working flow diagram of the proposed system is pictori-
ally depicted in Fig.2. The working model of the proposed 
system consists of the following steps: 

1. Sensor nodes collect health data categorically:

– If there are h health parameters, e.g. blood pressure, 
heart rate, body temperature etc., there will be h sen-
sor nodes.

Table 1  List of acronyms with full forms used

Acronym Full form

API Application Program Interface
AWS Amazon Web Services
BAN Body Area Network
BMI Body Mass Index
BP Blood Pressure
BSN Body Sensor Network
CNN Convolutional Neural Network
EC2 Elastic Compute Cloud
ECG Electro Cardio Gram
GAN Generative Adversarial Networks
GPS Global Positioning System
IoHT Internet of Health Things
IoST Internet of Spatial Things
IoT Internet of Things
LAN Local Area Network
LCSS Longest Common Subsequence
LSTM Long Short-term Memory
MLMPG Multi-Layer Mobility Pattern Graph
MQTT Message Queuing Telemetry Transport
OSM OpenStreetMap
POI Point Of Interest
QoS Quality of Service
SFTP Secure File Transfer Protocol
SPO2 Saturation of Peripheral Oxygen
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– Sensor nodes send their respective data to the user’s 
mobile device that works as edge device.

2. Mobile device sends the data to the fog devices along 
with the contextual information (ambience information 
such as pressure, temperature, humidity, health profile 
of individuals, previous set of activities) and geolocation 
information of the user:

– As a fog device may not be capable of perform-
ing exhaustive computation, multiple fog devices 

are considered for multiple health data processing 
in the proposed framework. Each fog device pro-
cesses respective health parameter data. If there are 
h health parameters, there will be e fog nodes to 
process the data, where e ≤ h . An aggregating fog 
device is used to aggregate the result received from 
the fog devices. Few health parameters are closely 
interrelated, for example, blood pressure and heart 
rate. The processing of closely interrelated health 
parameters will be performed inside a single fog 
device.

Fig. 1  Edge-fog-cloud based IoHT framework

Fig. 2  Data flow diagram of the proposed IoHT framework
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– If the collected health parameter data seems to be 
abnormal (i.e. does not fall in the normal range) with 
respect to the contextual information and user’s loca-
tion, the corresponding fog device sends the result 
along with contextual information and user’s loca-
tion to the aggregating fog device and to the cloud 
servers.

– The aggregating fog device aggregates the result and 
predicts the health condition.

– If the predicted health status is abnormal, an alert 
message with the predicted health status is sent to 
the user’s mobile device. Based on the geolocation 
information and mobility information of the user, the 
mobility pattern of the user is found and next loca-
tion to be visited is predicted. The mobility pattern 
detection is discussed in Sect.  3.3. The cloud gener-
ates information regarding nearby health centre to 
advice the user in case of emergency.

3. Cloud servers store the health data for further analysis. 
The health care centres can access the data from the 
cloud servers for treatment of the patient.

3.2  Health status detection

The collected data of different health parameter are analyzed 
to detect the health status of a person. If the collected value 
falls within the normal range with respect to the user’s cur-
rent location and contextual information, the health status 
of the person with respect to the respective health parameter 
seems normal. Hence, the data is discarded. Otherwise, the 
health status of the person seems abnormal, and the pro-
cessing fog device sends the result to the aggregating fog 
device and to the cloud for further analysis. The aggregat-
ing fog node sends alert message to the user. Let there are 
h health parameters and e fog devices for processing health 
data, where e ≤ h . Let with respect to the contextual infor-
mation and location of the user, the normal upper and lower 
limit of a health parameter q are qul and qll respectively, and 
the collected value is qc , where q ∈ h . If qll ≤ qc ≤ qul , the 
data is discarded. Otherwise, the data is abnormal. Hence, 
the corresponding fog device (let y) sends the result to the 
aggregating fog device (let x) and to the cloud. The collected 
result from one or more fog devices for a particular user u, is 
aggregated inside the aggregating fog device x. Let the result 
from the fog devices for a user u are r

1
, r

2
, ..., rk where k ≤ e , 

then the final health condition is predicted based on the data 
aggregation. The detected health condition is denoted as a 
function of the results, given by,

(1)Hu = f (r
1
, r

2
, ..., rk)

The detected health status is sent to the user’s mobile device 
to alert him/her, and the result is sent to the cloud for further 
analysis.

3.3  Mobility pattern prediction

Latency is a crucial factor in real-time health monitoring. 
If a patient needs immediate medical assistance such as 
admitting to the hospital, then the information regarding 
the nearest health care centre needs to be extracted from 
the Google Map, and the route with minimum congestion 
has to be recommended. In this direction, this work aims 
to model the traffic information as well as the POI such 
as health care center, medicine shop and the individuals’ 
frequently visited path. We will start with discussing few 
preliminary terms and subsequently describing the pro-
posed method to model and store such movement informa-
tion, which will be beneficial in predicting efficient route 
in case of medical emergency. 

1. GPS trajectory (G) The time-stamped sequences 
of location traces (latitude, longitude) is rep-
resented by GPS trajectory or log or trace. 
G ∶ (lat

1
, lon

1
, t
1
) → (lat

2
, lon

2
, t
2
) → (latn, lonn, tn)  , 

where n location traces in increasing timestamps are 
represented. The GPS log is accumulated in a .json file 
in our use-case.

2. Road network (R) The underlying road structure of the 
study region is represented by R, which is a directed 
graph. The number of road-segments are the edge set 
(E) and their intersections are represented by the vertex 
set (V) of the graph. The directions of the roads are not 
static and they change based on the time of the day or in 
weekends. An array list is maintained to consider such 
changes of road directions throughout the week. POIs 
are the landmarks of the area, such as, residential build-
ings, commercial area etc. Each of the raw GPS trajec-
tory is converted to semantic trajectory when we append 
such POIs along with the underlying road segments.

3. Stay-point and trajectory-segment Trajectory-segment is 
defined as sequences of stop and move. The stop-points 
depict that the user has spent some time-duration (d) at 
a particular location. The time-duration is greater than 
some threshold value i.e. d > Tthresh . The distance (dis) 
between the GPS points logged in this time-interval is 
less than some threshold value Dthresh i.e. dis < Dthresh . 
The stay-points of a trajectory represent that the user 
has performed some activities. The trajectory-segment 
is constructed by two stay-points and the intermediate 
points within these two stay-points. 
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 where S
1
 and S

2
 are two stay-points, and ga,… gb are the 

intermediate GPS points from stay-point S
1
 to S

2
 . The 

timestamps ts
i
 and tf

i
 represent the start and finish time 

of time-duration spent in the stay-point i respectively.
To remove the GPS error induced due to sensor errors, we 
have utilized filtering technique. The GPS log is smoothened 
using Kalman filtering technique (Krakiwsky et al. 1988) 
and formalized as:

where location at time t is pt and the process noise is wt−1 . 
The present state to next state is associated in matrix A′ in 
the log.

This is the measurement equation. The relation between 
measured point (z) and logged location (p) is represented 
as H, and the measurement noise is v. The measurement 
noise is calculated from the sensor accuracy value, which is 
logged in the mobility data file extracted from Google Map 
Timeline1. The detailed process is described in Ghosh et al. 
2020. Next, the road network structure is appended with 
the raw GPS log, which is defined as Map-matching. In the 

(2)
Traj_Seg ∶=(S

1
,POI

1
, ts
1
, t

f

1
), ga, ga+1, ga+2,

… , gb, (S2,POI2, t
s
2
, t

f

2
)

(3)pt = A
�

p(t−1) + w(t−1)

(4)zt = Hpt + vt

location trace (raw GPS log) are augmented using an itera-
tive reverse geocoding (Ghosh and Ghosh 2019) and Google 
Place API. Since the data-volume of the trajectory traces are 
huge, we have deployed a grid-based approach and a variant 
of quadtree (Zheng 2015) to store the movement information 
of each grid in different time-scales.

The next step is to model the movement patterns such 
that the correlations can be extracted and utilized to pre-
dict the optimal path in an efficient way. Here, we propose 
MLMPG for each individual moving agent. In a typical 
multi-layer graph, the vertices of one graph are correlated 
with the vertices of other graph by node-mapping function. 
MLMPG is defined by three layers of inter-dependent graph. 
In the first level, the road network layer is present, where 
the nodes are road intersection points, and the edges are 
road segments. In the next layer, the POI information and 
grids are present. Here, the POI-specific data are stored in 
different grids. Finally, the top-most layer is constructed by 
the real-time GPS points of the moving agents. Formally, 
MLMPG is defined as follows. MLMPG ∶= (l

1
, l
2
, l
3
,M) , 

where la = (Na, La) , a ∈ 1, 2 and 3 , and M denotes the 
node mapping function having 3 × 3 dimension, and 
Mi,j ∶ Ni × Nj → [0, 1].

Each layer ( l
1
, l
2
and l

3
 ) has set of nodes and links among 

the nodes. To form the top-most layer ( l
3
 ), clustering is per-

formed to group the movement patterns over different time-
scales. Here, the similarity-matrix is first computed, where 
the matrix has c connected components, and Tt is the input 
mobility traces at time t. The similarity function (SimCS) is 
based on the variant of LCSS distance measure among dif-
ferent trajectory traces:

where Tra is the set of mobility traces, TScore represents the 
time-stamp value. Here, we have used the stay-point dura-
tion, velocity, timestamp and sequences of visits of places 
as mobility features in the similarity function. Algorithm 1 
presents the steps of MLMPG construction.

(5)

SimCS(Trai, Traj)

=

⎧⎪⎨⎪⎩

0 if (i == 0)or(j == 0)

SimCS(Trai−1, Traj−1) if ((Trai == Traj)

+C ×Min(Trai−1, Traj) and(Trai+1 ≠ Traj+1)

MAX(SimCS(Trai−1), Traj), SimCS(Trai, Traj−1) if (Trai ≠ Traj)

1 https ://www.googl e.com/maps/timel ine?pb

present work, the map-matching process of Gong et al. 2017 
has been followed, where both local topological informa-
tion and global similarity measure are considered. The OSM 
road network features (highway, one/two way etc.), width, 
length of roads are extracted and augmented in this process. 
Finally, the geotagged information (POI information) of each 

https://www.google.com/maps/timeline?pb
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Algorithm 1 Construction of Multi-layer Mobility Pattern Graph (MLMPG)

Input: GPS traces (G)
Output: MLMPG with nodes and links of 3 layers

1: for all g ∈ G do � pre-processing step
2: g’ ← Error-filtering (g) � Kalman Filtering
3: G’.insert(g’)
4: end for
5: i=0
6: for all gi ∈ G′ do � Trajectory segmentation step
7: S’=NULL
8: j:= i+1
9: t : checkTemp(gi, gj) � Check the temporal threshold
10: if t == 0 then
11: break
12: end if
13: if (dist(gi, gj) <= Dthresh) then � Check the distance threshold
14: S′.insert(gi, gj)
15: go to line 8
16: end if
17: S.insert(S’) � Stay-point detection
18: end for
19: MLMPG(l1, l2, l3) ← �LLUN Initialize MLMPG
20: for all si ∈ S do � Construct layer 2 with POI
21: P ← geoTagg(si)
22: createNode(n[P])
23: insert(l2.n)
24: end for
25: for all ∈ ea ∈ E do � Construct layer 1 with Road network
26: for all eb ∈ E and ea! = eb do
27: flag ← intersect(ea, eb)
28: if flag==1 then
29: createNode(n[ea, eb])
30: insert(N1.n)
31: insert(L1.ea)
32: insert(L1.eb)
33: end if
34: end for
35: end for
36: for all ti ∈ T do
37: j:= i+1
38: dist : computeLCSS(ti, tj) � Based on equation 5
39: end for
40: A: compute the similarity matrix (dist)
41: clust ← Cluster(T,A)
42: for all c ∈ clust do
43: createNode(n[P ]) � Construct layer 3 from mobility traces
44: insert(l3.n)
45: insert(l3.l)
46: end for
47: Output: MLMPG(l1, l2, l3)

proposed approach, deep LSTM architecture is used, which 
allows the network to learn at different time scales over the 
input. Furthermore, they can make better use of parameters 
by distributing them over the space through multiple layers. 
The output of this step is passed through the discriminator 
layer, where the target is to reconstruct the input sequence 
and minimize the adversarial loss ( Lossadv ). First, the itera-
tions are carried out with the training instances. The dis-
criminator is updated by descending the stochastic gradient:

where the discriminator parameter and generator parameter 
are defined by PD and PG . The model is trained for m input 
instances. The learning rates for discriminator ( �D ) and 

(6)PD =PD − �D

m∑
i=1

�Lossadv(tra
i
, pathi)

�PD

(7)PG =PG − �G

m∑
i=1

�Lossgen(tra
i
, pathi)

�PG

In the next step, the optimal path is predicted based on the 
present traffic state and the present location of the moving 
agent. Here, we have used a variant of GAN in this paper. The 
major reason for using GAN is the low availability of real-time 
data. It is observed that conventional neural networks are not 
effective when noise is present in the data. Here, the mobility 
traces and health information are quite sparse in nature, and 
the model needs to learn from a limited amount of training 
data. Further, the overfitting issue needs to be eliminated for 
better accuracy.

Generative Adversarial Network (GAN) is used to pre-
dict the optimal path considering all the mobility states at 
the time of visit. The mobility states represent the traffic 
density at different road-segments of the city. Typically, 
the model aims to predict the traffic density and suggests 
optimal path with reduced travel-time. Initially, this mobil-
ity sequences (Tra) are fed into the generator block having 
encoder, pooling and decoder unit. It converts the inputs 
into fixed-length representations. It may be noted that in the 
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generator ( �G ) are set to 0.02 and 0.04 respectively. The 
model predicts the optimal path (path) based on the traf-
fic states and the movement pattern of the individual. By 
predicting the movement pattern of individuals, the loca-
tion to be visited after a particular point of time can be 
determined. If a moving user’s health status is predicted as 
abnormal based on the collected health data and contextual 
information, then the nearby health centre as well as the 
corresponding route can be provided to the user. One of the 
objectives of this work is to present an end-to-end system 
to improve the clinical/ personalized health care infrastruc-
ture for the citizen of the developing countries, such as 
India. The public health care system in the remote villages 
is in poor condition. There is no multi-specialty hospitals/ 
health facilities and the local health care centers may not 
be able to provide required treatment to the patients. In 
such alarming scenario, it is necessary to deploy an auto-
mated system, which will be capable to preliminary ana-
lyze the health status of the citizen and assist in the time of 
emergency. In case, the emergency occurs when the user is 
driving the car (sudden rise of blood pressure or any other 
critical parameter), the system triggers an alert notification 
to the nearby health care center and other members (such 
as on-site caregivers or relative/ friends of the user). The 
health status of the user along with the present location 
are sent to the nearest health care center so that immediate 
actions are taken.

3.4  Location based health status determination 
and notification

In Sect. 3.3, the mobility pattern of a user has been pre-
dicted. If the user is residing at the indoor region, then the 
mobility pattern prediction model finds out the nearby health 
centre based on the current location. While the aggregating 
fog device is sending the health status to the user based on 
the user’s health parameter values and contextual informa-
tion, then the route to the nearby health centre is also notified 
to the user.

If the patient is at outdoor region, then the mobility pat-
tern prediction model finds out the current location of the 
user. Now, in this case, two situations are possible. As the 
user is at outdoor region, it may not be possible that multiple 
fog devices will be present nearby the user. If multiple fog 
devices are not present, then the health data is sent to the 
cloud along with contextual information to predict the health 
status of the user. If abnormal health status is predicted, the 
cloud sends the result to the user based on the predicted cur-
rent location of the user.

If the user is a patient residing in an ambulance, then 
multiple fog devices will be located inside it. Then using 

multiple fog devices the health status of the user is predicted 
and continuous health monitoring is performed. However, 
the location information is sent to the cloud periodically. 
Hence, based on the health condition the optimum route to 
nearby health centre will be provided.

3.5  Delay and energy consumption of user device 
in proposed framework

The delay between the sending and receiving nodes is deter-
mined as the summation of the communication, propagation, 
data processing and queuing delays. The uplink communi-
cation delay is given as (1 + uf )(Du∕Ru) , where uf  , Du and 
Ru are the uplink failure rate, amount of data transmission 
in uplink, and uplink data transmission rate respectively, 
between the sending and receiving nodes. The downlink 
communication delay is given as (1 + df )(Dd∕Rd) , where 
df  , Dd and Rd are the downlink failure rate, amount of data 
transmission in downlink, and downlink data transmission 
rate respectively, between the sending and receiving nodes. 
Hence, the total communication delay between the sending 
and receiving nodes is given as,

The propagation delay is given as,

where dsr is the distance between the sending and receiving 
nodes, and Sp is the propagation speed. The processing delay 
of a node is given as,

where Dp is the amount of data processed and Spr is the 
processing speed.

In the proposed framework, the sensor nodes collect 
health data and send to the mobile device. The mobile device 
sends the health data along with contextual information to 
the fog devices, which then sends data to the cloud accord-
ing to necessity. Here, uplink communication takes place 
from sensor nodes to the mobile device, mobile device to 
fog devices and fog devices to the cloud, and downlink com-
munication takes place from cloud/fog device to the mobile 
device if health status seems abnormal. Let the uplink com-
munication delay from sensor nodes to the mobile device is 
Tsmc , from mobile device to processing fog devices is Tmfc , 
and from processing fog devices to aggregating fog device 
is Tfac , and from aggregating fog device to cloud is Tacc . Let 
the downlink communication delay from cloud to mobile 
device is Tcmc , and from fog device to mobile device is Tfmc . 
Then the communication delay is given as,

(8)Tc = ((1 + uf )(Du∕Ru)) + ((1 + df )(Dd∕Rd))

(9)Tp = dsr∕Sp

(10)Tp = Dp∕Spr
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The propagation delay is given as,

where the propagation delay between sensor nodes and the 
mobile device is Tsmp , between mobile device and processing 
fog devices is Tmfp , and between processing fog devices and 
aggregating fog device is Tfap , and between aggregating fog 
device and cloud is Tacp . Let the processing delay of a fog 
device y is Tpry , and to determine the health status k process-
ing fog nodes and one aggregating fog node (x) are used. 
Let the processing delay of cloud to determine the current 
location of the user along with route to nearby health centre 
is Tprcl . Then the processing delay is given as,

where Tprm = f (max(Tpr1, Tpr2, ..,Tprk), Tprx) and Tprx is the 
processing delay of the aggregating fog node x. Let the 
queuing delay is Tqprop . Then the total delay of the proposed 
framework is given as,

During communication the user device’s (mobile device) 
energy consumption is given as,

where em is the energy consumption of a mobile device in 
active mode. During propagation the user device’s energy 
consumption is given as,

where ei is the energy consumption of a mobile device in 
idle mode. During processing of health and mobility data 
inside the fog devices and cloud, the user device’s energy 
consumption is given as,

where ei is the energy consumption of a mobile device in 
idle mode. During queuing period, the user device’s energy 
consumption is given as,

where ei is the energy consumption of a mobile device in 
idle mode. The total energy consumption of the user device 
is given as,

(11)Tcprop = f (Tsmc, Tmfc, Tfac, Tacc) + f (Tcmc, Tfmc)

(12)Tpprop = f (Tsmp, Tmfp, Tfap, Tacp)

(13)Tprprop = f (Tprm, Tprcl)

(14)Tprop = Tcprop + Tpprop + Tprprop + Tqprop

(15)Ecprop = em.Tcprop

(16)Epprop = ei.Tpprop

(17)Eprprop = ei.Tprprop

(18)Eqprop = ei.Tqprop

The delay and energy consumption of user device in pro-
posed IoHT framework and existing cloud only health care 
framework are compared in Sect.  4.

(19)Eprop = Ecprop + Epprop + Eprprop + Eqprop

Fig. 3  Total Delay: Proposed IoHT framework and Cloud only health 
care framework

Fig. 4  Energy consumption of user device: Proposed IoHT frame-
work and Cloud only health care framework
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4  Performance evaluation

This section presents theoretical and experimental analysis. 
The theoretical analysis has been performed using MATLAB 
R2015a. The proposed framework has been implemented in 
the IIT Kharagpur laboratory, where different student vol-
unteers’ health data along with contextual information are 
collected and processed to predict their health status.

4.1  Theoretical analysis

The delay and energy consumption of the user device while 
using the proposed IoHT framework has been determined 
and compared with only cloud based health care frame-
work. The delay in case of using the proposed framework 
and mobile device’s energy consumption during that period 
are determined using Eqs. (14) and (19) respectively, and 
presented in Fig. 3 and Fig. 4 with respect to the amount of 
data transmission (in Megabits (Mb)). From these figures, it 
is observed that the proposed IoHT framework reduces the 
delay and energy consumption by ∼ 28% and ∼ 27% respec-
tively than the cloud only health care framework (De and 
Mukherjee 2015; Kaur and Chana 2014). The delay is meas-
ured in millisecond (msec) and the energy consumption is 
measured in milliWatt-hour (mWh). In the proposed frame-
work the fog device participates in data processing, which 
lowers the delay and energy consumption than the health 
care system where long distant cloud is used for storage and 

analysis of health data. It is observed from the theoretical 
analysis that the proposed framework reduces the energy 
consumption and delay with respect to the cloud only health 
care system.

4.2  Experimental analysis of the proposed mobility 
prediction model

The performance of the proposed mobility prediction model 
discussed in Sect. 3.3 is evaluated by comparing with other 
baseline methods (Lv et al. 2012; Vlachos et al. 2002; Cheng 
et al. 2013; Karatzoglou et al. 2018). The mobility datasets 
are collected from 145 volunteers [(students, staffs and fac-
ulty members of Indian Institute of Technology Kharagpur 
(IIT KGP)] for 28 months time-span. The mobility data is 
logged using the GPS-enabled smart-phone devices of the 
volunteers. The performance evaluation of the proposed 
method is carried out in two major aspects. Firstly, we meas-
ure the precision and recall of the prediction of the path of 
different length. We compare our method with four well-
known predictive approaches, namely Bayesian network (Lv 
et al. 2012), LCSS (Vlachos et al. 2002), Markov-predictor 
(Cheng et al. 2013), CNN (Karatzoglou et al. 2018).

It is observed from the Figs. 5 and Fig. 6 that for different 
time-length of trajectories the performance of our method 
(Proposed Framework) is significantly better than the base-
line methods. Our method has achieved 0.871 and 0.931 
recall values for 60 min and 10 min time length of trajectory 
respectively. The precision value is 0.901 and 0.95 for 60 

Fig. 5  Precision value of path prediction based on different time-length of the trajectories
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min and 10 min time length of trajectory respectively. On 
the other side, it is observed that the precision and recall val-
ues drop with the increase of time-length in the experiment. 
When the precision and recall values of path prediction are 
quite higher in our method, it is also capable to predict path 
more efficiently for longer sequences of trajectories. Fig. 7 
reports the execution time of baseline methods and our pro-
posed method. The execution time is measured in second 
(sec). The performance of our method is notified by P–F 

(Proposed Framework). It is observed that our method is 
capable to predict path in less execution time compared to 
other methods. Hence, it may be observed that the proposed 
model can predict individuals’ mobility patterns at less time 
but with higher precision, which is vital for mobility based 
real time health monitoring. Also, the proposed framework 
is capable to predict the optimal path of long time-sequence 
efficiently. As reported in the Figs. 5 and 6, the precision and 
recall of the path prediction for time-sequences 10–60 are 
quite high. This demonstrates that the system can predict the 
optimal path of next 10mins to 60mins/ an hour to reach the 
destination effectively. Therefore, in case, the communica-
tion is lost for a specific time-window, the mobile device 
of the user can store the path for next one hour, and assists 
even if there is no access to fog/ cloud data. Once the com-
munication is set, the cloud server will send the updated path 
accordingly. Regarding the processing of health data in the 
fog-devices, if the communication is lost, the mobile devices 
will store the data for some time. When the connectivity is 
resumed, it will forward the data to the fog-device for further 
processing.

4.3  Implementation of proposed framework 
in a testbed

We have implemented the edge-fog-cloud based IoHT 
framework in IIT Kharagpur. A BAN is formed to collect 
the data with respect to the health parameters: blood pres-
sure, body temperature, pulse rate and SPO2. The collected 

Fig. 6  Recall value of path prediction based on different time-length of the trajectories

Fig. 7  Average run-time for path prediction over different time-length 
of the trajectories
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health data is transmitted to the fog devices, which process 
the data. In case of abnormal health condition, the result is 
sent to the cloud and an alert message is sent to the user. To 
implement the proposed framework, we have used the fol-
lowing components: 

1. BAN composed : 

(a) Blood pressure with pulse rate (heart rate) track-
ing module

(b) Body temperature tracker
(c) SPO2 tracker.

2. Smart phone as edge device.
3. Three Raspberry Pi as fog devices: 

Fig. 8  Experimental Setup in the Spatial Data Science laboratory of IIT Kharagpur

Fig. 9  Data flow diagram of the implemented IoHT framework
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(a) One is used to process blood pressure data (sys-
tolic and diastolic) and pulse rate data

(b) One is used to process temperature data and SPO2 
data

(c) One is used to aggregate the result.

4. Amazon EC2 server as cloud

The smart phone and three Raspberry Pi are under the same 
LAN. The health data are exported in .csv files inside the 
smart phone. The .csv files containing the health data are 
transferred to the Raspberry Pi working as fog devices. 
Raspberry Pi 1 (Rasp 1) processes blood pressure data (sys-
tolic and diastolic) and pulse rate data. Raspberry Pi 2 (Rasp 
2) processes the temperature and SPO2 data. Raspberry Pi 3 
(Rasp 3) is used as the aggregating device. The implemented 
IoHT framework is presented in Fig. 8 and the correspond-
ing flow diagram is shown in Fig. 9.

The prototype uses BAN, three Raspberry Pi (Raspberry 
Pi 3 Model B), an EC2 instance in AWS cloud (AWS EC2 
instance t2.micro), and android smartphone (Android 9 with 
QPython application (app) for python support). The program 
running on a Raspberry Pi fetches the health parameter data 
recorded by the corresponding health monitoring device 
using the related API, for example, Rasp 1 fetches the pulse 
rate data recorded by the health monitoring device using 
the Intraday Heart Rate API for python provided by Fitbit. 
The data comes in the form of a .csv file. As soon as the 
file is downloaded in the system, an event is triggered by 
the watcher.py file running as a background process. The 
file is then read line by line and when any value crosses a 
predefined threshold (for example, pulse rate goes above 90 
bpm) an alert notification is pushed to the android device 
using the MQTT protocol. On Raspberry Pi this is handled 
by mosquitto package for linux and on the Android device 
this is done by a Python code leveraging QPython’s com-
piler. On the completion of processing, the program gen-
erates two files, one containing the log messages and the 
other containing data for future analysis. The second file is 
pushed to an EC2 instance using the SFTP. For this work, 
the Raspberry Pi and Android smart phone do not need to 
be in the same network as long as they are connected via 
some MQTT broker.

The range of the systolic blood pressure data is 
considered:

– Low blood pressure (Hypotension): < 120 mmHg,
– Normal blood pressure: 120–140 mmHg,
– Pre-hypertension: 141–160 mmHg,
– High blood pressure (Hypertension stage): 161–180 

mmHg,
– High blood pressure crisis (emergency): > 180 mmHg.

The range of the diastolic blood pressure data is considered:

– Low blood pressure (Hypotension): < 60 mmHg,
– Normal blood pressure: 60–80 mmHg,
– Pre-hypertension: 81–89 mmHg,
– High blood pressure (Hypertension stage): 90–99 mmHg,
– High blood pressure crisis (emergency): > 100 mmHg.

If the collected systolic or diastolic value or both indi-
cates hypotension, pre-hypertension, hypertension, or high 
blood pressure crisis, the result is sent to the aggregating 
node i.e. Rasp 3. Rasp 3 sends an alert to the user’s smart 
phone. The normal pulse rate is considered 55–80 per min-
ute. If the collected pulse rate is below 55 or above 80, the 
result is sent to Rasp 3. Rasp 3 sends an alert to the user’s 
smart phone. For temperature the normal range is consid-
ered 96 − −98.60F . The normal SPO2 level is considered 
≥ 95% . If the collected temperature is below 960F or above 
98.6

0F , the result is sent to Rasp 3. Rasp 3 sends an alert to 
the user’s smart phone. If the collected SPO2 is < 95% , the 
result is sent to Rasp 3. Rasp 3 sends an alert to the user’s 
smart phone. The collected pressure data, pulse rate (wrist 
measured heart rate) and temperature data of a student vol-
unteer is presented in Table 2. The temperature is measured 
in degree Fahrenheit ( 0F ), pulse rate is measured in beats 
per minute (bpm), and blood pressure is measured in mil-
limeters of mercury (mmHg where Hg stands for the mer-
cury symbol). An alert message is sent to the smart phone 
of the student volunteer in case of abnormal health status, 
as shown in Fig. 10.

We would like to mention that the health data is collected 
voluntarily from a small set (40) of students. Here the students 
are both under graduate and graduate students (including Ph.D. 
students and research staffs of the laboratory). Amongst them, 
it is observed that 32 users are suffering from pre-hyperten-
sion. These 32 people are categorized based on age group and 

Table 2  Collected temperature, pulse rate and blood pressure values 
of a volunteer

Date Time Temperature 
( 0F)

Pulse rate 
(bpm)

Blood 
Pressure 
(mmHg)

06/10/2019 08:56 97 71 122/70
06/10/2019 08:58 97 71 122/70
06/10/2019 12:42 98 54 105/55
06/10/2019 15:34 98 68 118/68
06/10/2019 15:43 98 65 115/72
06/10/2019 16:03 97 60 105/75
06/10/2019 16:48 97 64 115/72
06/10/2019 18:14 97 61 105/75
06/10/2019 21:15 97 65 118/70
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gender, as observed from Figs. 11 and 12. Here it has to be 
noted that in the age group 17–19 we have under graduate 
students. In the age span 20–29 we have under graduate, post 
graduate as well as Ph.D. students including research staffs. In 
the age span 30–39 we have the Ph.D. students including 
research staffs. From Fig. 11 we observe that the number of 

patients suffering from pre-hypertension increases with the 
age. From Fig. 12 we observe that the number of male and 
female suffering from pre-hypertension are 14 and 18 respec-
tively. For verification the medical history of these volunteers 
have been checked and the precision has been calculated as 
tp

tp+fp
 , where tp stands for true positive, fp stands for false posi-

tive. It is observed that the results obtained from our experi-
mental analysis provides  96% precision with respect to the 
medical history of the volunteers.

Fig. 10  Alert message displayed in user’s smart phone in case of abnormal health status

Fig. 11  Number of people suffering from pre-hypertension (category: 
age group)

Fig. 12  Number of people suffering from pre-hypertension (category: 
gender)
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The main objective of the experiment is to analyse the 
feasibility of the proposed framework. For instance, we dem-
onstrate that the framework is capable of collecting health, 
movement data, storing/ analysing these information and rec-
ommending any medical advise based on the analysis. We do 
not aim to provide any clinical observations/ statistics based on 
this collected data. Since, this data is not the complete data-set 
of the students (IIT Kharagpur campus has more than 8000 
students), the count of the students having hyper-tension is 
not the statistical representation of the health of the student 
community. However, from the theoretical and experimental 
analysis we can conclude that the proposed framework has 
lower delay and lower energy consumption of the user device 
than the cloud only framework, and the mobility pattern pre-
diction model has better precision than the existing models.

5  Conclusions and future work

Smart health care is an emerging area nowadays. In this 
work we have proposed a mobility-aware IoHT framework 
based on edge-fog-cloud based collaborative network. Fog 
devices process the health data to reduce energy consump-
tion and delay than the cloud only system. It is also demon-
strated thorough simulation study that our framework has 
outperformed the existing cloud only health care solution by 
∼ 28% less delay and ∼ 27% less energy consumption of the 
device. The mobility or continuous location change of users 
is an critical issue in case of real time health monitoring, and 
the mobility of users have been considered in the proposed 
framework. The mobility pattern modelling and prediction 
model have been presented in the paper, and the mobility 
model outperforms the existing models with respect to preci-
sion, recall value and execution time. In the institute labora-
tory, we have implemented the proposed IoHT framework 
and analyzed the health status of few student volunteers. 
The blood pressure, body temperature, pulse rate and SPO2 
are collected, and analyzed inside the Raspberry Pi used as 
fog device. Different categories of data are processed inside 
different fog devices to distribute the load. The Raspberry Pi 
in case of abnormal health status send the result to another 
Raspberry Pi used as aggregating fog device and to the cloud 
for further analysis. The aggregating node after receiving 
result from different Raspberry Pi aggregate the result and 
predict the health status and sends an alert message to the 
user’s smart phone if the predicted health status is abnor-
mal. In future we will explore optimum resource allocation 
algorithms for edge-fog-cloud based collaborative network. 
Further, we will try to integrate with health centre so that we 
can have access to the health data collected by medical prac-
titioners as well as incorporate their knowledge and exper-
tise for making the system more viable. We strongly believe 

that the proposed mobility-aware IoHT framework will also 
act as the foundation of health monitoring of elderly people 
and assisting them in medical emergency.
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