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Abstract—The growing computing demand from industry and
academia has lead to excessive power consumption which not only
impacting long term sustainability of Grids like infrastructures in
terms of energy cost but also from environmental perspective. The
problem can be addressed by replacing with more energy efficient
infrastructures, but the process of switching to new infrastructure
is not only costly but also time consuming. Grid being consist
of several HPC centers under different administrative domain,
make problem more difficult. Thus, for reduction in energy
consumption, we address the challenge by effectively distributing
compute-intensive parallel applications on grid. We presented
a metascheduling algorithm which exploits the heterogeneous
nature of Grid to achieve reduction in energy consumption. Sim-
ulation results show that out algorithm HAMA can significantly
improve the energy efficiency of global grids by a factor of
typically 23% and as much as a factor of 50% in some cases
while meeting user’s QoS requirements

I. INTRODUCTION

From last many years, global grid is serving as a main-
stream High Performance Computing (HPC) platform to pro-
vide massive computational power to execute large-scale and
compute-intensive scientific and technological applications.
Enlarging the existing global grid infrastructure to meet the
increasing demand from grid users can progressively speed up
the advancement of science and technology. But the growing
environmental and economic impact due to high energy con-
sumption of HPC platforms has become a major bottleneck in
expansion of grid like platforms.

In April 2007, Gartner estimates that the ICT industry is
liable for 2% of the global CO2 emissions annually, which is
equal to the aviation industry [1][2]. In addition to that, the
high power consumption has not only lead to rapid increase in
utility bills but also affecting the reliability of servers due to
high concentrated heat loads. The power efficiency of a HPC
center depend on number of factors such as processor’s power
efficiency, cooling and air conditioning system, infrastructure
design and lighting/physical system. A recent study [3] done
by Lawrence Berkeley National Laboratory shows the cooling
efficiency (the ratio of computer power : cooling power) of
data centers varies drastically from a low of 0.6 to a high of
3.5. Thus, the sustainable and environmental-friendly solutions
must be employed by current HPC community to increase the
energy efficiency of HPC systems which can more effectively
make use of electricity.

While a lot of research has been performed to increase effi-
ciency of individual clusters at various levels such as processor
level (CPU) [4][5], in virtualization based resource managers
[6], and cluster resource managers [7][8], the research on
improving the energy efficiency of global systems such as grid
is still in its infancy. Most of the existing grid meta-schedulers,
such as Maui/Moab scheduling suite [9], Condor-G [10], and
GridWay [11], focus on improving system-centric performance
metrics such as utilization, average load and application’s
turnaround time. Others such as Gridbus Broker [12] focus
on deadline and budget constrained scheduling. Thus, this
paper examines how a grid meta-scheduler can exploit the
heterogeneity of the global grid infrastructure to achieve
reduction in energy consumption of overall grid. In particular,
we focus on designing a meta-scheduling policy that can be
easily adopted by existing grid meta-schedulers without many
changes in current grid infrastructure. This work will also
have relevance to emerging cloud computing paradigm when
scaling of application across multiple clouds is considered
[13]. The key contributions of this paper are:

1) It defines a novel Heterogeneity Aware Meta-scheduling
Algorithm (HAMA) that considers various factors con-
tributing to high energy consumption of grids, including
cooling system efficiency and CPU power efficiency.

2) It demonstrates through extensive simulations using real
workload traces that the energy efficiency of global grids
can be improved as much as 23% with HAMA.

The rest of this paper is organized as follows: Section 2 dis-
cusses related work. Section 3 defines the grid meta-scheduling
model. Section 4 describes HAMA. Section 5 explains the
evaluation methodology and simulation setup for comparing
HAMA with existing meta-scheduling policies. In Section 6,
the performance results of HAMA are analyzed. Section 7
concludes the paper and presents future work.

II. RELATED WORK

This section presents related work on energy-
efficient/power-aware scheduling on grids. To the best
of our knowledge, no previous work has proposed a meta-
scheduler that explicitly addresses energy efficiency of grids
from a global perspective.

Currently, for global grids, meta-schedulers in operation,
such as GridWay [11] use heuristics such as First Come First



Serve (FCFS). Moab also has a FCFS batch scheduler with
easy backfilling policy [9], [14]. Condor-G [10] uses either
FCFS or matchmaking with priority sort [15] as scheduling
policies. These schedulers mostly schedule jobs with several
goals such as minimizing job completion time and achieving
load balancing. The issue of energy consumption emission by
the grids still need to be addressed.

There are several research efforts on power-aware resource
allocation to optimize energy consumption at a single resource
site, typically within a single cluster or data center. The power
usage reduction within the resource site is achieved through
two methods: by switching off parts of the cluster that are not
utilized [16], [17], [18], [7]; or by Dynamic Voltage Scaling
(DVS) to slow down the speed of CPU processing [19], [20],
[21], [22], [8], [23], [24], [7]. Hence, these efforts help reduce
the energy consumption of one resource site such as cluster or
server farm, but not across multiple resource sites distributed
geographically.

Orgerie et al. [16] propose a prediction algorithm to reduce
the power consumption in a large-scale computational grid
such as Grid’5000 by aggregating the workload and switch-
ing off unused CPUs. They focus on reducing CPU power
consumption to minimize the total energy consumption. As
the power efficiency of grid sites can vary across the grid,
reducing CPU power consumption itself may not necessary
lead to a global reduction in the energy consumption by the
entire grid. We focus on conserving energy of grids from a
global perspective.

Meisner et al. [19] show that in the case of high and
unpredictable workload, it is difficult to exploit the power
on/off facility even though it is ideal to simply switch off
idle systems. Thus, DVS-enabled CPUs will be much better
in saving energy in this case. Therefore, in this work we use
DVS to reduce the energy consumption of CPUs since our
main focus is on large-scale computational grid resource sites
which generally have unpredictable workload.

III. GRID META-SCHEDULING MODEL

A. System Model

A grid meta-scheduler acts as an interface to grid resource
sites and schedules jobs on the behalf of users as shown in
Figure 1. It interprets and analyzes the service requirements
of a submitted job and decides whether to accept or reject
the job based on the availability of CPUs. Its objective is to
schedule jobs so that the energy consumption of grid can be
reduced while the Quality of Service (QoS) requirements of
the jobs are met. As grid resource sites are located in different
geographical regions, they have different power efficiency of
CPUs and cooling systems. Each resource site is responsible
for updating this information at the meta-scheduler for energy
efficient scheduling. The two participating parties, grid users
and grid resource sites, are discussed below along with their
objectives and constraints:

1) Grid Users:
Grid users submit parallel jobs with QoS requirements
to the grid meta-scheduler. Each job must be executed

`

Users Local Scheduler

Meta-Scheduler

Resource Provider

1. Job request from 

users with deadline

6. Acknowledge user 

about 

Resource match

2. Resource site energy 

efficiency related 

parameters 

3. Find most energy efficient

resource site

4. Meta-scheduler send 

jobs to local scheduler 

for execution

5. Scheduling of 

job  for matched 

time slot

Fig. 1. Meta-scheduling protocol

on an individual grid resource site and does not have
preemptive priority. The reason for this requirement is
that the synchronization among various tasks of parallel
jobs can be affected by communication delays when jobs
are executed across multiple resource sites. The user’s
objective is to have his job completed by a deadline.
Deadlines are hard, i.e., the user will benefit only if
the job completes before its deadline [25]. To facilitate
the comparison between the algorithms described in this
work, the estimated execution time of a job provided
by the user is considered to be accurate [26]. Several
models, such as those proposed by Sanjay and Vadhiyar
[27], can be applied to estimate the runtime of parallel
jobs. In this work, a job execution time is inversely
proportional to the CPU operating frequency.

2) Grid Resource Sites:
Grid resource sites consist of clusters at different loca-
tions, such as the sites of the Distributed European In-
frastructure for Supercomputing Applications (DEISA)
[28] with resource sites located in various European
countries and LHC Grid across the world [29]. Each
resource site has a local scheduler that manages the
execution of incoming jobs. Each local scheduler peri-
odically supplies information about available time slots
(ts, te, N) to the meta-scheduler, where ts and te are the
start time and end time of the slot respectively and N is
the number of CPUs available for the slot. To facilitate
energy efficient computing, each local scheduler also
supplies information about cooling system efficiency,
CPU power-frequency relationship, and CPU operating
frequencies of the grid resource site. All CPUs within a
single resource site are homogeneous, but CPUs can be
heterogeneous across resource sites.

B. Grid Resource Site Energy Model

The major contributors for total energy usage in grid re-
source site are computing devices (CPUs) and cooling system



which constitute about 80% of total energy consumption.
Other systems such as lighting are not considered due to their
negligible contribution to the total energy cost.

The power consumption P of a CPU at a grid resource
site is composed of dynamic and static power [21][7]. The
static power includes the base power consumption of the
CPU and the power consumption of all other components.
Thus, the CPU power P is approximated by the following
function (similar to previous work [21][7]): P = β + αf3,
where β is the static power consumed by the CPU, α is the
proportionality constant, and f is the frequency at which the
CPU is operating. We consider that CPUs support DVS facility
and thus their frequency can be varied from a minimum of
fmin to a maximum of fmax discretely. Let Ni be number
of CPUs at a resource site i. Thus, if the CPU j running at
frequency fj for tj time, then the total energy consumption
due to computation is given by:

Ec,i =
j∑
Ni

(βi + αif
3
j )tj . (1)

The energy cost of an cooling system depends on the Coeffi-
cient Of Performance (COP) factor of the cooling system [30].
COP is indication of efficiency of cooling system which is
defined as the ratio of the amount of energy consumed by
CPUs to the energy consumed by the cooling system. The
COP is however not constant and varies with cooling air
temperature. We assume that COP will remain constant during
scheduling cycle and resource sites will update meta-scheduler
whenever COP changes. Thus, the total energy consumed by
cooling system is given by:

Eh,i =
Ec,i
COPi

(2)

Thus, the resultant total energy consumption by a grid
resource site is given by:

Ei = (1 +
1

COPi
)Ec,i (3)

IV. HETEROGENEITY AWARE META-SCHEDULING
ALGORITHM (HAMA)

This section gives the details of our Heterogeneity Aware
Meta-scheduling Algorithm (HAMA) which enables the grid
meta-scheduler to select the most energy efficient grid resource
site. The grid meta-scheduler runs HAMA periodically to
assign jobs to grid resource sites. HAMA achieves this by
first selecting the most energy efficient grid resource site and
then by using DVS for further reduction in the energy con-
sumption. Algorithm 1, described next, shows the pseudo-code
for HAMA. At each scheduling interval, the meta-scheduler
collects information from both grid resource sites and users
(Algorithm 1: Line 2–3). Considering that a grid consists
of n resource sites (supercomputer centers), all parameters
associated with each resource site i are given in Table I. A
user submits his QoS requirements for a job j in the form of
a tuple (dj , nj , ej , fm,j), where dj is the deadline to complete

job j, nj is the number of CPUs required for job execution,
and ej is the job execution time when operating at the CPU
frequency fm,j . In addition, let fij be the initial frequency at
which CPUs of a grid resource site i operate while executing
job j. HAMA, then, sorts the incoming jobs based on Earliest
Deadline First (EDF) (Algorithm 1: Line 4). The grid resource
sites are sorted in order of their power efficiency (Algorithm 1:
Line 5) which is calculated by Cooling system efficiency ×
CPU Efficiency, i.e., (1+ 1

COPi
)×( βi

fmax
i

+αi(fmaxi )2). Then,
meta-scheduler assigns jobs to resource sites according to this
ordering (Algorithm 1: Line 7–11).

Algorithm 1: HAMA

while current time < next schedule time do1
RecvResourcePublish(P)2
//P contains information about grid resource sites
RecvJobQoS(Q)3
//Q contains information about grid users

Sort jobs in ascending order of deadline4
Sort resource sites in ascending order of5
(1 + 1

COPi
)× ( βi

fmax
i

+ αi(f
max
i )2)

foreach job j ∈ RecvJobQoS do6
foreach resource site i ∈ RecvResourcePublish do7

//find time slot for scheduling job j at resource site i
if FindTimeSlot(i,j) then8

Schedule job j on resource site i using DVS;9
Update available time slots at resource site i
break10

11

TABLE I
PARAMETERS OF A GRID RESOURCE SITE i

Parameter Notation
Average Cooling system effi-
ciency

COPi

CPU power Pi = βi + αif
3

CPU frequency range [fmini , fmaxi ]
Time slots (start time, end
time, number of CPUs)

(ts, te, n)

The energy consumption is further reduced by scheduling
jobs using DVS at the CPU level which can save energy
by scaling down the CPU frequency. Thus, when the grid
meta-scheduler assigns a job to a grid resource site, it also
decides the time slot in which jobs should be executed at the
minimum frequency level to decrease energy consumption by
CPU (Algorithm 1: Line 8). If the job deadline is violated, the
meta-scheduler scales up the CPU frequency to the next level
and then again tries to find the free slot to execute the job.
The execution time an application is considered to increase
linearly with the decrease in CPU frequency. Thus, in next
CPU frequency level, since CPU will be executing application
at higher frequency level, the time slot required will be shorter.

As at a resource site CPUs may or may not have the DVS
facility, thus the scheduling at the local scheduler level can
be of two types: CPUs run at the maximum frequency (i.e.
without DVS); or CPUs run at various frequency using DVS



(i.e. with DVS). If the meta-scheduler fails to schedule the job
on the resource site because no free slot is available, then the
job is forwarded to the next energy efficient resource site for
scheduling.

V. PERFORMANCE EVALUATION

We use workload traces Feitelson’s Parallel Workload
Archive (PWA) [31] to model the global grid workload. Since
this paper focuses on studying the application requirements
of grid users, the PWA meets our objective by providing job
traces that reflect the characteristics of real parallel appli-
cations. The experiments utilize the jobs in the first week
of the LLNL Thunder trace (January 2007 to June 2007).
The LLNL Thunder trace from the Lawrence Livermore
National Laboratory (LLNL) in USA is chosen due to its
highest resource utilization of 87.6% among available traces
to ideally model a heavy workload scenario. From this trace,
we obtain the submit time, requested number of CPUs, and
actual runtime of jobs. However, the trace does not contain
the service requirement of jobs (i.e. deadline). Hence, we use
a methodology proposed by Irwin et al. [32] to synthetically
assign deadlines through two classes namely Low Urgency
(LU) and High Urgency (HU).

A job i in the LU class has a high ratio of
deadlinei/runtimei so that its deadline is definitely longer
than its required runtime. Conversely, a job i in the HU class
has a deadline of low ratio. Values are normally distributed
within each of the high and low deadline parameters. The ratio
of the deadline parameter’s high-value mean and low-value
mean is thus known as the high:low ratio. In our experiments,
the deadline high:low ratio is 3, while the low-value deadline
mean and variance is 4 and 2 respectively. In other words, LU
jobs have a high-value deadline mean of 12, which is 3 times
longer than HU jobs with a low-value deadline mean of 4.
The arrival sequence of jobs from the HU and LU classes is
randomly distributed.

Provider Configuration: The grid modelled in our simu-
lation contains 8 resource sites spread across five countries
derived from European Data Grid (EGEE) testbed [29]. The
configurations assigned to the resources in the testbed for
the simulation are listed in Table II. The configuration of
each resource site is decided so that the modelled testbed
would reflect the heterogeneity of platforms and capabilities
that is normally the characteristic of such installations. Power
parameters (i.e. CPU power factors and frequency level) of
the CPUs at different sites are derived from Wang and Lu’s
work [7]. Current commercial CPUs only support discrete
frequency levels, such as the Intel Pentium M 1.6 GHz CPU,
which supports 6 voltage levels. We consider discrete CPU
frequencies with 5 levels in the range [fmini , fmaxi ]. For
the lowest frequency fmini , we use the same value used
by Wang and Lu [7], i.e. fmini is 37.5% of fmaxi . Each
local scheduler at a grid site use Conservative Backfilling
with advance reservation support as used by Mu’alem and
Feitelson [33]. The grid meta-scheduler schedules the job
periodically at a scheduling interval of 50 seconds, which is

to ensure that the meta-scheduler can receive at least one job
in every scheduling interval. The cooling system efficiency
(COP) value of resource sites is randomly generated using
a uniform distribution between [0.5, 3.6] as indicated in the
study conducted by Greenberg et al. [3].

Grid Meta-scheduling Algorithms: We examine the per-
formance of HAMA in terms of job selection and resource
allocation of the grid meta-scheduler. We compare our job
selection algorithm with EDF-FQ which prioritize jobs based
on deadline and submit jobs to resource site in earliest start
time (FQ) manner with the least waiting time. We also
compare HAMA with another version of HAMA i.e. HAMA-
withoutDVS to analyze the affect of DVS facility on energy
consumption.

Performance Metrics: We consider two metrics: average
energy consumption and workload (i.e. amount of workload
executed). Average power consumption shows the amount of
energy saved by using HAMA in comparison to other grid
meta-scheduling algorithms, whereas workload shows HAMA
affect on the workload executed successfully by grid.

Experimental Scenarios: We run the experiments in two
scenarios 1) urgency class and 2) arrival rate of jobs. For
the urgency class, we use various percentages (0%, 20%,
40%, 60%, 80%, and 100%) of HU jobs. For instance, if the
percentage of HU jobs is 20%, then the percentage of LU
jobs is the remaining 80%. For the arrival rate, we use various
factors (10, 100, and 1000) of submit time from the trace. For
example, a factor of 10 means a job with a submit time of 10s
from the trace now has a simulated submit time of 1s. Hence,
a higher factor represents higher workload by shortening the
submit time of jobs.

Equation 3, we know that the performance of HAMA is
highly dependent on the CPU efficiency and Cooling System
efficiency of grid resource sites. We compare performance of
our algorithm in worst case scenario (HL) i.e., when resource
site with the highest CPU power efficiency has the lowest COP,
and best case scenario (HH) i.e., when resource site with the
highest CPU power efficiency has the highest COP (HH).

VI. PERFORMANCE RESULTS

A. Affect on Energy consumption

This section compares energy consumption of HAMA with
other meta-scheduling algorithms for grid resource sites with
HH and HL configurations. The figure 2 shows how energy
consumption varies with deadline urgency and arrival rate of
jobs. HAMA has clearly outperformed its competitor EDF-
FQ by saving about 17%-23% energy in worst case and about
52%in best case.

The effect of job urgency on energy consumption can be
clearly seen from figure 2(a) and 2(b). As the percentage of
HU jobs with more urgent (shorter) deadline increases, the
energy consumption (Figure 2(a) and 2(b)) also increases due
to more urgent jobs running on resource sites with lower power
efficiency and at the highest CPU frequency to avoid deadline
violations. On the other hand, the effect of job arrival rate on



TABLE II
CHARACTERISTICS OF GRID RESOURCE SITES

Location of Grid Site CPU Power Factors No. of CPUs MIPS Rating
β α fmaxi

RAL, UK 65 7.5 1.8 2050 1140
Imperial College (UK) 75 5 1.8 2600 1200
NorduGrid (Norway) 60 60 2.4 650 1330

NIKHEF (Netherlands) 75 5.2 2.4 540 1176
LYON (France) 90 4.5 3.0 600 1166
Milano (Italy) 105 6.5 3.0 350 1320
Torina (Italy) 90 4.0 3.2 200 1000
Padova (Italy) 105 4.4 3.2 250 1330

energy consumption (Figure 2(c) and 2(d) is minimal with a
slight increase when more jobs arrive.

For grid resource sites without DVS, HAMA-without can
reduce up to 15-21% of the energy consumption (Figure 2(a))
in the HL configuration and 28-50% of energy consumption
(Figure 2(b)) in the HH configuration compared to EDF-FQ
which also doesn’t consider the DVS facility while scheduling
across the entire grid. This highlights the importance of the
power efficiency factor in achieving energy-efficient meta-
scheduling. In particular, HAMA can reduce energy consump-
tion (Figure 2(a) and 2(b) even more when there are more LU
jobs with less urgent (longer) deadline and arrival rate is low.

When we compare HAMA and HAMA-withoutDVS, we
observe that by using DVS energy saving has increased by
about 11% when % of job with urgent deadline and job arrival
rate is high. This is because for the scenario when DVS facility
is available jobs can run at lower CPU frequency to save
energy.

B. Affect on Workload Executed

Figure 3 shows the total amount of workload successfully
executed according to user’s QoS. The workload of a job
refer to multiplication of its execution time and the number of
CPU required. The affect of job urgency and arrival rate on
workload executed can be clearly seen from Figure 3(a) and
3(d). All meta-scheduling algorithm shows consistent decrease
in workload execution particularly in scenario of job urgency.
The reason is rejection of more jobs due to deadline miss
when all jobs are of high urgency. The amount of workload
executed by EDF-FQ is less than HAMA because of the reason
that while scheduling using EDF-FQ, the local scheduler
execute the jobs using conservative backfilling without any
consideration of job deadline. While in case of HAMA, meta-
scheduler send job to a resource site only if a time slot is
available to execute job before deadline.

VII. CONCLUSION

With the increasing demand of global grids, the energy
consumption of grid infrastructure has escalated to the degree
that grids are becoming a threat to the society rather than an
asset. The carbon footprint of grids may continue to increase
unless the problem is addressed at every level, i.e., from local
(within a single grid site) to global (across multiple grid sites).

Moreover, the immediate and significant reduction in CO2
emissions is required for the future sustainability of global
grids.

In this paper, we have addressed the energy efficiency of
grids at the meta-scheduling level. We proposed Heterogenity
Aware Meta-scheduling Algorithm (HAMA) to address the
problem by scheduling more workload with urgent deadline on
resource sites which are more power-efficient. Thus, HAMA
considers crucial information of global grid resource sites,
such as cooling system efficiency (COP) and CPU power effi-
ciency. HAMA address the problem in two steps: 1) allocating
jobs to more energy-efficient resource sites and 2) scheduling
using DVS policy at the local resource site to further reduce
energy consumption.

Results show that our HAMA can reduce up to 23% energy
consumption in worst case and upto 50% in best case as
compare to other algorithms (EDF-FQ). Moreover, even if
DVS facility is not available, HAMA-withoutEDF can still
result in considerable amount of power savings of upto 21%.
Particularly, our HAMA algorithm can work very well when
the deadline of jobs is less urgent and arrival rate of jobs is
not high. Thus, HAMA can also compliment the efficiency of
existing power-aware scheduling policies for clusters.

In future, we will investigate how HAMA can address the
energy consumption problem in virtualized environments such
as clouds, which is the emerging platform for hosting business
applications. We will also integrate HAMA with existing
grid meta-schedulers and conduct experiments on real grid
and cloud resources. We will also extend our current meta-
scheduling model to resources such as the storage disks and
the switching devices.
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