

Genetic Algorithm based Data-aware Group Scheduling for Big Data Clouds

Raghavendra Kune1, Pramod Kumar Konugurthi1, Arun Agarwal2, Raghavendra Rao Chillarige2, and Rajkumar Buyya3
{raghav.es, pramodkumar.konugurthi, aruncs.2011}@gmail.com, vijaya_crr@yahoo.co.in, rbuyya@unimelb.edu.au

1Advanced Data Processing Research Institute, Department of Space, India

2School of Computer and Information Sciences, University of Hyderabad, India
3CLOUDS Lab, Department of Computing and Information Systems, University of Melbourne, Australia

Abstract- Cloud computing is a promising cost efficient service
oriented computing platform in the fields of science,
engineering, business and social networking for delivering the
resources on demand. Big Data Clouds is a new generation data
analytics platform using Cloud computing as a back end
technologies, for information mining, knowledge discovery and
decision making based on statistical and empirical tools.
MapReduce scheduling models for Big Data computing operate
in the cluster mode, where the data nodes are pre-configured
with the computing facility for processing. These MapReduce
models are based on compute push model- pushing the logic to
the data node for analysis, which is primarily for minimizing or
eliminating data migration overheads between computing
resources and data nodes. Such models, however, substantially
perform well in the cluster setups, but are infelicitous for the
platforms having the decoupled data storage and computing
resources. In this paper, we propose a Genetic Algorithm based
scheduler for such Big Data Cloud where decoupled
computational and data services are offered as services. The
approach is based on evolutionary methods focussed on data
dependencies, computational resources and effective utilization
of bandwidth thus achieving higher throughputs.

Keywords: Big Data, Cloud computing, Data Intensive
Scheduling, Genetic algorithms, Big Data Clouds.

I. INTRODUCTION

Big Data Cloud is an emerging data analytics platform
for collecting, organizing and analyzing large data sets
for discovering patterns and useful information. Big Data
Cloud could be categorized into two types; one with
enough computing resources at the data node, similar to a
cluster setup, and the second with decoupled
computational and data resources spread across several
geographical locations. Big Data Analytics 0 are
emerging data science paradigms for exploiting the large
scale, multi-dimensional, and rapidly growing data for
the intrinsic information extraction using computational
and statistical methods. These analytics have wide spread
applications in several fields like social networking
analysis, business forecasting, financial domain analysis,
scientific analysis etc. Big Data computing differs from
traditional Data warehousing (OLTP/OLAP)
technologies in terms of the data storage, organization,
collection, processing tools and methods used for data
analysis. Data warehousing deals with the operational
data which is mostly structured, however, Big Data

computing addresses both historical and operational data
which is structured as well unstructured data.
MapReduce scheduling models [2] are primarily focussed
on computing at the data nodes, such models are
desirable for the applications that are demanding larger
data volumes, but with minimal computing resources for
processing. These techniques are attempted for collocated
data and computing resources, however, may result in the
degraded performance when the resources are decoupled.
On the other side, traditional job scheduling approaches
such as match making, optimizes either the computing
time or the data migration overheads, however, both are
not addressed together due to the limitations in such
methods. Hence, MapReduce models and match making
models are not tailored for scientific computing platforms
where the resources are decoupled, and the requirement
is to optimize both computing and data consolidation
overheads. The adoption of this model is described in our
earlier work for satellite data product generation [3]. To
address such Big Data scientific workloads, we propose a
scheduling methodology based on data grouping and
optimizing mechanisms. The work in this paper is
focussed on scheduling the jobs which are demanding
multiple data sets that are spawned across several storage
repositories, and the data demanded by such jobs are
either similar or may have overlap in the data regions.

Genetic Algorithms (GA) [4][5] are the optimization
techniques, used to solve NP class problems for finding
an approximately optimal solutions. GA is a model of
machine learning that derives the behaviour from a
metaphor of the processes of evolution in nature. GA is
executed iteratively on a set of coded chromosomes,
called a population, with three basic genetic operators
such as selection, crossover and mutation. Each member
of the population is called a chromosome (or individual)
that undergoes evolution carrying the fittest
chromosomes to the next generations. This process is
repeated until the specified maximum numbers of
generations are reached or the optimal fittest value is
obtained. In this paper, we describe a scheduling model
based on GA and the model is evaluated and compared
with earlier works such as match making and other
heuristics techniques through the simulated data.

2014 International Symposium on Big Data Computing

978-0-7695-5429-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BDC.2014.15

96

The rest of the paper is organized as follows. Section II
describes the related work, Section III describes the
system architecture, Section IV describes the
methodology, and GA problem formulation, Section V
describes results with simulated data, and Section VI
presents conclusions and future work.

II. Related Work

Previous works on scheduling in Data Grids [6][7]have
been more concerned with the relationship between job
assignment and data replication based on computation
and data proximity. Mohammed et.al [8] discussed a
Close-to-Files algorithm, searching the entire solution
space for a combination of computational and storage
resources for minimizing the processing time with the
restriction of one dataset per job for execution.

Srikumar [9]described scheduling the distributed data
intensive applications on global grids based on a set
coverage approach for cost and time minimizing
problems. This approach is based on the availability of
both computation and data resources; however, data
transfer from replicated sites and the selection of efficient
computing nodes for minimizing the execution times are
not addressed.

Big Data computing frameworks such as Apache Hadoop
[10] is an open source implementation for MapReduce
scheduling methods; the examples are Fair [11], Capacity
[12], and Throughput [13]. Fair Scheduler is a pluggable
group scheduler where in each group gets equal time
slots for computation. Capacity Scheduler is similar to
FIFO within each queue, but limiting the maximum
resources per queue. Throughput Scheduler reduces
overall job completion time on heterogeneous cluster by
actively assigning tasks to computing nodes based on the
server capabilities. Shared Scan Schedulers S3[14]allows
sharing the scan of a common file for multiple jobs
arriving at different time intervals thus improving the
performance of multiple jobs which are operating on a
common data file.

In this paper, we discuss a scheduling methodology,
where computational resources and data storages are
decoupled with the data replicated over storage
repositories which are geographical dispersed. Here, the
problem is focussed on grouping the jobs based on the
data requirements, and the objective is to minimize the
total makespan considering both computational resources
and communication bandwidth effectively.

III. System Architecture and Workflow

The system architecture is depicted in Figure 1 with four
basic elements like scheduling broker, computing
infrastructure providers, data providers, and

analytics/applications developers/users. Compute
providers offers a large scale computing infrastructure,
data providers service the data on demand, scheduler
broker periodically collects the jobs from the pool and
determines the effective schedule to increase system
throughput.

Figure 1. System Architecture

The workflow is depicted in Figure 2. The major
activities in the workflow are: a) grouping the job based
on the common/overlap data which we call as the family
construction, b) determining the data workloads between
compute and replicated sites, and c) discovering the
optimal schedule to minimize the turnaround time of the
jobs. These activities are explained below.

Figure 2. Workflow

i. Family construction: The jobs with common/overlap

data are grouped together, called “family”. To discover
the grouping, metadata attributes such as object
identifiers, and key/value descriptions are used as
parameters. Object identifiers uniquely identify the

Scheduler
Broker

6. Schedule
discovery

1.Periodically
poll the jobs

File
A

File
B

DaaS(Data as a
Service)

Job

Compute Infrastructure
Services

7.Parallel Data Transfer

5.Computing
resources
information

Job Submission

4 .Pre processing
for family
construction

Job pool Family Job Construction

Determine the
data hosts

Compute the RTT from
Data hosts to compute
nodes: optimal time

Determine the
compute nodes

Compute the group
scheduling with the
Data consolidation and
compute times for the
family jobs

Migrate data and application
services to the resulted
compute node(s)

Perform
execution

Result

Job
Submission

1

2 2

3

4

5

6

7

97

objects in a bucket, and the object metadata is a set of
name-value pairs for describing the data content. Object
based storage mechanisms such as Openstack Swift
[15], and Amazon S3 [16] offers object keys and the
associated metadata tagged with the files/objects. Object
metadata is of two types- system metadata and user-
defined metadata. System metadata describes the object
creation dates, storage class information etc., and the
user-defined metadata tags the additional information
for the objects. First, we apply the query to discover the
jobs with similar object identifier tags, followed by
key/value pair combination for finding the
common/overlap data. However, the discussed methods
are limited, but, these could be extended to other data
overlap/commonality computing techniques.

ii. Determining data workloads: The data workload is
determined based on the available bandwidth between
the replicated sites and the compute nodes. Network
traces based on round trip time over a time period is
used as parameter (weight factor for the data channel)in
our model to estimate the amount of data to be
transferred from each of the replicated sites.

iii. Optimal Schedule: The schedule is based on steady
state genetic approach using turnaround time
minimization as fitness value.

iv. Data and applications migration: Based on the
schedule map, data and application services would be
migrated to the compute nodes.

v. Execution: Jobs execution on the compute nodes, and
the deletion of the temporary and migrated data sets from
the computing nodes.

vi. Result: Final result sent to the end user.

IV. METHODOLGY

Here, we discuss the methodology for family
construction, notations and problem formulation.

A. Family construction
Graph data structure, we call here as family graph is used
for grouping the jobs. In the family graph, job is
represented as node and the data required by both the jobs
(adjacent nodes) is represented by the edge. A sample
family graph with 7 jobs numbered from 1 to 7, and three
data sets named from X1 to X3 are shown in Figure 3 .

Figure 3. Family graph

The graph indicates that the jobs 1, 2, 3, and 4 require the
data with id X1, the jobs 1 and 4 require the data with id
X2, and jobs 5, 6 and 7 require the data with id X3 for
processing. The families are formed by computing the
connected components of the graph. The graph in Figure
3, results in two connected components with the nodes 1,
2, 3, and 4 for the first component, the nodes with 5, 6,
and 7 for the second component. The resultant connected
components form two groups or two family jobs which
are to be processed further.

B. Notations used
Mathematical notations for the problem formulation are
described in Table 1.

Table 1.Mathematical Notations

J = Total number of jobs
N= Total number of computing nodes in the grid
H= Total number of data service/providers
F= Total number of families
wf= Total number of jobs in the family f.
TDfi = Data Make Span(Consolidation time) in
minutes of the family f�F on Node i.
rhi =Estimated packet transmission time in seconds
between data provider h�H to compute node i�N.
Xf= Amount of data required in GB for the family
f�F.
xfhi = Data chunk in GB from the data provider h�H
to compute node i�N for the family f�F.
�hi= Weight assignment to the channel from data
provider h�H to compute node i�N.
TRji = Turnaround time of the job j on node i.
TSji= Setup time of the job j on node i.
TAj= Arrival Time of the job j.
Δfi = Decision variable.
δfi = Assignment variable.

C. Objective Function
The objective is to minimize the turnaround time of the
jobs over the computing nodes.

Minimize � � � TRji ∆fiδ
f
j

F

f=1

N

i=1

J

j=1

 δf
j = �0 if j�f

1 if j�f
�

TRji = TDfi wf⁄ + TSji + TLji − TAj

where
� TRji: Turnaround time of the job jЄf on computing

node i.
� TDfi: Data consolidation of the family f on computing

node i.
� TSji: Setup time of the job jЄf, on computing node i.

X1, X2

X1

X3

2

7

31

65

4
X3

X1

98

� TLji: Length of the job j�f, on computing node i.
� TAj: Arrival /Submission time of the job j�f.

subject to the following constraints
� A family is assigned to either one compute node or

none.

� ∆fi

N

i=1

≤ 1 for f = 1,2, … . F

 ∆fi∈ {0,1}
� Compute node can have either none or many families

assigned to it

� ∆fi

F

f=1

≥ 0 for f = 1,2, … . N

 ∆fi∈ {0,1}

D. Determining the data consolidation time
Network traces between the computing resources and data
hosts/providers are used to estimate the channel
bandwidth availability. Such stored network traces over a
time period for example 15 minutes are used as parameter
to estimate the data quantity to migrate from each of the
data providers to compute node. Below we will discuss
the procedure for computing the percentage of the data to
be obtained from each of the data providers to the
compute nodes. Let us denote the compute node by i, data
provider by h, job by j, and the family by f.

The families are constructed using the family graph as
discussed in the section IVA. The family may have one or
more jobs if they have common data. If each family
consist of only one job, then F=J, otherwise F<J. Let wf be
the number of jobs in the family f also called weight of
the family, then w1+w2+…..+wF=J. In the family job
scheduling problem, data consolidation time is same for
all the jobs that belong to the same family. Data
Consolidation time is defined as the maximum time to
consolidate the data from the identified data providers to
the compute node. Data Consolidation time 	
�� , is the
maximum time required to bring the data from the data
provider(s) to the compute node i for the family f, and is
defined as

	
�� = max
h=1,H

(xf
hi ∗ rhi) … … … … … … … (1)

Where xf

hi is the chunk size and rhi is the estimated time
from the previous historical traces, for the family f from
data provider h to compute node i. xf

hi can be computed as
below.

xf
hi = ρhi ∗ Xf………………………(2)

Where Xf is total data size required for the family f, and
�hi denotes the weight assigned to the channel from host h
to compute node i, is defined as

ρhi = (1 rhi⁄) ∑ (1 rli⁄)H
i=1⁄ … … … …..(3)

The time is estimated using the previous history of packet
transmissions over a time period. Simplifying equation
(1),using equations (2) and (3), we get

	
�� = (1 rhi⁄) �(1 rli⁄)
H

i=1

� ∗ Xf ∗ rhi

 = Xf / ∑ (1 rli⁄)H
i=1

Family to node mapping is represented as the weight
matrix. The problem can be solved as the bipartite
assignment problem, but the limitations are, a node can
have maximum of one family assigned, although it has
enough processing elements for handling more than one
family. Hence, this problem reduces to 0/1 knapsack
which can be solved using greedy, dynamic programming
or evolutionary techniques like genetic algorithms. In the
proposed group scheduling, three possible schedules may
occur for the computing nodes during execution, such as:

(i) No family assigned.
(ii) With exactly one family assigned.
(iii) More than one family assigned.

Based on the schedules described as above for a compute
node, we discuss below the GA problem formulation,
chromosome representation, scheduling algorithm and the
results obtained with the simulated data.

E. GA problem formulation
Steady State GA [5]is used by replacing percentage of
chromosomes across the generations until the solution
converges or till the maximum number of generation is
reached. Genetic algorithm library (GALib) [17] is used
for implementation.

i. Chromosome representation
We choose integer based data structure for genomes
representation. The gene index represents the familyid,
and the genome indicates the compute nodeid to which
the family is mapped. The data structure of the
chromosome is shown Figure 4.

Figure 4.Sample Chromosome

Consider F families to be mapped onto N computing
nodes. Each family f will go to only one computing node,
whereas a computing node may or may not be assigned
with families. This yields a possible assignment size of NF

which is an exponential large value. Let us assume that
there are 9 families and 10 computing nodes. Figure 4

Node Id 2 4 3 2 4 5 3 2 1
Family id 1 2 3 4 5 6 7 8 9

Gene x1 x2 x3 x4 x5 x6 x7 x8 x9

Gene
Index

1 2 3 4 5 6 7 8 9

99

represents that familyid=2 is assigned to nodeid=4,
familyid=1 is assigned to nodeid=2, and so on. From the
above figure it is also seen that nodeid=4 has been
assigned with familyid=2 and 5; nodeid=2 has been
assigned with familyid=1,4 and 8 and nodeid=6, 7, 8, 9
and 10 have not been assigned to any family.

ii. Evolve method
An initial population of chromosomes are selected at
random and the fitness function is applied. The fittest
chromosomes are carried to the next generation based on
the Steady State overlap percentage of chromosomes. The
process is repeated either till the maximum preliminary
runs are completed or the convergence of the objective
value is achieved. In order to choose the fittest
chromosomes for the next generation the operators like
crossover and mutations are used. The next generation
chromosomes are created by genetically mating fitter
individuals of the current generation.

iii. Scheduling algorithm
Table 2 describes the fitness function pseudo code and
Table 3 discusses the proposed GA for scheduling the
family jobs using the fitness function.

Table 2. Fitness Function pseudo code

Algorithm. Fitness function F pseudo code
Input: Chromosome C
Output: Turnaround time of the schedule

1 Turnaround time T:= 0
2 For all genes in the Chromosome C perform

the following steps do
3 read gene index f and genome value i
4 Compute the jobs {J}� to f.
5 For all j�J do
6 Estimate data consolidation time TDfi,

compute total jobs Wf in family f.
7 Compute setup time TSfi, estimated job

length on node i, TLji and arrival time
TAj.

8 Compute the turnaround time TRji of job
j �J on computing node i.

9 TRji= TDfi/Wf + TSfi+ TLji-TAj
10 T := T + TRji
11 end for
12 until end of chromosome
13 return T;

Table 3. GA for schedule discovery

Algorithm: Scheduling Algorithm pseudo code
Input: Population, Generations, Crossover percent,
Mutation percent, Gene length, Percentage of

chromosome to carry forward(P,g,c,m,l,r)
Output: A Schedule for all the jobs
1. Initial Run: Randomly generate population P
chromosomes.
2. Repeat
3. Calculate the fitness of all chromosomes using
Fitness function F
4. Arrange the population in the ascending order

of fitness value
5. Copy the r best chromosomes to new

population.
6. for the remaining chromosomes; perform the

crossover with percent c and mutation with
percent m. Copy the new off springs to new
population.

7. Replace the current population with the new
population

8. Until maximum generations or convergence.

V. Experiments and Results

We have used CloudSim toolkit [18] with its new
capabilities for file replication, simulated object storage
identifiers for the data sets to simulate the Big Data
Clouds environment. We use a simulated network with
computation and data storage nodes spread at several
locations as shown in Table 4, depicting: (a) 4 locations
CHYD, CBGL, CMUB, CDEL having 7, 6, 7 and 8
virtual computing resources. These 28 virtual compute
resources provide an aggregate of 1400 processing
elements.(b) 4 locations that provide 40 data storage
nodes with corresponding simulated bandwidths.

The following experiments are conducted in the order
described below.
� Data consolidation Analysis: Experiments are
conducted to analyse the data transfer and consolidation
timings from single site vs. the multiple replicated data
sites considering the network traces over a time period.

� Determining optimal probabilistic values of genetic
operators: Experiments are conducted to derive the
optimal values of Genetic Algorithm (GA) operators for
cross over, mutation and types of crossovers.

� Comparing with match making and heuristic
techniques: The algorithm is compared with match
making techniques like Data First, Compute First, and
heuristics such as Simulated Annealing (SA).

� Comparison with Non family scheduling: The
algorithm is compared with Non family i.e. without
grouping the jobs.

100

Table 4. Simulated configuration of Big Data Clouds

*1-7 indicates a total of 7 numbers.
#200/100Mbps-200Mbps indicate randomly generated
PEs with a maximum of 200 for each compute provider,
with the network channel bandwidth randomly simulated
between 100Mbps to 200 Mbps.
##0/100 Mbps to 200Mbps represents the randomly
generated data source without computing elements, the
bandwidth varying from 100 to 200 Mbps for a total of
five data providers.

The experiment are simulated for a total of 1000 jobs
with 40 virtual data providers and the network traces
generated randomly between the virtual computing nodes
and data providers. Based on the network traces average
packet transmission times is estimated over a time period
from data provider to computing nodes.

A. Data consolidation analysis
Graph 1depicts the data consolidation times when the
single data storage and multiple replicated storage
repositories are used. The results indicate that, data
migration time from replicated sites is better than from a
single site.

Graph 1. Data Transfer Times in replicated vs. Single

B. Determining the probability values for genetic
operators
The experiments are conducted to determine the genetic
operators and the probability values essential for the GA
operators, for an upper limit of 1000 jobs over a schedule
period is discussed. Several experiments are conducted to
determine the crossover operator among one point, two
point, uniform, and roulette wheel. The experiments are
performed by fixing the cross over and mutation
operators to 0.9 and 0.01 and varying the population
length and generations to study the convergence of the
fitness value. The conducted experiments are shown in
Table 5, the resultant fitness values from the experiments
are depicted in
Graph 2.

Table 5.Experiments to determine genetic operators

Exp. no Pop.
Length

Total no. of
generations

1,2 100 100
3,4 100 200
5,6,7 200 100
8 200 100
9,10,11,12 200 200

The experiments indicated in
Graph 2 determine the roulette wheel has better
convergence across the generations while compared to
the other genetic operators. Hence, the roulette wheel
operator is selected for cross over operations for the next
level experiments.

Graph 2. Fitness value comparison for genetic operators

In the next step, the experiments are conducted for
determining the cross over and mutation probabilities
while fixing the roulette wheel cross over operator. The
experiments are conducted for 200 generations, with an
initial cross over probability value of 0.5, up to 0.9, with
an increasing value of 0.1 in each step. The
corresponding fitness values obtained are depicted in

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Ti
m

e(
sim

. u
ni

ts
)

Jobid
ConsolidationTime from replicated sites

Consolidation Time from a single site

300

320

340

360

380

400

420

440

1 2 3 4 5 6 7 8 9 10 11 12

Fit
ne

ss
 va

lu
e

Experiment No.

Single Point Two Point Uniform Roulette

Resource Name Type Virtual processing
elements/

Bandwidth
CHYD1-7* Virtual Compute

Provider
200/100Mbps-
200Mbps#

CBGL1-6 -do- 500/50 Mbps-
100Mbps

CMUB1-7 -do- 400/200Mbps-
500Mbps

CDEL1-8 -do- 300/20Mbps-
200Mbps

HYDS1-5 Virtual Data
provider

0/100 Mbps to
200Mbps##

BGLS1-10 -do- 0/10 Mbps to 100
Mbps

MBS1-10 -do- 0/256 to 512 Mbps
RJPS1-15 -do- 0/56 to 128 Mbps

101

Graph 3. The results indicate roulette wheel cross over
operator with the probability value of 0.9 has better
convergence over the other experimented probability
values.

Graph 3. Fitness value convergence across generations

Experiments are performed with varying mutation
probabilities to determine the appropriate mutation ratio
by fixing cross over operator of 0.9 and roulette wheel,
the experiments shown in Graph 4 indicates with
mutation probability of 0.1 has the better convergence
fitness value.

Graph 4. Mutation probability

C. Comparing with other techniques
The proposed GA is compared with match making and
heuristic techniques discussed below. Here, two types of
match making techniques such as Minimum Data
consolidation First and Minimum Compute First are used.
Later, heuristic technique such as Simulated Annealing
techniques is discussed. The obtained results are
compared with the proposed GA approach which is
depicted in Graph 5.

Graph 5. Comparing GA with other techniques

� Minimum Data consolidation First at node – In this
mapping, a compute resource that ensures minimum data
consolidation time is selected for the family.
� Minimum Compute First – In this mapping, a
compute resource that ensures the minimum computation
time is selected for the family.
� Simulated Annealing- In this mapping heuristics are
applied by discarding the worst fit values from the
current state to the next state and moving towards the
best selection.
The results indicate that Minimum Compute First
technique has resulted in larger makespan while
compared to Minimum Data First and SA techniques.
Minimum Data First and Simulated Annealing
techniques have almost the same makespan value with
performance better than Minimum Computer Fist
technique. However, the proposed GA has resulted in
minimal makespan while compared to matchmaking
techniques and SA. This could be due to the natural
evolution procedures of GA and fitness functions used to
obtain the near optimal solution.

D. Performance comparison of family vs. non family
scheduling
Experiments are conducted for analyzing the turnaround
times for the families and non-families from a single
storage vs. replicated storage. The results depicted in
Graph 6, illustrate that turnaround time is less from the
replicated sites while compared to the results from the
single site, which is due to the minimal data
consolidations from replicated sites.

Another set of experiments are performed for analysing
the turnaround times of family vs. non family scheduling.
This is carried out by applying the data
migration/consolidation from the replicated sites to the
selected computing nodes.

200

300

400

500

600

700

800

1 20 40 60 80 100 120 140 160 180 200

Fi
tn

es
s

va
lu

e

Generation. No

0.9 0.8 0.7 0.6 0.5

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1 20 40 60 80 100 120 140 160 180 200

Fi
tn

es
s v

al
ue

Generation. No

0.001 0.005 0.01 0.015 0.02 0.1 0.5

0

5000

10000

15000

20000

25000

100 200 300 400 500 600 700 800 900 1000

M
ak

ep
an

 (
Si

m
. U

ni
ts

)

No. of Jobs

GA SA MinDataFirst MinComputeFirst

102

Graph 6.Turnaround times of Non Family

Graph 7 illustrates, the jobs with the family grouping has
resulted in minimal turnaround time while compared to
the non-family. This is due to the data consolidation
carried out one time for the entire family job. This would
reduce the data migration overheads for each job and
reduce the network bandwidth consumptions. However,
for few jobs the resultant turnaround time is more while
compared to non-family scheduling, which could be due
to the grouping that has resulted in longer data
consolidations and computing times for the jobs. The
longer data consolidations is due to more numbers of jobs
in the family, and the longer computing times is due to the
availability of minimal computing elements at the selected
compute node than actually demanded for processing.

Graph 7. Turnaround Times for Family vs. Non
Family

VI. Conclusions and Future Work

The proposed family/group scheduling model addresses
the data intensive problems to minimize the turnaround
time of the jobs where the computing and data resources
are decoupled. The jobs with common data are grouped

together, based on the family graph and connected
components to which a parallel data approach is applied.

Steady state GA is applied to discover the optimal
schedule. The results are illustrated for the both family
and non-family schedules from a single site and multiple
replicated sites. The results indicate that, data migration
from replicated sites show performance improvement
over a single site. The experiments also show that family
schedule performs better over the non-family schedule,
whenever the grouped jobs do not exceed the available
node capacity.

The connected components of the graph are used for
grouping, which is a compute intensive process. In future,
it is proposed to use Rough Set theory for the grouping.
The algorithm is tested with time shared scheduling
policy. In future the studies would be conducted on space
mechanisms such as buddy system, DHC (Distributed
Hierarchical Control), Ouster out matrix, and bin packing.
The algorithm would be modified to map the family job to
the node where data is already present, which would
eliminate the data consolidation time.
The system throughput is decreased while the family
capacity exceeds the available node capacities. Hence, a
study is required to schedule such families, by adding a
penalty to the total compute time, so that the better node
could be selected for scheduling. This paper addresses the
migration of the data based on network traces over a time
period; however, a detailed study is required to train the
system for different network traffic conditions. The
proposed algorithm can be extended for deadline and
budget constraints. Presently, the model executes the jobs
after the data is consolidated for the family; however, the
studies can be conducted for the execution soon after the
data for the job is made available.

ACKNOWLEDGMENT
We express our thanks to Prof. Hrushikesh Mohanty, and
Prof. Rajeev Wankar from University of Hyderabad,
India for providing the valuable guidance. We express
thanks to Dr. Sudheer Reddy of ADRIN for discussion on
GA. We thank Smt. GeetaVaradan, Director ADRIN for
her support and encouragement in pursuing the research.

REFERENCES
[1] M. D. Assuncao, R. N. Calheiros, S. Bianchi, M. A. S.

Netto, and R. Buyya, Big Data Computing and Clouds:
Trends and Future Directions, Journal of Parallel and
Distributed Computing, Available online 27 August 2014,
DOI: 10.1016/j.jpdc.2014.08.003

[2] Apache MapReduce,
http://hadoop.apache.org/docs/stable/mapred_tutorial.html(
11.06.2014).

0

500

1000

1500

2000

2500

3000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Tu
rn

ar
o

u
n

d
ti

m
e

 (
Si

m
.

u
n

it
s)

Jobid

Replicated sites Single Provider

0

500

1000

1500

2000

2500

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Tu
rn

ar
ou

nd
 t

im
e(

se
c)

Jobid

Non Family Family

103

[3] A. Chaudhri, R. Kune, K.P. Kumar, and G.Varadan, High
Performance Private Cloud for Satellite Data Processing–
Engineering in Cloud, International Conference on
Advances in Cloud Computing , ACC 2012 , Bangalore ,
India.

[4] Z. Michalewicz: Genetic Algorithms + Data Structures
=Evolution Programs. 1992, Springer.

[5] Goldberg D.E., Genetic Algorithms in search, Optimization
and Machine Learning, Addison Wesley , Reading ,
MA,1989.

[6] K. Ranganathan, and I. Foster, “Decoupling Computation
and Data Scheduling in Distributed Data-Intensive
Applications”, Proc. 11th IEEE Symposium on High
Performance Distributed Computing (HPDC). Edinburgh,
UK, USA, July 2002.

[7] T. Phan, K. Ranganathan, and R.Sion, “Evolving toward the
perfect schedule: Co-scheduling job assignments and data
replication in wide-area systems using a genetic algorithm”,
Proc. 11th Workshop on Job scheduling Strategies for
Parallel Processing. Cambridge MA: Springer-Verlag,
Berlin, Germany, June 2005.

[8] H. Mohamed, and D. Epema, “An evaluation of the close-
to-files processor and data co-allocation policy in multi-
clusters”, in Proc. 2004 IEEE International Conference on
Cluster Computing, San Diego, CA, USA, Sept. 2004.

[9] S. Venugopal, Scheduling Distributed Applications on
Global Grids, Ph.D. Thesis, University of Melbourne,
Australia, July 2006.

[10] Apache Hadoop, http://hadoop.apache.org/ (15.06.2014).
[11] Fair Scheduler ,

http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.pdf(11.
06.2014)

[12] Capacity Scheduler,
http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.pdf
(11.06.2014)

[13] S. Gupta, C. Fritz, R. Price, J. D. Kleer, and C. Witteveen,
Throughput Scheduler: learning to schedule on
heterogeneous Hadoop clusters, Proceedings of the
International Conference on Autonomic Computing, ICAC
2013, June, 2013, San Jose, CA, USA.

[14] L. Shi, X. Li , and K.L. Tan, S3: An efficient Shared Scan
Scheduler On MapReduce Framework, International
Conference on Parallel Processing, ICPP 2011, Taipei,
Taiwan, September 2011.

[15] OpenStack Swift, Object Based Storage and REST Services,
http://swiftstack.com/openstack-swift (5.3.2014).

[16] Amazon S3: www.aws.amazon.com/s3(2.2.2014).
[17] Java GA Lib, Genetic Algorithm Library:

http://sourceforge.net/projects/java-galib (11.06.2014).
[18] R. Calheiros, R. Ranjan, A. Beloglazov, C. Rose, and R.

Buyya, CloudSim: A Toolkit for Modeling and Simulation
of Cloud Computing Environments and Evaluation of
Resource Provisioning Algorithms, Software: Practice and
Experience, 41(1): 23-50, Wiley Press, New York, USA,
January 2011.

104

