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ABSTRACT
Edge/Fog computing is a novel computing paradigm that provides

resource-limited Internet of Things (IoT) devices with scalable

computing and storage resources. Compared to cloud computing,

edge/fog servers have fewer resources, but they can be accessed

with higher bandwidth and less communication latency. Thus, in-

tegrating edge/fog and cloud infrastructures can support the exe-

cution of diverse latency-sensitive and computation-intensive IoT

applications. Although some frameworks attempt to provide such

integration, there are still several challenges to be addressed, such as

dynamic scheduling of different IoT applications, scalability mecha-

nisms, multi-platform support, and supporting different interaction

models. To overcome these challenges, we propose a lightweight

and distributed container-based framework, called FogBus2. It pro-

vides a mechanism for scheduling heterogeneous IoT applications

and implements several scheduling policies. Also, it proposes an

optimized genetic algorithm to obtain fast convergence to well-

suited solutions. Besides, it offers a scalability mechanism to ensure

efficient responsiveness when either the number of IoT devices in-

creases or the resources become overburdened. Also, the dynamic

resource discovery mechanism of FogBus2 assists new entities to

quickly join the system. We have also developed two IoT applica-

tions, called Conway’s Game of Life and Video Optical Character

Recognition to demonstrate the effectiveness of FogBus2 for han-

dling real-time and non-real-time IoT applications. Experimental

results show FogBus2’s scheduling policy improves the response

time of IoT applications by 53% compared to other policies. Also, the

scalability mechanism can reduce up to 48% of the queuing waiting

time compared to frameworks that do not support scalability.

CCS CONCEPTS
•Computer systems organization→n-tier architectures;Real-
time system architecture.
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1 INTRODUCTION
Internet of Things (IoT) devices have become an inseparable part

of our daily lives, where IoT applications provide diverse solutions

for smart healthcare, transportation, and entertainment, just to

mention a few [1]. IoT applications often produce a huge amount of

data for processing and storage. However, the computing and stor-

age resources of IoT devices are limited. Therefore, IoT devices are

usually integrated with resourceful surrogate resource providers

to obtain better services for their users. Cloud computing, as a

centralized computing paradigm, is one of the main enablers of IoT

that offers unlimited computing and storage resources [2, 3]. IoT

devices can place whole or some parts of their applications to cloud

servers (CSs) for processing and storage. However, the emergence

of real-time IoT applications indicates that cloud computing cannot

solely provide efficient services for latency-sensitive IoT applica-

tions due to its high access latency and low bandwidth [4, 5]. To

address this issue, edge/fog computing, which is a novel distributed

computing paradigm, is proposed, providing distributed computing

and storage resources in the proximity of IoT devices with higher

access bandwidth and lower communication latency [6]. Compared

to CSs’ resources, edge/fog servers (ESs) have limited computing

and storage resources, and hence they cannot efficiently execute

computation-intensive tasks of IoT devices. To address this issue,

ESs can collaboratively use their resources or use CSs. Thus, seam-

less integration of edge/fog and cloud infrastructures to support

different IoT applications is an important research topic.

Resources of distributed ESs and CSs are highly heterogeneous

in terms of computing capabilities, processors’ architectures, RAM

capacity, and supported communication protocols [7]. Also, IoT ap-

plications are heterogeneous in terms of applications’ granularity

(i.e., task, service), dependency model of constituent parts of IoT

applications (i.e., independent tasks, sequential dependency, and

complex dependent tasks), and their quality of service requirements

(such as computation-intensive or latency-sensitive applications).
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According to these factors, there are several framework design chal-

lenges to be considered. First, frameworks working in the integrated

platform should support platform-independent techniques to over-

come communication and run-time obstacles. Second, due to the

heterogeneity of resources and the requirements of IoT applications,

distributed scheduling mechanisms are required to place/offload

tasks/data of IoT applications on suitable servers for processing and

storage. Third, fast application deployments and scalability-support

are required in this integrated environment to provide services for

IoT devices in a timely manner. Fourth, to efficiently reuse the

resources, the containerization concepts can be adopted for the

software components of the framework and IoT applications.

Although there are some frameworks to manage integrated re-

sources in edge/fog computing [8, 9], they barely consider platform-

independent techniques, scheduling of heterogeneous IoT applica-

tions with complex dependent structures, scalability mechanisms

of distributed resource managers, and containerization. To address

these limitations, we propose and develop a lightweight and dis-

tributed container-based framework, called FogBus2. Our frame-

work supports (1) different inter and intra interactionmodels among

ESs and CSs to support the requirements of different IoT application

scenarios, (2) containerization of software components of the frame-

work for fast deployments, (3) containerization of constituent parts

of IoT applications as dependent tasks or independent tasks, (4)

scheduling of multiple IoT applications and scalability mechanisms

(5) concurrent execution of different types of IoT applications, and

(6) efficient reuse of resources.

The main contributions of this paper are summarized as follows:

• A lightweight and distributed container-based framework,

called FogBus2, is proposed to integrate edge/fog, and cloud

infrastructures to support the execution of heterogeneous

IoT applications.

• Containerization-support for software components of the

framework and IoT applications is proposed for fast deploy-

ment and efficient reuse of resources.

• Dynamic scheduling, scalability, and resource discoverymech-

anisms are developed for fast adaptation as the characteris-

tics of environment change.

• A real-world prototype is developed using FogBus2 with

a real-time IoT application named Conway’s Game of Life,

and a non-real-time IoT application, called Video Optical

Character Recognition (VOCR).

The rest of the paper is organized as follows. Relevant frame-

works are described in Section 2. Section 3 presents the hardware

and software components of the FogBus2 and their detailed imple-

mentations. The performance of FogBus2 is evaluated in Section 4.

Finally, Section 5 concludes the paper and draws future works.

2 RELATEDWORK
This section discusses related frameworks integrating IoT-enabled

systems with edge/fog and cloud infrastructures.

Tuli et al. [8] proposed the FogBus framework based on a master-

worker approach to process data generated from sensors on ESs or

CSs. Due to platform-independent technologies used in the FogBus,

it can work on multiple platforms. However, it does not provide

Table 1: A qualitative comparison of relatedworkswith ours
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Multi

Platform
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Multi
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Scheduling
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Policy Integration

Dynamic
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Container
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[8]

IoT, Edge,

Cloud

✓ × × × × ×

[10]

IoT, Edge,

Cloud

× × ✓ × ✓ ✓

[7]

IoT, Edge,

Cloud

✓ ✓ × × ✓ ✓

[11]

IoT, Edge,

Cloud

× ✓ ✓ × × ×

[9]

IoT, Edge,

Cloud

× × × × × ×

[12]

IoT, Edge,

Cloud

× × ✓ × × ×

[13] IoT, Edge ✓ × × × × ×

[14]

IoT, Edge,

Cloud

✓ × ✓ × × ✓

[15]

IoT, Edge,

Cloud

× ✓ × ✓ × ✓

[16] IoT, Edge × × ✓ × × ✓
[17] IoT, Cloud × × ✓ × × ✓

FogBus2

IoT, Edge,

Cloud

✓ ✓ ✓ ✓ ✓ ✓

any mechanism for dynamic scheduling of IoT applications, scala-

bility, and resource discovery. Besides, it does not support different

communication topologies between workers and the master. More-

over, FogBus is not a container-enabled framework, which nega-

tively affects the deployment cost of IoT applications and software

components. Yousefpour et al. [10] developed a container-enabled

framework, called FogPlan, integrating IoT devices with ESs and

CSs to minimize the response time of IoT applications. FogPlan

supports dynamic resource discovery and scheduling of IoT applica-

tions, however, it does not provide any scalability mechanism and

policies. Merlino et al. [7] developed a container-enabled frame-

work for container discovery at ESs and CSs, and horizontal and

vertical offloading. However, it does not provide any policies for

the dynamic scheduling of IoT applications and the scalability of

resources. Nguyen et al. [11] proposed a privacy-preserving frame-

work, which uses obfuscation to keep users’ information private

meanwhile tasks are computed. Besides, it developed a centralized

resource allocation technique that considers the current resources

of ESs and CSs. An et al. [9] developed the EiF framework to bring

artificial intelligence services to the edge of the network. Although

the EiF provides some resource allocation techniques for network

resources, it does not offer any scheduling and scalability mech-

anisms for IoT applications. A mobility-aware framework, called

Mobi-IoST, is developed by Ghosh et al. [12], which uses a proba-

bilistic approach for the placement of IoT applications. Borthakur

et al. [13] developed the SmartFog framework, integrating IoT de-

vices with ESs to analyze pathological speech data obtained from

wearable sensors. It embeds machine learning techniques to an-

alyze the generated data at the proximity of patients. Yigitoglu

et al. developed a container-enabled Foggy framework [14] that

supports dynamic scheduling of containerized IoT applications

with dependent tasks. Bellavista et al. [15] proposed a centralized

container-enabled framework that uses docker containers and the

Kubernetes to scale computing infrastructures. However, it does

not provide any policies to support scalability, scheduling, and

resource discovery. Moreover, as the cloud orchestrator manages

the deployments of applications, it may negatively affect the re-

sponse time of latency-sensitive IoT applications. Ferrer et al. [16]

developed a container-enabled Adhoc-based framework to support
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Figure 1: FogBus2 high-level computing environment

the integration of IoT devices with multi-hop ESs. Noor et al. [17]

developed a centralized container-enabled IoTDoc framework to

manage interactions between IoT devices and cloud resources.

Table 1 identifies and compares the main elements of related

frameworks with ours. These frameworks often do not support

platform-independent techniques and/or containerization of soft-

ware components of the framework and IoT applications. Moreover,

most of these frameworks do not offer scheduling, scalability, and

resource discovery mechanisms. To overcome these limitations,

FogBus2 offers a lightweight and container-enabled distributed

framework for computation-intensive and latency-sensitive IoT ap-

plications. It dynamically schedules heterogeneous IoT applications

and scales the resources to efficiently serve IoT users.

3 FOGBUS2 FRAMEWORK
This section describes the hardware and software components of

FogBus2 in detail. Fig. 1 presents a high-level overview of comput-

ing environment supported by FogBus2.

3.1 Hardware Components
FogBus2 supports heterogeneous hardware resources such as differ-

ent IoT devices, Edge/Fog servers, and multiple cloud data-centers.

3.1.1 IoT devices layer. IoT devices layer consists of heteroge-

neous types of resource-limited IoT devices (such as drones, smart

cars, smartphones, security cameras, any types of sensors such as

humidity sensors, etc) that perceive data from the environment and

perform physical actions on the environment. FogBus2 provides

a distributed platform for IoT devices to connect with proximate

and remote service providers through different communication pro-

tocols such as WiFi, Bluetooth, Zigbee, etc. Hence, the generated

data from IoT devices can be processed and stored on surrogate

servers with higher resources, which significantly helps to reduce

the processing time of data generated from IoT devices.

3.1.2 Edge/Fog layer. FogBus2 provides IoT devices with low-

latency and high-bandwidth access to heterogeneous edge/fog re-

sources distributed in their proximity. These heterogeneous ESs

can be either one-hop away from IoT devices (such as Raspberry pis

(RPi), personal computers, etc) or multi-hop away (such as routers,
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Figure 2: FogBus2 software components and interactions

gateways, etc). Moreover, to extend the computing and storage ca-

pacity of ESs, FogBus2 supports the collaborative execution of IoT

applications among different ESs in a distributed manner. Hence,

FogBus2 offers a wide range of service options for different types

of IoT devices with heterogeneous service-level requirements.

3.1.3 Cloud layer. FogBus2 expands the computing and storage

resources of IoT devices by supporting multiple cloud data-centers

in different geo-location areas, which bring location-independency

for IoT applications. Moreover, cloud resources can either be used

to process and/or store computation and/or storage-intensive tasks

or when the ESs resources become overloaded.

3.2 Software Components
FogBus2 consists of five main containerized components (using

docker containers) developed in Python. Since FogBus2 is a dis-

tributed framework, these components can run on different hosts

based on the application scenario, as depicted in Fig. 1. FogBus2’s

main components, sub-components (Sub-C) and their respective in-

teractions is shown in Fig. 2. In each component, a message handler
Sub-C is embedded for inter-component communications.

3.2.1 User component. This component runs on users’ IoT de-

vices and consists of sensor and actuator. It can send placement

requests to the master component for each IoT application, devel-

oped with either dependent or independent tasks. Also, it handles

the sensors’ raw data and collects the processed data from master.

Sensor. This Sub-C controls the sensing intervals of physical

sensors and captures and serializes the sensors’ raw data.

Actuator. This Sub-C collects processed data from master and
executes an action based on the application scenario. To support

multiple application scenarios, the actuator can perform actions in

real-time, or perform periodic actions based on aggregated data.

3.2.2 Master Component. This component can run on any hosts

either in edge/fog or cloud layers based on the application scenario.

It dynamically profiles the environment and performs resource dis-

covery to find available computing and storage resources. Besides,

themaster component receives placement requests from IoT devices,

schedules them, and manages the execution of IoT applications.
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Registry. When the master receives joining requests from actors
or task executors, it records their information and assigns them a

unique identifier for the rest of communications. Moreover, it han-

dles placement requests of users, assigns them a unique identifier,

and initiates the 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 & 𝑠𝑐𝑎𝑙𝑒𝑟 . The master uses each user’s
unique identifier to distinguish heterogeneous data arriving from

other users. Also, it can manage authentication mechanisms for the

actors and task executors.

Profiler. This Sub-C initially receives information about available

resources (such as CPU specifications, RAM), network characteris-

tics (such as average bandwidth and latency), and IoT applications’

properties (such as the number of tasks, dependency models) from

registry Sub-C. Afterward, the profiler periodically updates its infor-
mation from stored data in the remote logger component. Moreover,

if the required data is not available in the remote logger or themaster
requires updated information, it can directly communicate with IoT

devices, actors, or task executors to obtain the data. Also, it keeps

track of the status of the master and its available resources.

Scheduler. When the IoT user registered in the master, its place-
ment request will be forwarded to the 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟 & 𝑠𝑐𝑎𝑙𝑒𝑟 and

will be queued based on First-In-First-Out (FIFO) policy. Algo-

rithm 1 describes the scheduling mechanism and the integrated

Optimized History-based Non-dominated Sorting Genetic Algo-

rithm (OHNSGA) scheduling policy. The scheduler de-queues each
placement request based on the FIFO policy. Next, the scheduler
receives the list of actors from the registry Sub-C, and continues the

scheduling procedure if there exists at least one registered actor.
Otherwise, it notifies the user that there are not enough resources

for the scheduling (lines 1-4). Afterward, the scheduler examines the

local resources of the host. If the CPU utilization is above the thresh-

old (𝑚𝑎𝑥_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 ) or the received placement requests exceeds the

threshold (𝑚𝑎𝑥_𝑠ℎ𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ), it attempts to find a substitute master
(𝑠𝑢𝑏_𝑚𝑎𝑠𝑡𝑒𝑟 ) to serve this request in order to reduce the waiting

time of user’s placement request in the queue. If there exists other

master components in the computing environment, it attempts to

find the best 𝑠𝑢𝑏_𝑚𝑎𝑠𝑡𝑒𝑟 (with lowest access latency), otherwise

it runs the scaler to initiate a new master component. (lines 5-12).

If the current host has enough resources for the scheduling, the

scheduler retrieves the application and its dependency model (for

IoT applications with dependent tasks) from the placement request.

Moreover, it finds the list of actors that can serve each task of an

IoT application and stores them in 𝑡𝑎𝑠𝑘_𝑎𝑐𝑡𝑟𝑠_𝑚𝑎𝑝 (lines 13-21).

The scheduler then retrieves the history of previous decisions for

this application (line 22). Next, the scheduler initiates the OHNSGA
to find a suitable set of actors for the IoT application to minimize

its response time. (line 23). The response time of an IoT application

is defined as the time difference when a user component starts

sending data to the time it receives the result.

The OHNSGA works based on a genetic algorithm (GA) which is

a population-based evolutionary algorithm. Each candidate solution

for assignments of actors to tasks is called an individual, and the

set of candidate individuals creates the population. The OHNSGA
attempts to find better individuals in each iteration of the algo-

rithm to converge to the best solution. OHNSGA uses the history

of previous decisions of each application to initialize a portion of

the first population while the rest of the population is randomly

Algorithm 1: Scheduler
/* 𝑟𝑒𝑞: user request, 𝑝𝑟𝑒𝑣_𝑑𝑒𝑐: decisions history, 𝑝𝑟𝑜 𝑓 :

hosts profiles, 𝑐𝑢𝑟𝑟_𝑠𝑐ℎ𝑒𝑑_𝑐𝑜𝑢𝑛𝑡: current scheduling
threads count, 𝑚𝑎𝑥_𝑠𝑐ℎ𝑒𝑑_𝑐𝑜𝑢𝑛𝑡: max scheduling threads
count, 𝑐𝑢𝑟𝑟_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙: current CPU utilization,
𝑚𝑎𝑥_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙: max CPU utilization, 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠: tasks
dependencies, 𝑡𝑎𝑠𝑘_𝑎𝑐𝑡𝑟𝑠_𝑚𝑎𝑝: map task to actors */

1 𝑎𝑐𝑡𝑟𝑠 ← GetAllActors()

2 if 𝑎𝑐𝑡𝑟𝑠 is empty then
3 WarnUser(𝑟𝑒𝑞)

4 return

5 𝑐𝑢𝑟𝑟_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 ← GetCPUUtilization()

6 𝑐𝑢𝑟𝑟_𝑠𝑐ℎ𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← GetScheduleCount()

/* If busy, forward request or scale a new Master */

7 if 𝑐𝑢𝑟𝑟_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 >𝑚𝑎𝑥_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 or
𝑐𝑢𝑟𝑟_𝑠𝑐ℎ𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 >𝑚𝑎𝑥_𝑠𝑐ℎ𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 then

8 𝑠𝑢𝑏_𝑚𝑎𝑠𝑡𝑒𝑟 ← GetBestMaster(𝑟𝑒𝑞,𝑚𝑎𝑠𝑡𝑒𝑟𝑠)

9 if 𝑠𝑢𝑏_𝑚𝑎𝑠𝑡𝑒𝑟 is null then
10 𝑠𝑢𝑏_𝑚𝑎𝑠𝑡𝑒𝑟 ← Scaler(𝑟𝑒𝑞, 𝑎𝑐𝑡𝑟𝑠)

11 NotifyUser(𝑟𝑒𝑞, 𝑠𝑢𝑏_𝑚𝑎𝑠𝑡𝑒𝑟 )

12 return

/* Otherwise schedule */

13 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠, 𝑡𝑎𝑠𝑘_𝑙𝑖𝑠𝑡 ← GetDependenciesAndTaskList(𝑟𝑒𝑞)

14 𝑖, 𝑡𝑎𝑠𝑘_𝑎𝑐𝑡𝑟𝑠_𝑚𝑎𝑝 ← 0, []
15 foreach 𝑡𝑎𝑠𝑘_𝑙𝑖𝑠𝑡 do
16 𝑗, 𝑡𝑎𝑠𝑘_𝑎𝑐𝑡𝑟𝑠_𝑚𝑎𝑝 [𝑖 ] ← 0, []
17 foreach 𝑎𝑐𝑡𝑟𝑠 do
18 if 𝑎𝑐𝑡𝑟 has image of 𝑡𝑎𝑠𝑘 then
19 𝑡𝑎𝑠𝑘_𝑎𝑐𝑡𝑟𝑠_𝑚𝑎𝑝 [𝑖 ] [ 𝑗 ] ← 𝑎𝑐𝑡𝑟

20 𝑗 ← 𝑗 + 1

21 𝑖 ← 𝑖 + 1
/* Use OHNSGA to schedule */

22 𝑝𝑟𝑒𝑣_𝑑𝑒𝑐 ← LoadHistory(𝑟𝑒𝑞)

23 𝑟𝑒𝑠 ← OHNSGA(𝑝𝑟𝑒𝑣_𝑑𝑒𝑐, 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒, 𝑝𝑟𝑜 𝑓 , 𝑡𝑎𝑠𝑘_𝑎𝑐𝑡𝑟𝑠_𝑚𝑎𝑝, 𝑟𝑒𝑞 )

24 for 𝑘 from 0 to 𝑖 − 1 do
25 𝑎𝑐𝑡𝑟 ← 𝑟𝑒𝑠 [𝑘 ]
26 𝑡𝑎𝑠𝑘_𝑒𝑥𝑒𝑐_𝑙𝑖𝑠𝑡 ← GetIdleList(𝑎𝑐𝑡𝑟, 𝑡𝑎𝑠𝑘_𝑙𝑖𝑠𝑡 [𝑘 ])
27 if 𝑡𝑎𝑠𝑘_𝑒𝑥𝑒𝑐_𝑙𝑖𝑠𝑡 is empty then
28 SendInitTaskExecutorMsg(𝑎𝑐𝑡𝑟, 𝑡𝑎𝑠𝑘_𝑙𝑖𝑠𝑡 [𝑘 ], 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠)
29 continue

30 SendReuseTaskExecutorMsg(𝑡𝑎𝑠𝑘_𝑒𝑥𝑒𝑐_𝑙𝑖𝑠𝑡 [0], 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠)

generated. It helps the OHNSGA to start from a better initial state

and reduces the convergence time of this technique. Also, as a por-

tion of the population is randomly generated, the OHNSGA keeps

the randomness as well, which significantly helps to jump out of

local-optimal solutions. The OHNSGA uses the Tournament selec-

tion method to find the best individuals in each iteration. Then, to

generate the population of the next iteration, OHNSGA uses the

Simulated Binary Crossover operator, that its efficiency is proved

in [18], and Polynomial mutation operator. Algorithm 2 presents an

overview of the OHNSGA. According to the outcome of OHNSGA,
the scheduler notifies the actors to run task executors or reuse the

available ones for the current IoT application (lines 24-30).

Scaler. The scaler is called when the current master requires to

initiate a new master container. Algorithm 3 depicts how scaler

works. The scaler receives the list of registered actors and iterates

over them to find the actor with the minimum latency and highest

score. The scaler first considers the access latency of actors (line

7). Then, if the latency of the actor is equal or less than the best-

obtained latency, the scaler calculates a score value for that actor.
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Algorithm 2: OHNSGA
/* ℎ𝑖𝑠𝑡_𝑟𝑎𝑡𝑖𝑜: ratio indicating the number of individuals

generated based on history, 𝑖𝑛𝑖𝑡_𝑝𝑜𝑝: initial population,
𝑛_𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝑠: number of offsprings, 𝑝𝑜𝑝: population */

1 𝑚𝑎𝑥_𝑛𝑢𝑚_ℎ𝑖𝑠𝑡_𝑖𝑛𝑑𝑣 ←
⌈
𝑝𝑜𝑝_𝑠𝑖𝑧𝑒/ℎ𝑖𝑠𝑡_𝑟𝑎𝑡𝑖𝑜

⌉
2 if 𝑙𝑒𝑛 (𝑝𝑟𝑒𝑣_𝑑𝑒𝑐) >𝑚𝑎𝑥_𝑛𝑢𝑚_ℎ𝑖𝑠𝑡_𝑖𝑛𝑑𝑣 then
3 𝑝𝑟𝑒𝑣_𝑑𝑒𝑐 ← 𝑝𝑟𝑒𝑣_𝑑𝑒𝑐 [0 :𝑚𝑎𝑥_𝑛𝑢𝑚_ℎ𝑖𝑠𝑡_𝑖𝑛𝑑𝑣 ]
4 𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑣 ← RandomIndiv(𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 − 𝑙𝑒𝑛 (𝑝𝑟𝑒𝑣_𝑑𝑒𝑐))
5 𝑖𝑛𝑖𝑡_𝑝𝑜𝑝 ←Merge(𝑝𝑟𝑒𝑣_𝑑𝑒𝑐, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑣)

6 𝑝𝑜𝑝 ← RemoveDuplicates(𝑖𝑛𝑖𝑡_𝑝𝑜𝑝)

7 for 𝑖 from 0 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚 do
8 while True do
9 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← TournamentSelection(𝑝𝑜𝑝,𝑛_𝑝𝑎𝑟𝑒𝑛𝑡𝑠)

10 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝑠 ← SimBinCrossover(𝑝𝑎𝑟𝑒𝑛𝑡𝑠, 𝑛_𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝑠)

11 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝑠 ← PolynomialMutation(𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝑠)

12 𝑝𝑜𝑝 ←Merge(𝑝𝑎𝑟𝑒𝑛𝑡𝑠, 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝑠)

13 𝑝𝑜𝑝 ← RemoveDuplicates(𝑝𝑜𝑝)

14 if 𝑙𝑒𝑛 (𝑝𝑜𝑝) >= 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 then
15 𝑝𝑜𝑝 ← 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 [0 : 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 ]
16 break

17 𝑝𝑜𝑝 ← Sort(𝑝𝑜𝑝)

18 return 𝑝𝑜𝑝 [0]

Algorithm 3: Scaler
/* 𝑚𝑦_𝑎𝑑𝑑𝑟: address of this host, 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙: CPU utilization,

𝑐𝑝𝑢_𝑓 𝑟𝑒𝑞: CPU frequency */

1 𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑟 ← 𝑎𝑐𝑡𝑟𝑠 [0]
2 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 ← GetCPUUtilization(𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑟 )

3 𝑐𝑝𝑢_𝑓 𝑟𝑒𝑞 ← GetCPUFreqency(𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑟 )

4 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← (1 − 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙) ∗ 𝑐𝑝𝑢_𝑓 𝑟𝑒𝑞
5 𝑚𝑖𝑛_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ← FindLatency(𝑢𝑠𝑒𝑟 , 𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑟 )

6 foreach 𝑎𝑐𝑡𝑟𝑠 do
7 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ← FindLatency(𝑎𝑐𝑡𝑟 )

8 if 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 >𝑚𝑖𝑛_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 then
9 continue

10 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 ← GetCPUUtilization(𝑎𝑐𝑡𝑟 )

11 𝑐𝑝𝑢_𝑓 𝑟𝑒𝑞 ← GetCPUFreqency(𝑎𝑐𝑡𝑟 )

12 𝑠𝑐𝑜𝑟𝑒 = (1 − 𝑐𝑝𝑢_𝑢𝑡𝑖𝑙) ∗ 𝑐𝑝𝑢_𝑓 𝑟𝑒𝑞
13 if 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ==𝑚𝑖𝑛_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 and 𝑠𝑐𝑜𝑟𝑒 < 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 then
14 continue

15 𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑟 ← 𝑎𝑐𝑡𝑟

16 𝑏𝑒𝑠𝑡_𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒

17 𝑚𝑖𝑛_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ← 𝑙𝑎𝑡𝑒𝑛𝑐𝑦

18 SendInitNewMasterMsg(𝑏𝑒𝑠𝑡_𝑎𝑐𝑡𝑟,𝑚𝑦_𝑎𝑑𝑑𝑟 )

The score value is obtained from current CPU utilization and the

average CPU frequency of the host on which the actor is running

(lines 8-12). Finally, the scaler selects the actor with the minimum

latency whose score is higher and sends a message to the selected

actor to initiate a master container.

Resources Discovery. The key responsibility of this Sub-C is to

find master and actor containers in the network. Algorithm 4 de-

scribes how resource discovery periodically works. This Sub-C re-

ceives the list of its registered actors from the registry (line 8). Then,

it examines the network to find the list of all available neighbors

(line 9). Next, this Sub-C checks each neighbor to find runningmas-
ter and actor containers. If the neighbor runs the master container,
the resource discovery adds the neighbor to its 𝑘𝑛𝑜𝑤𝑛_𝑚𝑎𝑠𝑡𝑒𝑟𝑠

list and receives the list of registered actors on the neighbor (lines

12-14). This mechanism helps master containers to automatically

Algorithm 4: Resource Discovery
/* 𝑝𝑟𝑒𝑣_𝑎𝑑_𝑡𝑠: timestamp of the previous advertising, 𝑎𝑐𝑡𝑟𝑠:

all registered actors in current master, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠:
neighbours in the network, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙: discovery period */

1 𝑝𝑟𝑒𝑣_𝑎𝑑_𝑡𝑠 ← Timestamp()

2 while True do
/* Sleep for an interval */

3 𝑡𝑠 ← Timestamp()

4 if 𝑡𝑠 − 𝑝𝑟𝑒𝑣_𝑎𝑑_𝑡𝑠 < 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 then
5 SleepForAWhile()

6 continue

/* Record current timestamp */

7 𝑝𝑟𝑒𝑣_𝑎𝑑_𝑡𝑠 ← 𝑡𝑠

8 𝑎𝑐𝑡𝑟𝑠 ← GetAllActors()

/* Advertise itself to neighbours */

9 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 ← GetAllHosts(𝑛𝑒𝑡_𝑔𝑎𝑡𝑒𝑤𝑎𝑦, 𝑛𝑒𝑡_𝑚𝑎𝑠𝑘)

10 𝑛𝑒𝑤_𝑎𝑐𝑡𝑟𝑠 ← []
11 foreach 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 do
12 if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 is Master then
13 𝑘𝑛𝑜𝑤𝑛_𝑚𝑎𝑠𝑡𝑒𝑟𝑠

+← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

14 𝑛𝑒𝑤_𝑎𝑐𝑡𝑟𝑠
+← GetActorsAddrFrom(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 )

15 if 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 is Actor then
16 𝑛𝑒𝑤_𝑎𝑐𝑡𝑟𝑠

+← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟

17 foreach 𝑛𝑒𝑤_𝑎𝑐𝑡𝑟𝑠 do
18 if 𝑛𝑒𝑤_𝑎𝑐𝑡𝑟 is not in 𝑎𝑐𝑡𝑟𝑠 then
19 AdvertiseSelf(𝑛𝑒𝑤_𝑎𝑐𝑡𝑟 )

know each other in the network and share the information of their

registered actors. Besides, if the neighbor runs the actor container,
the address of the actor will be recorded in 𝑛𝑒𝑤_𝑎𝑐𝑡𝑟𝑠 . Finally, the

resource discovery Sub-C advertises the master to all actors that
are not registered in its actor list, 𝑎𝑐𝑡𝑟𝑠 (lines 17-19).

3.2.3 Actor component. This component can run on any hosts

in edge/fog or cloud layers. The actor profiles the host’s resources
and starts the task executors for the execution of IoT applications’

tasks. Besides, it can initiate the master container on the host for

the scalability scenarios.

Profiler. This actor’s profiler works the same as the master’s pro-
filer and records the available resources of the host and network

characteristics. However, contrary to master’s profiler, it does not
have profiling information of other hosts. The actor periodically
sends its profiling information to the remote logger component.

Task executor initiator. Whenever a master component assigns

a task of an IoT application to an actor for the execution, the task
executor initiator is called. It initiates the task executor and defines

where the results of the task executor should be forwarded.

Master initiator. This Sub-C is only called when a master compo-

nent (e.g.,master A) runs its scaler procedure and decides to initiate
a new master component (e.g., master B) on other hosts. Hence, the

selected actor receives a message from its master component (mas-
ter A) and runs master initiator Sub-C. Then, the master initiator
runs the new master component B. Master component B receives

the list of registered actors from master component A to advertise

itself. After the initiation of master component B, it can also serve

the placement requests of IoT users.
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Figure 3: Database design

3.2.4 Task Executor Component. IoT applications can be sepa-

rated into multiple dependent/independent task executor containers
based on the properties of the IoT application. Thus, an application

can be easily deployed on several hosts for distributed execution.

Moreover, task executors can be efficiently reused for other requests

of the same type, which significantly reduce the tasks’ deployment

time. To obtain this, when a task executor finishes the execution of

a specific user’s task, it goes into a cooling-off period. In this period,

the container can be reused to serve another request.

Executor. The executor Sub-C performs the run command to

start the task. Also, it sends the results to the dependent children

task executors (in IoT applications with dependent tasks) or master
component (when there is no dependency).

3.2.5 Remote Logger Component. To support different appli-

cation scenarios, this component can run on any hosts in edge/fog

or cloud layers. All components send their periodical or event-

driven logs to the Remote Logger. This component collects the data

and stores them in persistent storage, either using a file system or

database. The Remote Logger can connect to different databases dis-

tributed on any hosts which enable IoT application scenarios which

require distributed databases. In our current implementation, how-

ever, we run three databases in one host, including images (keeps

information about available docker images on different hosts), re-

sources (keeps information about hardware specifications of hosts),

and system performance (keeps information about response time,

processing time, packet sizes, etc of IoT applications). Moreover, the

databases are containerized for faster deployments. Fig 3 depicts

an overview of databases and their tables.

Logger Manager. The logger manager Sub-C receives logs from

masters, actors, and task executors and keeps them in the persistent

storage. For efficient and quick tracking of logs, the local manager
keeps the records of system performance, available resources, and

containers’ information on different storage. Also, logger manager
Sub-C can provide the latest logs of the system for the master
components. Besides, the stored logs can be used to analyze the

overall status of the system.
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Figure 4: Scheduling performance in different iterations

4 PERFORMANCE EVALUATION
In this section, we discuss the properties of two sample container-

based applications to represent real-time and non real-time IoT ap-

plications. Also, we describe our experiments and evaluate the per-

formance of the FogBus2 framework in real-world environments.

4.1 Sample Container-based Applications
Conway’s Game of Life. It is a well-known 2D simulation

game that consists of a grid of cells, where each cell can be either

black or white. To obtain next state of the grid, a local function

must be applied to each cell simultaneously [19]. In our imple-

mentation, each cell is defined as a pixel, and a group of pixels

is defined as a rectangle. Our 2d world is separated into several

rectangles of different sizes, incurring different computation sizes.

Besides, these rectangles have a pyramid structure that defines a

dependency model between different rectangles. Hence, we con-

sider Conway’s Game of Life as a real-time application with 32

dependent task executor containers (one for each rectangle) with

different computation sizes.

Video Optical Character Recognition (VOCR). Compared to

the pure OCR application, our implemented VOCR, does not require

any manual image input from users. The VOCR can either receive

a live-stream or pre-recorded video and automatically identify key-

frames containing text. To filter key-frames, we used two different

techniques, called Perceptual Image Hashing (pHash) andHamming

Distance. Then, for each key-frame, the text is extracted using the

OCR technique. Finally, we apply the Editing Distance technique to

filter the extracted texts which are similar. Our VOCR application

can be used to extract text from books and important information

about objects, such as objects in museums. We consider the VOCR

as the non-real-time application in its current use-case since the

text outputs are not required in real-time for users. However, the

VOCR can also be used by smart vehicles in real-time scenarios

such as reading traffic signs and warning messages on the road.

4.2 Discussion on Experiments
To study the performance of FogBus2 and its integrated policies,

three experiments are conducted. In the first experiment, we analyze

the scheduling mechanism of FogBus2 using different scheduling

policies. Therefore, we integrate our proposed scheduling policy

alongside two other policies in the FogBus2 framework. These
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policies attempt to approximate the real response time of IoT ap-

plications while considering different server configurations and

find the best possible server configuration for the execution of IoT

applications. Since all integrated scheduling policies are based on

evolutionary algorithms, the estimated response time of IoT applica-

tions in different iterations is obtained to analyze the convergence

rate of different scheduling policies. Moreover, we evaluate the real

response time of IoT applications based on the obtained solutions

from scheduling policies.

In the second experiment, we analyze the performance of the

scalability mechanism of the FogBus2 framework. Typically, IoT

integrates thousands and millions of devices that may send their

requests to distributed master components. These master compo-

nents are geographically distributed and each one serves several IoT

devices so that alongside other master components they can serve

thousands or millions of IoT devices. So, in this experiment, IoT de-

vices send a different number of simultaneous placement requests

to each one of available master components in the environments.

Therefore, we study how efficiently the scalability mechanism of the

FogBus2 framework can perform when the number of simultaneous

requests to each master components increases.

In the third experiment, we analyze and compare the resource

usage of our framework in terms of its startup time and RAM usage

with its counterparts.

4.3 Analysis of Scheduling Policies
This experiment studies the performance of our proposed OHNSGA
scheduling algorithm and compares it with two other integrated

scheduling policies in FogBus2, called Non-dominated Sorting Ge-

netic Algorithm 2 (NSGA2) as used in [20], and Non-dominated

Sorting Genetic Algorithm 3 (NSGA3) [18]. To keep fairness, the

parameters of all scheduling policies are the same, including popu-

lation size, maximum iteration number, and crossover probability.

In this experiment, the environment contains 2 RPi 4B (ARM

Cortex-A72 4 cores @1.5GHz CPU, and one with 2GB and another

one with 4GB of RAM), and 1 Desktop (Intel Core i7 CPU @3.6GHz

and 16 GB of RAM) to show the heterogeneity of servers in the edge

layer. Also, the cloud layer contains 2 computing instances provi-

sioned fromHuawei Cloud (Intel Xeon 2 cores and 4 cores @2.6GHz

CPU with 4GB and 8GB of RAM, respectively). The Desktop acts

as a master while it also can act as actor to start tasks executors.
The rest of the hosts acts as actors and runs task executors. Master
profiler dynamically collects data about network characteristics

of the environment (bandwidth and latency), IoT devices, and IoT

applications. In this experiment, IoT devices send their requests for

the execution of Conway’s Game of Life application.

Fig. 4 shows the average estimated response time of Conway’s

Game of Life application, obtained from different policies as the

number of iterations increases. The OHNSGA outperforms other

policies and converges faster to better solutions. OHNSGA keeps

the records of previous decisions and profiling information for each

application and initializes a part of its population using its recorded

history. Besides, the optimized selection step of OHNSGA ensures

that non-duplicated best individuals can be copied to the next popu-

lation. Therefore, OHNSGA starts with better individuals compared

to NSGA2 and NSGA3 due to its more intelligent initialization and

keeps its diversity by selecting non-duplicated individuals for the
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Figure 5: Real response time of scheduling policies
next population. Accordingly, OHNSGA can obtain faster conver-

gence to better solutions in comparison to its counterparts.

Fig. 5 depicts the real response time of Conway’s Game of Life

application, obtained from the execution of tasks in the real environ-

ment, while considering different scheduling policies. As OHNSGA
tracks the prior execution behaviors of each application, its obtained

real response time is less than other techniques. It proves that not

only the OHNSGA converges faster to better solution compared to

other policies, but its estimated solutions can better represent the

behavior of the Game of Life in real environments.

4.4 Analysis of Master Components’ Scalability
In this experiment, the environment contains 4 RPi 4B (all with

ARM Cortex-A72 4 cores @1.5GHz CPU, where two have 2GB RAM

and the other two have 4GB RAM), 1 Desktop (Intel Core(TM) i7

CPU @3.6GHz and 16 GB of RAM) to represent the heterogeneity

of servers in the edge layer. Moreover, the cloud layer contains

five computing instances provisioned from Huawei Cloud (three

instances with Intel Xeon 2 cores @2.6GHz CPU with 4 GB of RAM,

and two instances with Intel Xeon 4 cores @2.6GHz CPU with

8 GB RAM). The master and actors are set as the same as in the

previous experiment. Also, IoT devices send simultaneous requests

of the Conway’s Game of Life and VOCR to the master. We analyze

two scenarios, called scalability and no-scalability. In the scalability

scenario, the FogBus2’s master container scales up either when

the number of received IoT requests increases or when the CPU

utilization of the host on which the master container is running
goes above a threshold. The new master container can be initiated

on any host with sufficient resources, and the rest of the incoming

requests can be managed by all available master containers. In the

no-scalability scenario, incoming requests to the master container
will be queued until enough resources for scheduling becomes

available. Here, we define a Scheduling Finish Time (SFT) metric

as the time difference when each IoT device sends its request to

the master until the master container finishes the scheduling of the
request. Hence, the SFT contains the queuing time of the request

in the master plus the scheduling time.

Fig. 6 shows the scalability results as the number of simultane-

ous requests from IoT devices increases. The SFT values of both

scenarios are roughly the same when the number of simultaneous

requests is small. However, as the number of requests increases,

the SFT values of the no-scalability scenario dramatically increase

compared to the scalability scenario. It shows the importance of

supporting scalability mechanisms and policies in FogBus2. The

master containers are scaled up as the number of requests increases,

which significantly reduces the queuing time of requests.
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Figure 7: Startup time and RAM usage analysis

4.5 Startup Time and RAM Usage Analysis
This experiment studies the startup time and RAM usage of our

framework, FogBus2, and compares it with FogBus framework [8].

Fig. 7 shows the average startup time and RAM usage ofmaster and
actor components on different hosts. As the results are roughly the

same for other components in our framework, we only present the

obtained results for these two components. It can be seen the RAM

usage of FogBus and our proposed framework, FogBus2, is roughly

the same for different framework components. However, the startup

time of FogBus2 is roughly 80% and 60% faster in comparison to

FogBus on Desktop and RPi, which makes it a suitable option for

fast deployment of any type of IoT-enabled systems.

5 CONCLUSIONS AND FUTUREWORK
In this work, we proposed FogBus2, a lightweight and distributed

container-based framework to integrate heterogeneous IoT-enabled

systems with edge/fog and cloud servers. FogBus2 offers fast and

low-overhead deployments of applications using containerization.

Also, it offers scheduling, scalability, resource discovery, and dy-

namic profiling mechanisms, assisting IoT developers to define and

deploy their targeted IoT applications on FogBus2. Moreover, it

integrates several scheduling, scalability, and resource discovery

policies. Besides, FogBus2 does not have any constraints on com-

munication topology between its entities and supports different

topologies such as mesh, peer-to-peer, and client-server.

Due to modular design and containerization-support, IoT devel-

opers can easily extend this framework and integrate new software

components and policies. Hence, this framework can be further ex-

tended by (1) integrating dynamic clustering mechanisms and poli-

cies to cluster resources either horizontally or vertically, (2) integrat-

ing container-orchestration techniques to automate the manage-

ment of application deployments and scaling, (3) mobility-support

in different layers of edge/fog computing environment, i.e., mobility

support for IoT users and edge/fog servers, (4) privacy-preservation-

support for the users’ private information and edge/fog servers, (5)

integratingmachine learning techniques to analyze the current state

of edge/fog computing environment, (6) integrating lightweight

security mechanisms to ensure data confidentiality and integrity.
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