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Abstract—Internet of Everything (IoE) paradigm is being
rapidly adopted in developing applications for different domains
like smart agriculture, smart city, big data streaming, etc. These
IoE applications are leveraging cloud computing resources for
execution. Fog computing, which emerged as an extension of
cloud computing, supports mobility, heterogeneity, geographical
distribution, context awareness, and services like storage, process-
ing, networking, and analytics on nearby fog nodes. The resource-
limited, heterogeneous, dynamic, and uncertain fog environment
makes task scheduling a great challenge that needs to be investi-
gated. This paper is motivated by this consideration and presents
a systematic, comprehensive and detailed comparative study
by discussing the merits and demerits of different scheduling
algorithms, focused optimization metrics, and evaluation tools in
the fog computing and IoE environment. The goal of this survey
paper is fivefold. First, we review the fog computing and IoE
paradigms. Second, we delineate the optimization metric engaged
with fog computing and IoE environment. Third, we highlight the
heuristic, metaheuristic scheduling algorithms dealing with fog
computing and IoE environment paradigms by leveraging some
examples. Fourth, we rationalize the scheduling algorithms and
point out the lesson learned from the survey. Fifth, we discuss the
open issues and future research directions to improve scheduling
in fog computing and IoE environment.

Index Terms—Cloud Computing, Fog Computing, Internet of
Things (IoT), Internet of Everything (IoE), Resource Allocation,
Task Scheduling.

I. INTRODUCTION

THE Internet of Everything (IoE) paradigm is based on
the convergence of the digital and physical world to

make this world smarter with intelligence, cognition, and
connectivity. IoE is the system that interconnects billions of
heterogeneous physical devices, computing elements, objects,
animals, and humans that can setup, share, and self-organize
their limited resources to achieve a system-wide goal [1]. The
main objective of IoE networks is to enhance the performance
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of underlying Internet of Things (IoT) physical infrastructures
by providing services to humans [2].

The IoT paradigm aims to make things smart without
human intervention, by incorporating in them the ability to
capture, send data over the network, and respond according
to given commands [3]. Any entity such as sensors, actuators,
and Radio Frequency Identification (RFID) devices with an
Internet Protocol (IP) address, along with the ability to capture
and transmit data over the network, can be a thing [4]. These
things are the only pillar of the IoT, so communication is
always between these things and machines through various
protocols. The terms IoT and IoE are interchangeably used.
These IoE devices are resource and energy constrained and
cannot efficiently process data generated by various IoE appli-
cations within a fixed time frame. Therefore, to host these IoE
applications, cloud computing has been the most commonly
used distributed computing paradigm in recent years due to
its capabilities like unlimited storage and processing power,
service-oriented architecture, high performance, reliability, and
on-demand access to the shared pool of configurable resources
[5], [6]. Currently, a centralized Cloud-centric Internet of
Things (CIoT) architecture is used to process the data gen-
erated by these IoE devices-based IoE applications [7].

The recent advancements in IoT and computing technolo-
gies, use of ubiquitous and pervasive computing for provi-
sion of computing services all the time and at any location,
and other enabling communication technologies like 4G, 5G
and Wireless Sensor Network (WSN), have resulted in a
rapidly increasing number of IoE devices and applications.
According to an estimate, active IoE devices will reach up
to 1.2 trillion by 2030 [8]. These IoE devices generate an
enormous amount of different-nature data used by different
applications. The cloud data centers alone will be unable to
efficiently process this vast amount of data generated by these
devices. Furthermore, the cloud data centres are multi-hop
away from the end-user. Therefore, transferring data from end-
user to geographically-distant cloud results in long latency and
network congestion that are not acceptable for time-sensitive
applications like smart healthcare, connected vehicles, remote
patient monitoring, etc [9]. Therefore, in the near future,
the traditional centralized CIoT architecture will not be able
to address these challenges of bandwidth consumption, long
delay, network congestion, and security.

To handle these issues, several approaches like mist com-
puting, mobile cloud computing, multi-access edge computing,
volunteer computing, cloudlet computing, and fog computing
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Fig. 1. Fog Computing Architecture. F = Fog Node; C = Cloud; IoE2F =
IoE-to-Fog; IoE2IoE = IoE-to-IoE; F2F = Fog-to-Fog; F2C = Fog to Cloud

[10] are presented. Among these approaches, fog computing,
introduced by Cisco, has gained the most attention due to
its greater support for application processing, mobility, low-
energy consumption, heterogeneity, geographical distribution,
thus achieving significant improvement of Quality of Service
(QoS) expectations [11].

A. Fog Computing Paradigm and Benefits
Fog computing is a novel decentralized computing paradigm

that complements cloud computing by using an additional
layer of fog devices between the cloud data centres and the
end-users to provide computing, storage, network, analytics,
and data management in a closer vicinity of the edge at
various fog nodes and IoE devices [12]. This has led to the
use of a decentralized Fog-IoT Framework (FIoT) for the IoT
model that supports real-time services, mobility, geographic
distribution, minimizes service latency, energy consumption,
cost, and network traffic. In Fig. 1, we present the multi-
layer, bi-directional, and decentralized architecture of FIoT
that consists of three tiers.
• Cloud Layer: This layer is the topmost layer that includes

a remote centralized cloud responsible for performing long-
term analysis and decision-making.

• Fog Layer: This layer is the intermediate layer that consists
of three sub-layers in which the fog nodes are deployed as
given below:
1) Inner Edge: The inner edge layer consists of WAN and

Metropolitan Area Network (MAN) data centers, Internet
Service Providers (ISPs), etc., that help in connecting
local networks to global networks.

2) Middle Edge: The middle layer consists of Local Area
Networks (LANS) and cellular network.

3) Outer Edge: The outer edge includes different types of
devices e.g. hubs, switches, Raspberry Pis, nano-servers,

mobile phones, radio towers, etc. [13]. These devices
communicate with upper-level fog devices via Fog to
Fog (F2F) link using ZigBee or Z-wave [14]. These outer
edge devices are arranged in two sub layers as mentioned
below.
– Integrated Devices: These devices have adequate

memory, storage, and processing power, along with
networking capabilities, for example, CPU-based
smartphones and tablets.

– IP Gateway Devices: IP Gateways are used as inter-
mediate devices between the end and the middle edge
layered devices e.g. Hubs or IP gateway devices.

• End Devices Layer: This layer consists of heterogeneous
and resource-constrained devices, such as sensors, actuators,
and controllers, that can communicate through IoE2IoE
connection using short-range waves like RFID, Bluetooth,
and Radio Frequency [2]. Sensors receive data from the
physical environment, convert it into signals, and then send
those signals to nearby fog nodes for further processing.
Once processed, feedback is sent back to actuators that take
actions accordingly.

In contrast to the cloud and inner edge-fog nodes, the
devices in the outer edge and end device layer are resource
and energy-constrained and heterogeneous (having various
hardware specifications, communication protocols, and archi-
tectures) [15]. These heterogeneous resource-constrained fog
nodes and highly unpredictable nature of the fog computing
environment make resource management a challenging issue.
The challenges includes service placement, resource discovery,
service migration, load balancing, task scheduling, resource
allocation, energy efficiency, and QoS [16]. Among these
resource management issues, resource and task scheduling
challenges are significant due to their effect on enhancing the
overall system’s performance.

B. Scheduling in Fog Computing

The IoE applications generate a large number of variable-
length tasks that often require priority based execution. But,
end devices of the network are heterogeneous and resource-
constrained. These tasks have to compete for constrained
resources of these heterogeneous devices in a heterogeneous
environment [17]. Therefore, to execute these jobs according
to their resource demands, appropriate nodes having sufficient
resources should be allocated. Furthermore, an efficient and
convenient ordering of these tasks on heterogeneous fog nodes
with available resources can enhance efficiency and accuracy
of the task execution process and maximization of resource
utilization like processor, memory, bandwidth, and minimizing
delay, cost, and energy consumption.

In fog computing, three major scheduling issues are resource
allocation, task scheduling, and workflow scheduling [18] as
described below:

• Resource Allocation: Resource allocation aims at the op-
timal allocation of a set of tasks {T1, T2,. . . , Tn} with
different QoS requirements to a set of densely distributed
heterogeneous fog nodes {F1, F2,. . . , Fm} to yield faster
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response, improved resource utilization, decreased energy
consumption, makespan and cost [19].

• Task scheduling: The fog devices receive a vast number
of heterogeneous tasks for processing from different fog
applications (latency-sensitive or delay-tolerant) that are
dynamic, with varying lengths, and often require priority-
based execution. These tasks wait in a ready queue for
execution on resource-constrained fog nodes. Therefore, an
efficient, fast, and convenient way of sequencing these tasks
according to their criticality to maximize resource usage and
minimize delay, cost, and energy is of great importance.

• Workflow scheduling: The IoE devices generate jobs that
can be decomposed into a series of tasks. These tasks can be
either independent or dependent [20]. The independent tasks
do not affect the other tasks and they are not affected by
them either. Therefore, they are independent of execution or-
der. However, the dependent tasks can execute only after the
completion of their parent tasks. Dependent task scheduling,
also known as workflow scheduling, is described by the
Directed Acyclic Graph (DAG) or workflows. The objective
of workflow scheduling is to distribute tasks onto heteroge-
neous fog nodes and decide an execution sequence of all
task in a workflow according to their dependencies along
with minimization of their makespan. Workflow scheduling
in a complex-distributed environment is an NP-complete
problem and is extensively studied by researchers [21].

C. Challenges in Resource Allocation, Task Scheduling, and
Workflow Scheduling

The challenges faced by resource allocation, task scheduling
and Workflow techniques in fog computing environment are
discussed below:
• Outer-edge Fog Nodes: In contrast to the cloud and inner-

edge fog nodes, the devices in the outer edge and end-device
layer have [15]:
– Heterogeneity: various hardware specifications, commu-

nication protocols, and architectures
– Resource-constraint: limited processing capability and

storage
– Energy-constraint: limited power
– Distributed nature: dense geo-spatial distributions
– Dynamic workloads: different workloads Optimal al-

location of a set of tasks to a large number of
geographically-distributed fog nodes is a challenging is-
sue.

• Heterogeneous Fog Applications: Fog applications vary
in nature as some applications are real-time while some
others are delay-tolerant. The real-time applications have
low latency requirements, therefore, they should be executed
on a priority basis. Allocating a large number of hetero-
geneous tasks to an appropriate fog node, from a set of
heterogeneous and resource-constrained fog nodes, makes
resource allocation an NP-hard problem [22].

• Stochastic Environment: The fog-cloud environment is
stochastic in many ways. For example, a task’s arrival rate,
duration, as well as computational requirements vary ran-
domly and are not known in advance. Therefore, allocating

the limited resources of fog nodes to these IoE-generated
workloads according to their computational needs is another
challenge.

• Mobility: Mobility is an essential part of many fog ap-
plications for improving user experience. Mobility causes
several challenges like handling user’s preferences, time
and distance constraints [23]. Therefore, allocation and
scheduling in such a dynamic environment become even
more challenging to accomplish user requests according
to their preferences and QoS requirements for real-time
applications [24].
The resource-constrained, the heterogeneity, unpredictable

arrival rate and vast number of tasks to be completed make
resource and task scheduling a complex issue. To overcome
this problem, many research efforts have been done to develop
efficient scheduling techniques to optimize resource utilization
and various performance metrics. However, there is need of a
deep and up-to-date review of proposed research methods to
find the recent advances in scheduling in fog environment.

D. Comparison with Existing Surveys

Despite the significance of the task scheduling issue, we
have found only four surveys that present the overview of the
efforts done for scheduling in fog. Hosseinioun et al. [25],
study the related task scheduling works in fog computing
between 2015 to 2018. They classify the algorithms as static
and dynamic. The static algorithms are further classified
as heuristic and meta-heuristic algorithms, while real-time
scheduling algorithms are discussed as dynamic algorithms.
The scheduling algorithms are compared with one another
based on certain QoS factors. They also stress the strengths,
weaknesses, and simulation environment for each study. How-
ever, the survey does not include the recent studies and the
information related to the application scheduling environment.

In another survey, Yang and Rahmani [26] review the
task scheduling mechanisms in fog computing. The authors
categorize the scheduling algorithms as heuristic and meta-
heuristic mechanisms. For each algorithm, they present the
main features and the environment. The algorithms are com-
pared with one another based on the performance and resource
utilization metrics. The simulation environment used in dif-
ferent related studies is not discussed. The authors partially
review the related literature, and many recent studies are also
not included.

Alizadeh [27] point out a comprehensive survey of different
task scheduling algorithms and their strengths and weaknesses
from 2015 to 2020. They classify the task scheduling al-
gorithms as a static, dynamic, heuristic, and hybrid algo-
rithms. They also discuss the scheduling type, application
environment, and the simulator used in each study. They
provide a neat comparison of the selected studies stressing
different performance metrics. The selected literature lacks
an appropriate categorization and review of many intelligent
learning-based techniques.

Matrouk and Alatoun present a survey on scheduling al-
gorithms in fog computing [28] in which they discuss the
algorithms for resource allocation and scheduling issues. They
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classify the related literature according to a focused scheduling
problem like task scheduling, resource scheduling, resource
allocation, job scheduling, and workflow scheduling. For every
related study, the authors discuss its merits and demerits. They
also compare the proposed algorithms according to specific
metrics and evaluation tools. The work suffered from a lack
of analysis and study on the fog computing and IoE ap-
plication environment and missed comprehensive application
metric comparisons, which we address in this survey. Table I
summarizes the advantages and limitations of existing surveys.

The existing surveys review the mono or bi-objective
optimization-oriented scheduling techniques, which are based
on prior details. As the fog computing environment is dy-
namic; therefore, recently the researchers focus on design-
ing dynamic, intelligent, efficient, and multi-objective task
scheduling algorithms that can jointly optimize performance
and resource utilization metrics along with task deadlines con-
straints. These surveys do not include the self-learning, intelli-
gent, and dynamic task scheduling techniques like Reinforce-
ment Learning (RL), Deep Reinforcement Learning (DRL),
and machine learning-based techniques. These techniques may
become more successful because of their ability to handle
the uncertain environment, self-learning ability, computational
efficiency, and adaptive nature [29].

E. Motivation and Goal of the paper
As explained in the previous subsections, efficient schedul-

ing algorithms can significantly improve the system perfor-
mance by optimizing resource utilization and other perfor-
mance metrics. Resource-constrained fog nodes and latency-
sensitive nature of some fog applications make scheduling
more significant. A variety of research efforts have been
done for resource allocation, task scheduling and workflow
scheduling in fog computing. However, a thorough review of
up-to-date research methods proposed to date was still required
to find the recent advances in scheduling in fog environment.

This paper addresses three main scheduling topics namely
task scheduling, workflow scheduling, and resource allocation,
as shown in figure Fig. 2 with a detailed survey of the research
work done so far to optimize the resource utilization and
performance metrics. As compared to the existing surveys,
this paper reviews most of the techniques presented so far
for scheduling and resource allocation in fog computing with
a focus on learning-based dynamic algorithms. Our survey
provides a detailed overview of the scheduling techniques,
their focused metrics, and evaluation tools.

In this survey, we discuss and analyze the algorithms
for three types of scheduling and classify these algorithms
as Traditional, Heuristic, Hyper Heuristic, Hybrid Heuristic,
Meta-Heuristic, Fuzzy based, Reinforcement Learning, and
Deep Reinforcement Learning-based. Through analyzing the
results discussed in recent research papers, we create an under-
standing of the subject for the reader. In addition, the research
gaps and future research directions are also discussed. In the
end, we present the strengths and weaknesses of different
algorithms to help the researchers in selecting the best existing
algorithm according to their preferences or to help them in
designing new ones.

Scheduling

Resource 

Allocation
Workflow 

Scheduling

Task 

Scheduling

Fig. 2. Different Aspects of Scheduling.

F. Contributions

The contributions of our work are six-fold as described
below:
• Detailed discussion on the basics of task scheduling, work-

flow scheduling, resource allocation, and different optimiza-
tion metrics used for evaluation of these algorithms

• Classification and comprehensive review of existing
scheduling algorithms particularly focusing on intelligent
dynamic scheduling techniques based on machine learning,
fuzzy logic, reinforcement learning and deep reinforcement
learning

• Description of the strengths and weaknesses of task schedul-
ing, workflow scheduling and resource allocation algorithms

• Comparison of different scheduling algorithms considering
different optimization metrics

• Presentation of various simulation environments and tools
used in different studies

• Identification of the research gaps and challenges for task
scheduling and resource allocation in fog computing for
future research work in this field

G. Paper Organization

The rest of the paper is organized as follows. In Section II,
we present the optimization metrics for scheduling in fog
environment. Section III discusses the classification of the
task scheduling, resource allocation, and workflow schedul-
ing algorithms. Section IV presents the discussion about the
surveyed techniques. In Section V, we describe the issues and
challenges and finally, we conclude in Section VI. Fig. 3 shows
the organization of the paper.

Table II shows a list of acronyms used in this paper.

II. OPTIMIZATION METRICS

As explained above, the increasing number of latency-
sensitive IoE applications, resource-constraint, and energy-
limited fog devices, uncertainty and mobility support of fog
computing, and meeting QoS user-requirement make optimal
task scheduling a challenging issue. One of the objectives of
resource allocation, task scheduling and work flow schedul-
ing is to optimize the job execution process for maximum
resource usage of fog nodes. For this purpose, in scheduling
different optimization functions like mono, bi-objective, or
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TABLE I
COMPARISON OF SURVEYS ON SCHEDULING.

Reference Objectives Limitations

[25] Review of task scheduling approaches in fog computing Literature survey from 2015-2018
[26] Focused on task scheduling mechanisms in fog settings Only few heuristic and meta-heuristic algorithms between 2015-

2018 are discussed
[27] Classification and analysis of task scheduling algorithms for fog

computing
Many learning-based dynamic task allocation studies are not
considered

[28] Algorithms for five major scheduling issues are discussed Recent dynamic machine learning scheduling algorithms are not
included
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multi-objective functions are defined to optimize resource-
utilization and performance metrics like waiting time, latency,
makespan, throughput, and percentage of missing deadlines
of tasks. The aim of multi-objective optimization is to provide
an optimal solution for more than one objectives that can be
contradictory. Fig. 4 shows the optimization metrics discussed
in the following subsections.

Every scheduling mechanism considers a subset of opti-
mization metrics. In the following subsections, we present
an overview of some metrics optimized in different task
scheduling algorithms in cloud-fog settings.

A. Performance Metrics

Performance metrics help in measuring the quality and effi-
ciency of the task scheduling, workflow scheduling, and allo-
cation process. Different task scheduling, workflow scheduling
and resource allocation mechanisms optimize different perfor-
mance metrics. In this subsection, we discuss the commonly
used performance metrics optimized in different algorithms.
• Latency: Latency is one of the most important metrics to

measure the performance of any task scheduling algorithm.
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Fig. 4. Optimization Metrics.

Latency is also known as delay or response time. The
overall latency is the summation of transmission latency
and computational latency [30]. The transmission latency is
the communication delay to transfer data between resources
and the computational latency is the time taken for the task
to be processed. The computational latency of any task is
calculated using Equation (1) given below:

Latencyi = TLi+ CLi (1)

where Latencyi is the latency, TLi is the transmission
latency and CLi is the computational latency of any task i.

• Execution Time: The time taken by a system to execute
the task is known as execution time. The waiting time for
I/O and other executing tasks is not included in CPU or
execution time [31].
The execution time is computed using Equation (2) as
follows:

ExeT imei = FTi + STi (2)

where ExeT imei denotes the overall execution time, CTi
denotes the finish time, and STi denotes the time when task
i starts execution.
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TABLE II
LIST OF ACRONYMS.

A3C Asynchronous Advantage Actor Critic
ACO Ant Colony Optimization
AMO Ant-Mating Optimization
BLA Bee Life Algorithm
BPP Bin Packing Penalty
CIoT Cloud-centric Internet of Things
CNN Convolutional Neural Networks
CPS Cyber-Physical System
DAG Directed Acyclic Graph
DBNs Deep Belief Networks
DDQN Double DQN
DNN Deep Neural Network
DOTS Delay-Optimal Task Scheduling
DQN Deep Q-network
DRF Dominant Resource Fairness
DRL Deep Reinforcement Learning
DVFS Dynamic Voltage and Frequency Scaling
EDA Estimation of Distribution Algorithm
EDF Earliest Deadline First
EFT Earliest estimated Finish Time
F2F Fog to Fog
FIoT Fog-IoT
FBRC Fog-based Region and Cloud
FCFS First-Come-First-Served
FCM Fuzzy C-Mean Clustering
GA Genetic Algorithm
GfE Greedy for Energy
GKS Greedy Knapsack-based Scheduling
GP Genetic Programming
GSP Greatest Satisfactory Proportion
HEFT Heterogeneous Earliest Finish Time
IaaS Infrastructure as a Service
IACO Improved Ant Colony optimization
ILP Integer Linear Programming
IoE Internet of Everything
IoT Internet of Things
IPSO Improved Particle Swarm Optimization
ISPs Internet Service Providers
JSSP Job-Shop Scheduling Problem
KNN K-Nearest Neighbours
LSP Least Satisfactory Proportion
LSTM Long-short Term Memory
MAN Metropolitan Area Network
MARL Multi-Agent Reinforcement Learning
MCT Minimum Completion Time algorithm
MFO Month-Flame Optimization
MINLP Mixed-Integer Nonlinear Programming
MLPs Multilayer Perceptrons
MobMBAR Mobility-Aware Modified Balance Reduced
PERA Prioritized Efficient Resource Algorithm
PGA Prioritized Genetic Algorithm
Po2C Power of 2 Choices
PPO Proximal Policy Optimization
PSO Particle Swarm Optimization
PTPN Priced Timed Petri Nets
QoE Quality of Experience
QoS Quality of Service
R2N2 Residual Recurrent Neural Network
ReLU Rectified Linear Unit
RFID Radio Frequency Identification
RFN Rank Fog Nodes
RL Reinforcement Learning
RNN Recurrent Neural Networks
RR Round Robin
RSS Received Signal Strength
SA Simulated Annealing
SARSA State–Action–Reward–State–Action
SET Shortest Execution Time
SJF Shortest Job First
SVM Support Vector Machine
TCaS Time-Cost aware Scheduling
TRPO Trust Region Policy Optimization
VMs Virtual Machines
VNs Voluntary Nodes
WOA Whale Optimization Algorithm
WSM Weighted Sum Method
WSN Wireless Sensor Network

• Makespan: Makespan is a significant objective of task
scheduling that indicates the overall time required to finish a
complete workflow [32]. It can be computed by considering
the last task’s completion time and the time of submission
of workflow. The minimization of makespan results in a fast
execution of the applications. Makespan can be computed
using Equation (3) as follows:

Makespan = CTl − STf (3)

where CTl denotes the time when last task is completed and
STf denotes the starting time of the first task.

• Throughput: Throughput of a system is the number of tasks
completed per unit time [33]. Equation (4) can be used to
compute throughput as follows:

Throughput =
Number of tasks

Makespan
(4)

• Deadline: Deadline is the time duration from task submis-
sion to the time till it must be completed. In real time
applications, the completion of each tasks within specified
deadline is important. Especially, for the hard real-time
applications like air traffic control, missing a task deadline
can result in a disaster.

B. Resource Usage

One significant objective of task scheduling is to increase
the resource usage of fog nodes including processor, memory,
storage, and network bandwidth. As the end-devices and edge-
devices, like routers, gateways, Raspberry Pi etc., offer only
limited computing, memory capacity, bandwidth, and battery
life, so a good resource utilization strategy is necessary. Poor
resource utilization may result in poor performance that can
lead to application failure. A task scheduling algorithm should
efficiently allocate the following resources:

• Processor: is the most important resource and should be
carefully allocated by a task scheduler. An overloaded CPU
can result in long latency of tasks that are not acceptable in
the case of latency-sensitive applications like healthcare.

• Memory: allocation is also critical as over-booked memory
can lead towards application failure.

• Network Bandwidth: is another significant metric. Increas-
ing the number of IoE devices increases network traffic,
resulting in congestion. This congestion badly affects the
performance of the fog applications that are specifically not
acceptable for latency-sensitive applications. Fog computing
decreases the network usage by offloading workload on
nearby fog devices that can be computed through Equation
(5) as follows:

Network Usage =

K∑
k=1

L× T Nw Sz (5)

here K is the total number of tuples, L denotes the delay
of each tuple, and T Nw Sz denotes the network size of
tuple.
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C. Energy Consumption

Energy is a necessary and scarce resource. Energy consump-
tion is the amount of resource-energy utilized for producing
output [34]. All devices like proxy, sensor, gateway, cloud, etc.
consume energy even in an idle state, and this consumption
increases when the device is used.

D. Financial Costs

Financial costs include processing and communication costs
like the cost of utilizing cloud or fog resources. The network
usage for transferring data and energy consumption of devices
also impacts the overall cost.

E. Quality of Service

All the above attributes are quantifiable. However, some
other metrics are non-quantifiable but they can affect the user
experience, for example, reliability, security, user preferences,
and Quality of Experience (QoE) [35]. Through optimal re-
source allocation, more users can be simultaneously served,
resulting in a better QoS.

III. CLASSIFICATION OF SCHEDULING METHODS

In this section, we present a survey of scheduling algo-
rithms considering the different optimization metrics in a
fog computing environment. The majority of these algorithms
focuses on the allocation of tasks on geographically-distributed
fog devices. We categorize the resource allocation and task
scheduling algorithms as traditional, heuristic, hyper-heuristic,
hybrid heuristic, meta-heuristic, fuzzy based, reinforcement
learning, and deep reinforcement learning-based as shown in
Fig. 5.

According to the taxonomy of scheduling algorithms pre-
sented in Fig. 5, the first type of algorithms are traditional
algorithms. These algorithms are usually static, easy to under-
stand, and need prior information about tasks and available
resources. These algorithms are discussed in subsection III-A.
Heuristic algorithms are the second type of algorithms that
are commonly used for solving optimization problems. These
algorithms help in finding a feasible solution in a short
time. Subsection III-B presents the survey of the existing
heuristic algorithms. Hyper-heuristic algorithms have gained
the attention of researchers to solve problems of different
domains. Subsection III-C describes the hyper-heuristic algo-
rithms in detail. These algorithms are more general-purpose
algorithms that help in selecting the best heuristic from
several candidate heuristics. Subsection III-D explains the
hybrid heuristic algorithms that are developed by combining
different heuristic algorithms to yield a faster solution in
a reasonable time. These algorithms usually perform better
than single heuristic algorithms. Meta-Heuristic algorithms
are found efficient for solving resource allocation in a dis-
tributed environment. These algorithms also provide a near-
optimal solution in linear time. Meta-heuristic algorithms are
further classified as bio-inspired or swarm intelligence-based
algorithms described in subsection III-E. For handling the
uncertain environment of fog computing, some researchers

apply fuzzy methods that are presented in subsection III-F.
They use fuzzy quantifiers and fuzzy logic for the ranking
of fog nodes and optimization of performance metrics. For
dynamic and uncertain fog computing environment, some
researchers have successfully applied Reinforcement Learning
algorithms to solve scheduling problems. Subsection III-G
discusses RL-based algorithms. The RL algorithms are further
classified as value-based and policy-based algorithms. Due
to the dense deployment of fog nodes and the huge number
of IoE requests, the search space becomes high dimensional.
To design adaptive resource allocation algorithms for com-
plex and unpredictable fog environments, some researchers
apply Deep Reinforcement Learning (DRL) based algorithms.
DRL algorithms can also be categorized as value-iteration
and policy-iteration based algorithms explained in subsection
III-H.

The following subsections describe each of the scheduling
categories in more detail as shown in Fig. 5.

A. Traditional

In this subsection, we first explain the traditional scheduling
algorithms, their merits and demerits. Then, we present a re-
view and comparison of the well-known traditional algorithms
for task scheduling in fog computing.

Traditional algorithms are static algorithms in which all the
information about tasks and fog resources is known in advance
for a scheduling decision. These algorithms are simple and
easy to understand and implement. First Come First Served
(FCFS), Min-Max, Min-Min, Minimum Completion Time
(MCT), and Min-Max are some well-known traditional task
scheduling algorithms. FCFS and Round Robin algorithms
are used for single machine while Min-Max and Min-Min
algorithms are used for multiple machines.

First-Come-First-Served (FCFS): In FCFS, the task exe-
cution order depends upon their arrival time [36]. When a task
is received, it is placed at the tail of the task queue and then
the scheduler executes them according to their entry order.

Round Robin (RR): In this scheduling, tasks are served in
FCFS order but, each task is assigned a small time interval
of processor that is called time-slot or time quantum [37]. If
a task completes its CPU-burst before the quantum expires, it
is preempted and the processor is assigned to the succeeding
task in the task queue. However, if a task does not complete
its burst, it is moved at the tail of the task queue.

Min–Min algorithm: This algorithm selects and executes
the smallest task on available machines. Therefore, it results
in long delays for large tasks [38]. The algorithm then assigns
a resource to the task that can give minimum completion time.

Max–Min algorithm: This algorithm selects and executes
large tasks on available machines first so, small jobs may suffer
from starvation.

Minimum Completion Time algorithm: Minimum Com-
pletion Time algorithm (MCT) algorithm selects and executes
a task that has earliest completion time [39].

Priority Scheduling Algorithm: In priority scheduling,
each task is assigned a priority and then executed according to
its priority number [40]. All tasks with equal priority number
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Fig. 5. A taxonomy of resource allocation, task scheduling and workflow scheduling algorithms in fog computing environment.

are executed in an FCFS manner. For example, Shortest Job
First (SJF) algorithm prioritizes the tasks according to their
CPU burst.

These static algorithms are simple and easy to implement
and focus on optimizing latency, makespan, execution time,
and resource optimization. Below is the survey of the well-
known traditional algorithms of task scheduling on fog nodes.

• Task Scheduling Harshit Gupta et al. use FCFS scheduling
algorithm for task scheduling on two different types of
applications using iFogSim [41]. iFogSim is a simulator
that executes at the top of CloudSim and helps in computing
application latency, energy consumption, and network usage.
The authors compute these evaluation metrics for both
applications. In case of non-availability of processing power,
a task is sent to the scheduling queue. The authors prove that
the edge-word placement of modules yields better results
as compared to the cloud placement in terms of network
use, delays, and energy consumed. Tejaswini et al. [42]
propose a Prioritized Efficient Resource Algorithm (PERA)
to decrease response time and cost in fog-cloud architec-
ture. Upon task submission, the task priority is computed
according to its deadline. Once the task is prioritized, it is
sent towards the fog layer for execution. The fog layer is
composed of many micro data centers and fog devices that
can communicate with one another. If none of the fog layer
data centers is available to handle a task due to resource
limitation, it is sent to the cloud. The authors implement
their algorithm using the CloudAnalyst simulator. Their
performance results prove that prioritized scheduling can
minimize response time and cost because the tasks are
prioritized according to their delay-tolerant requirements.
The limitation of their work is that they do not dynamically
compute task priority and ignore important metrics like
energy consumption and network usage.
In a study, Mtshali et al. present an application scheduling
technique to investigate the most efficient task scheduling

algorithm to minimize energy consumption, network usage,
and average task execution latency for real-time applica-
tions [43]. They implement four task scheduling algorithms
FCFS, SJF, Round-Robin, and Genetic Programming (GP),
using the iFogSim simulator. According to their analysis,
FCFS’s performance is the best in minimization of latency
and energy consumption than the performances of other
algorithms.
Alsmadi et al. propose a weighted round-robin (WRR) task
scheduling algorithm for a smart city [44]. The algorithm
selects the optimal fog node for executing a pre-emptive task
based on available computing capacity and residual energy.
If the task cannot be executed on a fog node, it is moved to
other fog nodes or cloud. The spanning-tree protocol is used
to collect and route the data in a fog network. For simulation,
the authors use iFogSim and NS3 simulators. The authors
compare their proposed algorithm with the conventional
task scheduling algorithm considering the optimization of
throughput and latency.

• Resource Allocation: Bittencourt et al. [45] apply three
different scheduling algorithms namely: FCFS, concurrent,
and delay-priority for mobility-aware scheduling in fog
environment to analyze both real-time and delay-tolerant ap-
plications. They take two case studies: one of delay-tolerant
application and the other of a near real-time application.
They use iFogSim for simulation and compute loop delay
as well as network usage for different configurations in order
to show that scheduling policies should be designed for ap-
propriate handling of the mobility and latency requirements
of the application. A weakness of the research is the high
computational cost.

A comparison of traditional task scheduling and resource
allocation techniques considering different optimization met-
rics along with the simulation tool used are presented in
Table III, where the tick marks indicate the focused criteria of
the researchers and the crosses show the ignored metrics.
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TABLE III
COMPARISON OF TRADITIONAL SCHEDULING ALGORITHMS.

Type Name Latency Makespan Execution
Time

Network
Usage

Energy
Consumption

Cost QoS Evaluation
Tool

Reference

Traditional FCFS × × × × iFogSim [41]

Priority PERA × × × × × CloudAnalyst [42]

Traditional WRR × × × × × × iFogSim, NS3 [44]

Traditional FCFS, Delay-
Priority,
concurrent

× × × × iFogSim [45]

Table IV lists the scheduling techniques and the environ-
ment used by researchers in their studies.

As the traditional algorithms are static, these algorithms are
better when workloads do not frequently vary. These algo-
rithms are not suitable for the unpredictable fog environments
with varying workloads.

B. Heuristics

In this sub-section, we present the review and comparison
of different heuristic algorithms used by researchers to solve
resource scheduling problems along with their focused metrics.
Heuristic algorithms are flexible and well-suited methods for
performance optimization of the scheduling problems [46]
that aim to provide an optimal solution in a short time.
These algorithms help in solving NP-complete problems. The
scheduling techniques used by researchers in their studies
related to resource scheduling are discussed below.
• Task Scheduling: In [47] Jamil et al. design a heuristic-

based fog node task scheduler for IoE-service provisioning.
The authors present a Smart Healthcare case study to
optimally schedule a variety of incoming tasks with different
computational needs, like latency-sensitive, delay-tolerant
etc., on fog nodes. Their algorithm aims for the optimization
of delay, energy consumption, and better resource utiliza-
tion. They uses iFogsim for simulating the fog environment.
Their algorithm performs better in minimization latency and
network usage than FCFS. However, the long tasks can
starve using their approach.

• Resource Allocation: Lina et al. [19] present Priced Timed
Petri Nets (PTPN) algorithm based on task’s completion
time along with the credibility of fog devices to optimize
resource usage and enhance QoS requirements of a user. In
their work, the user can select the appropriate resource from
the allocated resource group and then using the credibility
of both user and available resources task allocation is done
considering the cost of time. Their calculations deviate be-
cause the credibility of both users and resources is dynamic
and the same credibility of different users is assigned to
multiple groups. The authors ignore average completion
time, network usage, and fairness.
Another heuristic-based resource allocation algorithm, Fog-
based Region and Cloud (FBRC), is designed by Thanh and
Doan [48] that aims at decreasing latency in a fog-cloud
environment. They present a fog-based region architecture
for the allocation of tasks to fog regions and clouds. The

scheduling problem is considered as an Integer problem
to reduce completion time in which tasks are allocated
based on their probability distribution. The authors ignore
important metrics like energy consumption and execution
costs of tasks.
To achieve energy-efficient resource allocation, Yang et
al. [49] describe Maximal Energy-Efficient Task Schedul-
ing (MEETS) algorithm that utilizes efficient cooperation
between neighborhood nodes through cognitive spectrum
access techniques. They formulate the optimization problem
as multi-nodes fractional programming. After formulation,
MEETS algorithm is applied to offload tasks on homo-
geneous fog networks to enhance energy efficiency. Their
simulation results indicate that MEETS is more energy-
efficient than other algorithms. Also, the available spectrum
bandwidth and the probability of spectrum access greatly
affect the offloading decision. However, the work only fo-
cuses on overall energy optimization while ignoring energy
conversions across the fog and IoE layers.
Farooq et al. [50] design two scheduling algorithms namely
Min-CCV and Min-V in order to jointly minimize computa-
tion, communication and violation cast delay for fog-cloud
environment. They formulate resource allocation problem
as a Mixed-Integer Nonlinear Programming (MINLP). Af-
ter formulation, Min-CCV algorithm is used to minimize
computation, communication and violation cast while Min-
V is used to minimize deadline violation cost. The experi-
mental study is done by varying number of tasks, fog and
cloud nodes. Their experimental results show better deadline
satisfaction task rates and minimized total cost than those
of a genetic-based algorithm. The main drawback of the
algorithm is that increasing the number of devices results in
increased energy consumption and thus affecting the overall
system cost.
For dynamic resource allocation to multiple real-time work-
flows in fog-cloud environment, Stavrinides in [51] de-
scribes a heuristic algorithm (Hybrid-EDF). In the study, the
tasks are allocated on resources according to their compu-
tational demands. The communication-intensive tasks with
low computation requirements are scheduled at fog nodes
while the computation-intensive tasks with low communica-
tion demands are executed at cloud nodes. The scheduling
strategy works in two steps. Firstly, the tasks are prioritized
according to their deadlines using Earliest Deadline First
(EDF) rule. Whereas, in the second step, VMs are allocated
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TABLE IV
SCHEDULING TYPE FOCUSED BY TRADITIONAL ALGORITHMS.

Reference Environment Task Scheduling Resource Allocation Workflow Scheduling

[41] fog-cloud × ×
[42] fog-cloud × ×
[44] fog-cloud × ×
[45] fog-cloud × ×

to each task based on the Earliest estimated Finish Time
(EFT). The results show that the scheduling strategy reduces
the deadline-miss ratio but results in increased monetary
cost.
For real-time resource allocation, Auluck et al. [52] present
two heuristic algorithms generated by autonomous cars.
The study is based on an embedded fog-cloud framework
in which real-time tasks are categorized as hard, firm, or
soft. The hard real-time tasks are the most latency-sensitive
and therefore, assigned to embedded fog processors. The
firm real-time tasks are less sensitive and are scheduled
at fog processor while the soft ones are sent to cloud
processor for scheduling. The EDF algorithm is used to
schedule individual tasks on an assigned processor. In EDF,
initially, all the tasks are ordered according to the increasing
order of their deadlines. Then, a static LFC (Local, Fog,
Cloud) algorithm is used for scheduling the tasks in queues
according to their delay tolerances. The iFogSim simulator
is used for simulation. Their results show the minimization
of overall communication delay.
An efficient IoT architecture along with mobility-aware
scheduling algorithm is proposed by Abdelmoneem et al.
[53] for latency-sensitive healthcare applications. The au-
thors use adaptive Received Signal Strength (RSS)-based
handoff technique for supporting a patient’s mobility. The
approach works in two steps: The ranking step and the
scheduling step. In the first step, the tasks are ranked accord-
ing to the emergency-level using the Weighted Sum Method
(WSM). In the second phase, the heuristic-based algorithm
Mobility Aware Modified Balance Reduced (MobMBAR)
is used to schedule tasks on computing nodes based on the
movement of patients. The authors minimize the scheduling
and response time of tasks. iFogSim is used for evaluating
MobMBAR and the results are compared with three other
algorithms. Their results indicate that their algorithm outper-
forms other algorithms in reducing makespan and consumed
energy.
Another resource allocation mechanism (TIPS) is presented
by Zeng et al. [54] using task image placement for min-
imization of task completion time along with better user-
experience. Initially, they stored task image on the storage
server. The processing is performed on embedded client and
fog devices. They use Mixed-Integer Nonlinear Program-
ming (MINLP) to formulate their problem. The presented
three-step heuristic algorithm minimizes overall completion
time by dividing the problem into three subproblems: pro-
cessing, I/O, and transmission time. Their results show that

their algorithm performs better than greedy algorithms but
the authors ignore mobility of user and financial cost.
Pooranian at el. [55] propose a scheduling algorithm for
allocating resources in fog computing to reduce latency
and consumed energy. They consider scheduling as a Bin
Packing Penalty (BPP)-aware problem in which bins are
fog servers and the Virtual Machines (VMs) are packs. The
servers are penalized and rewarded based on wasted energy,
time, and frequency. They use “penalty and reward policy”
for the optimization of energy consumption. The algorithm
computes the total number of VMs that could be allocated to
a server for a certain time duration. The penalty and reward
are awarded to reduce consumed energy.
Zhang et al. in [56] present Delay-Optimal Task Scheduling
(DOTS) algorithm based on capabilities of the Voluntary
Nodes (VNs). They develop a general analytical model for
the problem and propose algorithm for minimizing overall
task computational latency. Simulation is done to obtain
numerical results that indicate that DOTS can effectively of-
fload tasks on VMs to reduce processing delay as compared
to command-mode offloading along with minimized energy
consumption and high fairness level among fog nodes.
To achieve balanced performance among delay and energy
consumption, Yang and fellows [57] present a new energy-
aware framework for similar fog networks. The authors use
a control parameter V for characterization between delay-
energy tradeoff and present the DEBTS algorithm based on
Lyapunov optimization techniques for minimizing overall
energy consumption and average service latency. Lyapunov
optimization aims to stabilize queues while optimizing per-
formance objective like minimizing average energy [58].
Numerical simulations are performed to measure the per-
formance of the DEBTS algorithm. The results suggest that
the algorithm’s performance is better in minimizing delay
and energy as compared to other algorithms. But the authors
ignore metrics like cost and computation time.

• Workflow Scheduling: Xuan-Qui and Eui-Nam [59] pro-
pose a task allocation policy (TSCF) to study the contrast
between task’s execution times and the financial costs for
the fog-cloud computing system. Their heuristic algorithm
allocates fog nodes to dependent tasks. The algorithm works
in two steps: Firstly, the tasks are ranked by traversing DAG.
While in the second phase, the prioritized tasks are allocated
to fog nodes. If these nodes are not available, the task is
shifted to cloud. They use CloudSim for the evaluation of
their algorithm. They compared the obtained results with
three other algorithms. The results show that their presented
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algorithm performs better than the other algorithms in
reducing cost and execution time. They only computed the
execution cost of their strategy while ignoring important
metrics like cost and deadline constraint of workflows.
Guevara and Fonseca propose two schedulers CASSIA-
INT and CASSIA-RR for task allocation on heterogeneous
resources in the fog-cloud environment [60]. CASSIA-INT
is formulated as integer linear programming while CASSIA-
RR scheduler implements Randomized Rounding. The au-
thors use QoS requirements of the applications to classify
them and then assign a label. The scheduler uses workflows,
labels, and resource availability for scheduling decisions.
The objective of their scheduling strategy is to decrease
the makespan and task’s execution time. The algorithms
are implemented using Java language and tested for two
different types of applications. The algorithm’s performance
is compared with two traditional algorithms and the results
show that the presented algorithm effectively minimizes the
makespan and execution time of a task.

In table V, we provide a comparison of heuristic scheduling
techniques based on different optimization metrics and evalu-
ation tools. The tick marks show the intended criteria of the
researchers while the crosses show the ignored metrics.

Table VI lists the techniques used by researchers for re-
source scheduling.

As seen in Table VI, some researchers use heuristics algo-
rithms to solve the task scheduling problem in fog computing.
The heuristics do not guarantee accurate solutions but give
a solution close to the best one in a short time. The main
drawback is that these solutions are greedy. Therefore, they are
usually trapped in local minima problem. Also, the objective
function in the heuristics aims to optimize only one or two
metrics.

C. Hyper Heuristic

In this subsection, we briefly describe hyper heuristic al-
gorithms used in various studies, their merits and demerits,
focused performance measures, and evaluation environment.

Hyper-heuristic solutions are automated search procedures
for improving the generalization of searching techniques in
order to solve hard computational search problems [61]. A
hyper-heuristic strategy chooses one of the heuristics at each
iteration from a pool of candidate heuristics. Therefore, the
search space of hyper-heuristics is always inside the heuristic’s
search space. These strategies are applied to develop a system
that can solve a class of problems instead of solving a
particular problem domain.

• Task Scheduling, Resource Allocation, and Workflow
Scheduling: In [62], Liu et al. use an improved classification
mining approach to schedule IoT tasks. Their algorithm uses
association rules. For mining association rules (TSFC), the
authors present the I-Apriori algorithm. The generated rules
and least completion time of the task are combined for
prioritizing and scheduling task to a fog node. Their main
focus is the minimization of task’s execution and waiting
time. As the approach is purely time-based, it ignores

optimization of network bandwidth, completion time, and
QoS.

• Resource Allocation & Workflow Scheduling: Sabihe
Kabirzadeh [63] devises a hyper-heuristic algorithm (HH)
for workflow scheduling. For efficient resource allocation at
each phase, the most suitable heuristic from Particle Swarm
Optimization Algorithm (PSO), Genetic Algorithm (GA),
Ant Colony Optimization Algorithm (ACO), and Simulated
Annealing (SA) is selected. The scheduling objectives are
classified on the basis of the user and the service provider’s
perspective. The authors focus on the reduction of energy
consumption, execution time, and cost. They use iFogSim
simulator for simulations. The obtained results are compared
with GA, SA, PSO, and ACO, and proven to be better in
terms of reduction in cost and energy in comparison with
the stated approaches.
Although hyper-heuristic algorithms can solve complex

real-world problems because they offer greater levels of gener-
alization and can solve single and multi-objective optimization
problems, these algorithms are difficult to implement.

D. Hybrid Heuristic

In this subsection, we present the brief introduction of hy-
brid heuristic algorithms along with their merits and demerits.
After that a review of hybrid heuristic algorithms is provided.

A hybrid-heuristic algorithm combines two or more heuris-
tic algorithms, takes complementary advantages of specific
algorithms, and compensates for their weaknesses at each step.
Hence, it yields better results than a single heuristic [64].
Hybrid algorithms may combine a mono-objective algorithm
and a population-based algorithm, or two heuristic/ meta-
heuristic algorithms.
• Task Scheduling: Juan Wang and Di Li [65] present

a hybrid-heuristic algorithm for task scheduling. Their
Hybrid-heuristic algorithm solves task scheduling problems
using Improved Ant Colony optimization (IACO) and Im-
proved Particle Swarm Optimization (IPSO) algorithm to
decrease latency, energy consumed, and reliability.
The hyper-heuristic and hybrid-heuristic algorithms work

for the allocation of fog nodes to the tasks. Most of these
algorithms use a single-objective function that optimizes only
one of the metrics ignoring the rest, while the hybrid-heuristic
algorithms optimize two of them. Most of these algorithms are
implemented using iFogSim focusing on latency and energy
consumption while ignoring QoS factors. In table VII, we
present the comparison of hyper-heuristic and hybrid-heuristic
techniques in which the crosses indicate ignored criteria and
tick marks show the intended criteria.

The focused techniques of researchers are indicated by tick
marks in Table VIII.

E. Meta-heuristic

In this subsection, we discuss meta-heuristic algorithms
and their further classification as: Bio-inspired (BI)-based and
Swarm intelligence (SI)-based. Then, we present the survey of
the meta-heuristic algorithms.
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TABLE V
COMPARISON OF HEURISTIC SCHEDULING ALGORITHMS.

Type Name Latency Makespan Network
Usage

Energy
Consumption

Cost QoS Evaluation Tool Reference

Heuristic SJF × × × × iFogSim [47]

PTPN RASPTPN × × × × Simulation(NA) [19]

Heuristic FBRC × × × × × iFogSim [48]

Heuristic MEETS × × × × × Simulation(NA) [49]

Heuristic Min-CCV,
Min-V

× × × × Matlab [50]

Heuristic Hybrid-EDF × × × × Simulation(NA) [51]

Heuristic EDF & static
LFC

× × × iFogSim [52]

Heuristic MobMBAR × × × × × iFogSim [53]

MINLP TIPS × × × Simulation(NA) [54]

Heuristic BPP × × × × × iFogSim [55]

Heuristic DOTS × × × × Simulation(NA) [56]

Heuristic DEBTS × × × × × Simulation(NA) [57]

Heuristic TSCF × × × × × CloudSim [59]

ILP CASSIA-INT,
CASSIA-RR

× × × × Java [60]

TABLE VI
SCHEDULING TYPE FOCUSED BY HEURISTIC ALGORITHMS.

Reference Environment Task Scheduling Resource Allocation Workflow Scheduling

[47] fog-cloud × ×

[19] fog × ×

[48] fog-cloud × ×

[49] fog × ×

[50] fog-cloud × ×

[51] fog-cloud × ×

[52] IoE-fog-cloud × ×

[53] fog-cloud × ×

[54] edge-fog ×

[55] fog × ×

[56] fog × ×

[57] fog × ×

[59] fog-cloud ×

[60] fog-cloud ×

In the last few years, meta-heuristic algorithms have gained
popularity and are commonly used for solving complex com-
putational problems [66]. Researchers use meta-heuristic al-
gorithms to find optimal or near-optimal solutions for task
allocation in distributed computing environment [67]. These
algorithms are used because they provide near-optimal solu-
tions within a reasonable duration of time. Meta Heuristics
algorithms can be categorized as:

• Bio-inspired (BI)-based meta-heuristics: These algorithms
mimic the evolution process observed in nature to solve
optimization problems. GA is an example of bio-inspired
algorithms [68]. In GA, a chromosome is used to represent

every individual. A chromosome comprises a binary coded
string of genes. The algorithm starts with a random selection
of the initial population. An objective function is used for
checking the fitness of the chromosome. For generating
a new population, mutation and crossover operations are
performed on selected chromosomes. These steps repeat till
sufficient or best offspring is found [33].

• Swarm intelligence (SI)-based meta-heuristics: Swarm
intelligence is an evolutionary computation-based technique
inspired by collective intelligence of swarms especially,
from their biological systems and social-behavior models.
PSO, Bee Life Algorithm (BLA), ACO, and Bat algorithm
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TABLE VII
COMPARISON OF HYPER-HEURISTIC AND HYBRID-HEURISTIC SCHEDULING ALGORITHMS.

Type Name Latency Makespan Execution
Time

Network
Usage

Energy
Consumption

Cost QoS Evaluation
Tool

Reference

Hyper Heuristic TSFC × × × × × SimGrid [62]

Hyper Heuristic HH × × × × × iFogSim [63]

Hybrid Heuristic HH × × × × × Matlab [65]

TABLE VIII
SCHEDULING TYPE FOCUSED BY HYPER AND HYBRID-HEURISTIC ALGORITHMS.

Reference Environment Task Scheduling Resource Allocation Workflow Scheduling

[62] fog

[63] fog ×

[65] fog-cloud ×

are some examples of SI-based algorithms [69].

• Task Scheduling: An adaptive double fitness Genetic Task
Scheduling algorithm (ADGTS) is presented by Qianyu
Liu [70] for IoT task scheduling in smart cities. The
main objective of the algorithm is to reduce makespan and
communication cost. The algorithm allocates fog nodes to
tasks by considering their computing power, communication
cost, and latency requirements. The chromosome encoding
scheme represents the task allocation on fog nodes and
roulette selection selects the new generation. They use a
single-point crossover and mutation to generate a new gener-
ation. The results indicate that ADGTS algorithm efficiently
reduces cost and makespan as compared to other algorithms.
Wang et al. [71] present a task scheduling algorithm for a
decentralized fog computing environment on the basis of the
immune system of the human body having self-organizing,
cooperative, and robustness characteristics. The fog network
is considered a collection of geographically-distributed com-
puting devices having independent schedulers that can coop-
erate for synchronization to produce an optimal scheduling
strategy. They implement local and meta-schedulers. The
local scheduler aims to decrease the execution time and the
meta-scheduler in computing nodes collects the tasks from
neighborhood nodes to get the information of their comput-
ing demands like memory, processor, and bandwidth and
shares this data to computing nodes. This framework helps
to avoid conflicting scheduling decisions and single point
of failure of schedulers in a decentralizing environment.
The comparison of their algorithm is done with five other
algorithms. Their results show that the algorithm results in
efficiently minimizing task finishing time as compared to
the other algorithms.
Another algorithm to solve the task allocation issue for
Bag-of-Tasks applications in a fog-cloud environment is de-
scribed by Binh Minh Nguyen at al. [72]. The main objective
of an algorithm named Time-Cost aware Scheduling (TCaS)
is to minimize the execution time of tasks and operating
costs. Every chromosome shows the assignment of a task
to a fog node. Mutation and two-point crossover are used

for the generation of a new population. They use iFogSim
for simulations. Their algorithm’s performance is compared
with two other algorithms. Their obtained results indicate
that the algorithm attains a better trade-off between cost
and makespan. The authors, however, ignore some important
metrics like network usage and energy consumption.
Salim Bitam [73] presents a static task scheduling algo-
rithm using BLA for allocation of tasks on fog devices.
In this algorithm, the tasks are distributed on fog nodes
for optimal utilization of fog computing resources along
with the service-level agreements that can be fulfilled. The
authors consider the scheduling problem as an Integer Linear
Programming (ILP) problem to achieve a trade-off between
execution time and memory requirements of computing
services. The algorithm is compared with PSO algorithm.
Their results indicate that the presented algorithm is more
effective than PSO for reducing execution time and memory
usage. The main merit of the algorithm is that it is static.
However, it ignores metrics like cost and QoS.
In 2019, Dadmehr Rahbari et al. implement Greedy
Knapsack-based Scheduling (GKS) algorithm and symbi-
otic organism search algorithm named KnapSOS for task
scheduling using iFogSim simulator [74]. The objective
of the algorithm is minimization of energy consumption,
latency, and network usage. The CPU usage and virtual
machine bandwidth are used to create Knapsack items. They
apply the algorithm on two different applications. For both
these applications, they compute execution cost and energy
consumption. Then they compared the obtained results with
three other scheduling algorithms. Their algorithm takes a
longer simulation time.
Jayasena and Thisarasinghe use Whale Optimization Al-
gorithm (WOA) algorithm to schedule tasks in fog com-
puting environment [75]. WOA is a bio-inspired algorithm
that uses the idea of bubble-net attacking method of the
humpback whales through which they determine the prey’s
location and surround it [76]. Their objective function is to
reduce consumed energy and execution cost. The authors use
iFogSim for implementing the WOA algorithm. To analyze
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the presented algorithm, they compare its performance with
PSO, RR, and SJF algorithms for three different case
studies. The presented algorithm is proven to perform better
in terms of consumed energy and execution cost.
In [77], XU et al. present the task scheduling problem as
an optimization problem for fog-cloud environment. The
task scheduling technique (LBP-ACS) uses a laxity and
ant-colony system to minimize energy consumption along
with satisfying the task deadlines. To meet the deadline
constraint of delay-sensitive tasks, the authors apply a laxity-
based algorithm for task prioritization and scheduling. After
that, an ant-colony system algorithm is applied to get an
optimal allocation plan. CloudSim is used to simulate a fog-
cloud environment as well as to evaluate the algorithm. The
algorithm performance is found better as compared to three
other algorithms including Heterogeneous Earliest Finish
Time First (HEFT). The HEFT [78] algorithm is a popular
list scheduling algorithm that prioritizes and schedules the
tasks according to the finish time of tasks and GfE is mainly
concerned with minimization of energy consumption.

• Resource Allocation: In another study, Yan Sun, Fuhong,
and Haito [79] propose a resource allocation scheme. The
resources are allocated to different fog clusters. It is done
among fog devices that reside in a cluster. For solving
multi-objective optimization problems, the authors use the
idea of improved NSGA II for allocating resources among
heterogeneous fog devices in a cluster. They implement their
algorithm in Matlab. The results are compared with the
results of two other models that indicate that the algorithm
achieves smaller delays and more solidity of the execution
of tasks as compared to the other techniques. The major
drawback of their proposed scheme is that it lacks an
appropriate technique for scheduling between fog clusters.
Also, some important metrics like cost and energy are
ignored in their approach.
Considering the dynamic nature of the fog computing en-
vironment, Aburukba et al. in [80], present a model for
scheduling IoE service requests from end devices. In order
to minimize service latency, they present the task allocation
problem as an integer linear programming problem. They
implement a customized genetic algorithm as a heuristic
approach to get optimal scheduling solution in a reasonable
computational time. They initialize the problem size with
the received IoE requests and available resources. Then, the
population is generated through several candidate solutions.
The fitness of every chromosome is defined using the inverse
of overall delay. Crossover and mutation are used to select
individuals producing new population. The performance is
analyzed and compared with three other scheduling tech-
niques. The algorithm is shown to be effective in minimizing
latency and cost.
Ghobaei-Arani et al. [81] propose a resource allocation
algorithm for Cyber-Physical System (CPS) applications in
fog environment using Month-Flame Optimization (MFO)
algorithm. MFO algorithm is a bio-inspired population-
based optimization algorithm where the main inspiration is
the navigation of a month’s behavior in the night around
the flames [82]. The objective function of the algorithm is to

decrease the execution and transfer time of tasks. Simulation
is performed using iFogSim and the simulation results are
compared with NSGA II, PSO, and BLA. The comparison
proves that the algorithm is good for minimizing the task
execution time along with better QoS for CPS applications.
To fulfill the increasing needs IoE applications, WANG et al.
[83] propose a resource allocation algorithm I-FASC using
(I-FA) improved genetic algorithm firework algorithm. I-FA
is presented by introducing the explosion radius detection
mechanism of fire-works. The algorithm is compared with
three other algorithms. The obtained results suggest that
the presented algorithm efficiently minimizes the computing
time in comparison to other algorithms.
As in the real world, real-time applications are latency-
sensitive, while some others are delay-tolerant. These dif-
ferent requirements increase the complexity of the fog
computing environment. In order to find an optimal solution
according to the needs of IoT application, Meng et al.
propose an adaptive neighborhood multi-objective optimiza-
tion algorithm FOG-AMOSM for fog computing [84]. The
conflicting optimization objectives of the algorithm are to
decrease the execution time of tasks along with minimized
cost for service providers. The authors present a multi-
objective evolutionary heuristic algorithm based on the
method of adaptive neighborhood technique. This technique
is used for better distribution of tasks on fog resources.
CloudSim 5.0 is used for simulation. Their performance
analysis shows that the algorithm effectively minimizes their
chosen metrics in comparison with the classical Round
Robin and simple GA.
Hoseiny et al. present a priority-aware task allocation al-
gorithm named Prioritized Genetic Algorithm (PGA) to
jointly optimize computational time, energy consumption,
and percentage of tasks completed before their deadlines
[85]. The prioritization of tasks is based on their deadlines.
Their fog broker is constituent of three components namely
task receiver, task scheduler, and resource monitor. The
task receiver guesses the deadlines of tasks and resource
monitor evaluates the available resources. The task scheduler
firstly prioritizes the tasks according to their deadlines and
then genetic algorithm is applied to select appropriate fog
node for every task. Simulation is done using Matlab. Their
results reveal that the performance of the algorithm is better
than that of Power of 2 Choices (Po2C) and Ant-Mating
Optimization (AMO) algorithms.
Potu et al. present an Extended Particle Swarm Optimization
(EPSO) algorithm for resource allocation in fog-cloud envi-
ronment [86]. The objective of the algorithm is to minimize
task completion time and cost using the proximal gradient
method. iFogSim is used for simulation purposes, and the
results are compared with PSO and its variant. According to
their results, EPSO works well for reducing makespan and
cost.

• Workflow Scheduling: A cost-effective workflow schedul-
ing algorithm is proposed by Rongbin Xu [87] based on
IPSO in a fog-cloud environment. The experiment is done
in Matlab, with six cloud servers and four fog servers.
The authors claim to reduce the task’s completion time as
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compared to PSO.
A side-by-side comparison of surveyed meta-heuristic-based

algorithms is presented in table IX where tick marks show the
focus criteria and the crosses indicate the ignored metrics. The
focused techniques of researchers are indicated by tick marks
in Table X.

The surveyed meta-heuristic algorithms perform resource al-
location to a set of tasks for mono or bi-objective optimization
of given metrics. Although, such algorithms give an optimal
solution, they require a lot of computational time. Also, these
algorithms ignore QoS criteria.

F. Fuzzy Logic Based Algorithms

This subsection reviews the fuzzy logic based task schedul-
ing and resource allocation algorithms and the focused metrics.

Fuzzy logic is a powerful tool to deal with uncertainty,
vague, and non-numeric information in systems and is robust
to changing environment [88]. Fuzzy logic was proposed in
1965 by Lotfi Zadeh [89]. Fuzzy set theory and fuzzy quan-
tifiers are the basic building blocks of fuzzy logic. In fuzzy
sets, each element has a degree of membership, while a fuzzy
quantifier is a fuzzy relationship between fuzzy sets. Fuzzy
logic can effectively be used to efficiently solve dynamic real-
time scheduling problems [90].
• Resource Allocation: Most of the research work done for

resource allocation focuses on delay, energy consumption,
and network usage, but unlike cloud, fog nodes are resource-
constrained. Therefore, Mohammed Anis et al. use fuzzy-
quantified ranking method to Rank Fog Nodes (RFN) for
task allocation [91]. The ranking is done based on features
of fog nodes along with user preferences using linguistic
quantifiers and fuzzy-quantified propositions. Least Satisfac-
tory Proportion (LSP) and Greatest Satisfactory Proportion
(GSP) parameters are defined to differentiate among similar
fog devices. The authors focus on achieving user-satisfaction
along with minimization of execution delay and consumed
energy.
In [92], FCAP, a resource scheduling algorithm, is described
that combines Fuzzy C-Mean Clustering (FCM) and PSO.
The authors use FCM to search clusters of fog nodes and
PSO for global optimization that reduces the resource search
space. The algorithm works in two steps. In the first step,
there is initialization of the particle population and random
generation of the cluster centers. In the second step, a
weighted matching method is applied to compute the fitness
function. As the FCM algorithm can trap in a local optima,
they combine PSO with it for global optimization and faster
convergence. For the implementation of FCAP, the authors
use Matlab. Their obtained results indicate that the algorithm
obtains better clustering accuracy and fast convergence than
that of FCM. Also, the algorithm results in better user-
satisfaction as compared to the Min-min algorithm.
For the dynamic environment of fog computing in [93],
Javanmardi presents a fog resource allocator, FPFTS that
jointly use meta-heuristic algorithm and uses fuzzy logic. In
the designed task allocation algorithm, fuzzy-logic is used
as a fitness function in the PSO algorithm. The objective

of the algorithm is the optimal resource utilization of fog
nodes along with the minimization of network usage and
application loop delay. The algorithm is implemented using
iFogsim and evaluated for different fog node configurations.
Wu et al. propose a multi-objective Estimation of Dis-
tribution Algorithm (EDA) resource allocation algorithm
for workflows based on fuzzy logic for multi-objective
optimization [94]. They consider a system in which the
heterogeneous processors are located at three tiers. They
use fuzzy numbers for modeling uncertain IoT environments
and workload characteristics. After that, they use fuzzy
clustering to classify the tasks in DAG according to their
characteristics. Then, these grouped tasks are allocated to
relative tiers using the cluster-tier allocation rule, that is
learned by fuzzy EDA. For simulations, the algorithm is
developed in C++ and results are compared with HEFT and
two other algorithms. According to obtained results, EDA
outperforms the heuristic algorithms.
Ali et al. present a resource allocation algorithm to schedule
real-time tasks in a fog-cloud computing environment using
fuzzy logic [95]. The fuzzy-based algorithm schedules the
tasks on cloud and fog nodes based on task attributes (mips,
storage, bandwidth), time constraints of tasks(deadline),
and resource availability in the fog layer. The aim of the
presented algorithm is to reduce the makespan and average
turnaround time of tasks. The algorithm is implemented in
the iFogSim simulator, and the comparison is done with SJF
and FIFO.

Table XI lists the fuzzy-based resource allocation techniques
where the tick marks show the intended criteria and the crosses
indicate the metrics ignored by the researchers.

The focused techniques of researchers is indicated by check
marks in Table XII.

G. Reinforcement Learning

In this subsection, we explain reinforcement learning, clas-
sification of RL-based algorithms, and an overview of different
RL-based algorithms of task scheduling in fog computing.

RL is a type of machine learning that has successfully been
applied for solving the Job-Shop Scheduling Problem (JSSP)
[96]. Reinforcement Learning is a sequential decision-making
process where agent is the decision-maker that is trained
to optimize its behaviour by learning from its experience
while interacting with the environment. These algorithms are
successful because of their ability to handle the uncertain
environment, self-learning ability, computational efficiency,
and adaptive nature, hence, and are well-suited to schedule
a diverse-natured tasks in a fog computing environment [29].

In RL, self-learning agents can take appropriate action in
a particular situation to perform a task and try to maximize
the received rewards [97]. By using reinforcement learning, a
system can map a situation to actions. Agents, environment,
states, actions, and rewards are the five basic concepts of
reinforcement learning.

1) Agent: Agent is a decision-maker that takes action in a
particular situation. The agents choose best actions either
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TABLE IX
COMPARISON OF METAHEURISTIC SCHEDULING ALGORITHMS.

Type Name Latency Makespan Execution
Time

Network
Usage

Energy
Consumption

Cost QoS Evaluation
Tool

Reference

Genetic ADGTS × × × × × Simulation(NA) [70]

Bio Inspired - × × × × × × Experimental [71]

Genetic TCaS × × × × × Experimental [72]

Bio Inspired BLA × × × × × × C++ [73]

Knapsack GKS × × × × × iFogSim [74]

Bio Inspired WOA × × × × × iFogSim [75]

Bio inspired LBP-
ACS

× × × × × CloudSim [77]

Genetic NSGA-II × × × × × Matlab [79]

Genetic - × × × × × Simulation(NA) [80]

Bio Inspired MFO × × × × × iFogSim [81]

Genetic I-FASC × × × × × × Experimental [83]

Genetic FOG-
AMOSM

× × × × × CloudSim [84]

Genetic PGA × × × × Matlab [85]

PSO EPSO × × × × × iFogSim [86]

Bio Inspired IPSO × × × × × × Matlab [87]

TABLE X
SCHEDULING TYPE FOCUSED BY META-HEURISTIC ALGORITHMS.

Reference Environment Task Scheduling Resource Allocation Workflow Scheduling

[70] fog × ×

[71] fog × ×

[72] fog-cloud × ×

[73] fog × ×

[74] fog × ×

[75] fog × ×

[77] fog-cloud × ×

[79] fog × ×

[80] fog-cloud × ×

[81] fog × ×

[83] fog-cloud × ×

[84] fog × ×

[85] fog-cloud × ×

[86] fog-cloud × ×

[87] fog-cloud ×

TABLE XI
COMPARISON OF FUZZY-BASED SCHEDULING ALGORITHMS.

Type Name Latency Makespan Execution
Time

Network
Usage

Energy
Consump-

tion

Cost QoS Evaluation
Tool

Reference

Fuzzy Logic RFN × × × × × Matlab [91]

Fuzzy Clustering FCAP × × × × × × Matlab [92]

Fuzzy Logic & PSO FPFTS × × × × iFogSim [93]

Fuzzy Logic EDA × × × iFogSim [94]

Fuzzy Logic - × × × × × iFogSim [95]
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TABLE XII
SCHEDULING TYPE FOCUSED BY FUZZY-BASED ALGORITHMS.

Reference Environment Task Scheduling Resource Allocation Workflow Scheduling

[91] fog-cloud × ×

[92] fog × ×

[93] fog × ×

[94] Thing-fog-cloud × ×

[95] fog-cloud × ×
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Fig. 6. Reinforcement Learning Architecture.

on the basis of their experience (exploitation) or by choos-
ing entirely new actions (exploration). This trade-off aids
the agent to learn appropriate action to take.

2) Actions: Actions are the set of all possible moves.
3) Environment: The agent observes the environment. The

input of the environment is the agent’s current state and
action, while its output is a numeric reward and generated
next state.

4) State: The state is the immediate situation in which the
agent finds itself.

5) Reward: The reward is the response that describes how
the agent behaved by the action taken. [98].

Fig. 6 shows the agent and environment interaction in
Reinforcement learning architecture.

RL algorithms can be broadly classified as follows:

1) Model-Based: Model-based algorithms aim to learn the
working of the environment using observations and plan a
situation using model [99]. These algorithms may or may
not have a policy or value function. Instead, a transition
and reward function is used to search optimal policy, for
example, dynamic programming. Model-based RL can
further be classified as Learn Model and Model Given.

2) Model-Free: Model-Free algorithms do not learn from
the dynamics of the environment. These algorithms are
simpler and less expensive than their counterparts and can
learn the optimal policy based on trial-and-error.

The three main model-free methods to solve RL problems
are value-based methods, policy-based methods, and actor-
critic methods [100]. These techniques are explained in the
following subsections.

1) Value-Based Methods: Value-based methods aim to opti-
mize the value function V (s) using Bellman equation [97] in a
given state. The action-value function estimates the maximum
expected future return the agent will get at each state. Q-
Learning is an example of off-policy value-based methods
[101]. An off-policy algorithm learns the value function being
independent of the policy used during training. An on-policy
algorithm selects a policy depending upon the one used in
gathering data. State–Action–Reward–State–Action (SARSA)
is an example of on-policy value-based methods. The details
of the value-based algorithms used for scheduling are given
below.

Q Learning algorithm is a powerful value-based algorithm
to select optimal action-selection policy using a Q function.
The simple version of Q-learning sustains a lookup table of
values Q(s, a) where s indicates the state and a indicates the
set of actions. Each entry in the table is a state-action pair used
to compute the maximum future reward against an action at
each state. Q-Learning algorithm uses the Bellman equation
to update the value function. In Q-Learning, Q∗(s, a) is the
cumulative discounted reward of action a taken in any state s.

Orhean et al. use reinforcement learning for allocating
tasks in a heterogeneous distributed environment [102]. They
assume different machine performance and cluster status. They
propose Machine Learning Box (MLBox) for the implemen-
tation of the agent using the BURLAP library. Their main
objective is to design a scheduler that can optimally schedule
tasks on a given cluster of machines with each machine with
an internal scheduler to reduce task’s execution time. In the
described platform, they apply both SARSA and Q-Learning
algorithms for task scheduling. The main drawback is that their
approach is not suitable for a complex environment.

In 2019, Liu et al. [103] consider resource allocation prob-
lem for the IoT networks. Every edge device is considered as
an agent that decides which task should be allocated on edge
devices. They propose resource allocation using ε-greedy Q-
learning algorithm. Their objective is minimization of the cost
of energy consumed as well as delay in task execution.

Q-Learning algorithm is simple and easy to implement, and
it also yields better results [102]. But this algorithm is difficult
to generalize and the agent may not select the best action in
case of experiencing an unseen event. Therefore, this algorithm
is not well-suited for a complex dynamic environment.

2) Policy-Based Methods: A policy maps agent’s observed
states of the environment to actions [97]. In Policy-based
methods, the objective is to learn optimal policy π with the
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highest expected future rewards without maintaining the value
function. A policy can be:
1) Deterministic: A deterministic policy maps state to ac-

tions. For each given state, the function returns a defined
action to take. Deterministic policies are used in determin-
istic environments when there is no uncertainty. Because
for a given history and action, there is a single potential
observation and reward.

2) Stochastic: The stochastic policy is useful when the envi-
ronment is uncertain. Therefore, the agent selects actions
using a policy that is explained as a probability distribution
over actions π : π(s; a) −→ [0; 1];π(s; a) the probability
of performing action a under state s. For a given history and
action, there are many potential observations and rewards.

Policy-based methods usually use a function approximator
with some adjustable parameters, θ; π(s, aθ).

Policy gradient algorithms are a popular type of reinforce-
ment learning algorithms. These algorithms optimize policy
parameters using gradient descent on an objective function
J . Their goal is to estimate the gradient by analyzing the
trajectories generated by following the current policy.

Qing Wu [104] propose a DAG scheduling algorithm using
policy-gradient REINFORCE algorithm to execute security-
sensitive tasks on trusted entities in a heterogeneous comput-
ing environment. The algorithm aims at minimization of the
makespan of the tasks. They compare the obtained results of
their scheduler with HEFT and CPOP for randomly-generated
DAGs. The limitation of their work is that they only focus on
the static problem with predefined task priorities.

H. Deep Learning, Deep Reinforcement Learning

In this subsection, we introduce deep learning and deep re-
inforcement learning, the categories of DRL-based algorithms
and a review of different DRL algorithms used by researchers.

Deep Learning is a new area of machine learning research
in which feature learning and pattern classification are done
through multiple processing layers [105]. In past few years,
deep learning [106] has successfully been applied for image
processing, sequence prediction, natural language processing,
and data analysis [107]. Due to the promising results of Deep
Learning, it has recently been used in various other fields
like healthcare and agriculture. Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN), Multilayer
Perceptrons (MLPs), Long-short Term Memory (LSTM), and
Deep Belief Networks (DBNs) are some examples of widely-
used neural networks [107]. CNN has successfully been ap-
plied for image processing as it deals with spatial distribution,
and RNN has been used for natural language processing
because of its ability to learn long-term dependencies.
• Resource Allocation: Amudha and Murali present an in-

telligent and novel scheduling algorithm, Modified Wake-
on Reconfigurable Networks, to optimize performance using
distance energy adaptive rule sets (WORN-DEAR) for pa-
tient’s health monitoring [108]. They integrate deep learning
algorithms in fog gateways for energy-efficient routing and
scheduling without compromising latency and throughput.
In their experimental setup, they implement reconfigurable
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Fog Node Resources 
{F1, F2……..Fn}

Action at 

Agent (Scheduler)

Rewards r

State s
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Fig. 7. Deep Reinforcement Learning Architecture.

software in fog gateways, and the communication between
these gateways is via short-range waves. The data col-
lected from various body sensors are moved towards the
nearest fog gateways that take necessary decisions about
where to process the received data. The energy-efficient
path prediction for both normal and emergency data on the
proposed network uses Long-Short Term Memory (LSTM).
Cooja-Contiki network simulator is used for performance
evaluation [109]. The work is also implemented on different
testbeds, and a comparison is made with logistic regression,
naı̈ve bias, Support Vector Machine (SVM), and K-Nearest
Neighbours (KNN). The demerit of the proposed work is
that it ignores mobility and security factor.

Reinforcement learning refers to goal-oriented algorithms
so, the agent aims to maximize numerical reward by taking
appropriate actions. Simple RL algorithms are applied to solve
few low-dimensional problems because they lack scalability.
Also, RL algorithms suffer from the same complexity is-
sues like computational and memory complexities as suffered
by the other optimization algorithms [110]. The exponential
explosion of states and actions is termed as “Curse of Di-
mensionality”. Deep learning makes RL able to solve such
intractable optimization problems. The fusion of deep learning
and reinforcement learning named DRL has emerged as an
active area of research. DRL has recently proved its capability
to solve decision-making problems where mapping magnitude
is too large. In the DRL model, Deep Neural Network (DNN)
helps in function approximation as shown in Fig. 7.

If the state space is simple, a table can be used to store
mapping of states to actions, but the solution is not feasible
if the mapping magnitude is too large. Therefore, in such
cases, function approximators are usually used. A function
approximator contains some adjustable parameters. If a DNN
is used as a function approximator, a DRL model can be
created as shown in Fig. 7.

DRL algorithms are also classified as Value-Based and
Policy-Based methods that are described in the following
subsections.

1) Value-Based DRL Methods: As explained in the previous
section, the value-based algorithms learn a value function that
is used for defining a policy. Deep Q-network (DOQN) and
Double DQN are examples of Value-Function-Based DRL
algorithms.
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DQN is a value-function-based DRL algorithm in which
a DNN helps estimating the Q-value function [110]. Mnih
et al. introduce this algorithm. It outperforms in an online
setting across a variety of ATARI video games [111]. In DQN,
state features are given as input to a deep neural network
that outputs the Q-value function in a high-dimensional and
continuous state space.

Q-Learning uses a single estimator for selection and evalu-
ation of action so, it may select an overestimated value in case
of noise. To overcome the problem of overestimation, DQN
uses upward bias while Double DQN (DDQN) [112] uses two
separate Q-value estimators for each variable.
• Resource Scheduling: Task scheduling for fog-based IoT

applications using DRL is proposed by Gazori et al. [113] to
decrease service latency, energy consumption, and compu-
tational cost with resource and task’s deadline-constraints.
They apply a DDQ-Learning based scheduling algorithm.
They use gateways as schedulers that work as agents. Nodal
collaboration is master-slave in which Gateways are master
and fog nodes are slaves. Computing node resources are
distributed among many VMs(CPU, Memory, Storage) that
are allocated to incoming tasks. Their algorithm directly
learns the scheduling policy from experience without hav-
ing a prior knowledge of the environment. They claim to
minimize energy consumption along with load-balancing on
available resources.
The above review shows that DQN and Double DQN algo-

rithms perform better as compared to the simple Q-Learning
algorithm in a large and dynamic environment. But, in case of
high dimensional state-action space, the algorithm converges
slowly.

2) DRL-Based Policy Gradient Methods: Policy-Based
methods aim to optimize a performance objective by finding an
optimal policy, as explained in earlier sections. Policy Gradient
Algorithms and Actor-Critic Algorithms are [114] commonly
used as policy-based methods. Policy gradient algorithms
are also classified as Deterministic and Non-Deterministic
Policy Gradient (DPG) Algorithms. Gradient Ascent and Deep
Deterministic Policy Gradient (DDPG) [115] are examples of
Policy Gradient Methods.

In 2016, Mao et al. [116], are the first ones who claim
that a system itself can learn to manage resources. They
assume dynamic arrival of jobs that remain non-preempted
when allocated on a cluster of resources (CPU, memory, I/O).
Their main objective of the resource scheduler is to decrease
average slowdown and completion time of a task. They present
policy as a neural network trained in an episodic setting. In
each episode, the tasks are scheduled using the policy. The
authors assume that jobs arrive in the job queue after discrete
time intervals. In case the job queue is full, the tasks are
placed in a backlog. They used convolutions neural networks
as a function approximator for state representation. They use
the REINFORCE algorithm for training. However, they ignore
jobs with dependent tasks.

In [117], Chen et al. also use a policy-gradient algorithm
for resource allocation in multiple server clusters to reduce
average job slowdown time. Their study prove that DRL
outperforms conventional resource allocation algorithms in

multi-resource and multi-machine environments. The authors
consider m machines with d resources and a job queue in
which jobs arrive after a discrete time step. In case the job
queue is full, a job is saved in the backlog to allocate the
processor in the future. They use convolutions neural networks
for state representation.

• Task Scheduling: In [118], Ye et al. propose online task
scheduling algorithm DeepRM2 and offline scheduling al-
gorithm DeepRM-off. Their main aim is to decrease the
average slowdown and completion time of the job. In the
DeepRM2, job arrival is according to Poisson distribution,
while in the DeepRM-off, jobs simultaneously reach a queue
for a slot. They assume that there is no job preemption once
it is selected. To speed up the learning process, the authors
use imitation learning. For training purposes, they use the
SJF scheduling algorithm. The trained neural network is
then used as the initial policy for DRL. Then, the policy
gradient algorithm is used in which CNN works as a
function approximator.

• Resource Allocation: Bian et al. in [119] purpose Dominant
Resource Fairness (DRF) and DRL-based solution for multi-
resource fairness for resource allocation. DRF is a newly
presented multi-resource fairness policy, which is a gener-
alized form of max-min fairness policy for various resources
[120] in which allocation of a user is according to the
user’s dominant share. Its main objective is maximization
of the smallest dominant share across tasks. Their adaptive
scheduling algorithm FairTS minimizes average task slow-
down and schedules resources fairly among these tasks. In
FairTS, scheduling is performed in two steps; In the first
step, the tasks are generated as a Poisson process, while
in the second step, the available resources are allocated
to arrived tasks. After the allocation of the resources, no
preemption is done till the task finishes. They consider three
types of task delay: waiting delay, transmission delay, and
execution delay. A DRL-based Policy-Gradient algorithm
is used to minimize average task slowdown time. Their
evaluation results compared with those of Random and
Shortest Execution Time (SET) show that their algorithm
performs better in terms of minimization of average task
slowdown and resource fairness.

The above review indicates that the policy-gradient methods
are mostly used for scheduling and resource allocation by
researchers because these algorithms converge faster and are
more effective and adaptive in high-dimensional space. Their
main disadvantages is that they may converge to local optima,
and the evaluation of a policy is typically inefficient and it
suffers from high variance.

The actor-Critic algorithm is a hybrid method in which two
non-linear neural network function approximators are used. A
Critic learns a value function for evaluating the goodness of
the taken action, and an Actor is policy-based that receives the
state as input and outputs the best action. The critic provides
a reinforcing signal to the actor. The training of two networks
is separately performed and it uses gradient ascent to update
weights. As time passes, the actor learns to take better actions
and the critic evaluates those actions. Weight updation happens
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at each step as opposed to a policy gradient. DDPG, Proximal
Policy Optimization (PPO) [121], and Trust Region Policy
Optimization (TRPO) [122] are some examples of variations
of the Actor-Critic algorithm.
• Resource Allocation: Shreshth Tuli [123] use

Asynchronous-Advantage-Actor-Critic (A3C) algorithm
[124] for the stochastic dynamic scheduler in edge-cloud
environment in which Residual Recurrent Neural Network
(R2N2)-based framework is used to exploit temporal
patterns in a hybrid environment [125]. They claim that
the designed scheduler can quickly adapt to a dynamically
changing environment. Their aim is to reduce consumed
energy, response time, and cost. They use iFogsim and
Cloudsim for simulations. The limitation of their purposed
model is the lack of scalability.
Actor-Critic algorithms quickly converge and also solve the

problem of variance issue suffered by the policy gradient
algorithms. A side-by-side comparison of the dynamic RL
and DRL-based scheduling techniques considering the dif-
ferent optimization metrics and evaluation tools is shown in
Table XIII. The tick marks indicate the intended criteria while
the crosses show the metrics ignored by the researchers.

The focused techniques in the reviewed RL-based literature
is presented by check marks in Table XIV.

The above survey shows the initial efforts made by different
researchers for solving the task scheduling and allocation
problem using RL and DRL-based algorithms. According to
Table XIII, most of the proposed algorithms aim to minimize
energy consumption along with minimization in turnaround
time. However, some other factors as cost, reliability, and
security, have been ignored by most of the researchers.

IV. ANALYTICAL DISCUSSION

In this section, we provide our analysis of the existing
task scheduling techniques in fog computing. The analytical
examination is done on the basis of the classification of these
algorithms, evaluation environment, tools used, along with the
metrics used in these studies.

Fig. 8 shows the percentage of scheduling techniques fo-
cused by different researchers. It shows that most of the
researchers, i.e., 64% focus on solving resource allocation
problems in complex fog computing environments while task
scheduling on fog devices is addressed in 28% studies. Only
8% of the studies address the workflow scheduling issue in
fog computing.

Fig. 9 shows the classification of various task scheduling
and resource allocation algorithms. The analysis suggests
that Heuristic and Meta-Heuristic algorithms have widely
been used by researchers, i.e., 30% each. Both heuristic and
meta-heuristic algorithms are commonly used for solving the
scheduling problem because these can find feasible and near-
optimal solutions in linear time. For developing self-adaptive
scheduling algorithms for online and the uncertain fog comput-
ing environment, policy-based DRL algorithms have also been
applied by 8% researchers. Traditional algorithms are applied
by 11%, fuzzy Logic based algorithms by 10%, and Hyper-
heuristic algorithms by 4% researchers. The reinforcement

Task 
Scheduling

28%

Workflow 
Scheduling

8%

Resource 
Allocation

64%

Task Scheduling Workflow Scheduling
Resource Allocation
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learning, deep learning, and hybrid heuristic algorithms are
used by just 2% each.

Fig. 10 shows the evaluation factors that are considered in
different approaches. Latency is the most widely used metric,
and it is used in 25% of the studies. Among the other metrics,
energy consumption has been optimized by 22%, execution
time by 9%, QoS by 10%, cost by 8%, network usage by 8%,
makespan by 10%, and average slowdown time by 4%, of the
studies.

Fig. 11 shows the application environment used by re-
searchers for solving scheduling problems. In 53% studies,
fog-cloud environment is considered, while fog environment is
considered in 40% of the studies. Edge-fog-cloud is considered
in 7% studies.

The software tools used in different studies and their brief
introduction are briefly described in table XV, including
CloudSim [126], iFogSim [41], WorkflowSim [127], Cloud-
Analyst [128], SimGrid [129], SimPy [130], and Keras [131].

Fig. 12 shows the simulators that are used for the evaluation
of the approaches. As shown in the figure, iFogSim is used in
50% of the simulation studies. Matlab tool is used in around
23% of the evaluation studies. CloudSim tool is used in 14%
of the studies. For the rest of the studies, the researchers
use WorkflowSim, CloudAnalyst simulators, and C++/Java
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TABLE XIII
COMPARISON OF RL AND DRL-BASED SCHEDULING ALGORITHMS.

Algorithm Learning Service
Delay

avg
slowdown

avg
turnaround

Energy Con-
sumption

Execution
Time

Evaluation
Tool

Reference

Modified WORN-DEAR - × × × × Cooja-Contiki
&

Experimental

[108]

DDQL Off-Policy × × Keras, Simpy [113]

Policy Gradient On and Off-
Policy

× × × Experimental [118]

Policy Gradient & DRF On-Policy × × × × Simulation(NA) [119]

A3C On-Policy × × × CloudSim [123]

TABLE XIV
SCHEDULING TYPE FOCUSED BY RL AND DRL-BASED ALGORITHMS.

Reference Environment Task Scheduling Resource Allocation Workflow Scheduling

[108] body-fog-cloud × ×

[113] fog-cloud × ×

[118] fog-cloud × ×

[119] fog × ×

[123] edge-cloud × ×

TABLE XV
REPRESENTATION OF SOFTWARE TOOLS.

Software Tools License Brief Introduction

CloudSim Open-source CloudSim is the most commonly-used generalized free framework modeling and simulating large-scale
cloud infrastructure and its core services. It builds on GridSim. It facilitates the researchers to simulate
data centers, virtual machines, cloud, and data center brokers. It allows users to define policies for the
allocation of hosts, and host resources, like memory and storage.

iFogSim Open-source iFogSim is the most popular free simulation toolkit to model and simulate resource management
techniques in the fog/cloud and IoT environments. It is based on CloudSim and allows the user to
simulate fog infrastructure with millions of fog nodes, sensors, actuators, and IoT services [132] for
evaluating resource-management and scheduling policies. It helps the researchers to evaluate various
metrics like delay, energy consumption, network usage, and cost [133]

WorkflowSim Open-source WorkflowSim is a workflow simulator based on CloudSim that provides simulation-based on workflow. It
supports researchers simulating different levels of delay and fault in a near-real distributed environment.
The simulator facilitates implementing various task scheduling, clustering, and resource management
algorithms.

CloudAnalyst Open-source CloudAnalyst is an open-source simulator built on CloudSim for evaluating the performance of large-
scale distributed applications on the cloud. It provides GUI for configuring a geographically distributed
system. The evaluation results are presented through graphs and tables.

SimGrid Open-source SimGrid is a generic framework to simulate distributed applications in large-scale distributed environments
like clusters, grids, and cloud.

SimPy Open-source SimPy is a process-based discrete-event simulation framework that is developed in Python. A Python
generator function is used for modeling processes.

Keras Open-source Keras is a Python library that researchers most commonly use to develop and evaluate deep learning
models.

languages.
The merits and demerits of the techniques used for task

scheduling in fog computing are listed in Table XVI.

A. Lessons Learned from the Survey/ Research Findings

In this survey, we reviewed 46 papers on three major
scheduling issues in the fog computing and IoE environment:
task scheduling, resource allocation, and workflow scheduling.
The techniques used in reviewed studies belong to different do-
mains: traditional, heuristic, hyper-heuristic, hybrid-heuristic,

meta-heuristic, and intelligent ones like RL, DRL, and fuzzy-
logic based. The survey reveals that most researchers target the
resource allocation problem in fog computing, some address
task scheduling on fog nodes, while only a few consider
workflow scheduling.

The survey indicates that the unpredictable workload, dy-
namic nature, and complex fog computing and IoE make
optimal and self-adaptive resource allocation and scheduling
challenges. Most of the approaches need prior information
regarding scheduling tasks that are not suitable for a dy-
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TABLE XVI
MERITS AND DEMERITS OF TASK SCHEDULING TECHNIQUES.

Tech. Reference Merits Demerits
Traditional [41], [42], [44],

[45]
• simple, easy to implement
• low overhead
• deterministic

• not suitable for uncertain and dynamic fog environments
• not adaptable

Heuristic [19], [47]–[57],
[59], [60]

• simple and cheap to implement
• solution in a resonable time

• greedy, so it can easily trap in local optima
• Less flexible and scalable

Hyper-
Heuristic

[62], [63] • better level of generalization
• multi-objective optimization is possible

• difficult to implement
• lack learning component

Hybrid-
Heuristic

[65] • better results than heuristic algorithms
• solution in short time
• flexible

• difficult to identify best hybrid solution among all solutions
• Not adaptive

Meta
Heuristic

[70]–[75], [77],
[79]–[81], [83]–
[87]

• finds near optimal solution in reasonable time
• better resource utilization

• long convergence time
• mobility factor is not supported

Fuzzy
Based

[91]–[95] • suitable for uncertain environment
• task prioritization is possible

• longer development time
• mathematical descriptions are lacking

Q-
Learning

[102], [103] • easy to implement
• performs better in uncertain environments

• difficult to generalize
• not well suited for complex dynamic fog computing envi-

ronments
Deep Q-
Learning

[113] • performs better than simple Q-learning
• Performs well in complex, uncertain/dynamic FC
• adaptive in nature

• converges slowly in high-dimensional state-action space.

Policy-
Gradient

[118], [119], [123] • convergence is easy
• effective in high-dimensional or continuous-

space
• adaptive

• may converge to local optima
• policy evaluation is typically inefficient and suffers from

high variance.
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Fig. 10. Metrics used in Scheduling Algorithms.
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Fig. 11. Application Environments.

iFogSim
50%

SimGrid
4%
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23%
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3%
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14%

Java
3%
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Fig. 12. Simulators used for Task Scheduling Analysis.

namic fog computing environment. Therefore, considering
the discussed techniques, fuzzy-based and deep reinforcement
learning techniques have great potential to solve these issues.

In different studies, the resource allocation applies on either
the fog-cloud layers or only the fog layer and fog comput-
ing and IoE. As the cloud and fog environments vary in
resource availability and geographical location, this makes the
allocation problem more complex. Therefore, the allocation
algorithm should fairly, optimally, and efficiently allocate
cloud and fog resources to competing IoE requests according
to their QoS requirements.

Most of the reviewed studies in the survey are simulation-
based, while only a few studies are experimental. In
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simulation-based studies, we present a small size simulations
scale. Therefore, to assess the performance of these algorithms,
extensive simulations are needed. Also, the simulators used in
these studies lack the mobility factor as well as the network
properties. Therefore, we need simulators that can support
these features.

Most studies try to optimize metrics like energy consump-
tion, delay, and network usage while ignoring the security,
fault tolerance, and privacy issues. For resource allocation, the
trusted node selection is of great importance. Therefore, new
algorithms are required that can allocate resources to tasks
according to privacy and security needs.

V. OPEN ISSUES AND FUTURE DIRECTIONS

In this section, we discuss the open issues, future challenges,
and future research directions for task scheduling in fog
computing.
• Resource Utilization of Fog Node: The fog devices are

resource-constrained in terms of storage, processing, and
energy. They receive dynamic workloads from both latency-
sensitive and delay-tolerant applications. Therefore, the
challenging part is to schedule the unpredictable arrival of
tasks on these fog nodes for optimal utilization of available
resources.

• Optimal Resource Allocation: A big number of tasks are
generated by IoE devices that should be optimally allocated
to fog nodes to yield faster response time, especially for
latency-sensitive applications. As fog computing supports
the mobility of fog nodes and IoT devices so, all the
resources accessible at one time might be unreachable at
any other time. Therefore, this makes resource allocation
a challenging task. Long latency for real-time applications,
lack of generalization, and quick adaptability of the existing
algorithms are the issues that need attention.

• Parallel Scheduling: In parallel processing, a task is divided
into multiple tasks, and then these sub-tasks are concurrently
executed [134]. Dividing tasks into sub-tasks that can reduce
delays via distributed computing is another open issue that
needs attention.

• Privacy: Fog nodes receive a lot of personal data from
various fog applications like smart healthcare. Therefore,
the privacy of such data is most important for users [135].
Although, some researchers apply privacy-preserving tech-
niques on fog nodes, there is no acceptable authentication
solution. The fog nodes are more vulnerable to potential
threats that make authentication a challenging issue.

• Security: Security is one of the main challenges as fog
nodes lack resources and are deployed in unsafe envi-
ronments, and hence they are easy to attack. Therefore,
designing a lightweight, high speed, and reliable safety
algorithm is still a challenging task. Currently, only a few
researchers focus on security issues in fog computing, and
there are some open issues like dynamic authentication,
access controls, external attacks, and intrusion detection.

• Energy Consumption: As fog devices are energy-
constrained because of low-power batteries, energy-aware
fog computing is still an open issue that needs to be

addressed. Some researchers focus on energy optimization
while the appropriate usage of bandwidth in data transfer,
energy wastage, and battery drainage issues are still some
of the challenges that need attention.

• Self-Adaptive Scheduling: Most of the scheduling algo-
rithms lack the learning component that makes self-adaptive
resource scheduling a challenge in task scheduling in fog
computing. Although, some research studies consider self-
adaptive scheduling, all these efforts have only been made
on the experimental level. Therefore, task scheduling algo-
rithms are required to optimally schedule tasks generated as
a result of unexpected events in a dynamic environment.
Fog computing architecture is distributed as tasks are allo-

cated to heterogeneous fog nodes. Multi-Agent Reinforcement
Learning (MARL) is a kind of Reinforcement Learning that
can be used for optimal self-adaptive scheduling. Several
agents can dynamically learn in multi-agent reinforcement
learning after interacting with the environment [136]. In
single-agent reinforcement, the learning state is changed due
to the actions of the individual agent. In MARL, the state
change is concerned with the actions of all agents. MARL for
task scheduling has also not been studied by researchers yet.

VI. CONCLUSIONS AND FINAL REMARK

Efficient scheduling algorithms can significantly improve
the performance of a fog computing and IoE. In this study,
we have studied different task scheduling, resource allocation,
and workflow scheduling approaches in fog computing and IoE
paradigm. We have classified these approaches into eight main
categories namely traditional, heuristic, hyper-heuristic, hybrid
heuristic, meta-heuristic, fuzzy-based, reinforcement learning,
and deep reinforcement learning-based. We have described the
advantages, disadvantages, evaluation factors, and simulation
environment of every approach. Our analysis indicates that
most of the researchers, 30% each, have used heuristic and
meta-heuristic algorithms for solving the scheduling problem.
Furthermore, 8% researchers have applied policy-based deep
reinforcement learning algorithms for solving dynamic task
scheduling and allocation problems. Considering the evalua-
tion environment, our analysis shows that 87% of the studies
are simulation-based while only 13% studies are experimental.
The review also revealed that iFogSim is the most commonly
used simulator that has been used in 50% of the studies.
Moreover, 23% studies use Matlab for the implementation,
and 14% studies use the CloudSim tool for evaluations.
Furthermore, the latency has been the most commonly chosen
metric for evaluation considered in 25% research studies,
energy consumption in 22%, and QoS in 10% studies. The
work can be extended by considering the security-aware re-
source management mechanisms, reliability-based scheduling,
privacy, and security architectures in fog computing and IoE.
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[96] Y. M. Jiménez, “A generic multi-agent reinforcement learning approach
for scheduling problems,” PhD, Vrije Universiteit Brussel, p. 128,
2012.

[97] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[98] P. H. Valente Klaine, “Self-organization for 5g and beyond mobile
networks using reinforcement learning,” Ph.D. dissertation, University
of Glasgow, 2019.
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